
EvolveDB - Documentation for End-User

Author: Torben Eckwert, M.Sc.
E-Mail: torben.eckwert@zdh.thm.de

Subject Area: Computer Science

Supervisors:
Prof. Dr. rer. nat. Michael Guckert
Prof. Dr. ing. Gabriele Taentzer

December 8, 2022 , Wetzlar

Contents
1 Introduction 1

2 Prerequisites and Installation 1

3 EvolveDB 3
3.1 Reverse Engineering . 4
3.2 Restructuring . 8

3.2.1 Change Column Type . 9
3.2.2 Add New Columns . 9
3.2.3 Change Default Values . 11
3.2.4 Reduce Column Size . 12
3.2.5 Change the Multiplicity of an Association 12

3.3 Model Comparison . 14
3.3.1 SiLift . 14
3.3.2 Model Compoarison with EvolveDB 16

3.4 Forward Engineering . 21
3.4.1 Migration Model . 21
3.4.2 Breaking & Resolvable . 24
3.4.3 Not Automatically Resolvable . 26

3.5 Generate Migration Scripts . 27

4 Migration Scripts 29
4.1 History Table . 33

2

1 Introduction

1 Introduction
EvolveDB is an Eclipse-based framework for schema evolution in MySQL databases. The
user specifies the evolution steps by freely editing a database model extracted by reverse en-
gineering. EvolveDB analyzes the differences between the status quo and the evolved model
structures and generates a data migration script. This user manual includes installation in-
structions and introductory tutorials on how to use EvolveDB as an end user.

2 Prerequisites and Installation
EvolveDB is a plug-in for recent versions of the Eclipse Modeling Tools (last tested version:
2022-06). The Eclipse feature is available from our GitHub repository.

Important: Currently, EvolveDB requires Java SE 11. Newer or older Java Versions
may cause unexpected behavior. The Java version can be changed by modifying the vm
option in the eclipse.ini.

Before installing EvolveDB, we need to install some additional Eclipse plugins. The following
list contains the mandatory plugins.

• Sirius is an Eclipse project which allows you to easily create your own graphical mod-
eling workbench by leveraging the Eclipse Modeling technologies, including EMF and
GMF.

• Eclipse OCL is available via the eclipse marketplace.

If all requirements are fulfilled, EvolveDB can be installed via the menu item Help ⇒ Install
New Software... (fig. 1).
We used the MySQL Server version 8.0.28 for this tutorial. When using older versions, com-
patibility problems may occur.

1

https://www.eclipse.org/downloads/packages/release/2022-06/r/eclipse-modeling-tools
https://github.com/tekw24/evolveDB
http://download.eclipse.org/sirius/updates/nightly/latest/2021-06
https://marketplace.eclipse.org/content/eclipse-ocl
https://dev.mysql.com/downloads/mysql/

2 Prerequisites and Installation

Figure 1: Eclipse: Install New Software...

The repository contains multiple catgories (fig. 2). For the following tutorial, all elements
must be installed.

2

3 EvolveDB

Figure 2: Eclipse: EvolveDB local repository

3 EvolveDB
The schema evolution with EvolveDB is a model-driven reengineering process that includes
three phases, reverse engineering, restructuring, and forward engineering. In the first step, we
start by creating a representation of a (MySQL) database schema through reverse engineering.
In the restructuring phase we edit this model resulting in a second model version. Afterwards
EvolveDB analyzes the differences between the status quo and the evolved model structures.
From the delta between the two model versions, SQL migration scripts are generated, which
can be used to migrate the schema and the associated data.

3

3 EvolveDB

Figure 3: MySQL database schema

The use of EvolveDB as a tool for schema evolution is demonstrated with a running exam-
ple. The starting point is an already existing MySQL database. (fig. 3) The schema describes
traffic routes (table street). Streets always have a starting point. These starting points are
intersections or traffic circles (table crossroad). Several roads can start or end at one node.
Furthermore, properties (table property) can be located at traffic routes. During this tutorial,
we are going to make the following changes to the database schema and the associated data:

• In the table street we change the type of the column DATECREATED changed from
TIMESTAMP to DATETIME.

