
EvolveDB - Documentation for Developer

Author: Torben Eckwert, M.Sc.
E-Mail: torben.eckwert@zdh.thm.de

Subject Area: Computer Science

Supervisors:
Prof. Dr. rer. nat. Michael Guckert
Prof. Dr. ing. Gabriele Taentzer

December 8, 2022 , Wetzlar

Contents
1 Introduction 1

2 Prerequisites and Installation 1

3 EvolveDB 3
3.1 Create a new datasource . 4
3.2 Create a new migration script generator . 11

4 Metamodel 18
4.1 MDDE metamodel . 18
4.2 Migration metamodel . 19

2

1 Introduction

1 Introduction
EvolveDB is an Eclipse-based framework for schema evolution in relational databases. The
user specifies the evolution steps by freely editing a database model extracted by reverse en-
gineering. EvolveDB analyzes the differences between the status quo and the evolved model
structures and generates a data migration script. This user manual includes installation in-
structions and introductory tutorials on how to use EvolveDB as an end user.

2 Prerequisites and Installation
EvolveDB is a plug-in for recent versions of the Eclipse Modeling Tools (last tested version:
2022-06). EvolveDB is open source and licensed with the Apache license 2.0. The source
code is available via our GitHub repository.

Before downloading the source code of EvolveDB, we need to install some additional Eclipse
plugins. The following list contains the mandatory plugins.

• Eclipse OCL is available via the eclipse marketplace.

• The Henshin project provides a state-of-the-art model transformation language for the
Eclipse Modeling Framework.

• ATL 3.5 (ATL Transformation Language) is a model transformation language and toolkit.

• ATL/EMFTVM 4.2.1 The EMF Transformation Virtual Machine (EMFTVM) is a run-
time engine for the ATL Transformation Language (ATL).

• Xtend is a statically-typed programming languages for Java developers.

SiLift is a generic model comparison environment for EMF-based models. The SiLift up-
date site is no longer available, but SiLift is included in the release version of EvolveDB. Help
⇒ Install New Software... (fig. 1).

1

https://www.eclipse.org/downloads/packages/release/2022-06/r/eclipse-modeling-tools
https://github.com/tekw24/evolveDB
https://marketplace.eclipse.org/content/eclipse-ocl
https://download.eclipse.org/modeling/emft/henshin/updates/1.8.0-legacyjdk/
https://marketplace.eclipse.org/content/atl
https://marketplace.eclipse.org/content/atlemftvm
https://marketplace.eclipse.org/content/eclipse-xtend
https://pi.informatik.uni-siegen.de/Projekte/SiLift/download.php

2 Prerequisites and Installation

Figure 1: Eclipse: Install New Software...

The repository contains multiple categories (fig. 2). For installing SiLift, select SiLift and
SiLift Matcher.

2

3 EvolveDB

Figure 2: Eclipse: EvolveDB local repository

If all requirements are fulfilled, the source code of EvolveDB can be cloned and imported.

3 EvolveDB
The schema evolution with EvolveDB is a model-driven reengineering process that includes
three phases, reverse engineering, restructuring, and forward engineering. In the first step,
we start by creating a representation of a database schema through reverse engineering. In
the restructuring phase, we edit this model resulting in a second model version. Afterwards,
EvolveDB analyzes the differences between the status quo and the evolved model structures.
From the delta between the two model versions, SQL migration scripts are generated, which
can be used to migrate the schema and the associated data. EvolveDB includes a data source
and a migration script generator which supports MySQL databases. If other data sources or
generators should be used, EvolveDB provides two extension points. By contributing to these
extension points, custom data sources or generators can be integrated.

3

3 EvolveDB

3.1 Create a new datasource

As already mentioned, custom drivers can be integrated into EvolveDB. To do this, create a
plug-in via File ⇒ New ⇒ Other ⇒ Plug-in Development ⇒ Plug-in Project and open
the MANIFEST.MF file. Switch to the tab Dependencies and add the dependencies marked in
Figure 4.

Figure 3: Eclipse: Create New Plug-in Project

4

3 EvolveDB

Figure 4: Plug-in Project Manifest.mf

Next we have to create a class that implements the EDBDataSource (fig. 5) interface. Figure
6 shows the class TestDatasource that implements the interface.

