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Robust knowledge of the underlying factors involved in run-off-road (ROR) crash
occurrences and resulting injuries is a prerequisite for the development of sound methods to
support roadside cost-efficient design and redesign and related asset management/road
operations decisions. Over recent years, the understanding of ROR crashes on Portuguese
roads has significantly increased due to roadside safety research carried out by the
Laboratério Nacional de Engenharia Civil, emphasizing the importance of this type of crash
in the overall interurban safety picture.

In this paper investigations of ROR crash injury severity on Portuguese freeways
are reported, exploring the application of a partial proportional odds (PPO) model to study
the contributors influencing ROR crash severities. The PPO model allows the covariates that
do not meet the proportional odds assumption to have diverse effects at different severity
levels.

This study is based on a detailed data set of ROR crashes that occurred on
Portuguese freeways during the years 2009 and 2010.

Several variables in seasonal attributes, roadway and roadside attributes, crash
characteristics and driver information were tested. Specifically, the use of the partial
proportional formulation allows a superior identification of the varying effect of several
variables on ROR crash injury severity. Furthermore it includes the effect of traversing
ditches, which previously was masked when fitting the unordered framework models.

A comparison between the application of PPO models and mixed logit models for
ROR crash severity evaluation is also included here. The study shows that the PPO model is
a viable method for analyzing ROR crash severities.

INTRODUCTION

Robust knowledge of the underlying factors involved in run-off-road (ROR) crash occurrences
and resulting injuries is a prerequisite for the development of sound methods to support roadside
cost-efficient design and redesign and related asset management/road operations decisions. In
Portugal, single-vehicle run-oftf-road (ROR) crashes result in ten thousand crashes with roadside
features every year and account for approximately half of all freeway fatalities. Portuguese crash
data (2007-2010) indicate that roadside geometry — including slopes, embankments, and ditches
— contributes to more than half of all ROR accidents involving serious injury or death (/).

Over recent years, the understanding of ROR crashes on Portuguese roads has
significantly increased due to roadside safety research carried out by the Laboratorio Nacional
de Engenharia Civil, emphasizing the importance of this type of crash in the overall interurban
safety picture. This allowed the development of a computer-aided procedure for supporting cost-
effective decisions with regard to roadside safety alternative interventions. As already described
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in previous research by the authors, the procedure is based on cost-benefit analysis and makes
extensive use of dedicated ROR crash prediction models (2, 3).

Currently, one limitation of this procedure is the non-consideration of the probability of
different severity level outcomes conditioned on crash occurrence. This may impact crash cost
estimations used when choosing amongst relevant alternatives. Hence, research towards the
improvement of methods for considering crash severity has been carried out, attempting to
integrate crash severity models in the said procedure in order to estimate the expected number of
injuries at different severity levels and thus improve the estimation of ROR crash costs.

When studying crash severity injury outcomes, the most common study approaches may
be grouped into unordered framework models and ordered framework models. The former
includes, for example, the multinomial and mixed logit models already mentioned. Multinomial
logit models are traditional discrete outcome models that consider three or more outcomes and
do not explicitly consider the ordering that may be present in these outcomes. Mixed logit
models are a more recent development for the analysis of discrete data that addresses the
limitations of the multinomial logit (susceptibility to correlation of unobserved effects from one
injury-severity level to the next) by allowing for heterogeneous effects and correlation in
unobserved factors (4, 5).

The latter framework includes ordered probit or logit models, among others. In these
models, the discrete injury severity levels are assumed to be associated with an underlying
continuous latent variable (z) that is used as a basis for modeling the ordinal ranking of data.
This unobserved variable is typically specified as a linear function for each crash observation,
such that z=BX + ¢, where X is a vector of variables determining the discrete ordering for each
crash observation, B is a vector of unknown parameters to be estimated, and ¢ is a random
disturbance term (4, 5). In this framework, crash injury severity outcomes are reported as an
ordinal scale variable (such as no injury, minor injury, severe injury, and fatal injury). The
ordered framework models explicitly recognize the inherent ordering within the outcome
variable (as the severities become increasingly severe from no injury, to minor injury, to severe
injury, to fatality) whilst in the non-ordered analyses it is completely ignored.