• We add two new columns, LONGITUDE : Integer and LATITUDE : Integer, to table
crossroad.

• We reduce the column size of the NAME column in table street from 255 to 40.

• We change the single-valued association between property and street into a multi-valued
association. (Requires a new cross-reference table.)

• We set 1 as new default value for column lanes in table crossroad.

3.1 Reverse Engineering

In the first step we extract a database model by reverse engineering. For this purpose, open
the Eclipse Project Explorer and create a new project. Then select the new project and open
the context menu with a right click. Select EvolveDB ⇒ Create MDDE Model... (Fig. 4)

4

3 EvolveDB

Figure 4: Start reverse engineering

A wizard dialog opens that has several pages. On the first page, we have to select the data
source. (fig. 5)

Figure 5: Select data source

EvolveDB does not include database drivers. When used for the first time, we must down-

5

3 EvolveDB

load the JDBC driver. The driver files can be downloaded automatically. Or you can obtain
driver files by yourself and add them to the driver directory. The default driver location is the
eclipse install directory. The location can be changed in the eclipse preferences. If no suitable
driver can be found, EvolveDB opens a download driver dialog. (fig. 6)

Figure 6: Download JDBC driver

After loading the driver class, we have to insert the connection information. (fig. 7) Fur-
thermore, it is possible to save the connection information (without password) as an XML
configuration file. This configuration file can be imported when creating a new model so that
the connection information does not have to be entered again. (fig. 9)) After entering the
required information, the connection must be tested. We can continue if the connection is suc-
cessful. The next page shows a list with all available database schemes if we did not preselect
a schema on the first page. (fig. 8) On the last page of the dialog, the new model’s name and
location must be specified. The dialog can then be closed with Finish, and the newly created
model is opened in the editor. In addition, a new folder with the name genModel and a copy of
the model are created in the storage location. The second model is required for the comparison
process after the restructuring phase and should not be changed.

6

3 EvolveDB

Figure 7: Insert connection data

Figure 8: Select database schema

7

3 EvolveDB

Figure 9: Choose file location

3.2 Restructuring

In the previous step, we created a database model by reverse engineering. The new model was
automatically opened in the Eclipse editor (fig. 10). The editor consists of two parts. On the
left is a tree-based editor that allows navigating in the model, and on the right is a view with
the selected element’s properties. Each element in our model corresponds to an element in
the database. By expanding an element, the child elements become visible. Now we can start
editing the model.

8

3 EvolveDB

Figure 10: MDDE model editor

3.2.1 Change Column Type

Select the column DATECREATED in table street. The attributes of the column are now
displayed in the right side of the editor. Change the type from TIMESTAMP to DATETIME.

3.2.2 Add New Columns

Figure 11: Context menu

9

3 EvolveDB

In this step we are going to add the two new columns for longitude and latitude. Select the
crossroad table and call the context menu with a right-click (fig. 11). Create a new column.
The new column will then be opened (fig. 12). Mandatory fields are marked in red. Name the
new attribute LATITUDE and set the type to Integer. Since columns with the Integer type do
not have a size attribute, the attribute is hidden. The other attributes can remain unchanged.
(fig. 13) Repeat the process for the LONGITUDE column.

Figure 12: Mandatory fields are marked in red

Figure 13: The Size attribute is not visible

10

3 EvolveDB

3.2.3 Change Default Values

Open the crossroad table in the tree viewer and select the column LANES. Set the default value
to 1. Basically, this change is no different from a name change or a type change. Therefore,
you may wonder at this point why this change is listed and explained in this tutorial. The
reason is one of the significant strengths of EvolveDB. We explain the details in the following
section.

Explanation: Default-Value, Size and Validation Each column in a MySQL database can
have a default value. However, this default value must match the column type. If we consider
the column LANES as an example, the default value may only consist of digits because the
type is a numeric data type. However, this is not the only restriction. At the same time, the
default value must not exceed the value range of the data type. The Integer data type has a
fixed size. Therefore, EvolveDB hides the size attribute for columns with the Integer data
type. Columns of type Integer can contain values from the range between -2147483648 and
2147483647. When we specify a value outside the value range or enter invalid characters, we
receive an error message when validating the model (fig. 14). The validation can be triggered
manually using the button in the top right corner of the editor.

