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Abstract

Theory of strongly equivalent transformations is an essential
part of the methodology of representing knowledge in answer
set programming. Strong equivalence of two programs can
be sometimes characterized as the possibility of deriving the
rules of each program from the rules of the other in some
deductive system. This paper describes a system with this
property for the language mini-GRINGO. The key to the proof
is an ω-completeness theorem for the many-sorted logic of
here-and-there.

1 Introduction
In answer set programming, two sets of rules are considered
strongly equivalent if, informally speaking, they have the
same meaning in any context. This equivalence relation has
been extensively studied in the literature. Understanding its
properties is important because it may help the programmer
recognize the possibility of simpifying a rule, or a group of
rules, within a program so that the set of stable models is not
affected.

Strong equivalence of two programs can be sometimes es-
tablished by deriving the rules of each program from the
rules of the other in an appropriate deductive system (Lif-
schitz, Pearce, and Valverde 2001; Lifschitz, Pearce, and
Valverde 2007; Harrison et al. 2017). The deductive system
HTA (“here-and-there with arithmetic”) allows us to apply
this method to programs in the answer set programming lan-
guage mini-GRINGO (Fandinno et al. 2020, Section 5); (Lif-
schitz 2021, Section 2.1). Two programs in this language are
strongly equivalent to each other if the first-order sentences
obtained from them by applying the syntactic transforma-
tion τ∗ can be derived from each other in HTA (Lifschitz
2021, Section 4).

The converse does not hold, however: mini-GRINGO pro-
grams Π1, Π2 may be strongly equivalent to each other even
though the deductive possibilities of HTA are not sufficient
for establishing the equivalence between τ∗Π1 and τ∗Π2

(Lifschitz 2021, Section 6). Extending HTA that would al-
low us to replace the result of that paper by an if-and-only-if
condition is posed there as a topic for future work.

In this paper we show that this goal can be achieved using
rules with infinitely many premises, similar to the ω-rule in

arithmetic,

F (0) F (1) . . .

∀nF (n)
.

This theorem closes a gap in our understanding of strong
equivalence for programs containing operations on integers.

The key to the proof is an ω-completeness theorem for
the many-sorted logic of here-and-there—an assertion simi-
lar to the ω-completeness property of classical logic, estab-
lished by Henkin (1954). (Many-sorted languages are rele-
vant here because the language of HTA has variables of two
sorts, general and integer.) The proof extends Henkin’s con-
struction, which involves an omitting types theorem (Kiesler
1977, Section 6.15), to the many-sorted logic of here-and-
there. Omitting types in the context of intuitionistic and in-
termediate logics was earlier explored by Marković (1979,
1995) and by Bagheri and Pourmahdian (2011).

We start by presenting background material related to
mini-GRINGO, many-sorted languages and the translation τ∗
(Section 2). Then we describe an extension of the first-order
logic of here-and-there (Pearce and Valverde 2004; Ferraris,
Lee, and Lifschitz 2011) to many-sorted formulas (Sec-
tion 3) and state a theorem that relates strong equivalence
of mini-GRINGO programs to the translation τ∗ (Section 4).
The main results of the paper—the ω-completeness theorem
and its application to the study of strong equivalence—are
presented in Section 5. Most proofs are relegated to Sec-
tion 6.

2 Preliminaries

2.1 Programs

We assume that three countably infinite sets of symbols are
selected: numerals, symbolic constants, and variables. We
assume that a 1-1 correspondence between numerals and in-
tegers is chosen; the numeral corresponding to an integer n
is denoted by n. Precomputed terms are numerals and sym-
bolic constants. We assume that a total order on precom-
puted terms is chosen such that for all integers m and n,
m < n iff m < n.

Terms allowed in a mini-GRINGO program are formed
from precomputed terms and variables using the absolute



value symbol1 | | and six binary operation names

+ − × / \ ..

(the last three serve to represent integer division, modulo
and intervals). An atom is a symbolic constant optionally
followed by a tuple of terms in parentheses. A literal is an
atom possibly preceded by one or two occurrences of not. A
comparison is an expression of the form t1 rel t2, where t1,
t2 are terms and rel is = or one of the comparison symbols

6= < > ≤ ≥ (1)

A rule is an expression of the form Head← Body, where
• Body is a conjunction (possibly empty) of literals and

comparisons, and
• Head is either an atom, or an atom in braces (then this is

a choice rule), or empty (then this is a constraint).
A (mini-GRINGO) program is a finite set of rules.

The semantics of ground terms is defined by assigning to
every ground term t the finite set [t] of its values (Lifschitz,
Lühne, and Schaub 2019, Section 3). Values of a ground
term are precomputed terms. For instance,

[2/3] = {0}, [2/0] = ∅, [0 .. 2] = {0, 1, 2}.
A predicate symbol is a pair p/n, where p is a symbolic

constant, and n is a nonnegative integer.
Stable models of a program are defined as stable mod-

els of the set of propositional formulas2 obtained from it by
a syntactic transformation denoted by τ (Lifschitz, Lühne,
and Schaub 2019, Section 3). Atomic parts of these formu-
las are precomputed atoms—atoms p(t) such that the mem-
bers of the tuple t are precomputed terms. For example, τ
transforms the rule

{q(X)} ← p(X) (2)

into the set of formulas p(t) → (q(t) ∨ ¬q(t)) for all pre-
computed terms t. The rule

q(0 .. 2)← not p (3)

is transformed into ¬p→ (q(0) ∧ q(1) ∧ q(2)). Thus stable
models of mini-GRINGO programs are sets of precomputed
atoms.

2.2 Many-sorted theories
A (many-sorted) signature consists of symbols of three
kinds—sorts, function constants, and predicate constants. A
reflexive and transitive subsort relation � is defined on the
set of sorts. A tuple s1, . . . , sn (n ≥ 0) of argument sorts
is assigned to every function constant and to every predi-
cate constant; in addition, a value sort is assigned to every
function constant. Function constants with n = 0 are called
object constants.

We assume that for every sort, an infinite sequence of ob-
ject variables of that sort is chosen. Terms over a signature σ
are defined recursively:

1The absolute value symbol was not included in previous pub-
lications on mini-GRINGO.

2The definition of a stable model (Gelfond and Lifschitz 1988)
was extended to sets of propositional formulas by Ferraris (2005).

• object constants and object variables of a sort s are terms
of sort s;

• if f is a function constant with argument sorts s1, . . . , sn
(n > 0) and value sort s, and t1, . . . , tn are terms such
that the sort of ti is a subsort of si (i = 1, . . . , n), then
f(t1, . . . , tn) is a term of sort s.

The sort of a term t will be denoted by sort(t). Atomic for-
mulas over σ are

• expressions of the form p(t1, . . . , tn), where p is a
predicate constant with argument sorts s1, . . . , sn, and
t1, . . . , tn are terms such that sort(ti) � si, and

• expressions of the form t1 = t2, where t1 and t2 are
terms.

