Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
551 lines (510 sloc) 28.1 KB
"""
Thierry Bertin-Mahieux (2010) Columbia University
tb2332@columbia.edu
This code contains a set of routines to create HDF5 files containing
features and metadata of a song.
This is part of the Million Song Dataset project from
LabROSA (Columbia University) and The Echo Nest.
Copyright 2010, Thierry Bertin-Mahieux
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import sys
import numpy as np
# code relies on pytables, see http://www.pytables.org
import tables
import hdf5_descriptors as DESC
from hdf5_getters import *
# musicbrainz related stuff
try:
from MBrainzDB import query as QUERYMB
except ImportError:
print 'need pg module and MBrainzDB folder of Python source code if you'
print 'want to use musicbrainz related functions, e.g. fill_hdf5_from_musicbrainz'
# description of the different arrays in the song file
ARRAY_DESC_SIMILAR_ARTISTS = 'array of similar artists Echo Nest id'
ARRAY_DESC_ARTIST_TERMS = 'array of terms (Echo Nest tags) for an artist'
ARRAY_DESC_ARTIST_TERMS_FREQ = 'array of term (Echo Nest tags) frequencies for an artist'
ARRAY_DESC_ARTIST_TERMS_WEIGHT = 'array of term (Echo Nest tags) weights for an artist'
ARRAY_DESC_SEGMENTS_START = 'array of start times of segments'
ARRAY_DESC_SEGMENTS_CONFIDENCE = 'array of confidence of segments'
ARRAY_DESC_SEGMENTS_PITCHES = 'array of pitches of segments (chromas)'
ARRAY_DESC_SEGMENTS_TIMBRE = 'array of timbre of segments (MFCC-like)'
ARRAY_DESC_SEGMENTS_LOUDNESS_MAX = 'array of max loudness of segments'
ARRAY_DESC_SEGMENTS_LOUDNESS_MAX_TIME = 'array of max loudness time of segments'
ARRAY_DESC_SEGMENTS_LOUDNESS_START = 'array of loudness of segments at start time'
ARRAY_DESC_SECTIONS_START = 'array of start times of sections'
ARRAY_DESC_SECTIONS_CONFIDENCE = 'array of confidence of sections'
ARRAY_DESC_BEATS_START = 'array of start times of beats'
ARRAY_DESC_BEATS_CONFIDENCE = 'array of confidence of sections'
ARRAY_DESC_BARS_START = 'array of start times of bars'
ARRAY_DESC_BARS_CONFIDENCE = 'array of confidence of bars'
ARRAY_DESC_TATUMS_START = 'array of start times of tatums'
ARRAY_DESC_TATUMS_CONFIDENCE = 'array of confidence of tatums'
ARRAY_DESC_ARTIST_MBTAGS = 'array of tags from MusicBrainz for an artist'
ARRAY_DESC_ARTIST_MBTAGS_COUNT = 'array of tag counts from MusicBrainz for an artist'
def fill_hdf5_from_artist(h5,artist):
"""
Fill an open hdf5 using all content in a artist object
from the Echo Nest python API
There could be overlap with fill_from_song and fill_from_track,
we assume the data is consistent!
"""
# get the metadata table, fill it
metadata = h5.root.metadata.songs
metadata.cols.artist_id[0] = artist.id
idsplitter = lambda x,y: x.split(':')[2] if x else y
metadata.cols.artist_mbid[0] = idsplitter(artist.get_foreign_id(idspace='musicbrainz'),'')
metadata.cols.artist_playmeid[0] = int(idsplitter(artist.get_foreign_id(idspace='playme'),-1))
metadata.cols.artist_7digitalid[0] = int(idsplitter(artist.get_foreign_id(idspace='7digital'),-1))
# fill the metadata arrays
group = h5.root.metadata
metadata.cols.idx_similar_artists[0] = 0
group.similar_artists.append( np.array(map(lambda x : x.id,artist.get_similar(results=100)),dtype='string') )
metadata.cols.idx_artist_terms[0] = 0
group.artist_terms.append( np.array(map(lambda x : x.name,artist.get_terms()),dtype='string') )
group.artist_terms_freq.append( np.array(map(lambda x : x.frequency,artist.get_terms()),dtype='float64') )
group.artist_terms_weight.append( np.array(map(lambda x : x.weight,artist.get_terms()),dtype='float64') )
# done, flush
metadata.flush()
def fill_hdf5_from_song(h5,song):
"""
Fill an open hdf5 using all the content in a song object
from the Echo Nest python API.
