MATLAB

The Language of Technical Computing

Computation
—

Visualization
E—

Programming
—

The

S
MAT-File Format \E§°

Version 5

X CIp)

° b

How to Contact The MathWorks:

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web

ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks .com Bug reports

doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks .com Sales, pricing, and general information

MAT-File Format
0 COPYRIGHT 1984 - 1999 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial” computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’'s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: June 1999 First printing New for MATLAB 5.3 (online only)

MAT-File Format

Introduction .
MAT-File Formats

Version 5 MAT-File Format
MAT-File Header Format
Data Element Format .

Version 5 MATLAB Array Data Element Formats

Numeric Array and Character Array Data Element Formats .

Sparse Array Data Element Format .

Cell Array Data Element Format

Structure MAT-File Data Element Format
MATLAB Object MAT-File Data Element Format

Version 4 MAT-File Format

N

o 01 W

.10
11
.18
.22
.25
.29

.32

MAT-File Format

Introduction

This document describes the internal format of MATLAB ® Version 5 and
Version 4 MAT-files. A MAT-file stores data in binary (not human-readable)
form. In MATLAB, you create MAT-files by using the save command, which
writes the arrays currently in memory to a file as a continuous byte stream. By
convention, this file has the filename extension _mat; thus the name MAT-file.
The load command reads the arrays from a MAT-file into the MATLAB
workspace.

Most MATLAB users do not need to know the internal format of a MAT-file.
Even users who must read and write MAT-files from C and Fortran programs
do not need to know the MAT-file format if they use the MATLAB Application
Program Interface (API). This API shields users from dependence on the
details of the MAT-file format.

However, if you need to read or write MAT-files on a system for which the
MATLAB API library is not supported, you must write your own read and write
routines. The MATLAB API is only available for platforms on which MATLAB
is supported. This document provides the details about the MAT-file format
you will need to read and write MAT-files on these systems.

Note Whenever possible, The MathWorks strongly advises you to use the
MAT-file API routines to read and write MAT-files. Any code you write that
depends on the MAT-file format will very likely need to be rewritten when the
format changes in future releases.

MAT-File Formats

This document describes both the MATLAB Version 5 and Version 4 MAT-file
formats. The MATLAB Version 5 MAT-file format supports all the MATLAB
V5 array types, including multidimensional numeric arrays, character arrays,
sparse arrays, cell arrays, structures, and objects. “Version 5 MAT-File
Format” on page -3 describes this format.

The MATLAB Version 4 MAT-file format is a simpler format but it only
supports two-dimensional matrices and character strings. “Version 4 MAT-File
Format” on page -32 describes this format.

Version 5 MAT-File Format

Version 5 MAT-File Format

In MATLAB Version 5, a MAT-file is made up of a 128-byte header followed by
one or more data elements. Each data element is composed of an 8-byte tag
followed by the data in the element. The tag specifies the number of bytes in
the data element and how these bytes should be interpreted; that is, should the
bytes be read as 16-bit values, 32-bit values, floating point values or some other
data type.

By using tags, the Version 5 MAT-file format provides quick access to
individual data elements within a MAT-file. You can move through a MAT-file
by finding a tag and then skipping ahead the specified number of bytes until
the next tag.

“MATLAB Version 5 MAT-File Format” on page -4 graphically illustrates this
MAT-file format. The sections that follow provide more details about these
MAT-file elements.

MAT-File Format

Figure 1: MATLAB Version 5 MAT-File Format

Bytes

1 2 3 4 5 6 7 8
- Descriptive text (124 bytes) e
i | | | ‘ Ver:sion IEndian Iindicator
' Data Type ' | Number of Byteé
Data (variable size) or subelements
" Data Type I | Number of Bytes
] Data (variable size) or subelements T
" Data Type ' | N:umber iof Byte:s

Data (variable size) or subelements

Repeat Tagged Data Elements Until End-of-File

(s314g 82T) JapesH ali4-IVIN

Juswa|3 eeq usWa(3 ereq

Juswial3 ereq

Version 5 MAT-File Format

MAT-File Header Format

MATLAB Version 5 MAT-files begin with a 128-byte header made up of a 124
byte text field and two, 16-bit flag fields.

Header Text Field

The first 124 bytes of the header can contain text data in human-readable form.
This text typically provides information that describes how the MAT-file was
created. For example, MAT-files created by MATLAB include the following
information in their headers:

= MATLAB version

=« Platform on which the file was created

= Date and time the file was created

You can view the text in a MAT-file header using the cat command on UNIX
systems, or the type command on a PC. The output displays the text in this

part of the header. (The display of the header is followed by unreadable
characters representing the binary data in the file.)

cat my_matfile_mat
MATLAB 5.0 MAT-file, Platform: SOL2, Created on: Thu Nov 13
10:10:27 1997

Programming Note When creating a MAT-file, you must write data in the
first four bytes of this header. MATLAB uses these bytes to determine if a
MAT-file uses a Version 5 format or a Version 4 format. If any of these bytes
contain a zero, MATLAB will incorrectly assume the file is a Version 4
MAT-file.

MAT-File Format

Header Flag Fields
The last four bytes in the header are divided into two, 16-bit flag fields (int16).

Field Value

Version Identifies the version of the MATLAB software used to
create the MAT-file format. When creating a MAT-file, set
this field to 0x0100.

Endian Contains the two characters, M and 1, written to the

Indicator MAT-file in this order, as a 16-bit value. If, when read
from the MAT-file as a 16-bit value, the characters appear
in reversed order (IM rather than MI), it indicates that the
program reading the MAT-file must perform
byte-swapping to interpret the data in the MAT-file
correctly.