Formulas over σ are formed from atomic formulas and the
0-place connective ⊥ (falsity) using the binary connectives
∧, ∨,→ and the quantifiers ∀, ∃. The other connectives are
treated as abbreviations: ¬F stands for F → ⊥ and F ↔ G
stands for (F → G) ∧ (G→ F ).

A sentence is a formula without free variables. A theory
over σ is a set T of sentences over σ, which are called the
axioms of T .

An interpretation I of a signature σ assigns

• a non-empty domain |I|s to every sort s of σ, so that
|I|s1 ⊆ |I|s2 whenever s1 � s2,

• a function f I from |I|s1×· · ·×|I|sn to |I|s to every func-
tion constant f with argument sorts s1, . . . , sn (n ≥ 0)
and value sort s, and

• a truth-valued function pI on |I|s1 × · · · × |I|sn to every
predicate constant p with argument sorts s1, . . . , sn.

If I is an interpretation of a signature σ then by σI we
denote the signature obtained from σ by adding, for every
element d of a domain |I|s, its name d∗s as an object con-
stant of sort s. The interpretation I is extended to σI by
defining (d∗s)I = d. We will drop the subscript s in d∗s when
it is clear from context. The value tI assigned by an interpre-
tation I of σ to a ground term t over σI and the satisfaction
relation |= between an interpretation of σ and a sentence
over σI are defined recursively, in the usual way (Lifschitz,
Morgenstern, and Plaisted 2008, Section 1.2.2).

If d is a tuple d1, . . . , dn of elements of domains of I
then d∗ stands for the tuple d∗1, . . . , d

∗
n of their names. If t

is a tuple t1, . . . , tn of ground terms then tI stands for the
tuple tI1, . . . , t

I
n of values assigned to them by I .

For example, the signature σ0 includes

• the sort general and its subsort integer;

• all precomputed terms of mini-GRINGO (Section 2.1) as
object constants; an object constant is assigned the sort
integer iff it is a numeral;

• the symbol | | as a unary function constant; its argument
and value have the sort integer;

• the symbols +, − and × as binary function constants;
their arguments and values have the sort integer;

• predicate symbols p/n as n-ary predicate constants; their
arguments have the sort general;
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• the symbols
6= < > ≤ ≥ (4)

as binary predicate constants; their arguments have the
sort general.

A formula of the form (p/n)(t) can be written also as p(t).
This convention allows us to view precomputed atoms (Sec-
tion 2.1) as sentences over σ0. Conjunctions of equalities
and inequalities can be abbreviated as usual in algebra; for
instance, X = Y < Z stands for X = Y ∧ Y < Z.

We are interested in the interpretations of σ0 that are stan-
dard in the sense that
• the domain of the sort general is the set of precomputed

terms;
• the domain of the sort integer is the set of numerals;
• every object constant represents itself;
• the absolute value symbol and the binary function con-

stants are interpreted as usual in arithmetic;
• predicate constants (4) are interpreted in accordance with

the total order on precomputed terms chosen in the defi-
nition of mini-GRINGO (Section 2.1).

2.3 Representing rules by formulas
We assume that every symbol designated as a mini-GRINGO
variable is among general variables of the signature σ0.

For every mini-GRINGO term t, we will now define a for-
mula val t(Z) over the signature σ0, where Z is a general
variable that does not occur in t. That formula expresses,
informally speaking, that Z is one of the values of t. The
definition is recursive:
• if t is a precomputed term or a variable then val t(Z) is
Z = t,

• if t is |t1| then val t(Z) is ∃I(val t1(I) ∧ Z = |I|),
• if t is t1 op t2, where op is +, −, or × then val t(Z) is

∃IJ(val t1(I) ∧ val t2(J) ∧ Z = I op J),

• if t is t1 / t2 then val t(Z) is
∃IJK(val t1(I) ∧ val t2(J)

∧ K × |J | ≤ |I| < (K + 1)× |J |
∧ ((I × J ≥ 0 ∧ Z = K)
∨ (I × J < 0 ∧ Z = −K))),

• if t is t1\t2 then val t(Z) is
∃IJK(val t1(I) ∧ val t2(J)

∧ K × |J | ≤ |I| < (K + 1)× |J |
∧ ((I × J ≥ 0 ∧ Z = I −K × J)
∨ (I × J < 0 ∧ Z = I +K × J))),

• if t is t1 .. t2 then val t(Z) is
∃IJK(val t1(I) ∧ val t2(J) ∧ I ≤ K ≤ J ∧ Z = K),

where I , J , K are fresh integer variables.3

3The use of the absolute value sign in two of these formulas
is motivated by the fact that the grounder GRINGO (Gebser et al.
2019) truncates the quotient toward zero, instead of applying the
floor function. This feature of GRINGO was not taken into account
in earlier publications (Gebser et al. 2015, Section 4.2), (Lifschitz,
Lühne, and Schaub 2019, Section 6), (Fandinno et al. 2020, Sec-
tion 3).

If t is a tuple t1, . . . , tn of mini-GRINGO terms, and Z is a
tuple Z1, . . . , Zn of distinct general variables, then valt(Z)
stands for the conjunction val t1(Z1) ∧ · · · ∧ val tn(Zn).

The translation τB , described below, transforms literals
and comparisons into formulas over the signature σ0. (The
superscript B reflects the fact that this translation is close to
the meaning of expressions in bodies of rules.)
• τB(p(t)) is ∃Z(valt(Z) ∧ p(Z));
• τB(not p(t)) is ∃Z(valt(Z) ∧ ¬p(Z));
• τB(not not p(t)) is ∃Z(valt(Z) ∧ ¬¬p(Z));
• τB(t1 rel t2) is

∃Z1Z2(val t1(Z1) ∧ val t2(Z2) ∧ Z1 rel Z2).

If Body is a conjunction B1 ∧ B2 ∧ · · · of literals
and comparisons then τB(Body) stands for the conjunction
τB(B1) ∧ τB(B2) ∧ · · · .

We are ready now to define the operator τ∗. This operator
converts a basic rule

p(t)← Body (5)

into the sentence

∀̃(valt(Z) ∧ τB(Body)→ p(Z)),

where Z is a tuple of fresh general variables, and ∀̃ denotes
universal closure. A choice rule

{p(t)} ← Body

is converted into

∀̃(valt(Z) ∧ τB(Body)→ p(Z) ∨ ¬p(Z)),

and a constraint← Body becomes ∀̃¬τB(Body).
For example, τ∗ transforms rule (2) into the sentence

∀XZ1(Z1 = X ∧ ∃Z2(Z2 = X ∧ p(Z2))
→ q(Z1) ∨ ¬q(Z1)),

(6)

and (3) into

∀Z(∃IJK(I = 0 ∧ J = 2 ∧ I ≤ K ≤ J ∧ Z = K) ∧ ¬p
→ q(Z)).

(7)
For any program Π, τ∗Π stands for the conjunction of

first-order sentences τ∗R for all rules R of Π.

