
I. Lambda functions
a. Python supports the creation of anonymous functions (i.e. functions that

are not bound to a name) at runtime, using a construct called "lambda".
>>> def f (x): return x**2
...
>>> print f(8)
64
>>>
>>> g = lambda x: x**2
>>>
>>> print g(8)
64
As you can see, f() and g() do exactly the same and can be used in the
same ways. Note that the lambda definition does not include a "return"
statement -- it always contains an expression which is returned.

b. The below code defines a function "make_inrementor" that creates an
anonymous function on the fly and returns it. The returned function
increments its argument by the value that was specified when it was
created.

>>> def make_incrementor (n): return lambda x: x + n
>>>
>>> f = make_incrementor(2)
>>> g = make_incrementor(6)
>>>
>>> print f(42), g(42)
44 48

II. Environment Diagrams
a. An environment in which an expression is evaluated consists of a

sequence of frames, depicted as boxes. Each frame contains bindings, each
of which associates a name with its corresponding value. There is a
single global frame. Assignment and import statements add entries to the
first frame of the current environment.

b. Online Python Tutor: http://pythontutor.com/visualize.html
c. Lets draw the environment diagram for the following;

from operator import add
def square(x):
 """Return x squared."""
 return x * x
square(2)

III. Sequence
a. A sequence is an ordered collection of data values. Unlike a pair, which

has exactly two elements, a sequence can have an arbitrary (but finite)
number of ordered elements.

b. Two properties of sequences
i. Length - A sequence has a finite length.

ii. Element selection - A sequence has an element corresponding to
any non-negative integer index less than its length, starting at 0 for
the first element.

c. Tuples

i. The tuple is itself a full sequence type, which can be constructed
by separating values by commas. Although not strictly required,
parentheses almost always surround tuples.
>>> (1, 2)
(1, 2)
>>> pair = (1, 2)
>>> pair
(1, 2)
>>> pair[0]
1

ii. Tuples can have arbitrary length, and they exhibit the two principal

behaviors of the sequence abstraction: length and element
selection.

iii. digits is a tuple with four elements.
>>> digits = (1, 8, 2, 8)
>>> len(digits)
4
>>> digits[3]
8

iv. tuples can be added together and multiplied by integers. For tuples,
addition and multiplication do not add or multiply elements, but
instead combine and replicate the tuples themselves.

 >>> (2, 7) + digits * 2
 (2, 7, 1, 8, 2, 8, 1, 8, 2, 8)

IV. Immutable objects

a. Values never change
b. Examples: numbers, Booleans, tuples, ranges, and strings

V. Mutable Objects
a. Can change throughout the execution of a program

VI. Mutable Objects: Lists
a. Method calls and assignment statements can change the contents of a list.
b. The Python language does not give us access to the implementation of

lists, only to the sequence abstraction and the mutation methods we have
introduced in this section. To overcome this language-enforced abstraction
barrier, we can develop a functional implementation of lists, rlists
(recursive lists).

c. Lets draw the environment diagram that illustrates the structure of the
recursive representation of a four-element list: 1,2, 3, 4.
>>> up_to_four = (1, (2, (3, (4, None))))

d. This nested structure corresponds to a very useful way of thinking about
sequences in general. A non-empty sequence can be decomposed into:

i. its first element, and
ii. the rest of the sequence.

e. Since our list representation is recursive, we will call it an rlist in our
implementation, so as not to confuse it with the built-in list type in
Python. The value None represents an empty recursive list.

f. These two selectors, one constructor, and one constant together implement
the recursive list abstract data type.

g. We can use the constructor and selectors to manipulate recursive lists.
>>> counts = rlist(1, rlist(2, rlist(3,
rlist(4, empty_rlist))))
>>> first(counts)
1
>>> rest(counts)
(2, (3, (4, None)))

VII. Mutable Objects: Dictionaries
a. Dictionaries are Python's built-in data type for storing and manipulating

correspondence relationships. A dictionary contains key-value pairs,
where both the keys and values are objects. The purpose of a dictionary is
to provide an abstraction for storing and retrieving values that are indexed
not by consecutive integers, but by descriptive keys.

b. Strings commonly used as keys. This dictionary literal gives the values of
various Roman numerals.
>>> numerals = {'I': 1.0, 'V': 5, 'X': 10}

c. Looking up values by their keys uses the element selection operator that
we previously applied to sequences.
>>> numerals['X']
10

d. A dictionary can have at most one value for each key. Adding new key-
value pairs and changing the existing value for a key can both be achieved
with assignment statements.
>>> numerals['I'] = 1

>>> numerals['L'] = 50
>>> numerals
{'I': 1, 'X': 10, 'L': 50, 'V': 5}

e. Restrictions of Dictionaries
i. A key of a dictionary cannot be an object of a mutable built-in

type.
ii. There can be at most one value for a given key.

VIII. Objects and Classes
a. Object-oriented programming (OOP) is a method for organizing

programs.
b. Like abstract data types, objects create an abstraction barrier between the

use and implementation of data.
c. A class serves as a template for all objects whose type is that class. Every

object is an instance of some particular class.
d. A class definition specifies the attributes and methods shared among

objects of that class. We will introduce the class statement by visiting the
example of a bank account.

e. What methods (actions) does a bank account need? Withdraw, deposit,
etc.

f. An Account class allows us to create multiple instances of bank accounts.
The act of creating a new object instance is known as instantiating the
class.

g. User-defined classes are created by class statements,
class <name>(<base class>):

<suite>
h. When a class statement is executed, a new class is created and bound

to <name> in the first frame of the current environment.
i. The <suite> of a class statement contains def statements that define

new methods for objects of that class. The method that initializes objects
has a special name in Python, __init__ (two underscores on each side
of "init"), and is called the constructor for the class.
>>> class Account(object):

def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

j. The __init__ method for Account has two formal parameters. The
first one, self, is bound to the newly created Accountobject. The
second parameter, account_holder, is bound to the argument passed
to the class when it is called to be instantiated.

k. The syntax in Python for instantiating a class is identical to the syntax of
calling a function. In this case, we call Account with the argument 'Jim',
the account holder's name.
>>> a = Account('Jim')

l. Now, we can access the object's balance and holder using dot
notation.
>>> a.balance
0
>>> a.holder
'Jim'

m. Each new account instance has its own balance attribute, the value of
which is independent of other objects of the same class
>>> b = Account('Jack')
>>> b.balance = 200
>>> [acc.balance for acc in (a, b)]
[0, 200]