Usually, fill_hdf5_from_track() will have been called first.
"""
# get the metadata table, fill it
metadata = h5.root.metadata.songs
metadata.cols.artist_familiarity[0] = song.get_artist_familiarity()
metadata.cols.artist_hotttnesss[0] = song.get_artist_hotttnesss()
metadata.cols.artist_id[0] = song.artist_id
metadata.cols.artist_latitude[0] = song.get_artist_location().latitude
metadata.cols.artist_location[0] = song.get_artist_location().location.encode('utf-8') if song.get_artist_location().location else ''
metadata.cols.artist_longitude[0] = song.get_artist_location().longitude
metadata.cols.artist_name[0] = song.artist_name.encode('utf-8') if song.artist_name else ''
metadata.cols.song_id[0] = song.id
metadata.cols.song_hotttnesss[0] = song.get_song_hotttnesss()
metadata.cols.title[0] = song.title.encode('utf-8') if song.title else ''
metadata.flush()
# get the analysis table
analysis = h5.root.analysis.songs
analysis.danceability = song.get_audio_summary().danceability
analysis.energy = song.get_audio_summary().energy
analysis.flush()
def fill_hdf5_from_track(h5,track):
"""
Fill an open hdf5 using all the content in a track object
from the Echo Nest python API
"""
# get the metadata table, fill it
metadata = h5.root.metadata.songs
#metadata.cols.analyzer_version[0] = track.analyzer_version
metadata.cols.artist_name[0] = getattr(track, 'artist', u'').encode('utf-8')
metadata.cols.release[0] = getattr(track, 'release', u'').encode('utf-8')
metadata.cols.title[0] = getattr(track, 'title', u'').encode('utf-8')
idsplitter_7digital = lambda x: int(x.split(':')[2]) if x and x.split(':')[0]=='7digital' else -1
metadata.cols.release_7digitalid[0] = idsplitter_7digital(track.foreign_release_id)
metadata.cols.track_7digitalid[0] = idsplitter_7digital(track.foreign_id)
metadata.flush()
# get the analysis table, fill it
analysis = h5.root.analysis.songs
analysis.cols.analysis_sample_rate[0] = track.analysis_sample_rate
analysis.cols.audio_md5[0] = track.audio_md5
analysis.cols.duration[0] = track.duration
analysis.cols.end_of_fade_in[0] = track.end_of_fade_in
analysis.cols.key[0] = track.key
analysis.cols.key_confidence[0] = track.key_confidence
analysis.cols.loudness[0] = track.loudness
analysis.cols.mode[0] = track.mode
analysis.cols.mode_confidence[0] = track.mode_confidence
analysis.cols.start_of_fade_out[0] = track.start_of_fade_out
analysis.cols.tempo[0] = track.tempo
analysis.cols.time_signature[0] = track.time_signature
analysis.cols.time_signature_confidence[0] = track.time_signature_confidence
analysis.cols.track_id[0] = track.id
analysis.flush()
group = h5.root.analysis
# analysis arrays (segments)
analysis.cols.idx_segments_start[0] = 0
group.segments_start.append( np.array(map(lambda x : x['start'],track.segments),dtype='float64') )
analysis.cols.idx_segments_confidence[0] = 0
group.segments_confidence.append( np.array(map(lambda x : x['confidence'],track.segments),dtype='float64') )
analysis.cols.idx_segments_pitches[0] = 0
group.segments_pitches.append( np.array(map(lambda x : x['pitches'],track.segments),dtype='float64') )
analysis.cols.idx_segments_timbre[0] = 0
group.segments_timbre.append( np.array(map(lambda x : x['timbre'],track.segments),dtype='float64') )
analysis.cols.idx_segments_loudness_max[0] = 0