3 Many-sorted logic of here-and-there
In the rest of the paper, σ is a countable many-sorted sig-
nature with its predicate constants partitioned into two (pos-
sibly empty) subsets—intensional and extensional. For any
interpretation I of σ, Iint stands for the set of atomic formu-
las of the form p(d∗), where p is an intensional symbol and
d is a tuple of elements of the domains of I corresponding
to the argument sorts of p, such that I |= p(d∗).

An HT-interpretation of σ is a pair 〈H, I〉, where I is
an interpretation of σ, and H is a subset of Iint. (In
terms of Kripke models with two worlds, I is the there-
world, and H describes the intensional predicates in the
here-world). The satisfaction relation |=ht between an
HT-interpretation 〈H, I〉 of σ and a sentence F over σI is
defined recursively as follows:
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• 〈H, I〉 |=ht p(t), where p is intensional, if p((tI)∗) ∈ H;

• 〈H, I〉 |=ht p(t), where p is extensional, if I |= p(t);

• 〈H, I〉 |=ht t1 = t2 if tI1 = tI2;

• 〈H, I〉 6|=ht ⊥;

• 〈H, I〉 |=ht F ∧G if 〈H, I〉 |=ht F and 〈H, I〉 |=ht G;

• 〈H, I〉 |=ht F ∨G if 〈H, I〉 |=ht F or 〈H, I〉 |=ht G;

• 〈H, I〉 |=ht F → G if

(i) 〈H, I〉 6|=ht F or 〈H, I〉 |=ht G, and
(ii) I |= F → G;

• 〈H, I〉 |=ht ∀X F (X) if 〈H, I〉 |=ht F (d∗) for each d
in |I|sort(X);

• 〈H, I〉 |=ht ∃X F (X) if 〈H, I〉 |=ht F (d∗) for some d
in |I|sort(X).

This relation is monotonic, in the sense that 〈H, I〉 |=ht F
implies I |= F (by induction on the size of F ). The converse
holds if F does not contain intensional symbols.

An HT-model of a theory T is an HT-interpretation that
satisfies all sentences in T . If T is a theory and F is a sen-
tence over σ, then we write T |=ht F to express that every
HT-model of T satisfies F .

4 Strong equivalence
Mini-GRINGO programs Π1 and Π2 are strongly equivalent
to each other if, for every set Ω of propositional combina-
tions of precomputed atoms, τΠ1 ∪ Ω has the same stable
models as τΠ2 ∪ Ω. This condition implies that for every
mini-GRINGO program Π, the program Π1∪Π has the same
stable models as Π2 ∪Π (take Ω = τΠ).

For instance, rule (2) is strongly equivalent to the rule

q(X)← p(X) ∧ not not q(X). (8)

It follows that replacing rule (2) by (8) within any program
preserves the set of stable models. Rule (3) is strongly equiv-
alent to the group of three rules

q(0)← not p, q(1)← not p, q(2)← not p. (9)

We will return to these examples in Section 5.5.
Theorem 1 below shows that strong equivalence of

mini-GRINGO programs can be characterized in terms of
HT-interpretations of the signature σ0. For this signature,
predicate constants (4) are classified as extensional, and
predicate constants of the form p/n are intensional. An
HT-interpretation 〈H, I〉 of σ0 is standard if I is standard.

Theorem 1. Mini-GRINGO programs Π1, Π2 are strongly
equivalent iff the formula τ∗Π1 ↔ τ∗Π2 is satisfied by all
standard HT-interpretations of σ0.

5 ω-completeness
5.1 Many-sorted SQHT=

For the special case when the signature σ has a single sort,
and each of its predicate symbols is intensional, Lifschitz,
Pearce, and Valverde (2007) defined a deductive system that

is sound and complete with respect to the semantics de-
scribed in Section 3. Theorem 2 below extends that result
to the general case.

Consider first a natural deduction system of many-sorted
intuitionistic logic. The derivable objects of this system Int
are sequents—expressions Γ ⇒ F , in which Γ is a finite
set of formulas over σ (“assumptions”), and F is a formula
over σ. We write sets of assumptions as lists. A sequent of
the form⇒ F will be identified with the formula F .

The axiom schemas of Int are F ⇒ F and t = t. The
inference rules of Int are the usual inference rules of propo-
sitional logic (Lifschitz, Morgenstern, and Plaisted 2008,
Figure 1.1) and rules for quantifiers and equality shown in
Figure 1.

The deductive system SQHT= is the result of extending
Int by four axiom schemas:

F ∨ (F → G) ∨ ¬G, (10)
∃X(F (X)→ ∀X F (X)), (11)

X = Y ∨X 6= Y (12)
and

p(X) ∨ ¬p(X) (13)
for all extensional precicate symbols p, where X is a
tuple of pairwise distinct variables of appropriate sorts.
Schema (10), known as the Hosoi axiom (Hosoi 1966), is
useful primarily because of its intuitionistic consequence

¬F ∨ ¬¬F, (14)

known as the weak law of excluded middle. (Take G in (10)
to be ¬F .

For any theory T and and any formula F , we write T ` F
if F is derivable from the axioms of T in SQHT=.
Theorem 2. For any theory T and any sentence F over σ,
T ` F iff T |=ht F .

5.2 ω-interpretations
Let S be a subset of the set of sorts of σ. We assume that
for every sort s in S, ω(s) is a non-empty subset of the set
of ground terms t such that sort(t) � s. An interpretation I
of σ is an ω-interpretation if for every s in S and every d
in |I|s there exists a term t in ω(s) such that tI = d.

In the case of the signature σ0 we define:
• S is {general, integer};
• ω(general) is the set of precomputed terms;
• ω(integer) is the set of numerals.
Theorem 3. For any interpretation I of σ0, the following
conditions are equivalent:

(a) I is isomorphic to a standard interpretation;
(b) I is an ω-interpretation and satisfies
(b1) the formulas c1 6= c2 for all pairs c1, c2 of distinct

precomputed terms;
(b2) all formulas of the forms

c1 rel c2, ¬(c1 rel c2),

where c1, c2 are precomputed terms and rel is one of
symbols (4), that are true for the total order chosen in
the definition of mini-GRINGO;

4



(∀I)
Γ⇒ F (X)

Γ⇒ ∀X F (X)
(∀E)

Γ⇒ ∀X F (X)
Γ⇒ F (t)

where X is not free in Γ

(∃I)
Γ⇒ F (t)

Γ⇒ ∃X F (X)
(∃E)

Γ⇒ ∃X F (X) ∆, F (X)⇒ G
Γ,∆⇒ G

where sort(t) � sort(X) where X is not free in ∆, G
and t is free for X in F (X)

(Eq)
Γ⇒ t1 = t2 ∆⇒ F (t1)

Γ,∆⇒ F (t2)
Γ⇒ t1 = t2 ∆⇒ F (t2)

Γ,∆⇒ F (t1)

where sort(t1) � sort(X), sort(t2) � sort(X),
and t1, t2 are free for X in F (X)

Figure 1: Inference rules for quantifiers and equality

(b3) the formulas

m+ n = m+n; m− n = m−n; m× n = m×n
for all pairs m, n of integers.

