
TensorFlow on YARN
tslam75, shariat

This document describes the design of a tool to launch TensorFlow application on a Apache Hadoop
YARN cluster. It is designed for distributed TensorFlow job, but can also be used for single
TensorFlow job. It supports native execution on a YARN compute node, or run within a docker image.
TensorBoard integration can be enabled for visualization while the application is running.

This tool is implemented as a native YARN application; which take user's resource requirement and
TensorFlow program, and allocates/starts the corresponding tasks.

Design
YARN is a cluster manager that supports multi-tenancy, it provides resource allocation for multiple
tenants and multiple applications. TensorFlow can be one of these application that request and
consume resources from YARN. Multiple tenants and multiple instance of TensorFlow can run on a
single YARN cluster concurrently.

Distributed TensorFlow tasks are required to know about the ClusterSpec , which specifies where (i.e.:
host and network port) all the tasks are started. While YARN can handle resource allocation, it does
not allocate network ports. The following design makes use of a component called Task Starter and
Registry to dynamically allocate network ports and provides a way to synchronize the information
between all the tasks.

https://github.com/tslam75
https://github.com/shariat
https://github.com/shariat
http://www.tensorflow.org/
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/index.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/index.html
https://www.tensorflow.org/deploy/distributed

Figure 1: Design and execution flow

1. User submits TF job via the Client program to YARN Resource Manager (RM) .
2. RM schedules and starts the Application Master (AM) .
3. AM requests resources from RM , and waits for RM to reply with allocation.
4. AM start a Task Starter for each task via YARN's Node Manager (not shown)
5. Task Starter allocates a port dynamically on the YARN node, and reports it to the Registry ;

while waits for AM to publish the cluster specification. See step 7.
6. AM monitors the Registry and waits for all the Task Starters to report back; it publishes the

information equivalent to the ClusterSpec back to the Registry .
7. Task Starter gets the information equivalent to the ClusterSpec from Registry ; then sets up a

few environment variables for task, then starts the real task.

NOTE: Apache Hadoop Distributed File System (HDFS) is also used as underlying component but is
not shown in the diagram.

Client
Typical to a YARN application, the client program submits the Application Master (AM) to YARN
Resource Manager (RM) to be scheduled. As part of the submission, Client tells RM the resource
requirement (ie: vcores, memory) required for running the AM itself, as well as the user submission
parameters for the TF jobs as options to AM . Part of the information may also be written to HDFS ,
and it is where the AM can read from.

See also Client-mode .

Application Master
Application Master (AM) is the coordinator for the TF job. First, based on user’s submission
parameters determine what resources are required to run the job, and make the resource request to
YARN. Upon allocation, calls YARN to start the tasks (via TaskStarter). Collect information published
by all the TaskStarter from the Registry, and publish the ClusterSpec , which all the TaskStarter will
use to start the real task.

After the tasks are started, the AM keeps track of exit status of tasks, and determines the job’s overall
status. See also Life cycle.

Life cycle
A typical distributed TensorFlow job has Parameter Server (PS) and Worker tasks. PS tasks are for
parameter update/retrieve; while workers does the computations.

The life cycle of a job ends when one of the two scenarios happen:

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html

 Scenario Status

1 All workers finishes successfully (exit status is zero(0)) SUCCESS

2 One of the worker finishes unsuccessfully (exit status is non-zero) FAIL

In case of #1, AM set status to SUCCESS; then exit, during this process terminate the PS task(s).
In case of #2, AM set status to FAIL; then exit, during this process terminate the PS and possibility
other reminding worker task(s).

Registry
Current implementation uses Apache Zookeeper (ZK) as the Registry component.

The following path convention is used for AM and Task Starter to set information. Although it was
originally designed for a different purpose, this convention follows YARN service registry notation.

AM

ZK path:
{yarnRegistry}/users/{username}/{application_name}/{instance}

yarnRegistry: YARN defined registry root. See hadoop.registry.zk.root. D efault
/registry .
username: name of submission user.
application_name: name of application. Default: TensorFlow .
instance: YARN application instance ID.

Data format:
Use for AM to publish ClusterSpec.

{
...
“DTF_PS_HOSTS”: “host1:2222,host2:2222”,
“DTF_WORKER_HOSTS”: “host3:2222,host3:3333,host4:2222,host4:3333”,

}

Task Starter

ZK path:
{yarnRegistry}/users/{username}/{application_name}/{instance}/components/{componetname}

https://zookeeper.apache.org/

componetname:YARN container ID.

Data format:
Use for Task Starter to write dynamically allocated port back to registry.

{
...
“task_job_name”: “worker”,
“task_job_index”: “0”,
“task_port”: “2222”

}

Alternative implementation
An alternative implementation for Registry without a ZK dependency, the AM can act as the Registry
by exposing a API (potentially REST) for Task Starter to report dynamically allocated port, and also
retrieve cluster specification once it is ready.