Figure 14: The default value is invalid.

11

3 EvolveDB

Figure 15: Default-value for a timestamp column

Let us consider another example. MySQL allows fractional seconds for the TIME, DATE-
TIME and TIMESTAMP data types with an accuracy of up to microseconds (6 digits). When
validating the default value of a column with one of these three types, the default value must
match the Size attribute (fig. 15). In summary, a simple change to the default value or size
attribute requires extensive validation. These validations ensure that only permissible values
can be entered.

3.2.4 Reduce Column Size

Select the column NAME in table street. The column has the datatype VARCHAR. Unlike
numeric data types like INTEGER, VARCHAR has no fixed size. For this reason, the size
attribute is visible, and we can select a value in the range between 0 and 255. Currently, 255
is selected. Decrease the value to 40.

3.2.5 Change the Multiplicity of an Association

Right-clicking on the database schema within the tree-based editor opens the context menu.
Via the context menu, we can add new tables(fig. 16). In the previous sections, the extensive
validations have already been discussed. However, not only individual columns or attribute
values are validated, but also entire tables and the model as a whole. After we add the new
table property_street, the validation of the model leads to several errors (fig. 17). The model
is invalid, because we have not added any columns yet.

12

3 EvolveDB

Figure 16: Add new table

Figure 17: Model validation

Tables must have at least one column and a primary key. By double-clicking on the error,
the model element that caused the error is selected. Now we add the two Foreign Keys to the
table. The two foreign keys reference the tables street and property. (It is also possible to
move the STREET_DB_ID to table property_street.) Then the old foreign key street_db_id in
the table property can be deleted. Figure 18 shows the the result. Once the validation of the
model is successful, the comparison of the model versions can be continued in the next step.

13

3 EvolveDB

Figure 18: Table property_street with foreign keys

3.3 Model Comparison

EvolveDB analyzes the differences between the two model versions. At first, a sequence of
atomic differences is automatically derived. Then the identified model evolution steps are
(semi-)automatically mapped to predefined migration operations. These migration operations
can finally be applied to the original database schema to transform it into the target schema.
For the comparison process, EvolveDB uses the SiLift framework. SiLift is a generic model
comparison environment that can semantically lift identified low-level differences of EMF-
based models into representations of user-level edit operations.

3.3.1 SiLift

SiLift’s approach can best be compared to a four-step pipeline, as shown in Figure 19. The
two model versions, e.g. models.mdde and models2.mdde serve as input:

1. Matching: The task of a matcher is to identify the corresponding elements from model
A and model B, i.e., the elements that match in both models. SiLift provides four
different matchers by default. One of them is EMFCompare.

14

3 EvolveDB

Figure 19: SiLift processing pipeline

2. Difference Derivation: Based on the correspondences, the difference derivator cal-
culates a technical difference (low-level difference) between the model versions. All
objects and references for which no correspondence exists must either have been added
to model B or removed from model A.

Figure 20: Technical difference between models.mdde and models2.mdde

15

3 EvolveDB

3. Semantic Lifting: The previously calculated technical difference contains all changes
between the models. Then these changes are semantically lifted. For this purpose, the
low-level changes are grouped into semantic change sets with the help of recognition
rules. Each semantic change set represents an editing operation performed by the user.
Often, user editing operations consist of more than one low-level change, because even
basic edit operations that appear simple from a users point of view may lead to many
low-level changes. While atomic rules cover the creation, deletion, moving of elements,
and the changing of attribute values, the complex editing rules are usually composed of
atomic and other complex rules.

4. Difference Presentation UI: The result is a symmetric difference model which contains
the matching, the atomic changes and the resulting semantic change sets.