Proof. The implication from (a) to (b) is obvious. If I satis-
fies (b) then the function c 7→ cI an isomorphism between a
standard interpretation and I .

5.3 Deductive system SQHTω

An ω-model of a theory T is an HT-model 〈H, I〉 of T such
that I is an ω-interpretation. Theorem 2 shows that the de-
ductive system SQHT= matches the semantics based on HT-
models of a theory. We would like to extend that system so
that it will match the semantics based on ω-models.

The theorem stated below shows that this can be accom-
plished by adding the inference rule

Γ⇒ F (t) for all terms t in ω(sort(X))

Γ⇒ ∀X F (X)
(15)

where sort(X) ∈ S. The deductive system obtained from
SQHT= by adding this rule will be denoted by SQHTω .
Theorem 4. For any theory T and any sentence F over σ,
F is derivable in SQHTω from the axioms of T iff every ω-
model of T satisfies F .

In case of the signature σ0, inference rule (15) can be rep-
resented as a pair of rules:

Γ⇒ F (t) for all precomputed terms t
Γ⇒ ∀X F (X)

where X is a general variable, and

Γ⇒ F (n) for all integers n
Γ⇒ ∀N F (N)

(16)

where N is an integer variable.
Theorem 5. For any theory T over σ0, a sentence F over σ0
is satisfied by all standard HT-models of T iff F is derivable
in SQHTω from the axioms of T and formulas (b1)–(b3).

Proof. From Theorem 3 we can conclude that F is satisfied
by all standard HT-models of T iff F is satisfied by all ω-
models 〈H, I〉 of T such that I satisfies formulas (b1)–(b3).
Since these formulas do not contain intensional symbols,
they are satisfied by I iff they are satisfied by 〈H, I〉. The
assertion to be proved follows by Theorem 4 applied to the
theory obtained from T by adding axioms (b1)–(b3).

5.4 Application to strong equivalence
From Theorem 1 and Theorem 5 with empty T we conclude:
Theorem 6. Mini-GRINGO programs Π1, Π2 are strongly
equivalent iff the formula τ∗Π1 ↔ τ∗Π2 is derivable in
SQHTω from formulas (b1)–(b3).

The if-part of this assertion is stronger than the similar
property of the deductive system HTA (Lifschitz 2021, Sec-
tion 4), because every formula provable in HTA can be de-
rived in SQHTω from formulas (b1)–(b3), but not the other
way around. Consider, for instance, the program Π1 consist-
ing of the rules

p(0),
p(X + 1)← p(X)

and the program Π2, obtained from Π1 by adding the rule

p(X)← X + 1 > 0.

These programs are strongly equivalent, but the formula
τ∗Π1 ↔ τ∗Π2 is not provable in HTA in this case (Lifschitz
2021, Section 6). The reason is that the set of postulates
of HTA does not include induction axioms for formulas that
contain intensional symbols. Such an axiom

G(0)∧∀N(G(N)→ G(N + 1))→ ∀N(N ≥ 0→ G(N))

can be derived, however, in SQHTω from formulas (b1)–(b3)
using rule (16) with

G(0) ∧ ∀N(G(N)→ G(N + 1))

as Γ, and with N ≥ 0→ G(N) as F (N). The premise

Γ⇒ n ≥ 0→ G(n)
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for negative n follows from the formula ¬(n ≥ 0), which
belongs to (b2). For nonnegative n, it can be derived from
the sequents

Γ⇒ G(0),
Γ⇒ G(0)→ G(0 + 1),
Γ⇒ G(1)→ G(1 + 1),
· · ·
Γ⇒ G(n− 1)→ G(n− 1 + 1)

and the formulas

1 = 0 + 1, . . . , n = n− 1 + 1,

which belong to (b3).

5.5 Examples
Example 1: Π1 is rule (2); Π2 is rule (8). According to
Theorem 6, the claim that these rules are strongly equiva-
lent can be justified by deriving the equivalence between the
result (6) of applying τ∗ to Π1 and the result

∀XZ1(Z1 = X ∧ ∃Z2(Z2 = X ∧ p(Z2))
∧ ∃Z3(Z3 = X ∧ ¬¬q(Z3))

→ q(Z1))
(17)

of applying τ∗ to Π2 using postulates of the deductive sys-
tem SQHTω and assumptions (b1)–(b3). This equivalence
can be actually proved in SQHT=. Indeed, formula (6) is
intuitionistically equivalent to

∀X(p(X)→ q(X) ∨ ¬q(X));

formula (17) is intuitionistically equivalent to

∀X(p(X)→ (¬¬q(X)→ q(X)).

The equivalence between the consequents

q(X) ∨ ¬q(X) and ¬¬q(X)→ q(X)

of these implications is provable in SQHT=, because it is
an intuitionistic consequence of weak excluded middle (14)
with q(X) as F .

Example 2: We will use Theorem 6 to check that rule (3) is
strongly equivalent to rule (9). The result (7) of applying τ∗
to (3) is intuitionistically equivalent to

¬p→ ∀K(0 ≤ K ≤ 2→ q(K)).

The result of applying τ∗ to (9) is intuitionistically equiva-
lent to

¬p→ ∀K(K = 0 ∨K = 1 ∨K = 2→ q(K)).

It remains to note that the equivalence

∀K(0 ≤ K ≤ 2↔ K = 0 ∨K = 1 ∨K = 2)

can be derived from assumptions (b1), (b2) using rule (16).

6 Proofs
6.1 Proof of Theorem 1
The proof refers to infinitary propositional logic of here-
and-there (Harrison et al. 2017, Section 2.3) for formulas
built from precomputed atoms. Thus we distinguish be-
tween HT-interpretations 〈H, I〉 of σ0 and propositional
HT-interpretations—pairs 〈H, T 〉, where H, T are sets of
precomputed atoms and H ⊆ T . Harrison et al. defined
strong equivalence for infinitary formulas and proved the
following fact (Harrison et al. 2017, Theorem 3):

Lemma 1. Two infinitary propositional formulas are
strongly equivalent iff they are satisfied by the same propo-
sitional HT-interpretations.

The first component H of a standard HT-interpreta-
tion 〈H, I〉 of σ0 is the set of all atoms p(t∗) such that p(t) is
a precomputed atom satisfied by I . The correpondence be-
tween the tuples t and t∗ is one-to-one, and we will take the
liberty to identify them. Then we can say that propositional
HT-interpretations can be characterized as pairs 〈H, Iint〉,
where I is a standard interpretation of σ0, and H is a subset
of Iint.