Programming Note Programs that create MAT-files always write data in
their native machine format. Programs that read MAT-files are responsible for
byte-swapping.

Data Element Format

Each data element begins with an 8-byte tag followed immediately by the data
in the element. Figure 2 shows this format. (MATLAB also supports a
compressed data element format. See page -9 for more information.)

Figure 2: MAT-File Data Element Format

Bytes 1 2 3 4 5 6 7 8
Data Type Number of Bytes }Tag
| | | | | |
| T T 1 | 1
l Variable size . ~Data

Version 5 MAT-File Format

Tag
The 8-byte data element tag is composed of two, 32-bit fields:

= Data Type
< Number of Bytes

Data Type. The Data Type field specifies how the data in the element should be
interpreted, that is, its size and format. The MAT-file format supports many
data types including signed and unsigned, 8-bit, 16-bit, 32-bit, and 64-bit data
types and a special data type that represents MATLAB arrays. Table 1 lists all
these data types with the values used to specify them. The table also includes
symbols that are used to represent these data types in the examples in this
document.

Table 1: MAT-File Data Types

MAT-File Data Type Value Symbol

8 bit, signed 1 mi INT8

8 bit, unsigned 2 miUINT8
16-bit, signed 3 mi INT16
16-bit, unsigned 4 miUINT16
32-bit, signed 5 mi INT32
32-bit, unsigned 6 miUINT32
IEEE 754 single format 7 miSINGLE
Reserved 8 --

IEEE 754 double format 9 miDOUBLE
Reserved 10 --
Reserved 11 --
64-bit, signed 12 mi INT64

MAT-File Format

Table 1: MAT-File Data Types

MAT-File Data Type Value Symbol
64-bit, unsigned 13 miUINT64
MATLAB array 14 miMATRIX

(For more information about this
data type, see “Version 5
MATLAB Array Data Element
Formats” on page -10.)

Number of Bytes. The Number of Bytes field is a 32-bit value that specifies the
number of bytes of data in the element. This value does not include the eight
bytes of the data element’s tag.

Data

The data immediately follows the tag. The data must be aligned on 64-bit
boundaries. When writing a MAT-file, if the amount of data in a data element
falls short of a 64-bit boundary, you must add bytes of padding to make sure
the tag of the next data element falls on a 64-bit boundary. Likewise, when
reading data from a MAT-file, be sure to account for these padding bytes.

Programming Note For data elements representing MATLAB arrays, (type
miMATRIX), the value of the Number of Bytes field includes padding bytes in
the total. For all other MAT-file data types, the value of the Number of Bytes
field does not include padding bytes.

Example Data Element

For example, Figure 3 illustrates a data element representing an array of six
32-bit, unsigned integers: 1, 2, 3, 4, 5, 6. In the figure, the Data Type field
contains the value from Table 1 that specifies unsigned, 32-bit integers
(miUINT32). The Number of Bytes field in the data element tag contains the
number of data values multiplied by the number of bytes used to represent

Version 5 MAT-File Format

each value. Note that this value does not include the eight bytes in the data
element tag.

Figure 3: Example MAT-File Data Element

Data Type Number of Bytes
Bytes 1 2 3 4 5 6 7 8
Gionrzz) G NN
. o
| 3 | I 4 | Data
I I5 I I é I

Compressed Data Element Format

If the data element contains between one and four bytes of data, MATLAB
saves storage space by storing the data in a compressed data element format.
In this format, the Data Type and Number of Bytes fields are stored as 16-bit
values, freeing four bytes in the tag in which to store the data. Figure 4
illustrates this format.

Figure 4: Compressed Data Element Format

Bytes 1 2 3 4 5 6 7 8

Number of Bytes Data Type DATA

Programming Note When reading a MAT-file, you can tell if you are
processing a compressed data element by comparing the value of the first two
bytes of the tag with the value zero (0). If these two bytes are not zero, the tag
uses the compressed format. When writing a MAT-file, use of the compressed
data element format is optional.

MAT-File Format

Version 5 MATLAB Array Data Element Formats

The MAT-file data type miMATRIX (14) is used to represent all types of MATLAB
arrays, including:

< Numeric arrays

= Character arrays

= Sparse arrays

=« Cell arrays

= Structures

< Objects

The miMATRIX data type is a compound data type. MAT-file data elements of

this type are composed of multiple subelements. The subelements can be of any
other MAT-file data type, including other miMATRIX data types.

Figure 5 shows a miMATRIX data element composed of three subelements. Note
how each subelement is a data element with its own tag. The value of the
Number of Bytes field (96 in the figure) in the data element tag includes all the
subelements.

Figure 5: MATLAB Array Data Element with Subelements

Bytes 1 2 3 4 5 6 7 8

" miMATRIX 96 Tag
| | | } } }
Tag 5 7
J J]]] J] 3
Data e ¥
: : : : : : : i
: : : T?g : : : =
g2
- Data . % g g
8 : : : : : : : o
g Tag m
a ' o
w
L - c 3
3 g8 | 3
L 4 g ~+
3
@
r 1 A
Data

10

Version 5 MATLAB Array Data Element Formats

Each miMATRIX data element representing the different types of MATLAB
arrays each has a specific set of subelements. Some of these subelements are
common to all MATLAB arrays. Others subelements are unique to a particular
type of array. The following sections detail the subelements for each MATLAB
array type.