3.3.2 Model Compoarison with EvolveDB

Figure 21: Start comparison

16

3 EvolveDB

We start comparing the two model versions from the previous chapter. Therefore, we select
the two mdde files in the Package or Project Explorer and open the context menu with a right
click. We choose EvolveDB ⇒ Create Lifted Difference (SiLift) (fig. 21) A multi-page
wizard dialog opens. On the first page we must select the model comparison direction. The
arrow has to point at the edited model version(fig. 22).

Figure 22: Choose model comparison direction

On the second page (fig. 23) the matching identified by SiLift is presented. The upper table
shows the corresponding tables from model A and model B. Unmatched tables which have
no correspondence must either have been added to model B (marked in green) or removed
from model A (marked in red). The tables at the bottom show the corresponding column. If
a column was moved or renamed, the column is marked blue. For example, the foreign key
STREET_DB_ID was moved to the table property_street. If an identified correspondence is
not correct, we can delete or add correspondences.

A file name for the symmetric difference model must be specified on the last page of the
dialog (fig. 24). Furthermore, we can create a so-called migration model. The migration
model will be required later in the process. For this reason, it makes sense to create it directly.
The migration model will be stored at the same location as the symmetric difference model.

17

3 EvolveDB

Figure 23: Choose model comparison direction

Figure 24: Choose file location

18

3 EvolveDB

The symmetric difference model contains the matching, the atomic changes and the result-
ing semantic change sets. Figure 25 shows the symmetric difference model for our example
opened in the symmetric difference model editor. All atomic changes are displayed when
we expand one of the semantic change sets. In our example (fig. 25) the complex oper-
ator CHANGE_1N_INTO_NM, representing the multiplicity change, consists of 21 atomic
changes.

Figure 25: Lifted difference between traffic.mdde and traffic2.mdde

If we recall the changes we did previously, the semantic change sets can be assigned to the
editing operations as follows:

• SET_ATTRIBUTE_Column_Size_and_Type: Reduce the column size of NAME in
table street from 255 to 40.

• CREATE_Column_IN_Table_(columns): Create the new column LONGITUDE: in
table crossroad.

19

3 EvolveDB

• CREATE_Column_IN_Table_(columns) Create the new column LATITUDE in table
crossroad.

• CHANGE_1N_INTO_NM: Change the single-valued association between property
and street into a multi-valued association. (Add a new cross-reference table.) This this
operator includes both the creation of the new table and the deletion of the old foreign
key.

• SET_ATTRIBUTE_Column_Type: Change the column type ofDATECREATED from
TIMESTAMP to DATETIME.

• SET_ATTRIBUTE_Column_DefaultValue: Change the default value for column
LANES.

All currently supported operators are listed in table 1.

Name Classification

Rename Element VALUE CHANGE
Make ForeignKey a PrimaryForeignKey VALUE CHANGE
Set foreign key on update constraint VALUE CHANGE
Set foreign key on delete constraint VALUE CHANGE
Set foreign key constraint name VALUE CHANGE
Make column unique VALUE CHANGE
Set column unique constraint name VALUE CHANGE
Set column type VALUE CHANGE
Set column size VALUE CHANGE
Set column not null VALUE CHANGE
Set column default value VALUE CHANGE
Set column auto-increment attribute VALUE CHANGE
Drop primary key REDUCE
Drop table REDUCE
Drop foreign key REDUCE
Drop column REDUCE
Create primary key INCREASE
Create foreign key INCREASE
Create table INCREASE
Create column INCREASE
Create many-to-many table STRUCTURAL CHANGE
Move column STRUCTURAL CHANGE
Dissolve many-to-many table STRUCTURAL CHANGE
Join table STRUCTURAL CHANGE

Table 1: Supported edit operations

20

3 EvolveDB

3.4 Forward Engineering

In the next step, we will transform the edit operations into a SQL migration script. An editing
operation can be non-breaking, breaking & resolvable, or breaking & unresolvable.

• non-breaking: Non-breaking changes can be resolved automatically. Most additions
belong to this group.

• breaking and resolvable: Breaking and resolvable changes break the conformance of
existing data, although they can be automatically adapted.

