Switch branches/tags
Find file Copy path
242 lines (203 sloc) 8.54 KB
This tutorial shows how to generate adversarial examples using FGSM
and train a model using adversarial training with Keras.
It is very similar to, which does the same
thing but without a dependence on keras.
The original paper can be found at:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import os
import tensorflow as tf
from tensorflow.python.platform import flags
import numpy as np
import keras
from keras import backend
from cleverhans.attacks import FastGradientMethod
from cleverhans.dataset import MNIST
from cleverhans.loss import CrossEntropy
from cleverhans.train import train
from cleverhans.utils import AccuracyReport
from cleverhans.utils_keras import cnn_model
from cleverhans.utils_keras import KerasModelWrapper
from cleverhans.utils_tf import model_eval
TRAIN_DIR = 'train_dir'
FILENAME = 'mnist.ckpt'
def mnist_tutorial(train_start=0, train_end=60000, test_start=0,
test_end=10000, nb_epochs=NB_EPOCHS, batch_size=BATCH_SIZE,
learning_rate=LEARNING_RATE, train_dir=TRAIN_DIR,
filename=FILENAME, load_model=LOAD_MODEL,
testing=False, label_smoothing=0.1):
MNIST CleverHans tutorial
:param train_start: index of first training set example
:param train_end: index of last training set example
:param test_start: index of first test set example
:param test_end: index of last test set example
:param nb_epochs: number of epochs to train model
:param batch_size: size of training batches
:param learning_rate: learning rate for training
:param train_dir: Directory storing the saved model
:param filename: Filename to save model under
:param load_model: True for load, False for not load
:param testing: if true, test error is calculated
:param label_smoothing: float, amount of label smoothing for cross entropy
:return: an AccuracyReport object
# Object used to keep track of (and return) key accuracies
report = AccuracyReport()
# Set TF random seed to improve reproducibility
if not hasattr(backend, "tf"):
raise RuntimeError("This tutorial requires keras to be configured"
" to use the TensorFlow backend.")
if keras.backend.image_dim_ordering() != 'tf':
print("INFO: '~/.keras/keras.json' sets 'image_dim_ordering' to "
"'th', temporarily setting to 'tf'")
# Create TF session and set as Keras backend session
sess = tf.Session()
# Get MNIST test data
mnist = MNIST(train_start=train_start, train_end=train_end,
test_start=test_start, test_end=test_end)
x_train, y_train = mnist.get_set('train')
x_test, y_test = mnist.get_set('test')
# Obtain Image Parameters
img_rows, img_cols, nchannels = x_train.shape[1:4]
nb_classes = y_train.shape[1]
# Define input TF placeholder
x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
y = tf.placeholder(tf.float32, shape=(None, nb_classes))
# Define TF model graph
model = cnn_model(img_rows=img_rows, img_cols=img_cols,
channels=nchannels, nb_filters=64,
preds = model(x)
print("Defined TensorFlow model graph.")
def evaluate():
# Evaluate the accuracy of the MNIST model on legitimate test examples
eval_params = {'batch_size': batch_size}
acc = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params)
report.clean_train_clean_eval = acc
# assert X_test.shape[0] == test_end - test_start, X_test.shape
print('Test accuracy on legitimate examples: %0.4f' % acc)
# Train an MNIST model
train_params = {
'nb_epochs': nb_epochs,
'batch_size': batch_size,
'learning_rate': learning_rate,
'train_dir': train_dir,
'filename': filename
rng = np.random.RandomState([2017, 8, 30])
if not os.path.exists(train_dir):
ckpt = tf.train.get_checkpoint_state(train_dir)
print(train_dir, ckpt)
ckpt_path = False if ckpt is None else ckpt.model_checkpoint_path
wrap = KerasModelWrapper(model)
if load_model and ckpt_path:
saver = tf.train.Saver()
saver.restore(sess, ckpt_path)
print("Model loaded from: {}".format(ckpt_path))
print("Model was not loaded, training from scratch.")
loss = CrossEntropy(wrap, smoothing=label_smoothing)
train(sess, loss, x_train, y_train, evaluate=evaluate,
args=train_params, rng=rng)
# Calculate training error
if testing:
eval_params = {'batch_size': batch_size}
acc = model_eval(sess, x, y, preds, x_train, y_train, args=eval_params)
report.train_clean_train_clean_eval = acc
# Initialize the Fast Gradient Sign Method (FGSM) attack object and graph
fgsm = FastGradientMethod(wrap, sess=sess)
fgsm_params = {'eps': 0.3,
'clip_min': 0.,
'clip_max': 1.}
adv_x = fgsm.generate(x, **fgsm_params)
# Consider the attack to be constant
adv_x = tf.stop_gradient(adv_x)
preds_adv = model(adv_x)
# Evaluate the accuracy of the MNIST model on adversarial examples
eval_par = {'batch_size': batch_size}
acc = model_eval(sess, x, y, preds_adv, x_test, y_test, args=eval_par)
print('Test accuracy on adversarial examples: %0.4f\n' % acc)
report.clean_train_adv_eval = acc
# Calculating train error
if testing:
eval_par = {'batch_size': batch_size}
acc = model_eval(sess, x, y, preds_adv, x_train,
y_train, args=eval_par)
report.train_clean_train_adv_eval = acc
print("Repeating the process, using adversarial training")
# Redefine TF model graph
model_2 = cnn_model(img_rows=img_rows, img_cols=img_cols,
channels=nchannels, nb_filters=64,
wrap_2 = KerasModelWrapper(model_2)
preds_2 = model_2(x)
fgsm2 = FastGradientMethod(wrap_2, sess=sess)
def attack(x):
return fgsm2.generate(x, **fgsm_params)
preds_2_adv = model_2(attack(x))
loss_2 = CrossEntropy(wrap_2, smoothing=label_smoothing, attack=attack)
def evaluate_2():
# Accuracy of adversarially trained model on legitimate test inputs
eval_params = {'batch_size': batch_size}
accuracy = model_eval(sess, x, y, preds_2, x_test, y_test,
print('Test accuracy on legitimate examples: %0.4f' % accuracy)
report.adv_train_clean_eval = accuracy
# Accuracy of the adversarially trained model on adversarial examples
accuracy = model_eval(sess, x, y, preds_2_adv, x_test,
y_test, args=eval_params)
print('Test accuracy on adversarial examples: %0.4f' % accuracy)
report.adv_train_adv_eval = accuracy
# Perform and evaluate adversarial training
train(sess, loss_2, x_train, y_train, evaluate=evaluate_2,
args=train_params, rng=rng)
# Calculate training errors
if testing:
eval_params = {'batch_size': batch_size}
accuracy = model_eval(sess, x, y, preds_2, x_train, y_train,
report.train_adv_train_clean_eval = accuracy
accuracy = model_eval(sess, x, y, preds_2_adv, x_train,
y_train, args=eval_params)
report.train_adv_train_adv_eval = accuracy
return report
def main(argv=None):
from cleverhans_tutorials import check_installation
if __name__ == '__main__':
flags.DEFINE_integer('nb_epochs', NB_EPOCHS,
'Number of epochs to train model')
flags.DEFINE_integer('batch_size', BATCH_SIZE, 'Size of training batches')
flags.DEFINE_float('learning_rate', LEARNING_RATE,
'Learning rate for training')
flags.DEFINE_string('train_dir', TRAIN_DIR,
'Directory where to save model.')
flags.DEFINE_string('filename', FILENAME, 'Checkpoint filename.')
flags.DEFINE_boolean('load_model', LOAD_MODEL,
'Load saved model or train.')