group.segments_loudness_max.append( np.array(map(lambda x : x['loudness_max'],track.segments),dtype='float64') )
analysis.cols.idx_segments_loudness_max_time[0] = 0
group.segments_loudness_max_time.append( np.array(map(lambda x : x['loudness_max_time'],track.segments),dtype='float64') )
analysis.cols.idx_segments_loudness_start[0] = 0
group.segments_loudness_start.append( np.array(map(lambda x : x['loudness_start'],track.segments),dtype='float64') )
# analysis arrays (sections)
analysis.cols.idx_sections_start[0] = 0
group.sections_start.append( np.array(map(lambda x : x['start'],track.sections),dtype='float64') )
analysis.cols.idx_sections_confidence[0] = 0
group.sections_confidence.append( np.array(map(lambda x : x['confidence'],track.sections),dtype='float64') )
# analysis arrays (beats
analysis.cols.idx_beats_start[0] = 0
group.beats_start.append( np.array(map(lambda x : x['start'],track.beats),dtype='float64') )
analysis.cols.idx_beats_confidence[0] = 0
group.beats_confidence.append( np.array(map(lambda x : x['confidence'],track.beats),dtype='float64') )
# analysis arrays (bars)
analysis.cols.idx_bars_start[0] = 0
group.bars_start.append( np.array(map(lambda x : x['start'],track.bars),dtype='float64') )
analysis.cols.idx_bars_confidence[0] = 0
group.bars_confidence.append( np.array(map(lambda x : x['confidence'],track.bars),dtype='float64') )
# analysis arrays (tatums)
analysis.cols.idx_tatums_start[0] = 0
group.tatums_start.append( np.array(map(lambda x : x['start'],track.tatums),dtype='float64') )
analysis.cols.idx_tatums_confidence[0] = 0
group.tatums_confidence.append( np.array(map(lambda x : x['confidence'],track.tatums),dtype='float64') )
analysis.flush()
# DONE
def fill_hdf5_from_musicbrainz(h5,connect):
"""
Fill an open hdf5 using the musicbrainz server and data.
We assume this code is run after fill_hdf5_from_artist/song
because we need artist_mbid, artist_name, release and title
INPUT
h5 - open song file (append mode)
connect - open pg connection to musicbrainz_db
"""
# get info from h5 song file
ambid = h5.root.metadata.songs.cols.artist_mbid[0]
artist_name = h5.root.metadata.songs.cols.artist_name[0]
release = h5.root.metadata.songs.cols.release[0]
title = h5.root.metadata.songs.cols.title[0]
# get the musicbrainz table, fill it
musicbrainz = h5.root.musicbrainz.songs
musicbrainz.cols.year[0] = QUERYMB.find_year_safemode(connect,ambid,title,release,artist_name)
# fill the musicbrainz arrays
group = h5.root.musicbrainz
musicbrainz.cols.idx_artist_mbtags[0] = 0
tags,tagcount = QUERYMB.get_artist_tags(connect, ambid, maxtags=20)
group.artist_mbtags.append( np.array(tags,dtype='string') )
group.artist_mbtags_count.append( np.array(tagcount,dtype='float64') )
# done, flush
musicbrainz.flush()
def fill_hdf5_aggregate_file(h5,h5_filenames,summaryfile=False):
"""
Fill an open hdf5 aggregate file using all the content from all the HDF5 files
listed as filenames. These HDF5 files are supposed to be filled already.
Usefull to create one big HDF5 file from many, thus improving IO speed.
For most of the info, we simply use one row per song.
For the arrays (e.g. segment_start) we need the indecies (e.g. idx_segment_start)
to know which part of the array belongs to one particular song.