In a previous study, multinomial and mixed logit models were developed to explain ROR
crash severity and detect unforgiving roadside contributors (6). The empirical findings showed
the contribution of critical slopes and vehicle rollover towards increased probability of fatal
injuries and highlighted the importance of introducing the “forgiving roadside” concept in
Portuguese road design standards, namely to mitigate ROR crash severity on Portuguese
freeways.

This study considers the ordered nature of crash injury severity. Thus, ordered framework
models were used to examine the effect of various contributing factors to driver injury severity
levels in ROR crashes on Portuguese freeways. These models represent the outcome process
under consideration using a single latent propensity. Thus, the outcome probabilities are
determined by partitioning the uni-dimensional propensity into as many categories as the
outcome variable alternatives through a set of thresholds (7). However, it is important to keep in
mind that these models are intrinsically case specific because they are limited to and constrained
by the available data, which may be improved over time.

The main focus of this study is to investigate ROR crash injury severity, to study the
contributors influencing ROR crash severities on freeways.

Accordingly, the modeling approach is mainly explanatory (based on past observations)
rather than predictive (predicting new values for the future). Furthermore, a partial proportional
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odds (PPO) models is used, a statistical technique not yet found in reported ROR crash research.
In the literature several unordered framework models were found: the multinomial and mixed
logit models (6, 8, 9, 10, 11), the nested logit models (//, 12, 13) and the latent class logit model
(14). In addition, only two ordered framework models were found: ordered probit models, by
Renski et al. (/5) and Kockelman and Kweon (/6).

The PPO model allows the covariates that meet the proportional odds assumption to
affect different crash severity levels with the same magnitude. At the same time, the covariates
that do not meet the proportional odds assumption can have diverse effects at different severity
levels (/7). Thus, this model ensures minimal complexity of the analysis framework while
allowing some flexibility from the multinomial and mixed logit models.

A comparison between the application of PPO models and mixed logit models for ROR
crash severity evaluation is also included here. In the final section, measures to be taken into
consideration in supporting decisions on roadside safety design in Portugal are discussed based
on the empirical findings.

METHODOLOGY

Crash severity models focus on the estimation of the probability of a crash resulting in one or
more fatalities, severe injuries, minor injuries or property damage only (PDO) given the
occurrence of the crash. Savolainen et al. (4) and Mannering and Bath (/8) extensively reviewed
the numerous methodological techniques applied in studying crash severity data. The most
common options found in the literature when studying crash severity injuries can be grouped into
unordered framework models (like multinomial logit (MNL), nested logit, probit and mixed logit
models) and ordered framework models (including ordered probit or logit models, generalized
ordered models and PPO models). In this paper, by focusing the attention on ordered models, the
ordered nature of crash injury severity is favored, a characteristic that cannot be ignored
completely.

Occasionally, it is more realistic to assume that the explanatory variables may vary across
crashes; therefore, some researchers have used fixed parameters models (like Kockelman and
Kweon (76)) others have used random parameters or mixed effects models (e.g. Roque et al. (6)
and Wu et al. (/7). Random parameters models have the advantage of allowing the explanatory
variables to take into account the individual differences among injury severity levels in different
crashes.

In this study, two models were estimated. A PPO model was estimated using R (version
3.2.5) (19). “VGAM” (20) R package was used. The freeware BIOGEME software (2/) was
used for mixed logit model estimation.

Partial Proportional Odds Model

To Savolainen et al. (4) crash severity is ordinal in nature and recognizing this feature it is
important to select the appropriate analysis tool, justifying the use of ordered framework models.
In this study, driver injury severity is categorized into three levels of increasing severity and
coded as: 1 = no injury, 2 = minor injury, 3 = severe or fatal injury.