The proof of Theorem 1 refers also to the translation
F 7→ F prop (Lifschitz, Lühne, and Schaub 2019, Section 5),
which transforms sentences over σ0 into infinitary proposi-
tional formulas. This translation is defined as follows:

• if F is p(t) then F prop is obtained from F by replacing
each member of t by the value obtained after evaluating
all arithmetic functions;

• if F is t1 rel t2 then F prop is > if the values of t1 and t2
are in the relation rel , and ⊥ otherwise;

• ⊥prop is ⊥;

• (F � G)prop is F prop � Gprop for every binary connec-
tive �;

• (∀X F (X))prop is the conjunction of the formulas
F (t)prop over all precomputed terms t ifX is a variable of
the sort general, and over all numerals t if X is a variable
of the sort integer;

• (∃X F (X))prop is the disjunction of the formulas
F (t)prop over all precomputed terms t ifX is a variable of
the sort general, and over all numerals t if X is a variable
of the sort integer.

This translation is similar to the grounding process de-
fined by Truszczynski (2012, Section 2), and the lemma be-
low is similar to Propositions 2 and 4 from that paper.

Lemma 2. For any standard interpretation I of σ0 and any
sentence F over σI

0 ,

(i) I satisfies F iff Iint satisfies F prop;
(ii) for any subset H of Iint, the HT-interpretation 〈H, I〉

of σ0 satisfies F iff the propositional HT-interpretation
〈H, Iint〉 satisfies F prop.

Proof. Part (i) is proved by induction on the size of F .
Part (ii) is proved by induction on the size of F using
part (i).
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Proof of Theorem 1. The condition

Π1 is strongly equivalent to Π2

holds iff

(τ∗Π1)prop is strongly equivalent to (τ∗Π2)prop

(Lifschitz, Lühne, and Schaub 2019, Proposition 4). The
latter is equivalent to the condition

(τ∗Π1 ↔ τ∗Π2)prop is satisfied
by all propositional HT-interpretations

(Lemma 1) and, by Lemma 2(ii), to the condition

τ∗Π1 ↔ τ∗Π2 is satisfied
by all standard HT-interpretations of σ0.

6.2 Proof of Theorem 2: soundness
To prove the soundness of SQHT=, we extend the definition
of entailment to sequents as follows: we write

T |=ht Γ⇒ F

if
T |=ht ∀̃(Γ∧ → F ),

where Γ∧ is the conjunction of all formulas in Γ, and ∀̃ de-
notes universal closure. The soundness of SQHT= is proved
by verifying that

(i) every axiom of SQHT= is satisfied by all
HT-interpretations, and

(ii) whenever a sequent S is derived from sequents
S1, . . . , Sk by one application of an inference rule of Int,
every HT-interpretation satisfying S1, . . . , Sk satisfies S
also.

The proof of (ii) for rules (∀E) and (∃I) uses the following
lemma, which is easy to verify by induction:

Lemma 3. For any formula F (X) that has no free vari-
ables other than X , for any ground term t such that
sort(t) � sort(X), and for any HT-interpretation 〈H, I〉,

〈H, I〉 |=ht F (t) iff 〈H, I〉 |=ht F
((
tI
)∗)

.

6.3 Proof of Theorem 2: completeness
The proof is similar to the proof of a special case due to
Lifschitz, Pearce, and Valverde (2007).

Lemma 4.
(i) ` ¬∀X F (X)↔ ∃X¬F (X).

(ii) ` ¬¬∀X F (X)↔ ∀X¬¬F (X).
(iii) ` ¬¬∃X F (X)↔ ∃X¬¬F (X).

Proof. (i) The implication left-to-right is an intuitionistic
consequence of axiom (11). The implication right-to-left is
provable intuitionistically. (ii) This is an intuitionistic con-
sequence of (i). (iii) In (ii), take F (X) to be ¬F (X) and
note that ∀X¬ is intuitionistically equivalent to ¬∃X .

For any theory T and any sentence F , we write T `c F
if F is derivable from the axioms of T classically, that is,
derivable in the extension of SQHT= obtained by replacing
axiom schemas (10)–(13) with the law of the excluded mid-
dle

F ∨ ¬F
for all formulas F .
Lemma 5. (i) For any formula F ,

`c F iff ` ¬¬F.

(ii) For any theory T ,

T `c ⊥ iff T ` ⊥.

Proof. (i) The if part is obvious. Only if: consider Gödel’s
negative translation Fneg of F , which is defined recursively:

• Fneg = ¬¬F if F is atomic;
• ⊥neg = ⊥;
• (F ∧G)neg = Fneg ∧Gneg;
• (F ∨G)neg = ¬(¬Fneg ∧ ¬Gneg);
• (F → G)neg = Fneg → Gneg;
• (∀X F (X))neg = ∀X(F (X)neg);
• (∃X F (X))neg = ¬∀X¬F (X)neg .

If `c F then Fneg is provable in Int (Mints 2000, Theo-
rem 13.1 extended to the many-sorted case). It remains to
show that ` Fneg ↔ ¬¬F for all F . The proof is by in-
duction on F . Consider the case of ∀X F (X). From the
induction hypothesis

` F (X)neg ↔ ¬¬F (X)

we need to derive

` ∀X(F (X)neg)↔ ¬¬∀X F (X).

This is immediate from Lemma 4(ii). For the other cases,
we only need deductive means of intuitionistic logic.

(ii) The if part is obvious. Only if: we can assume with-
out loss of generality that T is finite, because any classical
derivation of F from T uses only finitely many elements
of T . If T `c ⊥ then `c ¬T∧. By part (i) of the lemma,
` ¬¬¬T∧, so that ` ¬T∧ and consequently T ` ⊥.

Given a theory T and a sentence F over σ such that
T 6` F , we need to construct a counterexample, that is, an
HT-interpretation 〈H, I〉 that satisfies all formulas in T but
does not satisfy F .

By σ′ we denote the signature obtained from σ by adding,
for every sort s, a countable setCs of object constants of that
sort.
Lemma 6. There exists a theory T ′ over σ′ such that

(α) T ⊆ T ′,
(β) F 6∈ T ′,
(γ) T ′ is closed under `,
(δ) for any sentence of the form G ∨ H in T ′, G ∈ T ′ or

H ∈ T ′,
(ε) for any sentence of the form ∃X F (X) in T ′ there exists

an object constant c in Csort(X) such that F (c) ∈ T ′.
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Proof. Let E0 be the set of all sentences of the form
∃XG(X) over σ′, and let D0 be the set of all sentences of
the form G ∨H over σ′. Define T0 to be T . We will define
sets Tn, En, Dn for all positive n recursively in such a way
that Tn+1 will be obtained from Tn by adding one sentence
so that, for all n, Tn 6` F ;En+1 will be obtained fromEn by
removing at most one sentence; and Dn+1 will be obtained
from Dn by removing at most one sentence. For each of the
sets E0, D0, choose an enumeration of its elements.

Case 1: n is even. Let ∃XG(X) be the first sentence
from En such that Tn ` ∃XG(X). (Such a sentence ex-
ists because E0 contains infinitely many sentences with this
property, and En is obtained from E0 by removing finitely
many sentences.) Let c be a constant from Csort(s) that
occurs neither in Tn nor in G(X). (Such a constant ex-
ists because Tn and G(X) contain finitely many constants
from Csort(s).) Then Tn+1 = Tn ∪ {G(c)},

En+1 = En \ {∃XG(X)}, Dn+1 = Dn.

