Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Python client for TempoDB
Python Shell

Fetching latest commit…

Cannot retrieve the latest commit at this time

Failed to load latest commit information.
tempodb
.gitignore
README.markdown
setup.py

README.markdown

TempoDB Python API Client

The TempoDB Python API Client makes calls to the TempoDB API. The module is available on PyPi as tempodb.

  1. Install tempodb

pip install tempodb

  1. After installing tempodb, download tempodb-write-demo.py.

  2. Edit your-api-key and your-api-secret in tempodb-write-demo.py.

  3. Run tempodb-write-demo.py to insert 10 days of test data.

python tempodb-write-demo.py

  1. Download tempodb-read-demo.py

  2. Edit your-api-key and your-api-secret in tempodb-read-demo.py.

  3. Run tempodb-read-demo.py to read back the data you just wrote in.

python tempodb-read-demo.py

Classes

Client(key, secret, hostname="api.tempo-db.com", port=443, secure=True)

Stores the session information for authenticating and accessing TempoDB. Your api key and secret is required. The Client also allows you to specify the hostname, port, and protocol (http or https). This is used if you are on a private cluster. The default hostname and port should work for the standard cluster.

All access to data is made through a client instance.

Members

  • key - api key (string)
  • secret - api secret (string)
  • hostname - hostname for the cluster (string)
  • port - port for the cluster (int)
  • secure - protocol to use (True=https, False=http)

DataPoint(ts, value)

Represents one timestamp/value pair.

Members

  • ts - timestamp (datetime)
  • value - the datapoint's value (double, long, boolean)

Series(id, key, name="", attributes={}, tags=[])

Respresents metadata associated with the series. Each series has a globally unique id that is generated by the system and a user defined key. The key must be unique among all of your series. Each series may have a set of tags and attributes that can be used to filter series during bulk reads. Attributes are key/value pairs. Both the key and attribute must be strings. Tags are keys with no values. Tags must also be strings.

Members

  • id - unique series id (string)
  • key - user defined key (string)
  • name - human readable name for the series (string)
  • attributes - key/value pairs providing metadata for the series (dictionary - keys and values are strings)
  • tags - (list of strings)

DataSet(series, start, end, data=[], summary=None)

Respresents data from a time range of a series. This is essentially a list of DataPoints with some added metadata. This is the object returned from a query. The DataSet contains series metadata, the start/end times for the queried range, a list of the DataPoints and a statistics summary table. The Summary table contains statistics for the time range (sum, mean, min, max, count, etc.)

Members

  • series - series metadata (Series)
  • start - start time for the queried range (datetime)
  • end - end time for the queried range (datetime)
  • data - datapoints (list of DataPoints)
  • summary - a summary table of statistics for the queried range (Summary)

Client API

get_series(ids=[], keys=[], tags=[], attributes={})

Gets a list of series objects, optionally filtered by the provided parameters. Series can be filtered by id, key, tag and attribute.

Parameters

  • ids - a list of ids to include (list of strings)
  • keys - a list of keys to include (list of strings)
  • tags - a list of tags to filter on. These tags are and'd together (list of strings)
  • attributes - a dictionary of key/value pairs to filter on. These attributes are and'd together. (dictionary)

Returns

A list of Series objects

Example

The following example returns all series with tags "tag1" and "tag2" and attribute "attr1" equal to "value1".

from tempodb import Client

client = Client("api-key", "api-secret")

tags = ["tag1", "tag2"]
attributes = {
    "attr1": "value1"
}

series_list = client.get_series(tags=tags, attributes=attributes)

read(start, end, interval="", function="", ids=[], keys=[], tags=[], attributes={})

Gets a list of DataSets for the specified start/end times. The interval parameter allows you to specify a rollup period. For example, "1hour" will roll the data up on the hour using the provided function. The function parameter specifies the folding function to use while rolling the data up. A rollup is selected automatically if no interval or function is given. The auto rollup interval is calculated by the total time range (end - start) as follows:

  • range <= 2 days - raw data is returned
  • range <= 30 days - data is rolled up on the hour
  • else - data is rolled up by the day

Rollup intervals are specified by a number and a time period. For example, 1day or 5min. Supported time periods:

  • min
  • hour
  • day
  • month
  • year

Supported rollup functions:

  • sum
  • max
  • min
  • avg or mean

You can also retrieve raw data by specifying "raw" as the interval. The series to query can be filtered using the remaining parameters.

