
The Code Craft Thing for the
Internet Of Things Thing

Mike Ritchie | @13coders | mike@13coders.com

How test-driven development and design helps make
embedded and iot development safer + Better for users, and

a happier experience for developers

Devices : The “Things”

Analytics
Web

Services

Messaging

Connectivity

Mobile

Big Data

Devices : The “Things”

Analytics
Web

Services

Messaging

Connectivity

Mobile

Big Data

Professional healthcare, transport, smart home, connected
car, fitness, wearables, industrial robotics, military...

Systems Defined By Software : The Ubiquitous Chip

- A long-established trend
- Flexibility in product design
- Often licensed cores
- specialised for applications
- Everywhere. Every. Where.

All logos and trademarks owned by respective companies

A relatively small number of
companies design intellectual
property for chip cores

They often don’t manufacture
Silicon themselves (ARM, as the

most notable example)
All logos and trademarks owned by respective companies

Core design IP is
licensed on to
manufacturers
and oems

Some Manufacturers
license multiple core IPs

Who produce devices
tailored to specific

markets

Acquisition
happens a lot

All logos and trademarks owned by respective companies

Pervasive Connectivity, Cloud Back-ends

4G

In-Situ upgradeable devices

Yay for light
bulb Updates !

Images and words from lifx.com, their copyright

https://twitter.com/EmilyGorcenski/status/692003645437677568

Are we cool with this so far?

Checkpoint #1
- Software-defined system behaviour +

connectivity enables product evolution
- We need code we can live with

MCU Example : ARM Cortex “M” family

http://www.arm.com/assets/images/tpl/compare-Cortex-M-diagramLG.png, Copyright ARM,

ST Microelectronics STM32F411

512K Flash

128K SRAM

80-Byte Backup

Connectivity

3 x I2C

3 x USART

5 x SPI

SDIO

USB 2.0

Analog

12-bit x 16 ADC

Temperature Sensor

System

Power/Voltage Reg

Oscillators and PLL

Watchdog Timers

GPIO

RTC

Control

5 x 16-bit Timers

16 Bit PWM Motor Control

2 x 32-bit Timers

ARM Cortex M4 CPU
100 MHz, 32-bit

Floating Point Unit

Nested Vector Interrupt Controller

JTAG Debugging

Advanced Peripheral Bus

16-channel Direct Memory Access

SIMD

Adapted from ST Micro product literature - content + logo copyright ST Microelectronics.

512K Flash

128K SRAM

80-Byte Backup

Connectivity

3 x I2C

3 x USART

5 x SPI

SDIO

USB 2.0

Analog

12-bit x 16 ADC

Temperature Sensor

System

Voltage Regulator

Oscillators/ PLL

Watchdog Timers

GPIO

RTC

Control

5 x 16-bit Timers

16-bit PWM

2 x 32-bit Timers

ARM Cortex M4 CPU
100 MHz, 32-bit

Floating Point Unit

NVIC

JTAG Debugging

Advanced Peripheral Bus

16-channel Direct Memory Access

SIMD

OS Options, both free and proprietary

- Zephyr (linux Foundation), FreeRTOS, RTEMS
- ARM mBed - Open License, but ARM-specific
- VxWorks (wind river), QNX (blackberry)
- Embedded linux (+Yocto Build, often)
- Windows ? (Embedded compact, Windows 10 IoT)

The Ever-So-Complex Architecture of Bare Metal Builds

Your Code

The Hardware
Adapted from presentation on BitBox by Xavier Moulet, FOSDEM 2015

The Ever-So-Complex Architecture of Bare Metal Builds

Your Code

The Hardware

¯_(ツ)_/¯

Adapted from presentation on BitBox by Xavier Moulet, FOSDEM 2015

The Ever-So-Complex Architecture of Bare Metal Builds

Your Code

The Hardware
Adapted from presentation on BitBox by Xavier Moulet, FOSDEM 2015

HAL_GPIO_Write
Pin()

The Ever-So-Complex Architecture of Bare Metal Builds

Your Code

The Hardware
Adapted from presentation on BitBox by Xavier Moulet, FOSDEM 2015

HAL_GPIO_Write
Pin()