On the one hand, traditional ordered logit models require data that adhere to the
proportional odds assumption between different severity levels, i.e., the effect of an explanatory
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variable will be uniform for all levels of the outcome variable (e.g., the deployment of an airbag
may decrease the probability of a fatality and also increase the probability of no injury, or vice
versa) (23) Imposing such restriction can lead to inconsistent parameter estimation (7).On the
other hand, while mixed logit models completely ignore the sequential order of injury severity
levels (in this case the deployment of an airbag may, e.g., decrease the probability of a fatality or
increase the probability of no injury). In fact, in crash severity analysis, it is not logical to assume
that the proportional odds assumption will be satisfied by all explanatory variables (in reality the
deployment of an airbag may decrease the probability of both fatality and no injury (because the
airbag itself may cause some minor injuries) nor to ignore the ordered nature of crash injury
severity. The PPO model allows certain individual explanatory variables to affect each level of
the response variable differently, while other independent predictors may adhere to the
proportional odds assumption, if they are found not to violate this assumption based on relevant
statistical tests (e.g., Wald test) (24, 25).

If j denotes the crash severity level (1 to 3) and J represents the number of severity levels
(here J = 3), then the form of the PPO model is as follows (26):

exp[aj + (X;p + Tiy)] _
1+ exp[aj + (X + Tl-y)] &

Pr(Y; > j) = 1,2,..,]—1 (1)

where Y; represents the observed severity for crash i; plus, y and £ are the vectors of parameter
estimations that do and do not violate the parallel line assumption, respectively. The
corresponding vectors of explanatory variables that do and do not violate this assumption are 7;
and X, respectively; and ¢; is the cutoff term for the thresholds in the model.

In order to determine which predictor variables will belong to the subset ¢ that rejects the
proportional odds assumption, each variable was analyzed individually using a Wald test of
proportional odds. This test takes the multinomial response variable and dichotomizes it based on
cumulative probability, using P(Y; > ) and P(Y; <j) for each crash severity level j. This method
determines whether the effect of a variable will remain the same across all “cuts” of j (/7).

Special care must be exercised when interpreting the coefficients of intermediate
categories in PPO models. The sign of f does not always determine the direction of the effect of
the intermediate outcomes. Thus, marginal effects were used in this study for interpretation of
the variables (27). The marginal effects estimated for an explanatory variable, measure how
changes in the explanatory variable affect the outcome variable.

Mixed Logit Model

According to Train (5), a mixed logit model is derived from the multinomial logit model by
allowing [3; to be random across i individuals in the severity function:

=B X+ with f~f(|6). @

where 3; is a vector of coefficients to be estimated for outcome j, Xj; is a vector of exogenous (or
explanatory) variables, § are the parameters of the distribution of §;; over the population, such as
the mean and variance of f; and ¢;; is the error term that is independent and identically
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distributed (iid extreme value property) and does not depend on underlying parameters or data
characteristics.

As mentioned, the mixed logit is a generalization of the multinomial structure that allows
the parameter vector /3 to vary across each driver or most severely injured occupant. The injury
outcome-specific constants and each element of £ may be either fixed or randomly distributed
over all parameters with fixed means, allowing for heterogeneity in effects. A mixing
distribution is introduced to the model formulation, resulting in injury severity probabilities as
follows (5):

B,

p=] 7f (Blo)dp (3)

X

where f(f ) is a density function of fand @is a vector of parameters which describe the density
function, with all other terms conforming to previous definitions (30). The injury severity
outcome probability is then simply a mixture of logits (5). The distribution is flexible in that £
can also be fixed, and when all parameters are fixed the model reduces to the standard MNL
formulation. In those instances, where fis allowed to vary, the model is in the open form, and
the probability of an observation having a particular outcome can be calculated through
integration (4).

In this particular case, the parameters vary across the roadway segment population
according to a normal distribution (less well-fitting distributions were considered but discarded,
such as the log-normal and uniform). Estimation can be done by solving the integral with Monte
Carlo simulation. Efficiency has been increased using simulation with Halton draws, an efficient
estimation technique for random parameters models (5, 22).