Parameters

  • start - start time for the query (datetime)
  • end - end time for the query (datetime)
  • interval - the rollup interval (string)
  • function - the rollup folding function (string)
  • ids - a list of ids to include (list of strings)
  • keys - a list of keys to include (list of strings)
  • tags - a list of tags to filter on. These tags are and'd together (list of strings)
  • attributes - a dictionary of key/value pairs to filter on. These attributes are and'd together. (dictionary)

Returns

A list of DataSets

Example

The following example returns a list of series from 2012-01-01 to 2012-01-02 for the series with key "my-custom-key", with the maximum value for each hour.

import datetime
from tempodb import Client

client = Client("api-key", "api-secret")

start = datetime.datetime(2012, 1, 1)
end = datetime.datetime(2012, 1, 2)
keys = ["my-custom-key",]

data = client.read(start, end, keys=keys, interval="1hour", function="max")

read_id(series_id, start, end, interval="", function="")

Gets a DataSet by series id. The id, start, and end times are required. The same rollup rules apply as for the multi series read (above).

Parameters

  • series_id - id for the series to read from (string)
  • start - start time for the query (datetime)
  • end - end time for the query (datetime)
  • interval - the rollup interval (string)
  • function - the rollup folding function (string)

Returns

A DataSet

Example

The following example reads data for the series with id "38268c3b231f1266a392931e15e99231" from 2012-01-01 to 2012-02-01 and returns a minimum datapoint per day.

import datetime
from tempodb import Client

client = Client("api-key", "api-secret")

start = datetime.datetime(2012, 1, 1)
end = datetime.datetime(2012, 2, 1)

data = client.read_id("38268c3b231f1266a392931e15e99231", start, end, interval="1day", function="min")

read_key(series_key, start, end, interval="", function="")

Gets a DataSet by series key. The key, start, and end times are required. The same rollup rules apply as for the multi series read (above).

Parameters

  • series_key - key for the series to read from (string)
  • start - start time for the query (datetime)
  • end - end time for the query (datetime)
  • interval - the rollup interval (string)
  • function - the rollup folding function (string)

Returns

A DataSet

Example

The following example reads data for the series with key "my-custom-key" from 2012-01-01 to 2012-02-01 and returns a minimum datapoint per day.

import datetime
from tempodb import Client

client = Client("api-key", "api-secret")

start = datetime.datetime(2012, 1, 1)
end = datetime.datetime(2012, 2, 1)

data = client.read_key("my-custom-key", start, end, interval="1day", function="min")

write_id(series_id, data)

Writes datapoints to the specified series. The series id and a list of DataPoints are required.

Parameters

  • series_id - id for the series to write to (string)
  • data - the data to write (list of DataPoints)

Returns

Nothing

Example

The following example write three datapoints to the series with id "38268c3b231f1266a392931e15e99231".

from datetime import datetime
from tempodb import Client

client = Client("api-key", "api-secret")

data = [
    DataPoint(datetime(2012, 1, 1, 1, 0, 0), 12.34),
    DataPoint(datetime(2012, 1, 1, 1, 1, 0), 1.874),
    DataPoint(datetime(2012, 1, 1, 1, 2, 0), 21.52),
]

client.write_id("38268c3b231f1266a392931e15e99231", data)

write_key(series_key, data)

Writes datapoints to the specified series. The series key and a list of DataPoints are required. Note: a series will be created if the provided key does not exist.

Parameters

  • series_key - key for the series to write to (string)
  • data - the data to write (list of DataPoints)

Returns

Nothing

Example

The following example write three datapoints to the series with key "my-custom-key".

from datetime import datetime
from tempodb import Client

client = Client("api-key", "api-secret")

data = [
    DataPoint(datetime(2012, 1, 1, 1, 0, 0), 12.34),
    DataPoint(datetime(2012, 1, 1, 1, 1, 0), 1.874),
    DataPoint(datetime(2012, 1, 1, 1, 2, 0), 21.52),
]

client.write_key("my-custom-key", data)

write_bulk(data)

Writes values to multiple series for a particular timestamp. This function takes a timestamp and a parameter called data, which is a list of dictionaries containing the series id or key and the value. For example:

data = [
    { id:'01868c1a2aaf416ea6cd8edd65e7a4b8', v:4.164 },
    { id:'38268c3b231f1266a392931e15e99231', v:73.13 },
    { key:'your-custom-key', v:55.423 },
    { key:'foo', v:324.991 },
]

Parameters

  • ts - the timestamp for the datapoints
  • data - a list of dictionaries containing an id or key and the value

Returns

Nothing

Example

The following example writes datapoints to four separate series at the same timestamp.

import datetime
from tempodb import Client

client = Client("api-key", "api-secret")

ts = datetime.datetime(2012, 1, 8, 1, 21)
data = [
    { id:'01868c1a2aaf416ea6cd8edd65e7a4b8', v:4.164 },
    { id:'38268c3b231f1266a392931e15e99231', v:73.13 },
    { key:'your-custom-key', v:55.423 },
    { key:'foo', v:324.991 },
]

client.write_bulk(ts, data)
Something went wrong with that request. Please try again.