If summaryfile=True, we skip arrays (indices all 0)
"""
# counter
counter = 0
# iterate over filenames
for h5idx,h5filename in enumerate(h5_filenames):
# open h5 file
h5tocopy = open_h5_file_read(h5filename)
# get number of songs in new file
nSongs = get_num_songs(h5tocopy)
# iterate over songs in one HDF5 (1 if regular file, more if aggregate file)
for songidx in xrange(nSongs):
# METADATA
row = h5.root.metadata.songs.row
row["artist_familiarity"] = get_artist_familiarity(h5tocopy,songidx)
row["artist_hotttnesss"] = get_artist_hotttnesss(h5tocopy,songidx)
row["artist_id"] = get_artist_id(h5tocopy,songidx)
row["artist_mbid"] = get_artist_mbid(h5tocopy,songidx)
row["artist_playmeid"] = get_artist_playmeid(h5tocopy,songidx)
row["artist_7digitalid"] = get_artist_7digitalid(h5tocopy,songidx)
row["artist_latitude"] = get_artist_latitude(h5tocopy,songidx)
row["artist_location"] = get_artist_location(h5tocopy,songidx)
row["artist_longitude"] = get_artist_longitude(h5tocopy,songidx)
row["artist_name"] = get_artist_name(h5tocopy,songidx)
row["release"] = get_release(h5tocopy,songidx)
row["release_7digitalid"] = get_release_7digitalid(h5tocopy,songidx)
row["song_id"] = get_song_id(h5tocopy,songidx)
row["song_hotttnesss"] = get_song_hotttnesss(h5tocopy,songidx)
row["title"] = get_title(h5tocopy,songidx)
row["track_7digitalid"] = get_track_7digitalid(h5tocopy,songidx)
# INDICES
if not summaryfile:
if counter == 0 : # we're first row
row["idx_similar_artists"] = 0
row["idx_artist_terms"] = 0
else:
row["idx_similar_artists"] = h5.root.metadata.similar_artists.shape[0]
row["idx_artist_terms"] = h5.root.metadata.artist_terms.shape[0]
row.append()
h5.root.metadata.songs.flush()
# ARRAYS
if not summaryfile:
h5.root.metadata.similar_artists.append( get_similar_artists(h5tocopy,songidx) )
h5.root.metadata.artist_terms.append( get_artist_terms(h5tocopy,songidx) )
h5.root.metadata.artist_terms_freq.append( get_artist_terms_freq(h5tocopy,songidx) )
h5.root.metadata.artist_terms_weight.append( get_artist_terms_weight(h5tocopy,songidx) )
# ANALYSIS
row = h5.root.analysis.songs.row
row["analysis_sample_rate"] = get_analysis_sample_rate(h5tocopy,songidx)
row["audio_md5"] = get_audio_md5(h5tocopy,songidx)
row["danceability"] = get_danceability(h5tocopy,songidx)
row["duration"] = get_duration(h5tocopy,songidx)
row["end_of_fade_in"] = get_end_of_fade_in(h5tocopy,songidx)
row["energy"] = get_energy(h5tocopy,songidx)
row["key"] = get_key(h5tocopy,songidx)
row["key_confidence"] = get_key_confidence(h5tocopy,songidx)
row["loudness"] = get_loudness(h5tocopy,songidx)
row["mode"] = get_mode(h5tocopy,songidx)
row["mode_confidence"] = get_mode_confidence(h5tocopy,songidx)
row["start_of_fade_out"] = get_start_of_fade_out(h5tocopy,songidx)
row["tempo"] = get_tempo(h5tocopy,songidx)
row["time_signature"] = get_time_signature(h5tocopy,songidx)
row["time_signature_confidence"] = get_time_signature_confidence(h5tocopy,songidx)
row["track_id"] = get_track_id(h5tocopy,songidx)
# INDICES
if not summaryfile:
if counter == 0 : # we're first row
row["idx_segments_start"] = 0
row["idx_segments_confidence"] = 0
row["idx_segments_pitches"] = 0
row["idx_segments_timbre"] = 0
row["idx_segments_loudness_max"] = 0
row["idx_segments_loudness_max_time"] = 0
row["idx_segments_loudness_start"] = 0
row["idx_sections_start"] = 0
row["idx_sections_confidence"] = 0