Goodness-of-Fit Statistics

The models’ performance was evaluated using several well-known statistics: Pseudo R’ measure
R’ =1—(In L/In Ly); the McFadden adjusted-R* =1 — [(In L-p) / In Ly); Akaike’s information
criterion AIC = -2 In L + 2p; and Bayesian Information Criterion BIC=—-2InL—-p. Inn.
Where In L and In L are the log likelihood of the fitted and intercept-only models; p is the
number of parameters used in each model; and # is the sample size.

Pseudo R’ coincides with an interpretation of linear model R* (29). The McFadden
adjusted-R” statistic was chosen to measure the explanatory power of the models fitted based on
the sample data (27). AIC and BIC are two measures to evaluate and compare the quality of the
models estimated.. AIC and BIC are estimated by considering simultaneously goodness of fit and
complexity of the model (25). BIC is more appropriate for measuring goodness-of-fit for
explanatory power; whilst AIC is more appropriate for measuring predictive accuracy (28) and
hence predictive power.

DATA

In this study police reported ROR crashes that occurred on Portuguese freeways during a two-
year period (2009 and 2010) are analyzed. Data were obtained from the national accident
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database maintained by the National Road Safety Authority (ANSR) which manages the
Portuguese road accidents database, a main source of evidence for this study. However,
information on roadside features is lacking in that database. It was thus necessary to collect
additional information from the original accident reports. This data was provided by the Guarda
Nacional Republicana (GNR), which is a police force responsible for maintaining security and
public order as well as protecting and defending the population and their property.

This dataset comprises 580 km of dual carriageway freeway segments situated in various
regions across Portugal (Figure 1). All segments have full access control, two lanes per
carriageway and paved shoulders (with widths of less than 2.5 m and 4.0 m for left and right
shoulders, respectively). Access to and from the freeway is only possible through interchange
ramps.

Only single-vehicle ROR crashes involving roadside features were used in this study.

Table 1 shows the variables that proved to be relevant for explaining crash severities and
their observed distributions across different severity levels. Information related to ROR crashes
including injury severity levels, seasonal attributes (winter, peak hour), roadside attributes
(obstacles, barrier, ditch), roadway attributes (right curve), accident information (persons
involved, right encroach, rollover, car, speed limit) and driver information (age, gender) was
included in the models. The total frequency of crashes in different categories and the proportions
of different injury severity levels for each category are also included in Table 1. In the case of
continuous variables, the mean and standard deviation parameters are included. ROR crashes
with missing information on the accident, driver or vehicle characteristics were removed before
the statistical analysis, which resulted in a total of 764 crashes selected, out of 840 registered
ROR crashes on dual carriageway roads. Correlation analyses were conducted for all
independent variables considered in the study as a first step to identify correlated variables.

Google earth

FIGURE 1 Google Street View still images of typical Portuguese freeway cross sections.
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TABLE 1 Descriptive Statistics of the Significant Variables in the Models

Total

Variable Description No. of IZ"D/o()) Mmo(l;/gl jury Se\;e:}e:l:}r’u(i;) ;1tal
Crashes
ROR crashes 764 16.4 76.7 6.9
Categorical variables
Seasonal attributes
Winter Winter (December, 225 19.6 74.7 5.8
January or February)
Peak hour Evening period (18.00 |33 12.1 72.7 15.2
to 20.00 pm)
Roadside attributes
Barrier Collision with metallic | 313 19.2 73.5 7.3
safety barrier as first
harmful event
Ditch Traversing/colliding 22 18.2 81.8 0.0
with ditch as first
harmful event
Roadway attributes
Right curve Horizontal curve to the | 94 10.6 85.1 43
right (vs. straight
segment or left curve)
Accident information
Right encroach | Leaving the road to the | 422 13.5 79.1 7.3
right side of the
carriageway (Vs.
leaving the road to the
left side of the
carriageway)
Rollover Rollover 280 10.4 79.3 104
Car Passenger car involved | 579 18.1 75.6 6.2
Driver information
Age Driver under 32 years | 288 16.3 79.9 3.8
old
Female Gender (female=1) 282 8.9 86.5 4.6
Continuous variables Mean |sd Min Max
Roadside attributes
Obstacles Number of obstacles 1.5 0.7 0 4
hit in a ROR crash
Roadway attributes
Speed limit Segment speed limit 119.8 2.3 90 120
Accident information
Persons Number of involved 1.6 0.9 1 7
involved persons
Speed limit Segment speed limit 119.8 2.3 90 120
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MODELING RESULTS