• breaking and unresolvable: Breaking and unresolvable changes break the conformity
of existing data which cannot be automatically adjusted and require user intervention.
These migrations often require the user to specify how the data migration should be
performed. For example, if the column size is reduced, it is necessary to specify how to
deal with too large elements.

Changes in the first category are not relevant for the migration problem because data migra-
tion is not necessary. Changes placed into the second category can be resolved without user
intervention but require data migration. The third category of changes requires user attention.
The user has to provide additional information necessary to migrate the affected data.

3.4.1 Migration Model

The symmetric difference model we created in the previous section is only used to represent
the difference between the two model versions. The difference model is unsuitable for adding
the additional information required for the migration. For this reason, we convert the differ-
ence.symmetric model into a migration model (If this has not yet been done in the previous
step). Therefore, we select the model in the Project or Package Explorer and open the menu
with a right-click. Then we choose EvolveDB ⇒ Create Migration Model... (Abb. 26)
The migration model is stored in the same folder as the difference model. If the model is not
visible immediately, the project or the folder must be refreshed once.

21

3 EvolveDB

Figure 26: Create migration model

Figure 27: Migration model editor

The new model should be opened automatically in the Migration Editor. This editor also

22

3 EvolveDB

consists of two areas. On the left side, a tree-based navigation area can be used to navigate
through the model. On the right side, the currently selected element is displayed. The mi-
gration model references all models created so far, so four models are listed in the navigation
view. These four models are the two versions of the traffic model, the difference model, and
the migration model (fig. 27).

During the model transformation, the operators were classified according to the classifi-
cation from the previous section. Operators marked as Resolvable belong to the group of
non-breaking operators. These operators do not affect already existing data. For example, the
CREATE_COLUMN operator belongs to this group. Operators marked as Partially Resolvable
belong to the group of breaking and resolvable Operators. Operators of the group breaking
and unresolvable are prefixed with Not automatically resolvable.

Figure 28: Resolvable operator Create Column

If we select one of the operators, the description opens in the right area of the editor(fig.
28). Every operator should be reviewed by the developer. This precaution may be necessary
as not all change operations are covered yet. Therefore, every operator has a so-called process
status. We can change the status by selecting a value from the drop-down menu below the
operator’s description. The three possible values are:

• UNRESOLVED: Unresolved is the default value. After creating the migration model,
all operators are initially assigned this value. This status means that the operator has not
been checked and confirmed by the user yet.

• RESOLVED: This status means that the operator has been checked by the user and
should be taken into account when subsequently generating the migration scripts.

• IGNORE: If an operator is incorrect, it is not necessary to repeat the comparison or the
creation of the migration model. Instead, the status can be set to ignore. Operators with
this status will not be considered afterwards.

23

3 EvolveDB

All operators with the status UNRESOLVED, are marked with a warning in the tree-based
editor. As soon as we choose another status, a green checkmark appears instead of the warning
(fig. 29).

Figure 29: Operator was marked as resolved

3.4.2 Breaking & Resolvable

Figure 30: Partially Resolvable Operator

All operators requiring data migration usually belong to the group Breaking & Resolvable.
For these operators, it is necessary to specify how and whether EcolveDB should migrate the

24

3 EvolveDB

data. For this purpose, EvolveDB provides different migration strategies. These strategies
depend on the change operator. To make this more precise, we will look at three examples
below.

CHANGE_1N_INTO_NM: Changing the multiplicity between property and street re-
quires several operations (fig. 31). First, we must create a new table with the two foreign
keys. Second, existing data should be transferred to the new table. Finally, we can delete the
old foreign key. EvolveDB allows us to choose between two different migration strategies.
We can choose a migration strategy by selecting a value from the dropdown box (fig. 31). In
this case, the possibilities are simple because we only have two options. If Migrate Data is
selected, the data will be transferred to the new table. Otherwise, the data will not be migrated
and could be lost.