Numeric Array and Character Array Data Element
Formats

A MAT-file data element representing a MATLAB numeric array or character
array is composed of four subelements and one optional subelement. Table 2
lists the subelements in the order in which they appear in the data element.
The table also includes the values of the Data Type and Number of Bytes fields
you would use in the tag of each subelement. For an example, see “Examples of
Numeric Array Data Elements” on page -15.

Table 2: Numeric and Character Array Subelements with Tag Data

Subelement Data Type Number of Bytes
Array Flags miUINT32 2*size-of-Data-Type (8 bytes)
Dimensions Array mi INT32 number-of-dimensions*size-of-Data-Type

Array Name

Real part (pr)

Imaginary part (pi)
(Optional)

(To learn how to determine the number of
dimensions, see “Dimensions Array Subelement”

on page -13.)
mi INT8 number-of-characters*size-of-Data-Type
Any of the numeric number-of-values*size-of-Data-Type

data types.

Any of the numeric number-of-values*size-of-Data-Type
data types.

Array Flags Subelement

This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. The Array Flags
subelement is common to all array types.

11

MAT-File Format

12

Figure 6 illustrates the format of the Array Flags subelement. (For sparse
matrices, bytes 5 through 8 are used to store the maximum number of nonzero
elements in the matrix. See “Sparse Array Data Element Format” on page -18
for more information.)

Figure 6: Array Flags Format

Bytes 1| 2 3 4 5I 6I 7I 8
Undefined Flags | Class Undefined
Undefined
Complex—+
Global
Logical

Flags. This field contains three, single-bit flags that indicate whether the
numeric data is complex, global, or logical. If the complex bit is set, the data
element includes an imaginary part (pi). If the global bit is set, MATLAB loads
the data element as a global variable in the base workspace. If the logical bit is
set, it indicates the array is used for logical indexing.

Class. This field contains a value that identifies the MATLAB array type (class)
represented by the data element. Table 3 lists the MATLAB array types with
the values you use to specify them. The table also includes symbols that are

used to represent the MATLAB array type in the examples in this document.

Note The value of the Class field identifies the MATLAB data type. The
value of the Data Type field in the data element tag identifies the data type
used to store the data in the MAT-file. The MAT-file data types are listed in
Table 1. The value of the Class and the Data Type fields do not need to be the
same; for more information, see “Data Compression” on page -15.

Version 5 MATLAB Array Data Element Formats

Table 3: MATLAB Array Types (Classes)

MATLAB Array Type Value Symbol

(Class)

Cell array 1 mxCELL_CLASS
Structure 2 mxSTRUCT_CLASS
Object 3 mxOBJECT_CLASS
Character array 4 mxCHAR_CLASS
Sparse array 5 mxSPARSE_CLASS
Double precision array 6 mxDOUBLE_CLASS
Single precision array 7 mxSINGLE_CLASS
8-bit, signed integer 8 mxINT8_CLASS
8-bit, unsigned integer 9 mxUINT8_CLASS
16-bit, signed integer 10 mxINT16_CLASS
16-bit, unsigned integer 11 mxUINT16_CLASS
32-bit, signed integer 12 mx INT32_CLASS
32-bit unsigned, integer 13 mxUINT32_CLASS

For numeric arrays, Class can contain any of the numeric array types:
mxDOUBLE_CLASS, mxSINGLE_CLASS, mxINT8_CLASS, mxUINT8_CLASS,
MXINT16_CLASS, mxUINT16_CLASS, mxINT32_CLASS, or mxUINT32_CLASS.

For character arrays, Class contains mxCHAR_CLASS.

Dimensions Array Subelement

This subelement specifies the size of each dimension of an n-dimensional array
in an n-sized array of 32-bit values (mi INT32). All numeric arrays have at least
two dimensions. The Dimensions Array subelement is common to all MATLAB
array types.

13

MAT-File Format

14

For example, if a data element represents a 2-by-3-by-2 MATLAB array, the
Dimensions Array subelement would contain three values: 2, 3, and 2.

Programming Note To calculate the number of dimensions in an array,
divide the value stored in the Number of Bytes field in the Dimensions Array
subelement tag by 4, the number of bytes in the data type (mi INT32) used in
the subelement.

Array Name Subelement

This subelement specifies the name assigned to the array, as an array of
signed, 8-bit values (mi INT8). This subelement is common to all array types.

Real Part (pr) Subelement

This subelement contains the numeric data in the MATLAB array. If the array
contains complex numbers (the complex bit in the Array Flags is set), this is
the real part of the number.

The data type of the values can be any of the numeric data types listed in
Table 1, MAT-File Data Types, on page -7.

Imaginary Part (pi) Subelement

This subelement contains the imaginary part of the numeric data in the
MATLAB array. This subelement is only present if one or more of the numeric
values in the MATLAB array is a complex number (if the complex bit is set in
Array Flags). The data type of the values can be any of the numeric data types
listed in Table 1, MAT-File Data Types, on page -7.

Programming Note When reading a MAT-file, check the value of the Data
Type field in the tag of Real Part and Imaginary Part subelements to identify
the data type used to store data. Also note that MATLAB reads and writes
these values in column-major order.

Version 5 MATLAB Array Data Element Formats

Data Compression

MATLAB stores the numeric data in an array in double precision format. When
MATLAB writes a numeric (or sparse) array to a MAT-file, it uses the smallest
possible data type to store the data, both the real and imaginary parts.