Partial proportional odds model

The first step in the development of the model was the examination of the parallel regression
assumption to determine if the PPO model is the appropriate ordered-response model to use. As
mentioned earlier, in this study, a Wald test was employed to examine if any variable violates the
parallel regression assumption. The results of the Wald test demonstrated that only one variable
(female) violated this assumption, hence justifying the development of the PPO model. PPO
models with both logit and probit functions were fitted with this variable changing across
equations while other variables were forced to have their effects meet the parallel-lines
assumption. The PPO model with a logit function performed better than that with a probit
function (AIC = 940.44 vs. 949.71; pseudo R* = 0.126 vs. 0.1171).

Only statistically significant explanatory variables were considered in the final
specification model. A minimum confidence level of 85% was considered as criterion.
Altogether, 13 parameters were calibrated, through which the potential effects of different factors
related to the categories listed above were identified. It is important to point out that most
parameters were statistically significant with p-value below 5% (i.e., confidence levels above
95%), with three exceptions where p-values ranged between 5% and 10% and one case where p-
values went up to 15%. As previously mentioned, the aim of this paper was to detect unforgiving
roadside contributors through a retrospective severity analysis of run-off-road crash data.
Therefore, the models are used for explanatory purposes (within the range of values observed,
only), where lower p-values are acceptable (27). The PPO model estimated for different crash
injury severity levels is given in Table 2. The estimated PPO model had one beta coefficient for
each variable, two gamma coefficients for the variable violating parallel-lines assumption, and
three alpha coefficients reflecting the cut-off points. Insignificant parameter estimates are not
included in Table 2.

Mixed Logit Model

The coefficients and standard errors for predictors in the mixed logit model developed for
different injury severity levels are shown in Table 3.

Minor injury was set as the baseline severity level for the mixed logit model; the
Alternative Specific Constant (ASC) was defined accordingly. To improve the numerical
stability, the number of Halton draws to evaluate the log-likelihood function was 1000.

Comparison of Models

The same dataset was used to fit the two models, which were PPO and mixed logit, to make a
comparison between their performances. The log-likelihood values at convergence, AIC and BIC
values were used to compare the performance of the two models used in this study. AIC and BIC
are both measures of unexplained variations in the data with a penalty for model complexity.
Therefore, models with lower values provide a relatively better fit (37). FIGURE 2 shows such
comparison based on the AIC and BIC values.
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TABLE 2 PPO model for ROR crash injury severities in Portuguese freeways

Variables ‘ Coefficient S.E. z

Beta
Winter -0.4803 0.1975 0.0150
Peak hour 0.7240 0.4557 0.1121
Obstacles 0.3300 0.1274 0.0096
Ditch -0.9270 0.5348 0.0830
Persons involved -0.8220 0.1072 <0.001
Right encroach 0.4175 0.1855 0.0244
Rollover 0.9298 0.1987 <0.001
Car -0.3612 0.2156 0.0938
Age -0.4628 0.1877 0.0137