Figure 31: Migration strategy

SET_COLUMN_SIZE: In this example, we reduced the size of VARCHAR column from
255 to 40 (fig. 32). If the column contains values longer than the new size, the migration will
abort with an error. The following enumeration lists all possible migration strategies:

• No violating data: no values invalidate the new constraint.

• If the column has a default value and has no unique constraint:

1. Set column to default value: all values are set to the default value.

2. Set violating rows to the default value: all values longer than 40 are set to the
default value.

• If the column is nullable:

1. Set column to null: all values are set to null.

25

3 EvolveDB

Figure 32: Migration strategy

2. Set violating rows to null: all values longer than 40 are set to null.

SET_COLUMN_TYPE: In the third example, we consider the type change. Type changes
also belong to the second group (Breaking & Resolvable) because existing data could be in-
compatible with the target type. EvolveDB automatically checks if the old and the new types
are compatible. Depending on the result, different migration strategies are offered. In our
example shown (fig. 33), we changed the column type from TIMESTAMP to DATETIME.
Because both data types are compatible, we do not need to choose a migration strategy in this
case.

3.4.3 Not Automatically Resolvable

-TBD-

26

3 EvolveDB

Figure 33: Migration strategy

3.5 Generate Migration Scripts

After choosing a migration strategy and setting the process status, we continue generating the
migration script. Select the migration model in Package Explorer and open the context menu
with a right-click. Choose MDSE ⇒ Generate SQL Migrations (fig. 34). We can also start
the generation via the toolbar in the Migration Editor.

A wizard dialog opens. We have to choose the generator on the first page of the dialog.
Since the SQL commands can differ slightly depending on the underlying database or the
database version, EvolveDB offers an extension point for generators. In the default installa-
tion, only the MySQL-compatible generator is included (fig. 35).

On the second page of the dialog, we must select the location for the SQL script (fig. 36).
Currently, we can only select a project in the workspace as the storage location. With Finish
the generation process starts. If the file is not visible immediately afterwards, the project must
be refreshed.

27

3 EvolveDB

Figure 34: Create SQL migration script

Figure 36: Choose file location

28

4 Migration Scripts

Figure 35: Select generator

4 Migration Scripts
In this chapter we will have a look at the generated migration script. Listing 1 shows the
generated script when we use the model from our running example (fig. 27).

1USE marburg_2020_models3;
2START TRANSACTION;
3
4-- Creates an history table for deleted and updated values
5CREATE TABLE IF NOT EXISTS ‘marburg_2020_models3 ‘.‘

mdde_history ‘ (
6‘DB_ID ‘ BIGINT NOT NULL AUTO_INCREMENT ,
7‘TABLENAME ‘ VARCHAR (255) NOT NULL ,
8‘COLUMN_DB_ID ‘ BIGINT NOT NULL ,
9‘COLUMN_NAME ‘ VARCHAR (255) NOT NULL ,
10‘VALUE ‘ BLOB NULL ,
11‘CHANGEDATE ‘ DATETIME NOT NULL ,
12PRIMARY KEY (‘DB_ID ‘));
13
14-- Add the new column LONGITUDE in Table crossroad
15ALTER TABLE ‘crossroad ‘
16ADD COLUMN ‘LONGITUDE ‘ BIGINT;

29

4 Migration Scripts

17
18-- Change default value of lanes
19ALTER TABLE ‘crossroad ‘ CHANGE COLUMN ‘LANES ‘ ‘LANES ‘ BIGINT

NULL DEFAULT 1 ;
20
21-- Add the new column LATITUDE in Table crossroad
22ALTER TABLE ‘crossroad ‘
23ADD COLUMN ‘LATITUDE ‘ BIGINT;
24
25-- Change column type of datecreated
26ALTER TABLE ‘street ‘ CHANGE COLUMN ‘DATECREATED ‘ ‘