For example, if MATLAB determines that the data stored in double precision
format can actually be stored in an 8-bit format, it will use an 8-bit data type
to store it in a MAT-file. Note, however, that if any of the numeric values in the
array requires a 64-bit representation, MATLAB stores all of the data in a

64-bit data type. See “Compressed Data Element” on page -17 for an example.

When you create a MAT-file, compressing data is optional.

Programming Note When MATLAB uses a smaller data type to store data
in a MAT-file, the value of the Class field in the Array Flags subelement
identifies the original MATLAB data type.

Examples of Numeric Array Data Elements

This section uses examples to illustrate both the compressed and
uncompressed numeric array data element formats.

Uncompressed Data Element. Figure 7 shows how this 2-by-2 numeric array,
my_array, is represented in a MAT-file.

my array = [1.1+1.11i 2 ; 3 4]

my_array =
1.1000 + 1.1000i 2.0000
3.0000 4._.0000

In the figure, note:

= The data element includes five subelements. Because one of the numeric
values in the array is a complex number, the complex bit flag in the Array
Flags subelement is set and the Imaginary Part (pi) subelement is included.

15

MAT-File Format

« The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the eight bytes of the tag itself.

Figure 7: Example Numeric Array MAT-File Data Element

Bytes 1 2 3 4 5 6 7 8
Tag miMATRIX 128
} } f f f f
. miUINT32 8 Array
T mxDOUBLE ! i ' Flags
Undelflned H‘H _CLASS }Jndeflneclj
mi INT32 8
} } } t t t Dimensions
2 2 Array
miINT8
Array
m y —_ a r r a y Name
miDOUBLE 32
4 1.1000
5 : : : : : : :
Qo
© 3.0000 > pr
N } } } } } } }
- 2.0000
: | | : | | :
4.0000
miDOUBLE 32
1.1000
0.0000 > pi
0.0000
0.0000
1 1 1 1 1 1 1

16

Version 5 MATLAB Array Data Element Formats

Compressed Data Element. Figure 8 shows how the three-dimensional numeric
array in this example, arr, is represented in a MAT-file when compression is
used to conserve storage space.

A=[123; 456];
B=[789; 10 11 12];
arr = cat(3,A,B)
arr(:,:,1) =

1 2 3

4 5 6
arr(:z,:,2) =

7 8 9

10 11 12

In the figure, note:

= The Array Name subelement uses the compressed data element format.

< The numeric data in the array, stored in double precision format in
MATLAB, is stored as 8-bit, unsigned values in the pr subelement. The Class
field in the Array Flags subelement identifies the original MATLAB data

type.

Figure 8: Example Numeric Array MAT-file Data Element (Compressed)

Bytes 1 2 3 4 6 7 8
Tag miMATRIX 72
: : : : : :
miUINT32 . 8 Array
= mxDOUBLE ! ' ! Fl
Undefined 0 |"Ciass Undefined 208
mi INT32 12
: : : : : : Dimensions
3
g : : | : . : s Array
2 2 Padding
N f I = Array
3. mil NIT8 a r r Padding Name
T T
miUINTS 12
1 4 2 5 6 7 10 | > pr
8 11 9 12 Padding

17

MAT-File Format

Sparse Array Data Element Format

A MAT-file data element representing a MATLAB sparse array is composed of
six subelements and one optional subelement. Table 4 lists the subelements in
the order in which they appear in the data element. The table lists the values
of the Data Type and Number of Bytes fields of the tag for each subelement.

Table 4: Sparse Array Subelements with Tag Data

Subelement Data Type Number of Bytes
Array Flags miUINT32 2*size-of-Data-Type (8 bytes)
Dimensions Array mi INT32 number-of-dimensions*size-of-Data-Type

where number-of-dimensions can be 0, 1 or 2.
Array Name miINT8 number-of-characters*size-of-Data-Type

Row Index (ir) miINT32 nzmax*size-of-Data-Type
(The nzmax value is stored in Array Flags.)

Column Index (jc) mi INT32 (N+1)*sizeof(int32)
where N is the second element of the Dimensions
array subelement.

Real part (pr) Any numeric number-of-nonzero-values*size-of-Data-Type
data type

Imaginary part (pi) Any numeric number-of-nonzero-values*size-of-Data-Type

(Optional) data type

Array Flags Subelement

This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. The Array Flags
subelement is common to all array types.

18

Version 5 MATLAB Array Data Element Formats

Figure 9 shows the Array Flags format. For sparse arrays, this value also
contains the maximum number of non-zero elements in the array (nzmax).

Figure 9: Array Flags Format for Sparse Arrays

Bytes 1 2 3 4 5 6 7 8

T T
Reserved Flags | Class nzmax

Maximum number of non-zero array elements.

Flag. For more information, see “Flags” on page -12.

Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For sparse arrays, Class contains the value 5
(mxSPARSE_CLASS). See “Class” on page -12 for more information.

Dimensions Array Subelement

This subelement specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page -13.

Note that MATLAB only supports two-dimensional sparse arrays.

Array Name Subelement

This subelement specifies the name assigned to the array. This subelement is
common to all array types. For more information, see “Array Name
Subelement” on page -14.

Row Index for Non-zero Values (ir) Subelement

This subelement specifies the row indices of the non-zero elements in the real
part (pr) of the matrix data and the imaginary part (pi) of the matrix data, if
present. This subelement is a series of 32-bit (mi INT32) values.

Column Index for Non-Zero Values (jc) Subelement

This subelement contains column index information as a series of 32-bit

(mi INT32) values. For more information about what this subelement contains,
see the MATLAB Application Program Interface Guide.