5

3 EvolveDB

Figure 5: EDBDataSource Interface

6

3 EvolveDB

Figure 6: Class TestDatasource

Next we have to add the new class as an extension for EvolveDB. Switch back to the
MANIFEST.MF and open the Extension tab. Click on add and select the extension point
de.thm.mdde.datasource. (fig. 7)

7

3 EvolveDB

Figure 7: de.thm.mdde.datasource extension point

Select the plugin.xml and add the path to the class we created. Figure 8 shows the edited
plugin.xml.

Figure 8: Plugin.xml

Finally, we have to deploy the new driver. Select the project in the package or file explorer
and open the context menu with a right-click. In the context menu we choose export (9).

8

3 EvolveDB

Figure 9: Export a plugin

A dialog opens. In the dialog, we select Plug-in Development ⇒ Deployable plug-ins
and fragements and click next (fig. 10).

9

3 EvolveDB

Figure 10: Export Wizard: page 1

Next, select install into host.Repository and specify the path to the plug-in folder of your
Eclipse installation (fig. 11). Click Finish and restart your Eclipse after successful installation.
The new data source can now be used.

Figure 11: Export wizard: page 2

10

3 EvolveDB

3.2 Create a new migration script generator

The default installation EvolveDB includes a migration script generator for MySQL version
5.7 or higher. It is also possible to add custom generators via an extension point. To do this,
create a plug-in via File ⇒ New ⇒ Other ⇒ Plug-in Development ⇒ Plug-in Project
and open the MANIFEST.MF file. Switch to the tab Dependencies and add the dependencies
marked in Figure 13.

Figure 12: Eclipse: Create New Plug-in Project

11

3 EvolveDB

Figure 13: Plug-in Project Manifest.mf

Next, we have to create a class that implements the ISQLGenerator (fig. 14) interface.
Figure 15 shows the class TestGenerator that implements the interface.

12

3 EvolveDB

Figure 14: ISQLGenerator Interface

Figure 15: Class TestGenerator

Next, we have to add the new class as an extension for EvolveDB. Switch back to the
MANIFEST.MF and open the Extension tab. Click on add and select the extension point
de.thm.mdde.extensionpoint.SQLGenerator. (fig. 16)

13

3 EvolveDB

Figure 16: de.thm.mdde.extensionpoint.SQLGenerator extension point

Figure 17: de.thm.mdde.extensionpoint.SQLGenerator extension point

Select the plugin.xml and add the path to the class we created. Figure 18 shows the edited
plugin.xml.

14

3 EvolveDB

Figure 18: Plugin.xml

Finally, we have to deploy the new driver. Select the project in the package or file explorer
and open the context menu with a right-click. In the context menu, we choose export (19).

15

3 EvolveDB

Figure 19: Export a plugin

A dialog opens. In the dialog, we select Plug-in Development ⇒ Deployable plug-ins
and fragements and click next (fig. 20).

16

3 EvolveDB

Figure 20: Export Wizard: page 1

Next, select install into host.Repository and specify the path to the plug-in folder of your
Eclipse installation (fig. 21). Click Finish and restart your Eclipse after successful installation.
The new migration script generator can now be used.

Figure 21: Export wizard: page 2

17

4 Metamodel

4 Metamodel
EvolveDB uses EMF for the database (MDDE model) and the migration metamodel. This
section gives a short overview of both metamodels.

4.1 MDDE metamodel

Figure 22: MDDE metamodel

The abstract syntax of the MDDE metamodel (fig. 22) is similar to the relational model. When
creating a new data source, the method getRootObject() from the EDBDataSource interface
has to return the root object from an instance of this metamodel. Typically, the root EObject
is an instance of class Database_Schema.

18

4 Metamodel

4.2 Migration metamodel

Figure 23: Migration metamodel

The symmetric difference model created by SiLift during the model matching phase is only
used to represent the difference between the two model versions. The difference model is
unsuitable for adding the additional information required for the migration. For this reason,
we convert the difference.symmetric model into a migration model. Figure 23 shows the meta-
model for the migration model. The migration model references the symmetric difference
model and both mdde models.

19

	Introduction
	Prerequisites and Installation
	EvolveDB
	Create a new datasource
	Create a new migration script generator

	Metamodel
	MDDE metamodel
	Migration metamodel