HAL_GPIO_Write
Pin()

The Ever-So-Complex Architecture of Bare Metal Builds

Your Code

The Hardware
Adapted from presentation on BitBox by Xavier Moulet, FOSDEM 2015

HAL_GPIO_Write
Pin()

HAL_GPIO_Write
Pin()

HAL_GPIO_Write
Pin()

The Ever-So-Complex Architecture of Bare Metal Builds

Your Code

The Hardware
Adapted from presentation on BitBox by Xavier Moulet, FOSDEM 2015

HAL_GPIO_Write
Pin()

HAL_GPIO_Write

Pin() HAL_GPIO_Write
Pin()

HAL_GPIO_WritePin()HAL
_GP

IO_
Wri

teP

in(
)HAL_GPIO_WritePi

n()

HAL_GPIO_Write
Pin()

HAL_GPIO_WritePin()

HAL_GPIO_WritePi
n()

HAL_GPIO_WritePi

n()

HA
L_
GP
IO
_W
ri
te
Pi

n(
)

HAL_GPIO_Write
Pin()

HAL_GPIO_Write
Pin()

HAL_GPIO_Write
Pin()

HAL_GPIO_Write
Pin()

DANGER

A fundamental Principle : Dependency Inversion

High-level modules should not
depend on low-level modules.
Both should depend on
abstractions.

Problem Domain Solution Domain

Shared
Abstractions

You Write this You Write this too

The Manufacturer generally
writes this

Board Support APIs + Libs

The TDD Microcycle
Write a failing

unit test

Write just enough
code to pass the

test

Cleanup, remove
duplication,

improve names

Write a failing
unit test

Write just enough
code to pass the

test

Cleanup, remove
duplication,

improve names

Build for the target

Run acceptance and
unit tests on the

target

On your development machine,
constantly

On target hardware, less
frequently

Continuous Integration + TDD + TOOLS => HAPPY DEVS

- “Continuous integration” without tests isn’t
Really continuous integration

- You don’t get the same feedback with test-last
- Use dynamic analysis tools to leverage tests

Your Build system really wants to help : Let it

- Split your build to cleanly separate concerns
- Limit include paths : if you can’t see it, you

can’t depend on it
- Especially, don’t make hardware headers

available to your core “problem” code
- constrain dependencies via linker settings

You’re still here ! That’s amazing !

Checkpoint #2
- We’re looking at MCUs and bare-metal
- The design is whatever we make it
- Principles help

Exclusively for
Tech Meetup
The only Fire Alarm system you
will ever need.

Going on Kickstarter any day
now. Seriously.

Problem Domain Solution Domain

Shared
Abstractions

You Write this You Write this too

The Manufacturer generally
writes this

Board Support APIs + Libs

Well, that was...codey….

Checkpoint #3
- TDD works in any language...yes, even C++
- It’s dependencies all the way down
- There are always obstacles. Overcome them.

Safety critical, deterministic

“Trivial Purpose”

HIGH CPU/MEMORYLOW CPU/MEMORY

C++
Standard Library

3rd Party libs
Dynamic memory

Garbage coll. language?

Subset of C++
Some Standard library

dynamic memory, but not “after the
wheels leave the ground”

C & assembler
Few or no libs

zero dynamic memory use

C++
Little dynamic memory use

When Embedded Goes Wrong - a tale of woe

An Embedded automotive application cited as a possible cause of
“unintended acceleration”. A NASA study found:

11,253 read/write global variables
Cyclomatic Complexity of 146 in a key function

...With no unit test plan...

“It is far, far easier to make a
correct program fast than it is to
make a fast program correct”
-- Herb Sutter & Andrei Alexandrescu

Thanks for Listening!

“Oh, finally...I thought this guy would never stop talking”

https://uk.linkedin.com/in/13coders
@13coders

mike@13coders.com
+44 7808 480387

https://uk.linkedin.com/in/13coders
https://uk.linkedin.com/in/13coders
mailto:mike@13coders.com
mailto:mike@13coders.com