19

MAT-File Format

20

Real Part (pr) Subelement

This subelement contains the numeric data in the MATLAB array. If the array
contains complex numbers (the complex bit in the Array Flags is set), this is
the real part of the number.

Because MATLAB uses data compression to save storage space, the data type
of the values can be any of the numeric data types listed in Table 1, MAT-File
Data Types, on page -7. For more information, see “Data Compression” on page
-15.

Imaginary Part (pi) Subelement

This subelement contains the imaginary data in the array, if one or more of the
numeric values in the MATLAB array is a complex number (if the complex bit
is set in Array Flags).

Because MATLAB uses data compression to save storage space, the data type
of the values can be any of the numeric data types listed in Table 1, MAT-File
Data Types, on page -7. For more information, see “Data Compression” on page
-15.

Programming Note You must check the value of the Data Type field in the
tag of Real Part and Imaginary Part subelements to identify the type of the
data. Also note that MATLAB reads and writes these values in column-major
order.

Example Sparse Array

Figure 10 illustrates the MAT-file data element format of this 3-by-3 sparse
matrix:

a=[1231];

S = sparse(a,a,a+.5)

S =
1, 1.5000
2,2) 2.5000
@.,3) 3.5000

Version 5 MATLAB Array Data Element Formats

In the figure, note:

< The data element contains six subelements.

= The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the eight bytes of the tag itself.

=« Bytes 5 through 8 of the Array Flags subelement contain the maximum
number of non-zero elements (nzmax) in the sparse array.

= The Array Name subelement uses the compressed data element format.

Figure 10: Example Sparse Array MAT-file Data Element

Bytes 1 2 3 4 5 6 7 8
T T T T T T
Tag miMATRIX 120
f t t f f f
. UINT32 _— 8 Array
Imx
Undefined 0 CLASS 3 (nzmax) Flags
t = f
. mi I[\JT32 . Dimensions
} } t t Array
3 3
} — ! - Array
1 mi INT8 Padding Name
mi INT32 12
|] 1 I
T T T T -
@ 0 1 >
g : : : :
o 2 Padding
S f f } f
= mi INT32 16
0 1 > ic
f f t f
2 3
t t t t
miDOUBLE 24
T T T i
1.5000
+ > pr
2.5000
3.5000
|] 1] 1

21

MAT-File Format

Cell Array Data Element Format

A MAT-file data element representing a MATLAB cell array is composed of
four subelements. Table 5 lists the subelements in the order in which they
appear in the data element. The table lists the values of the Data Type and
Number of Bytes fields of the tag for each subelement.

Table 5: Cell Array Subelements with Tag Data

Subelement Data Type Number of Bytes

Array Flags miUINT32 2*size-of-Data-Type (8 bytes)
Dimensions Array miINT32 number-of-dimensions*size-of-Data-Type
Array Name miINT8 number-of-characters*size-of-Data-Type
Cells Each cell is written in place as an miMATRIX element.

Array Flags Subelement

This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. Figure 11 shows
the Array Flags format. The Array Flags subelement is common to all array

types.
Figure 11: Array Flags Format

Bytes 1 2 3 4 5 6 7 8
Undefined Flags | Class Undefined

Flags. See “Flags” on page -12 for more information.

Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For cell arrays, Class contains the value 1
(mxCELL_CLASS). For more information, see “Class” on page -12.

Dimensions Array Subelement

This subelement specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page -13.

22

Version 5 MATLAB Array Data Element Formats

Array Name Subelement

This subelement specifies the name assigned to the array. This subelement is
common to all array types. For more information, see “Array Name
Subelement” on page -14.

Cells Subelement

This subelement contains the value stored in a cell. These values are MATLAB
arrays, represented using the miMATRIX format specific to the array type:
numeric array, sparse array, structure, object or other cell array. See the
appropriate section in this document for details about the MAT-file
representation of a each of these array types. Cells are written in column-major
order.

Example Cell Array
Figure 12 illustrates the MAT-file data element format of this cell array:

A=[123; 456]

A =

1 2 3
4 5 6

B=[789; 10 11 12]

B =
7 8 9
10 11 12
c={A B}
C_

[2x3 double] [2x3 double]
In the figure, note:
« The data element contains five subelements, the three common subelements;

Array Flags, Dimensions and Array Name; and two cell subelements.

= The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the eight bytes of the tag itself.

= Each cell subelement is an miMATRIX type. In the example, each cell contains
a numeric array. For more information about the format of these elements,

23

MAT-File Format

24

see “Numeric Array and Character Array Data Element Formats” on page

-11.

Figure 12: Example Cell Array Data Element

Bytes 1 2 3 4 6 7
T T T T T
Tag miMATRIX 168
]]] il I
T T T T T
miUINT32 8
] il 1
— mxCELL ! =]
Undeflned 0 _CLASS Und ? fin ? d
T T T
mi INT32 8
]]]] 1
T T T i T
1 2
f f f t
1 mi INT8 Padding
] I 1
T T T T
miMATRIX 56
i i i | |
miUINT32 8
f f t
A mxDOUBLE|
Undefined 0 "CLASS Und g fin g d
f f f
mi INT32 8
t t i f f
0 2 3
] ; L | |
- T T | |
2 1 miINT8 Padding
@ t t t t
3 miUINTS 6
f
1 4 2 5 6 Padding
miMATRIX 56
| | | ! 1
T T T T T
miUINT32 8
f f t
i XDOUBLE| i
Undeflned 0 "CLASS Und g fin ? d
T I 1
mi INT32 8
f f f t t
2 3
} f f ;
1 miINT8 Padding
1 | 1 1
miUINT8 6
]
1
7 10 8 11 12 Padding

1 Array
Flags

Dimensions
Array

}> Array Name

=
c
3
@D
=
(¢}
o
=S
=
Q
<

(@]

D

%]
=
c
3
@D
=
(¢}
Y
=
B
<

Version 5 MATLAB Array Data Element Formats

Structure MAT-File Data Element Format

A MAT-file data element representing a MATLAB structure is composed of six
subelements. Table 6 lists the subelements in the order in which they appear
in the data element. The table lists the values of the Data Type and Number of
Bytes fields of the tag for each subelement.