DATECREATED ‘ DATETIME (0) NULL ;
27
28-- Create Table property_street
29CREATE TABLE IF NOT EXISTS property_street (
30‘STREET_DB_ID ‘ BIGINT NOT NULL ,
31‘PROPERTY_DB_ID ‘ BIGINT NOT NULL
32,PRIMARY KEY(‘STREET_DB_ID ‘ ,‘PROPERTY_DB_ID ‘),
33CONSTRAINT ‘property_crossroad_ibfk2 ‘
34FOREIGN KEY (‘STREET_DB_ID ‘)
35REFERENCES ‘street ‘(‘DB_ID ‘)
36ON DELETE RESTRICT
37ON UPDATE RESTRICT ,
38CONSTRAINT ‘property_crossroad_ibfk3 ‘
39FOREIGN KEY (‘PROPERTY_DB_ID ‘)
40REFERENCES ‘property ‘(‘DB_ID ‘)
41ON DELETE RESTRICT
42ON UPDATE RESTRICT
43);
44
45BEGIN;
46SET @safe_mode = @@SQL_SAFE_UPDATES;
47SET SQL_SAFE_UPDATES = 0;
48
49-- Migrate data to the new table
50INSERT INTO ‘property_street ‘ (PROPERTY_DB_ID , STREET_DB_ID

)
51SELECT DB_ID , STREET_DB_ID FROM property WHERE STREET_DB_ID

IS NOT NULL;
52
53SET SQL_SAFE_UPDATES = @safe_mode;
54COMMIT;
55-- If executing the script fails , we suggest a rollback.
56

30

4 Migration Scripts

57-- Drop foreign key in property
58ALTER TABLE ‘property ‘ DROP FOREIGN KEY ‘ibfk_street ‘;
59ALTER TABLE ‘property ‘ DROP COLUMN ‘STREET_DB_ID ‘;
60
61-- Find violating rows
62SET @sql_mode = @@SESSION.sql_mode;
63set @@SESSION.sql_mode = ’’;
64DROP TEMPORARY TABLE IF EXISTS my_temp_id_table;
65CREATE TEMPORARY TABLE my_temp_id_table
66SELECT DB_ID from street v where LENGTH(‘NAME ‘) > 40;
67set @@SESSION.sql_mode = @sql_mode;
68
69BEGIN;
70SET @safe_mode = @@SQL_SAFE_UPDATES;
71SET SQL_SAFE_UPDATES = 0;
72
73-- Insert violating values into the history table
74INSERT INTO ‘marburg_2020_models3 ‘.‘mdde_history ‘
75(‘TABLENAME ‘,
76‘COLUMN_DB_ID ‘,
77‘COLUMN_NAME ‘,
78‘VALUE ‘,
79‘CHANGEDATE ‘)
80SELECT ’street ’, DB_ID , ’NAME’, NAME , now() from street s

where LENGTH(‘NAME ‘) > 40;
81
82-- Set violating rows to the default value
83UPDATE ‘street ‘ SET ‘NAME ‘ = ’unnamed␣road’ where DB_ID in (

Select DB_ID from my_temp_id_table);
84
85SET SQL_SAFE_UPDATES = @safe_mode;
86COMMIT;
87-- If executing the script fails , we suggest a rollback.
88
89DROP TEMPORARY TABLE IF EXISTS my_temp_id_table;
90
91-- Change column size of name
92ALTER TABLE ‘street ‘ CHANGE COLUMN ‘NAME ‘ ‘NAME ‘ VARCHAR (40)

NULL DEFAULT ’unnamed␣road’;
93COMMIT;
94-- If executing the script fails , we suggest a rollback.

Listing 1: Generated SQL code

If we apply the script to the original schema in figure 3, we obtain the migrated schema

31

4 Migration Scripts

shown in figure 37. The new columns LATITUDE and LONGITUDE have been added. The
original foreign key relationship between the property and street tables was moved to the new
cross-reference table property_street. Furthermore, the type of the DATECREATED column
was changed to datetime and the size of the NAME column was reduced to 40.

Figure 37: Das migrierte Datenbankschema

32

4 Migration Scripts

Figure 38: Migrationsstrategie mit History Tabelle

4.1 History Table

As mentioned earlier, EvolveDB provides default migration options. For example, we mi-
grated the data from the old foreign key into the new table. In our running example, we
also considered a case 3.4.2 where we had to select a migration strategy. To avoid data loss,
EvolveDB creates a history table. Any values that are overwritten by one of the migration op-
tions are inserted into the history table. In our example, we chose the option to set all violating
values to the default value ’unnamed road’ (fig. 38).