row["idx_beats_start"] = 0
row["idx_beats_confidence"] = 0
row["idx_bars_start"] = 0
row["idx_bars_confidence"] = 0
row["idx_tatums_start"] = 0
row["idx_tatums_confidence"] = 0
else : # check the current shape of the arrays
row["idx_segments_start"] = h5.root.analysis.segments_start.shape[0]
row["idx_segments_confidence"] = h5.root.analysis.segments_confidence.shape[0]
row["idx_segments_pitches"] = h5.root.analysis.segments_pitches.shape[0]
row["idx_segments_timbre"] = h5.root.analysis.segments_timbre.shape[0]
row["idx_segments_loudness_max"] = h5.root.analysis.segments_loudness_max.shape[0]
row["idx_segments_loudness_max_time"] = h5.root.analysis.segments_loudness_max_time.shape[0]
row["idx_segments_loudness_start"] = h5.root.analysis.segments_loudness_start.shape[0]
row["idx_sections_start"] = h5.root.analysis.sections_start.shape[0]
row["idx_sections_confidence"] = h5.root.analysis.sections_confidence.shape[0]
row["idx_beats_start"] = h5.root.analysis.beats_start.shape[0]
row["idx_beats_confidence"] = h5.root.analysis.beats_confidence.shape[0]
row["idx_bars_start"] = h5.root.analysis.bars_start.shape[0]
row["idx_bars_confidence"] = h5.root.analysis.bars_confidence.shape[0]
row["idx_tatums_start"] = h5.root.analysis.tatums_start.shape[0]
row["idx_tatums_confidence"] = h5.root.analysis.tatums_confidence.shape[0]
row.append()
h5.root.analysis.songs.flush()
# ARRAYS
if not summaryfile:
h5.root.analysis.segments_start.append( get_segments_start(h5tocopy,songidx) )
h5.root.analysis.segments_confidence.append( get_segments_confidence(h5tocopy,songidx) )
h5.root.analysis.segments_pitches.append( get_segments_pitches(h5tocopy,songidx) )
h5.root.analysis.segments_timbre.append( get_segments_timbre(h5tocopy,songidx) )
h5.root.analysis.segments_loudness_max.append( get_segments_loudness_max(h5tocopy,songidx) )
h5.root.analysis.segments_loudness_max_time.append( get_segments_loudness_max_time(h5tocopy,songidx) )
h5.root.analysis.segments_loudness_start.append( get_segments_loudness_start(h5tocopy,songidx) )
h5.root.analysis.sections_start.append( get_sections_start(h5tocopy,songidx) )
h5.root.analysis.sections_confidence.append( get_sections_confidence(h5tocopy,songidx) )
h5.root.analysis.beats_start.append( get_beats_start(h5tocopy,songidx) )
h5.root.analysis.beats_confidence.append( get_beats_confidence(h5tocopy,songidx) )
h5.root.analysis.bars_start.append( get_bars_start(h5tocopy,songidx) )
h5.root.analysis.bars_confidence.append( get_bars_confidence(h5tocopy,songidx) )
h5.root.analysis.tatums_start.append( get_tatums_start(h5tocopy,songidx) )
h5.root.analysis.tatums_confidence.append( get_tatums_confidence(h5tocopy,songidx) )
# MUSICBRAINZ
row = h5.root.musicbrainz.songs.row
row["year"] = get_year(h5tocopy,songidx)
# INDICES
if not summaryfile:
if counter == 0 : # we're first row
row["idx_artist_mbtags"] = 0
else:
row["idx_artist_mbtags"] = h5.root.musicbrainz.artist_mbtags.shape[0]
row.append()
h5.root.musicbrainz.songs.flush()
# ARRAYS
if not summaryfile:
h5.root.musicbrainz.artist_mbtags.append( get_artist_mbtags(h5tocopy,songidx) )
h5.root.musicbrainz.artist_mbtags_count.append( get_artist_mbtags_count(h5tocopy,songidx) )
# counter
counter += 1
# close h5 file
h5tocopy.close()
def create_song_file(h5filename,title='H5 Song File',force=False,complevel=1):
"""
Create a new HDF5 file for a new song.