To show that the property Tn 6` F is preserved, assume that
Tn+1 ` F . Then Tn ` G(c) → F . We can conclude that
Tn ` G(X)→ F . (Take a derivation of G(c)→ F from Tn
that does not contain X , and replace all occurrences of c in
it by X . The result is a derivation of G(X) → F from Tn,
because c occurs neither in G(X) → F nor in Tn.) Since
Tn ` ∃XG(X), it follows that Tn ` F , which we assumed
is not the case.

Case 2: n is odd. Let G ∨ H be the first sentence
from Dn such that Tn ` G ∨ H . (Such a sentence ex-
ists because D0 contains infinitely many sentences with
this property, and Dn is obtained from D0 by removing
finitely many sentences.) Define Tn+1 to be Tn ∪ {G} if
Tn, G 6` F , and Tn ∪ {H} otherwise; En+1 = En, and
Dn+1 = Dn \ {G ∨ H}. Let us show that the property
Tn 6` F is preserved. The assertion Tn+1 6` F is obvious
if Tn, G 6` F and Tn+1 is defined as Tn ∪ {G}. Consider
the case when Tn, G ` F and Tn+1 is defined as Tn ∪ {H}.
Assume that Tn+1 ` F . Then Tn, G ∨ H ` F . Since
Tn ` G ∨H , it follows that Tn ` F , which we assumed is
not the case.

Finally, we define T ′ to be ∪n≥0Tn.
It is clear that condition (α) is satisfied. Condition (β)

follows from the fact that Tn 6` F for all n. The verification
of the remaining conditions uses two facts:

(a) for any sentence G from E0 such that T ′ ` G there ex-
ists n such that G 6∈ En;

(b) for any sentence G from D0 such that T ′ ` G there ex-
ists n such that G 6∈ Dn,

To verify condition (γ), we need to show that T ′ ` G
implies G ∈ T ′. Assume that T ′ ` G. Then T ′ ` G ∨ G
and, by (b), there exists n such that G ∨ G 6∈ Dn. Take the
smallest such n, so that G ∨G ∈ Dn−1. From the recursive
definition of the sets Dn we see that Tn−1 ` G ∨ G. It
follows that G ∈ Tn, and consequently G ∈ T ′.

To prove (δ), assume that G ∨ H ∈ T ′. Then, by (b),
there exists n such that G ∨ H 6∈ Dn. Take the smallest
such n, so thatG∨H ∈ Dn−1. From the recursive definition

of the sets Dn and Tn we see that Tn is Tn−1 ∪ {G} or
Tn−1 ∪{H}. Thus one of the formulas G, H belongs to Tn,
and consequently to T ′.

To prove (ε), assume that ∃XG(X) ∈ T ′. Then, by (a),
there exists n such that ∃XG(X) 6∈ En. Take the smallest
such n, so that ∃XG(X) ∈ En−1. From the recursive defi-
nition of the setsEn and Tn we see that Tn is Tn−1∪{G(c)}
for some constant c from Cs, where s =sort(X). Thus G(c)
belongs to Tn, and consequently to T ′.

Now we are ready to define the counterexample 〈H, I〉.
Take a set T ′ of sentences over σ′ satisfying conditions
(α)–(ε) from Lemma 6. For any ground terms t1 and t2
over σ′, we write t1 ≈ t2 if the formula t1 = t2 belongs
to T ′. Then

(a) the domain |I|s is the set of all equivalence classes of ≈
that contain a term t such that sort(t) � sort(X);

(b) for each object constant c of σ, cI is the equivalence class
of ≈ that contains c;

(c) for each function constant f of positive arity,
f I(d1, d2, . . . ) is the equivalence class of ≈ that
contains the term f(t1, t2, . . . ) for all terms t1 ∈ d1,
t2 ∈ d2, . . . over σ′.

To conclude the definition of I , we need to define pI for
predicate constants p. From T ′ 6` F we can conclude that
T ′ 6` ⊥, and, by Lemma 5(ii), that T ′ 6`c ⊥. Then, by
Lindenbaum’s Lemma (Mendelson 1987, Lemma 2.14 ex-
tended to the many-sorted case), there exists a complete,
consistent extension T ′′ of T ′. We define:

(d) for each predicate constant p, pI(d1, d2, . . . ) is true if
p(t1, t2, . . . ) ∈ T ′′ for all terms t1 ∈ d1, t2 ∈ d2, . . .
over σ′.

Finally,
(e) H is the set of all formulas of the form p(d∗1, d

∗
2, . . . ) such

that p is intensional and p(t1, t2, . . . ) ∈ T ′ for all terms
t1 ∈ d1, t2 ∈ d2, . . . over σ′.

The HT-interpretation 〈H, I〉 of σ can be extended to the
signature σ′ by allowing c in clause (b) of the definition to
be an arbitrary object constant from σ′.

We will show that for any sentence G over σ′,

〈H, I〉 |=ht G iff G ∈ T ′ (18)

(Lemma 11 below). The desired properties of the HT-inter-
pretation 〈H, I〉—it satisfies all sentences in T but does
not satisfy F—follow from this fact, because T ⊆ T ′ and
F 6∈ T ′.
Lemma 7. (i) For any sentence of the form t1 = t2 over σ′,

(t1 = t2) ∈ T ′ iff (t1 = t2) ∈ T ′′.

(ii) For any sentence of the form p(t) over σ′ such that p is
extensional,

p(t) ∈ T ′ iff p(t) ∈ T ′′.

Proof. (i) The if part follows from the fact that T ′ ⊆ T ′′.
Only if: Assume that (t1 = t2) 6∈ T ′. From property (γ) we
can conclude that T ′ contains the instance t1 = t2 ∨ t1 6= t2
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of axiom (12). By property (δ), it follows that T ′ contains
t1 6= t2 as well. Since T ′′ is a consistent superset of T ′, we
can conclude that (t1 = t2) 6∈ T ′′. The proof of part (ii) is
similar, using (13) instead of (12).

Lemma 8. For any sentence of the form ∃XG(X) over σ′
there exists an object constant c in Csort(X) such that the
formula

∃XG(X)→ G(c) (19)

belongs to T ′′.

Proof. Case 1: ∃XG(X) ∈ T ′′. By Lemma (14), the sen-
tence

¬∃XG(X) ∨ ¬¬∃XG(X)

is provable in SQHT=. Consequently it belongs to T ′.
By (δ), T ′ contains one of its disjunctive terms. But the
first disjunctive term cannot belong to T ′ because the con-
sistent superset T ′′ of T ′ contains ∃XG(X). Consequently
¬¬∃XG(X) belongs to T ′. By Lemma 4(iii), it follows that
∃X¬¬G(X) belongs to T ′ as well. By condition (ε), it fol-
lows that there exists an object constant c fromCsort(X) such
that ¬¬G(c) belongs to T ′. It remains to observe that T ′′ is
a superset of T ′ closed under `c, and that (19) is a classical
consequence of ¬¬G(c). Case 2: ∃XG(X) 6∈ T ′′. Since
T ′′ is complete, it contains ¬∃XG(X); (19) is a classical
consequence of this formula.