Table 6: Structure Subelements with Tag Data

Subelements

Data Type Number of Bytes

Array Flags
Dimensions Array
Array Name

Field Name Length
Field Names

Fields

miUINT32 2*size-of-Data-Type (8 bytes)

mi INT32 number-of-dimensions*size-of-Data-Type
mi INT8 number-of-characters*size-of-Data-Type
mi INT32 size-of-Data-Type (4 bytes)

mi INT8 number-of-fields*Field-Name-Length

Each field is written in place as an array. Fields are written in
column order.

Array Flags Subelement

This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. Figure 13 shows
the Array Flags format. The Array Flags subelement is common to all array

types.
Figure 13: Array Flags Format

Bytes 1 2 3 4 5 6 7 8
T T I T
Undefined Flags | Class Undefined

Flags. See “Flags” on page -12 for more information.

Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For structures, Class contains the value 2
(mxSTRUCT_CLASS). For more information, see “Class” on page -12.

25

MAT-File Format

26

Dimensions Array Subelement

This subelements Specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page -13.

Array Name Subelement

This subelement specifies the name assigned to the structure. This subelement
is common to all array types. For more information, see “Array Name
Subelement” on page -14.

Field Name Length Subelement

This subelement specifies the maximum length of a Field Name. MATLAB sets
this limit to 32 (31 characters and a NULL terminator). In a MAT-file created by
MATLAB, this subelement always uses the compressed data element format.

Field Names Subelement

This subelement specifies the name of each field in the structure as a series of
8-bit (mi INT8) character arrays. The value of the Field Name Length
subelement determines the length of each field name array (32 bytes). Field
names must be NULL-terminated.

Fields Subelement

This subelement contains the value stored in a field. These values are
MATLAB arrays, represented using the miMATRIX format specific to the array
type: numeric array, sparse array, cell, object or other structure. See the
appropriate section of this document for details about the MAT-file format of
each of these array type. MATLAB reads and writes these fields in
column-major order.

Example

Figure 14 illustrates the MAT-file data element format for this MATLAB
structure:

X.w = [1];
X.y = [2];
X.z = [3];
X

X =

Version 5 MATLAB Array Data Element Formats

N < =
WN P

In the figure, note:

=« The data element contains eight subelements: the three common
subelements (Array Flags, Dimensions and Array Name) and five
structure-specific subelements (Field Name Length, Field Names, and three
Field subelements).

=« The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the eight bytes of the tag itself.

= The Field Names subelement allocates 32 bytes of storage for each field
name. A NULL terminator indicates the end of each field name.

= Each Field subelement is an miMATRIX data type. In the example, each field
contains a numeric array. For more information about the format of these
elements, see “Numeric Array and Character Array Data Element Formats
on page -11.

=« Each of the numeric arrays contain zero-length Array Name subelements.
The Field Names subelement contains the names of the numeric arrays.

27

MAT-File Format

Figure 14: Example Structure MAT-File Data Element

Bytes 1 2 3 4 5 6 7 8
Tag " miMATRIX ' 320 '
miUINT32 8 Array
undefined | o ["[RET Umdefined [Flags
mi INT32 8 Dimensions
2 1 Array
i X | paginG i [-Array Nane
4 mi INT32 32 [-Field Name
miINT8 96 Length
w [o Jmmmmmmm [
y | o o]
E T s e g Field
z 0 = 1
%]
g ([[s
i~ } } }
2 . miMATRIX 48 -
9 miUINT32 8 %
© || undefined | o ["PPRERF[IT Umdefined | I
mi INT32 8 }:
1 1 3
mi INT8 ' 0 ' g
T [muive | 1 | pasaing |
_ miMATRIX 48 -
miUINT32 ’ 8 %
[Undefined | o [™EORELFTT Undedined | I | o
mi INT32 3 >o =
> /2
1 1 3/ 8
miINTS 0 &
1 | mivINT8 2 | | Padding |
' miMATRIX 48 .
miUINT32 8 g
" Undefined | o |™RPRBENI Undefined | 2
mi INT32 8 >o
1 1 z
A =
miINT8 0] @
1 miVINT8 3 | ~ padding

28

Version 5 MATLAB Array Data Element Formats

MATLAB Object MAT-File Data Element Format

A MAT-file data element representing a MATLAB object is composed of seven
subelements. Table 7 lists the subelements in the order in which they appear
in the data element. An object data element has the same subelements as a
structure with the addition of the Class Name subelement.The table lists the
values of the Data Type and Number of Bytes fields of the tag for each
subelement.