If force=False, refuse to overwrite an existing file
Raise a ValueError if it's the case.
Other optional param is the H5 file.
Setups the groups, each containing a table 'songs' with one row:
- metadata
- analysis
DETAIL
- we set the compression level to 1 by default, it uses the ZLIB library
to disable compression, set it to 0
"""
# check if file exists
if not force:
if os.path.exists(h5filename):
raise ValueError('file exists, can not create HDF5 song file')
# create the H5 file
h5 = tables.openFile(h5filename, mode='w', title='H5 Song File')
# set filter level
h5.filters = tables.Filters(complevel=complevel,complib='zlib')
# setup the groups and tables
# group metadata
group = h5.createGroup("/",'metadata','metadata about the song')
table = h5.createTable(group,'songs',DESC.SongMetaData,'table of metadata for one song')
r = table.row
r.append() # filled with default values 0 or '' (depending on type)
table.flush()
# group analysis
group = h5.createGroup("/",'analysis','Echo Nest analysis of the song')
table = h5.createTable(group,'songs',DESC.SongAnalysis,'table of Echo Nest analysis for one song')
r = table.row
r.append() # filled with default values 0 or '' (depending on type)
table.flush()
# group musicbrainz
group = h5.createGroup("/",'musicbrainz','data about the song coming from MusicBrainz')
table = h5.createTable(group,'songs',DESC.SongMusicBrainz,'table of data coming from MusicBrainz')
r = table.row
r.append() # filled with default values 0 or '' (depending on type)
table.flush()
# create arrays
create_all_arrays(h5,expectedrows=3)
# close it, done
h5.close()
def create_aggregate_file(h5filename,title='H5 Aggregate File',force=False,expectedrows=1000,complevel=1,
summaryfile=False):
"""
Create a new HDF5 file for all songs.
It will contains everything that are in regular song files.
Tables created empty.
If force=False, refuse to overwrite an existing file
Raise a ValueError if it's the case.
If summaryfile=True, creates a sumary file, i.e. no arrays
Other optional param is the H5 file.
DETAILS
- if you create a very large file, try to approximate correctly
the number of data points (songs), it speeds things up with arrays (by
setting the chunking correctly).
- we set the compression level to 1 by default, it uses the ZLIB library
to disable compression, set it to 0
Setups the groups, each containing a table 'songs' with one row:
- metadata
- analysis
"""
# check if file exists
if not force:
if os.path.exists(h5filename):
raise ValueError('file exists, can not create HDF5 song file')
# summary file? change title
if summaryfile:
title = 'H5 Summary File'
# create the H5 file
h5 = tables.openFile(h5filename, mode='w', title='H5 Song File')
# set filter level
h5.filters = tables.Filters(complevel=complevel,complib='zlib')
# setup the groups and tables
# group metadata
group = h5.createGroup("/",'metadata','metadata about the song')
table = h5.createTable(group,'songs',DESC.SongMetaData,'table of metadata for one song',
expectedrows=expectedrows)
# group analysis
group = h5.createGroup("/",'analysis','Echo Nest analysis of the song')
table = h5.createTable(group,'songs',DESC.SongAnalysis,'table of Echo Nest analysis for one song',
expectedrows=expectedrows)
# group musicbrainz
group = h5.createGroup("/",'musicbrainz','data about the song coming from MusicBrainz')
table = h5.createTable(group,'songs',DESC.SongMusicBrainz,'table of data coming from MusicBrainz',
expectedrows=expectedrows)
# create arrays
if not summaryfile:
create_all_arrays(h5,expectedrows=expectedrows)
# close it, done
h5.close()
def create_all_arrays(h5,expectedrows=1000):
"""
Utility functions used by both create_song_file and create_aggregate_files,
creates all the EArrays (empty).
INPUT
h5 - hdf5 file, open with write or append permissions
metadata and analysis groups already exist!