1
2-- Creates an history table for deleted and updated values
3CREATE TABLE IF NOT EXISTS ‘marburg_2020_models3 ‘.‘

mdde_history ‘ (
4‘DB_ID ‘ BIGINT NOT NULL AUTO_INCREMENT ,
5‘TABLENAME ‘ VARCHAR (255) NOT NULL ,
6‘COLUMN_DB_ID ‘ BIGINT NOT NULL ,
7‘COLUMN_NAME ‘ VARCHAR (255) NOT NULL ,
8‘VALUE ‘ BLOB NULL ,
9‘CHANGEDATE ‘ DATETIME NOT NULL ,
10PRIMARY KEY (‘DB_ID ‘));
11
12-- Create temporary table
13SET @sql_mode = @@SESSION.sql_mode;

33

4 Migration Scripts

14set @@SESSION.sql_mode = ’’;
15DROP TEMPORARY TABLE IF EXISTS my_temp_id_table;
16CREATE TEMPORARY TABLE my_temp_id_table
17SELECT DB_ID from street v where LENGTH(‘NAME ‘) > 40;
18set @@SESSION.sql_mode = @sql_mode;
19
20-- Find violating rows
21BEGIN;
22SET @safe_mode = @@SQL_SAFE_UPDATES;
23SET SQL_SAFE_UPDATES = 0;
24INSERT INTO ‘marburg_2020_models3 ‘.‘mdde_history ‘
25(‘TABLENAME ‘,
26‘COLUMN_DB_ID ‘,
27‘COLUMN_NAME ‘,
28‘VALUE ‘,
29‘CHANGEDATE ‘)
30SELECT ’street ’, DB_ID , ’NAME’, NAME , now() from street s

where LENGTH(‘NAME ‘) > 40;
31
32-- Set violating rows to the default value
33UPDATE ‘street ‘ SET ‘NAME ‘ = ’unnamed␣road’ where DB_ID in (

Select DB_ID from my_temp_id_table);
34SET SQL_SAFE_UPDATES = @safe_mode;
35COMMIT;
36
37-- If executing the script fails , we suggest a rollback.
38DROP TEMPORARY TABLE IF EXISTS my_temp_id_table;
39
40-- Change column type and size of name
41ALTER TABLE ‘street ‘ CHANGE COLUMN ‘NAME ‘ ‘NAME ‘ VARCHAR (40)

NULL DEFAULT ’unnamed␣road’;
Listing 2: Generated SQL code

The history table (see Fig. 39) is created between line three and line twelve. Subsequently,
all columns whose contents are longer than 40 are transferred to the history table. Table 2
shows the history table after we performed the migration. One value was longer than 40 and
was replaced by the default value unnamed road. Table 3 shows the content of table street
after migration.

34

4 Migration Scripts

Figure 39: History table

DB_ID TABLENAME COL..._ID COL..._NAME VALUE CHANGEDATE

1 street 2 NAME BLOB 2022-05-20 15:41:57

Table 2: History table after executing the migration script.

DB_ID DATECREATED NAME END_DB_ID START_DB_ID LANES

1 1976-05-20 15:41:57 Bahnhofstrasse 2 1 2

2 2019-08-12 13:25:57 unnamed road 2 3 3

3 1999-10-02 17:05:41 Seltersweg 3 1 1

Table 3: Street table after executing the migration script.

35

	Introduction
	Prerequisites and Installation
	EvolveDB
	Reverse Engineering
	Restructuring
	Change Column Type
	Add New Columns
	Change Default Values
	Reduce Column Size
	Change the Multiplicity of an Association

	Model Comparison
	SiLift
	Model Compoarison with EvolveDB

	Forward Engineering
	Migration Model
	Breaking & Resolvable
	Not Automatically Resolvable

	Generate Migration Scripts

	Migration Scripts
	History Table