Table 7: MATLAB Object Subelements with Tag Data

Subelement Data Type Number of Bytes

Array Flags miUINT32 2*size-of-Data-Type (8 bytes)
Dimensions Array mi INT32 number-of-dimensions*size-of-Data-Type
Array Name mi INT8 number-of-characters*size-of-Data-Type
Class Name miINT8 number-of-characters*size-of-Data-Type
Field Name Length mi INT32 size-of-Data-Type (4 bytes)

Field Names miINT8 number-of-fields*Field-Name-Length
Fields Each field is written in place as an array.

Array Flags Subelement

This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. Figure 15 shows
the Array Flags format. The Array Flags subelement is common to all array

types.
Figure 15: Array Flags Format

Bytes 1 2 3 4 5 6 7 8
T T T T
Reserved Flags | Class Reserved
| | 1 |

Flags. See “Flags” on page -12 for more information.

29

MAT-File Format

30

Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For objects, the Class byte has the value 3
(mxOBJECT_CLASS). For more information, see “Class” on page -12.

Dimensions Array Subelement

This subelement specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page -13.

Array Name Subelement

This subelement specifies the name assigned to the array. This subelement is
common to all array types. For more information, see “Array Name
Subelement” on page -14.

Class Name Subelement

This subelement specifies the name assigned to the object class. This
subelement is an array of 8-bit characters (mi INT8).

Field Name Length Subelement

This subelement specifies the maximum length of a Field Name. See “Field
Name Length Subelement” on page -26 for more information.

Field Names Subelement

This subelement specifies the name of each field in the structure. See “Field
Names Subelement” on page -26 for more information.

Fields Subelement

This subelement contains the value stored in a field. See “Fields Subelement”
on page -26 for more information.

Example

Figure 16 illustrates how the MATLAB object in this example is represented in
a MAT-file.

X = inline(“t"2”);

The figure only shows the first four subelements of the object. For an example
that shows the remaining subelements, see “Example” on page -26.

Version 5 MATLAB Array Data Element Formats

In the figure, note:

< The Array Flag Class byte is set to mxOBJECT_CLASS.
« The data element includes the Class Name subelement.

Figure 16: Example Object MAT-file Data Element

Bytes 1 2 3 4 5 6 7 8

miMATRIX 656

I I I | | |
miUINT32 8

| | | |

= MXOBJECT ! ! !

Undeflned 0 " CLASS p de f in eld

mi INT32 ' 8 '

f } } t f t

1 1
1 mi INT8 Padding
© miINT8 6 '
i n | i e Padding
The remaining elements are the same
as for a structure.

Y e e L L L L _ _ _1

Dimensions

}

Array
Flags

Array

Array
Name

Class
Name

31

MAT-File Format

32

Version 4 MAT-File Format

Note This section is taken from the MATLAB V4.2 External Interface
Guide, which is no longer available in printed form.

This section presents the internal structure of Level 1.0 MAT-files. This
information is provided to enable users to read and write MAT-files on
machines for which the MAT-file access routine library is not available. Itis not
needed when using the MAT-file subroutine library to read and write

MAT -files, and we strongly advise that you do use the External Interface
Library if it is available for all of the machines that you are working with.

A MAT-file may contain one or more matrices. The matrices are written
sequentially on disk, with the bytes forming a continuous stream. Each matrix
starts with a fixed-length 20-byte header that contains information describing
certain attributes of the Matrix. The 20-byte header consists of five long
(4-byte) integers:

Table 8: MATLAB Version 4 MAT-File Matrix Header Format

Field

Description

type

The type flag contains an integer whose decimal digits encode storage information. If
the integer is represented as MOPT where M is the thousands digit, 0 is the hundreds
digit, P is the tens digit, and T is the ones digit, then:

M indicates the numeric format of binary numbers on the machine that wrote the file.
Use this table to determine the number to use for your machine:

0
1

IEEE Little Endian (PC, 386, 486, DEC Risc)

IEEE Big Endian (Macintosh, SPARC, Apollo,SGI, HP 9000/300,
other Motorola)

VAX D-float
VAX G-float

Cray

Version 4 MAT-File Format

Table 8: MATLAB Version 4 MAT-File Matrix Header Format

0 is always 0 (zero) and is reserved for future use.

P indicates which format the data is stored in according to the following table:
double-precision (64-bit) floating point numbers
single-precision (32-bit) floating point numbers

32-bit signed integers

16-bit signed integers

16-bit unsigned integers

aa A W N » O

8-bit unsigned integers

The precision used by the save command depends on the size and type of each matrix.
Matrices with any noninteger entries and matrices with 10,000 or fewer elements are
saved in floating point formats requiring 8 bytes per real element. Matrices with all
integer entries and more than 10,000 elements are saved in the following formats,
requiring fewer bytes per element.

Element range Bytes per element
[0:255] 1
[0:65535] 2
[-32767:32767] 2
[-2~31+1:2731-1] 4
other 8

T indicates the matrix type according to the following table:

0 Numeric (Full) matrix
1 Text matrix
2 Sparse matrix

Note that the elements of a text matrix are stored as floating point numbers between
0 and 255 representing ASCll-encoded characters.

33

MAT-File Format

Table 8: MATLAB Version 4 MAT-File Matrix Header Format

mrows The row dimension contains an integer with the number of rows in the matrix.
ncols The column dimension contains an integer with the number of columns in the matrix.

imagf The imaginary flag is an integer whose value is either 0 or 1. If 1, then the matrix has
an imaginary part. If 0, there is only real data.

namlen The name length contains an integer with 1 plus the length of the matrix name.