Lemma 9. For any ground term t, tI is the equivalence class
of t.

Proof. By induction on t.

Lemma 10. For any sentenceG over σ′, I |= G iff G ∈ T ′′.

Proof. By induction on the size of the formula G.
We will consider the three cases where reasoning is
different than in the similar proof for intuitionistic
logic (van Dalen 1986, Section 3): t1 = t2, G→ H , and
∀XG(X).

1. To check that I |= t1 = t2 iff t1 = t2 ∈ T ′′, we show that
each side is equivalent to t1 ≈ t2. For the left-hand side, this
follows from Lemma 9. For the right-hand side, this follows
from the definition of ≈ and Lemma 7(i).

2. We want to show that I |= G → H iff G → H ∈ T ′′.
By the induction hypothesis,

I |= G iff G ∈ T ′′

and
I |= H iff H ∈ T ′′.

Then, since T ′′ is complete and consistent,

(G→ H) ∈ T ′′ iff ¬G ∈ T ′′ or H ∈ T ′′

iff I 6|= G or I |= H

iff I |= G→ H.

3. We want to show that

I |= ∀XG(X) iff ∀XG(X) ∈ T ′′.

For the if part, assume that ∀XG(X) ∈ T ′′ and take any
element d of |I|sort(X). By the definition of |I|s, there ex-
ists a ground term t such that sort(t) � sort(X) and t ∈ d.
Since T ′′ is closed under `, G(t) ∈ T ′′. By the induc-
tion hypothesis, it follows that I |= G(t). By Lemma 9,
tI = d. By Lemma 3, it follows that I |= G(d∗). Thus
I |= ∀X G(X). To prove the only if part, take an object
constant c in Csort(X) such that the sentence

∃X¬G(X)→ ¬G(c) (20)

belongs to T ′′ (Lemma 8). Assume that I |= ∀XG(X).
Then I |= G(c). By the induction hypothesis, it follows that
G(c) belongs to T ′′. It remains to observe that ∀XG(X) is
a classical consequence of (20) and G(c).

Lemma 11. For any sentence G over σ′, 〈H, I〉 |=ht G iff
G ∈ T ′.

Proof. By induction on the size of the formula G. We will
consider the same three cases as in the previous proof.

1. To check that 〈H, I〉 |=ht t1 = t2 iff t1 = t2 ∈ T ′,
we show that each side is equivalent to t1 ≈ t2. For
the left-hand side, this follows from the fact that for every
ground term t, tI is the equivalence class of ≈ that con-
tains t (Lemma 9). The right-hand side is immediate from
the definition of ≈.

2. We want to show that

〈H, I〉 |=ht G→ H iff G→ H ∈ T ′.

For the if part, assume that (G → H) ∈ T ′. Since T ′ is
closed under `, it follows that G /∈ T ′ or H ∈ T ′. By the
induction hypothesis,

〈H, I〉 |=ht G iff G ∈ T ′

and
〈H, I〉 |=ht H iff H ∈ T ′.

Consequently 〈H, I〉 6|=ht G or 〈H, I〉 |=ht H . Further-
more, (G → H) ∈ T ′ ⊆ T ′′, so that I |= G → H
(Lemma 10). Thus 〈H, I〉 |=ht G → H . For the only if
part, assume that 〈H, I〉 |=ht G → H . By the induction
hypothesis, it follows that

G 6∈ T ′ or H ∈ T ′. (21)

On the other hand, by Lemma 10, we can conclude that

G 6∈ T ′′ or H ∈ T ′′. (22)

Case 1: G ∈ T ′. Then, by (21), H ∈ T ′ and consequently
(G → H) ∈ T ′. Case 2: ¬G ∈ T ′. Then (G → H) ∈ T ′
because ¬G ` G → H . Case 3: G 6∈ T ′ and ¬G 6∈ T ′.
From (14) we can conclude that T ′ contains ¬G∨¬¬G. By
property (δ) of T ′, it follows that ¬¬G ∈ T ′ ⊆ T ′′. Then
G ∈ T ′′ and, by (22), H ∈ T ′′. Since T ′′ is consistent and
contains T ′, it follows that ¬H 6∈ T ′. Since T ′ contains
the instance G ∨ (G → H) ∨ ¬H of axiom schema (10),
contains neither G nor ¬H , and satisfies (δ), we conclude
that (G→ H) ∈ T ′ in this case as well.
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3. We want to show that

〈H, I〉 |=ht ∀XG(X) iff ∀XG(X) ∈ T ′.
For the if part, the reasoning is the same as in the proof of
Lemma 10. For the only if part, consider the instance

∃X(G(X)→ ∀XG(X))

of axiom schema (11). By condition (ε), there exists an ob-
ject constant c in Csort(X) such that the formula

G(c)→ ∀XG(X) (23)

belongs to T ′. Assume that 〈H, I〉 |=ht ∀XG(X). Then
〈H, I〉 |=ht G

((
cI
)∗)

; by Lemma 3, 〈H, I〉 |=ht G(c). By
the induction hypothesis, this implies that G(c) ∈ T ′. It
remains to observe that ∀XG(X) is an intuitionistic conse-
quence of G(c) and (23).

6.4 Proof of Theorem 4: soundness
The deductive system SQHTω is the result of adding infer-
ence rule (15) to the system SQHT=. We will extend the
argument outlined in Section 6.2 by discussing the case cor-
responding to the additional rule.

Take an instance
Γ(X,Y)⇒ F (t,Y) for all terms t in ω(sort(X))

Γ(X,Y)⇒ ∀X F (X,Y)
(24)

of rule (15), where Y is the list of its free variables other
than X . Take an ω-interpretation 〈H, I〉 such that

〈H, I〉 |=ht ∀XY
(
Γ∧(X,Y)→ F (t,Y)

)
(25)

for all terms t in ω(sort(X)); we need to show that 〈H, I〉
satisfies

∀XY
(
Γ∧(X,Y)→ ∀X F (X,Y)

)
. (26)

Note first that

〈H, I〉 |=ht ∀XY
(
Γ∧(X,Y)→ F (d∗,Y)

)
(27)

for every d in |I|sort(X). Indeed, take a term t in ω(sort(X))
such that tI = d; then d∗ = (tI)∗, and (27) follows
from (25) by Lemma 3. Hence 〈H, I〉 satisfies

∀ZXY
(
Γ∧(X,Y)→ F (Z,Y)

)
, (28)

where Z is a fresh variable of the same sort as X . The
goal (26) can be derived from (28) in SQHT= as follows.
From (28),

∃X Γ∧(X,Y)⇒ ∀Z F (Z,Y).

Then, by ∀-elimination and ∀-introduction,

∃X Γ∧(X,Y)⇒ ∀X F (X,Y).