"""
# group metadata arrays
group = h5.root.metadata
h5.createEArray(where=group,name='similar_artists',atom=tables.StringAtom(20,shape=()),shape=(0,),title=ARRAY_DESC_SIMILAR_ARTISTS)
h5.createEArray(group,'artist_terms',tables.StringAtom(256,shape=()),(0,),ARRAY_DESC_ARTIST_TERMS,
expectedrows=expectedrows*40)
h5.createEArray(group,'artist_terms_freq',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_ARTIST_TERMS_FREQ,
expectedrows=expectedrows*40)
h5.createEArray(group,'artist_terms_weight',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_ARTIST_TERMS_WEIGHT,
expectedrows=expectedrows*40)
# group analysis arrays
group = h5.root.analysis
h5.createEArray(where=group,name='segments_start',atom=tables.Float64Atom(shape=()),shape=(0,),title=ARRAY_DESC_SEGMENTS_START)
h5.createEArray(group,'segments_confidence',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_SEGMENTS_CONFIDENCE,
expectedrows=expectedrows*300)
h5.createEArray(group,'segments_pitches',tables.Float64Atom(shape=()),(0,12),ARRAY_DESC_SEGMENTS_PITCHES,
expectedrows=expectedrows*300)
h5.createEArray(group,'segments_timbre',tables.Float64Atom(shape=()),(0,12),ARRAY_DESC_SEGMENTS_TIMBRE,
expectedrows=expectedrows*300)
h5.createEArray(group,'segments_loudness_max',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_SEGMENTS_LOUDNESS_MAX,
expectedrows=expectedrows*300)
h5.createEArray(group,'segments_loudness_max_time',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_SEGMENTS_LOUDNESS_MAX_TIME,
expectedrows=expectedrows*300)
h5.createEArray(group,'segments_loudness_start',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_SEGMENTS_LOUDNESS_START,
expectedrows=expectedrows*300)
h5.createEArray(group,'sections_start',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_SECTIONS_START,
expectedrows=expectedrows*300)
h5.createEArray(group,'sections_confidence',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_SECTIONS_CONFIDENCE,
expectedrows=expectedrows*300)
h5.createEArray(group,'beats_start',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_BEATS_START,
expectedrows=expectedrows*300)
h5.createEArray(group,'beats_confidence',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_BEATS_CONFIDENCE,
expectedrows=expectedrows*300)
h5.createEArray(group,'bars_start',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_BARS_START,
expectedrows=expectedrows*300)
h5.createEArray(group,'bars_confidence',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_BARS_CONFIDENCE,
expectedrows=expectedrows*300)
h5.createEArray(group,'tatums_start',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_TATUMS_START,
expectedrows=expectedrows*300)
h5.createEArray(group,'tatums_confidence',tables.Float64Atom(shape=()),(0,),ARRAY_DESC_TATUMS_CONFIDENCE,
expectedrows=expectedrows*300)
# group musicbrainz arrays
group = h5.root.musicbrainz
h5.createEArray(where=group,name='artist_mbtags',atom=tables.StringAtom(256,shape=()),shape=(0,),title=ARRAY_DESC_ARTIST_MBTAGS,
expectedrows=expectedrows*5)
h5.createEArray(group,'artist_mbtags_count',tables.IntAtom(shape=()),(0,),ARRAY_DESC_ARTIST_MBTAGS_COUNT,
expectedrows=expectedrows*5)
def open_h5_file_read(h5filename):
"""
Open an existing H5 in read mode.
"""
return tables.openFile(h5filename, mode='r')
def open_h5_file_append(h5filename):
"""
Open an existing H5 in append mode.
"""
return tables.openFile(h5filename, mode='a')
################################################ MAIN #####################################
def die_with_usage():
""" HELP MENU """
print 'hdf5_utils.py'
print 'by T. Bertin-Mahieux (2010) Columbia University'
print ''
print 'should be used as a library, contains functions to create'
print 'HDF5 files for the Million Song Dataset project'
sys.exit(0)
if __name__ == '__main__':
# help menu
die_with_usage()
You can’t perform that action at this time.