Immediately following the fixed length header is the data whose length is
dependent on the variables in the fixed length header:

Table 9: MATLAB Version 4 MAT-File Matrix Data Format

Field Description

name The matrix name consists of namlen ASCII bytes, the last one
of which must be a null character (*\0~).

real Real part of the matrix consists of mrows Oncols numbers in
the format specified by the P element of the type flag. The
data is stored column-wise such that the second column
follows the first column, etc.

imag Imaginary part of the matrix, if any. If the imaginary flag
imagf is nonzero, the imaginary part of a matrix is placed
here. It is stored in the same manner as the real data.

This structure is repeated for each matrix stored in the file.

The following C language code demonstrates how to write a single matrix to
disk in Level 1.0 MAT-file format.

#include <stdio.h>

main()
{
typedef struct {
long type;
long mrows;
long ncols;

34

Version 4 MAT-File Format

long imagf;
long namelen;
} Fmatrix;

char *pname;
double *pr;
double *pi;
Fmatrix Xx;
int mn;

FILE *fp;

double real_data =

1.
double imag_data = 2.

0;
0;
fp=fopen(""mymatfile.mat",""wb'™");

i F(fp==NULL)
printf(""File could not be opened.\n");

else

{
pname = "'x";
X.type = 1000;
X.mrows = 1;
x.ncols = 1;
x.imagf = 1;
X.namelen = 2;
pr = &real_data;
pi = &imag_data;

fwrite(&x,sizeof(Fmatrix),1,fp);
fwrite(pname, sizeof(char), x.namelen,fp);
mn = x.mrows *x.ncols;
fwrite(pr,sizeof(double),mn,fp);

if(x.imagf)

35

MAT-File Format

36

fwrite(pi,sizeof(double),mn,fp);
}

fclose(fp);
3

Again, we strongly advise against using this approach, and recommend that
you instead use the MAT-file access routines provided in the External Interface
Library. You will need to write your own C code as shown above only if you do
not have the MAT-file access routines for the particular platform on which you
need to read and write MAT-files.

A

array flags subelement 11
in sparse arrays 18
array name subelement 14

B
byte swapping 6

C

cell arrays

example 23

MAT-file format 22
character arrays

MAT-file format 11
classes

MATLAB arrays 13
complex numbers

in MAT-files 12
compression

data element format 9

example in data element 17

in data element 15

D

data elements
alignment 8
cell arrays 22
character array format 11
compressed format 9
defined 3
format 6
MATLAB arrays 10
numeric array format 11
objects 29

padding bytes 8
sparse array format 18
structures 25
subelements 10
data types
changed by compression 15
MAT-file vs. MATLAB 12
used in MAT-files 7
dimensions
determining number of 14
dimensions array subelement 13

E

Endian indicator 6

F
field name length

in structure data elements 26
field names

in structure data elements 26
flags

format 12

G

global variables
in MAT-files 12

H

header
defined 3
flag fields 6
format 5

37

Index

38

text field 5

[
IEEE 754 double format 7

imaginary data
in data element 14

L
logical arrays
in MAT-files 12

M
MAT-files (V4)
distinguishing from V5 format 5
format 32
MAT-files (V5)
data types 7
distinguishing from V4 format 5
header format 5
header text field 5
numeric array data elements 11
overall format 3
version field 6
MATLAB array types 12, 13
data element formats 10
miMATRIX format 10

N
Number of Bytes field

tag 8

numeric array
compressed example 17
example 15

numeric arrays
MAT-file format 11

O
objects
MAT-file format 29

P
padding bytes

data elements 8

including in Number of Bytes total 8
pi 14
pr 14

R

real data
in data element 14

S

sparse arrays
example 20
in MAT-file 18
structures
example 26
MAT-file format 25
subelements
defined 10

T
tags

defined 3

format 7

number of bytes field 8

Index

\Y

version field
MAT-file V5 format 6

39

	MAT-File Format
	Introduction
	MAT-File Formats

	Version 5 MAT-File Format
	MAT-File Header Format
	Header Text Field
	Header Flag Fields

	Data Element Format
	Tag
	Data Type
	Number of Bytes

	Data
	Example Data Element
	Compressed Data Element Format

	Version 5 MATLAB Array Data Element Formats
	Numeric Array and Character Array Data Element Formats
	Array Flags Subelement
	Flags
	Class

	Dimensions Array Subelement
	Array Name Subelement
	Real Part (pr) Subelement
	Imaginary Part (pi) Subelement
	Data Compression
	Examples of Numeric Array Data Elements
	Uncompressed Data Element
	Compressed Data Element

	Sparse Array Data Element Format
	Array Flags Subelement
	Flag
	Class

	Dimensions Array Subelement
	Array Name Subelement
	Row Index for Non-zero Values (ir) Subelement
	Column Index for Non-Zero Values (jc) Subelement
	Real Part (pr) Subelement
	Imaginary Part (pi) Subelement
	Example Sparse Array

	Cell Array Data Element Format
	Array Flags Subelement
	Flags
	Class

	Dimensions Array Subelement
	Array Name Subelement
	Cells Subelement
	Example Cell Array

	Structure MAT-File Data Element Format
	Array Flags Subelement
	Flags
	Class

	Dimensions Array Subelement
	Array Name Subelement
	Field Name Length Subelement
	Field Names Subelement
	Fields Subelement
	Example

	MATLAB Object MAT-File Data Element Format
	Array Flags Subelement
	Flags
	Class

	Dimensions Array Subelement
	Array Name Subelement
	Class Name Subelement
	Field Name Length Subelement
	Field Names Subelement
	Fields Subelement
	Example

	Version 4 MAT-File Format

	Index