Using the sequent

Γ∧(X,Y)⇒ ∃X F (X,Y)

and ∃-elimination, we further conclude

Γ∧(X,Y)⇒ ∀XF (X,Y),

and (26) follows by→-introduction and ∀-introduction.

6.5 Omitting types
The completeness part of the main theorem is derived in Sec-
tion 6.6 from the omitting types theorem for the logic of
here-and-there, stated below. In its statement,
• T is a theory over σ, and F is a sentence over σ such that
T 6` F ;

• S is a subset of the set of sorts of σ,
• for every sort s in S, Xs is a variable of sort s, and Σs is

a subset of the set of formulas that have no free variables
other than Xs.

Omitting Types Theorem. If for every sentence of the form
∃XsG(Xs) such that

T, ∃XsG(Xs) 6` F

there exists a formula H(Xs) in Σs such that

T, ∃Xs(G(Xs) ∧H(Xs)) 6` F

then T has an HT-model 〈H, I〉 satisfying the following con-
ditions:

(i) 〈H, I〉 6|=ht F ;
(ii) for every s in S and every d in |I|s there exists a for-

mula H(Xs) in Σs such that 〈H, I〉 |=ht H(d∗).

In the following lemma, as in Section 6.3, σ′ is the signa-
ture obtained from σ by adding, for every sort s, a countable
set Cs of object constants of that sort.
Lemma 12. If for every sentence of the form ∃XsG(Xs)
such that

T, ∃XsG(Xs) 6` F
there exists a formula H(Xs) in Σs such that

T, ∃Xs(G(Xs) ∧H(Xs)) 6` F

then there exists a theory T ′ over σ′ satisfying condi-
tions (α)–(ε) from Lemma 6 and the condition

(ζ) for every sort s in S and every ground term t of sort s
there exists a formula H(Xs) in Σs such that H(t) ∈ T ′.

Proof. Choose an enumeration of the union C of the sets Cs

for all s in S. We define sets Tn, En, Dn recursively, as in
the proof of Lemma 6, except that we distinguish between
three cases, instead of two.

Case 1: n = 3k − 2. The sets Tn+1, En+1, Dn+1 are
defined as in Case 1 of the proof of Lemma 6.

Case 2: n = 3k − 1. The sets Tn+1, En+1, Dn+1 are
defined as in Case 2 of the proof of Lemma 6.

Case 3: n = 3k. Let c be the k-th constant in C, and let c
be the list of all other constants from C that occur in Tn.
(There are finitely many such constants, because Tn is the
result of adding n formulas to T .) Then Tn can be repre-
sented as T ∪ {G1(c, c), . . . , Gn(c, c)} for some formulas
Gi(X

s,Y) over σ, where s = sort(c). Let G(Xs) be the
formula ∃Y(G1(Xs,Y)∧ · · · ∧Gn(Xs,Y)). The assump-
tion that T, ∃XsG(Xs) ` F leads to a contradiction, be-
cause

T ⊆ Tn, Tn ` ∃XsG(Xs), and Tn 6` F.
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Thus T, ∃XsG(Xs) 6` F . Consequently there exists a for-
mula H(Xs) in Σs such that

T, ∃Xs(G(Xs) ∧H(Xs)) 6` F. (29)

Define

Tn+1 = Tn ∪ {H(c)}, En+1 = En, Dn+1 = Dn.

To show that the property Tn 6` F is preserved, assume that
Tn+1 ` F . Then

T, G1(c, c) ∧ · · · ∧Gn(c, c), H(c) ` F.

Since the constants c occur neither in T nor H(c) nor in F ,
it follows that

T, ∃Y(G1(c,Y) ∧ · · · ∧Gn(c,Y)), H(c) ` F,

which can be written as T, G(c), H(c) ` F . Since the con-
stant c occurs neither in T nor in F , it follows that

T, ∃Xs(G(Xs) ∧H(Xs)) ` F,

which contradicts (29).
Define T ′ as ∪n≥0Tn. Then properties (α)–(ε) are proved

in the same way as in the proof of Lemma 6. To prove prop-
erty (ζ), take a term t of sort s and consider the formula
∃Xs(Xs = t). It is provable in SQHT= and consequently
belongs to T ′. By property (ε), it follows that Cs contains a
constant c such that c = t belongs to T ′. Take k such that c
is the k-th constant in the set C. Then H(c) ∈ T3k+1 ⊆ T ′,
and consequently H(t) ∈ T ′.

To prove the Omitting Types Theorem, we define 〈H, I〉
as in Section 6.3. Property (i) is established by the same
reasoning as in the completeness proof above. To prove
property (ii), take a sort s in S, an element d of |I|s, and
a term t in d. By Lemma 12, there exists a formula H(Xs)
in Σs such that H(t) ∈ T ′. By Lemma 11, it follows that
〈H, I〉 |=ht H(t). By Lemma 9, tI = d = (d∗)I . By
Lemma 3, it follows that 〈H, I〉 |=ht H(d∗).

6.6 Proof of Theorem 4: completeness
Let F be a sentence that is not derivable in SQHTω from the
axioms of a theory T . Our goal is to construct an ω-model
of T that does not satisfy F .

Consider the set T ′ of sentences over σ that can be derived
from the axioms of T in SQHTω . We will apply Omitting
Types Theorem (Section 6.5) to the theory T ′, with the set
{Xs = t : t ∈ ω(s)} as Σs for all s ∈ S. To use the
theorem, we need to show that for every sentence of the form
∃XsG(Xs) such that

T ′, ∃XsG(Xs) 6` F (30)

there exists a term t in ω(s) such that

T ′,∃Xs(G(Xs) ∧Xs = t) 6` F.

Assume that this not the case, so that for all t in ω(s)

T ′,∃Xs(G(Xs) ∧Xs = t) ` F.

Then
T ′, G(t) ` F (t ∈ ω(s))

and consequently

T ′ ` G(t)→ F (t ∈ ω(s)),
T ′ `ω ∀Xs(G(Xs)→ F ),

and
∀Xs(G(Xs)→ F ) ∈ T ′,

because T ′ is closed under `ω . This conclusion contra-
dicts (30).

By the Omitting Types Theorem, T ′ has an HT-model
〈H, I〉 such that

(i) 〈H, I〉 6|=ht F ;
(ii) for every s in S and every d in |I|s there exists a term t in

ω(s) satisfying the condition 〈H, I〉 |=ht d
∗ = t.

The last condition is equivalent to d = tI . Consequently (ii)
asserts that I is an ω-interpretation.

Conclusion
The main result of this paper is an ω-completeness theorem
for the many-sorted logic of here-and-there. It is derived
from a types omission theorem for that logic. Using the main
theorem, we showed that the strong equivalence relation on
mini-GRINGO programs can be characterized as the possi-
bility of deriving rules, rewritten as first-order formulas, in
the deductive system SQHTω . Extending the last result to
more expressive languages of answer set programming is a
topic for future work.
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