Gamma 1
Female 1.1045 0.254 <0.001

Gamma 2
Female -0.5920 0.3394 0.0811

Alpha
Constant 1 2.3465 0.3456 <0.001
Constant 2 -1.9681 0.3513 <0.001

Summary statistics

Number of observations 764

Log likelihood at convergence -457.222

Adjusted-p’ 0.101

Pseudo R’ 0.126

AIC 940.443

Bayesian Information Criteria (BIC) 1000.745

Figure 2 shows that the PPO model has the lowest AIC and BIC values in this study,
compared to mixed logit. This shows that the PPO model performed slightly better than the
mixed logit model and it can be considered as a viable method in ROR crash injury severity
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modeling. Moreover, the results of the PPO model had plausible signs for all predictors, and the

overall model fit was better than that of the mixed logit model. The McFadden’s pseudo R-
square of 0.126 is good considering the large amount of variance in the injury severity data.

Based on the LL, AIC, and BIC, the PPO model provides a better fit than the mixed logit model

in analyzing ROR crash injury severity data.
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TABLE 3 Mixed Logit Model for ROR Crash Injury Severities in Portuguese Freeways

Severity level Variables Coefficient t-test p-value

PDO Constant 6.890 11.06 <0.001
Winter 0.502 1.85 0.06
Barrier 0.428 1.67 0.09
Right encroach -0.738 -2.84 <0.001
Car 0.683 2.04 0.04
Persons involved 1.010 7.06 <0.001

Std. dev. of parameter (Persons involved) 0.905 2.37 0.02
Female -0.884 -3.38 <0.001

Minor Night -0.504 -2.08 0.04

injury Right curve 0.646 1.66 0.10
Age -0.017 -2.08 0.04

Fatal and Constant 14.600 3.73 <0.001

severe Speed limit -0.079 -2.40 0.02

injury Rollover 0.646 1.59 0.11
Persons involved 1.010 7.06 <0.001

Number of observations 764

Log likelihood at convergence -464.926

Adjusted-p’ 0.429

Pseudo R’ 0.446

AIC 955.852

Bayesian Information Criteria (BIC) 1016.153

NOTE: The attribute persons involved was restricted to be equal across PDO and fatal and severe injury
severity levels.

1040 ~

1020 A

1000 -

980 -
H PPO

960 + Mixed logit
940 -

920 -

900 - T
AIC BIC

FIGURE 2 Comparison of PPO and mixed logit models
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SUMMARY AND DISCUSSION

This paper describes the use of a PPO model to study the role of contributors influencing ROR
crash severities on freeways and compared this model with a mixed logit model. The study was
based on a two-year detailed infrastructure and accident dataset from Portuguese freeways (2009
and 2010). The crashes were categorized into three different levels based on driver’s injury
severity. Models were then estimated for the two methodological approaches (PPO and mixed
logit models). Marginal effects of the PPO model were also computed to complement the
analysis.

In all models, plausible signs were estimated for the coefficients of the variables. The
PPO model performed the best out of the two models, based on log-likelihood at convergence,
AIC and BIC values.

A PPO model allows the predictors that meet proportional odds assumption to take the
same coefficient for all injury severity levels and other predictors to vary between injury severity
levels, ensuring no potential loss in accuracy of prediction (25). The PPO models are clearly a
viable method for modeling ROR crash injury severities.

Several variables in seasonal attributes, roadway and roadside attributes, crash
characteristics and driver information were identified as significant predictors influencing the
driver injury severity level in ROR crashes. The marginal effects of the parameters for PPO
model provide valuable insight on the contribution factors for ROR crash injury severity. Table 4
shows the marginal effects and standard errors reported by the PPO model for different crash
injury severity levels. Table 4 shows that, when involved in a ROR crash, the probability of
occurrence of an occupant fatality or severe injury is higher for crashes: involving vehicle
rollover; with vehicles leaving the road to the right side of the carriageway; and occurring at
peak hours. Similarly, the probability of occurrence of severe injuries or fatalities in a ROR crash
is lower: during winter; on ditches; with higher occupancy vehicles (higher number of persons
involved); if passenger cars are involved; with younger population (below 32); and if female
drivers are involved.

TABLE 4 Marginal Effects and Standard Errors for Different ROR
Crash Injury Severity Levels

Variables Crash injury severity

PDO Minor injury Severe injury + Fatal

M.E. S.E. M.E. S.E. M.E. S.E.
Winter 0.0564 0.0329 -0.0276 0.0493 -0.0288 0.0219
Peak hour -0.0850 0.0496 0.0416 0.0743 0.0434 0.0330
Obstacles -0.0387 0.0226 0.019 0.0339 0.0198 0.0150
Ditch 0.1088 0.0635 -0.0533 0.0951 -0.0555 0.0423
Persons involved 0.0965 0.0563 -0.0472 0.0843 -0.0492 0.0375
Right encroach -0.0490 0.0286 0.024 0.0428 0.025 0.019
Rollover -0.1091 0.0637 0.0534 0.0954 0.0557 0.0424
Car 0.0424 0.0247 -0.0207 0.0371 -0.0216 0.0165
Age 0.0543 0.0317 -0.0266 0.0475 -0.0277 0.0211
Female -0.1296 0.0757 0.1651 0.0632 -0.0355 0.027
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These results are in line with several previous findings reported in the literature on ROR
crash severity. This is the case for rollover and number of persons involved, which were found to
increase the propensity for severe and fatal injury ROR crashes, just as in (6, 10, /4, 32) for
rollover, and (6, 12) for the latter factor.

Female drivers were found to have lower probabilities of PDO, severe and fatal and
injury ROR crashes. On the one hand this agrees with findings from Wu et al. (10) and Xie, et al.
(14); on the other it partially differs from the results obtained by Schneider et al. (9), who found
that female drivers are more likely to be injured in ROR crashes.

In addition to rollover and number of persons involved mentioned above, there are
several factors for which this study found partly similar findings to those of previous research by
the authors (6). These are the role of winter in ROR crashes, the involvement of vehicles leaving
the road to the right side of the carriageway, the involvement of passenger cars and driver age.

This study also adds some new insight into the effect that some variables have on ROR
crash severities for the case of freeways with “unforgiving” roadsides. Specifically, the use of the
partial proportional formulation allows an improved identification of the varying effect that
several variables have on ROR crash injury severity, and includes the effect of traversing ditches
and the influence of the number of obstacles hit in a ROR crash, which were previously masked,
when the unordered framework models were used.

In this study, the number of obstacles hit in a ROR crash was found to decrease the
propensity for PDO ROR crashes. This is reasonable, as high kinetic energy may be involved in
these crashes, more areas of a vehicle are damaged or more impacts are sustained in the same
area of an errant vehicle. This study also shows that traversing a ditch tends to increase the
chance of a PDO ROR crash. This appears sensible, as ditches on freeways are not especially
“aggressive” (despite not being tolerant to errant vehicles, as well) and they are associated with
cut embankments or carriageways leveled with the nearby terrain.

Findings from this type of studies are relevant for setting up preventing measures at the
design stage and also in operation management. In the former case, one may expect that applying
traversable ditches designs may improve considerably the safety of the road stretches where they
are constructed. Additionally, it is more appropriate to improve embankment characteristics,
rather than to address a few roadside obstacles. In the latter case, it may be hypothesized that
enforcement should be stricter and more intense when cars are expected to carry less passengers
(not in holiday periods) and outside of peak hour periods.

The procedure developed in SAFESIDE (described in (3)) does not fully take into
consideration the probability of occurrence of crashes with different severity levels conditioned
on crash occurrence. By estimating the probability of crash occurrence at different severity levels
(using mixed logit models or PPO models), these crash severity models can be integrated in the
said procedure, enabling the distribution of the estimated expected number of crashes by three
severity levels and thus allowing the development of better crash cost calculations. Cost-benefit
estimates tuned to the Portuguese freeway crash characteristics will positively support roadside
safety decisions adapted to the country’s context and contribute to the progressive construction
of an efficient safe traffic system.
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