Task Starter
Task Starter is the component responsible for a) dynamically allocate network port for the task, b)
report port number back to AM , c) wait for ClusterSpec from AM , d) setup environment and start the
task (either natively or via Docker).

The Task Starter is provided with the following information via environment variables:

DTF_TASK_PROGRAM
User specify command line to execute the task. See also task_command in ytf-submit .

DTF_TASK_JOB_NAME
Name of job this task is assigned to (i.e.: ps or worker) by AM. This information is pass on to
the task execution environment.

DTF_TASK_INDEX
Index of the job this task is assigned to by AM. This information is pass on to the task
execution environment.

DTF_INPUT_PATH
User specified input path. See -i , --input in ytf-submit . This information is pass on to the task
execution environment.

DTF_OUTPUT_PATH

User specified input path. See -o , --output in ytf-submit . This information is pass on to the
task execution environment.

DTF_DOCKER_IMAGE
Name of Docker image specify by user. See --docker_image in ytf-submit.

TensorBoard
TensorBoard is part of TensorFlow which provides visualization via a web server.

TensorBoard integration can be enable as part of submission option; if enabled, it is also required to
specify the output directory (aka checkpoint directory). The integration is done by invoke an internally
generated TensorBoard task; and uses the dynamically allocated network port as its listening port.

The URL to TensorBoard interface can be found following Tracking URL from YARN application
instance details page.

This task does not impact the life cycle of the instance, and will be terminated the same way as PS
task(s).

Docker
Docker image provides a way to encapsulate application required packages (i.e.: TensorFlow binaries,
Python, …).

When docker integration is enabled, the user is required to provide a docker image name to the
submission script. The image name is required to be accessible on the execution host, either
pre-deployed or accessible in a Docker registry server. Furthermore, the submission user has the
correct permission to start a Docker container.

Instead of executing the task natively, a docker container will be launched. In addition to environment
variables in Task Execution Environment, the following paths are mounted in the container to the host.

HADOOP_HOME , HADOOP_CONF_DIR , JAVA_HOME

DTF_INPUT_PATH and DTF_OUT_PATH if they are not HDFS path.

Client-mode (not implemented yet)

The default mode is to execute all the tasks in YARN, and the Client program will exit after submission
is done. This mode is good for batch like training and no interaction is required from a user.

For client-mode the idea is to have the client program runs on the submission environment, and
potentially interactive use cases can be handled.

This feature is not implemented yet

User interface

Submission Interface

Jobs are submitted using a command line script ytf-submit .

ytf-submit [OPTIONS] -r <cluster_requirement> <task_command>

task_command is the command to be execute for each of the task of the session.
The two environment variables, DTF_TASK_JOB_NAME and DTF_TASK_INDEX , will be
set before the task is executed.

cluster_requirement is a comma separated list of job names and the number of the instances for that
job, with this format:

<job_name1>:<num_tasks1>,<job_name2>:<num_task2>, …

the syntax is kept generic as per TensorFlow ClusterSpec. However, typically, this would be
something like:

ps:2,worker:4

For full options, see APPENDEX for full command line help.

Task Execution Environment

The user specified task_command will be executed as a YARN container. The following environment
variables will be set for the `task_command` to consume.

DTF_{JOBNAME}_HOSTS

Variable with a list of host (and port) allocated to the job with name JOBNAME .

Format: "host1:port1,host2:port2,..."

The number of host:port in the list should match one specified in cluster_requirement . For
example, DTF_PS_HOSTS and DTF_WORKER_HOSTS would be commonly used for PS and
WORKER jobs.

DTF_TASK_JOB_NAME

Name of job this task is assigned to (i.e.: ps or worker). See also DTF_TASK_INDEX .

DTF_TASK_INDEX

Index of the job this task is assigned to. The tuple of DTF_TASK_JOB_NAME , and
DTF_TASK_INDEX can also be used to cross reference with DTF_{JOBNAME}_HOSTS . For
example, to get the dynamic port allocated to this task.

DTF_TASK_SCRIPT

Name of file which contains the content of the script_file specified during submission. Available
only when “-s, --script” option is used.

DTF_INPUT_PATH

 Input path specified during submission. Available only when “-i, --input” option is used.

DTF_OUTPUT_PATH

 Output path specified during submission. Available when “-o, --output” option is used.

Examples

Example: Simple task submission
Let's execute a session with 2 x Parameter Servers (ps) and 4 x Workers.

Assume task program, input data, and output train, all reside in /home/user1/mnist and is accessible
on every node.

$ ytf-submit -r "ps:1,worker:4" \

'python /home/user1/mnist/mnist.py \

--job_name ${DTF_TASK_JOB_NAME} --task_index ${DTF_TASK_INDEX} \

--ps_hosts ${DTF_PS_HOSTS} --worker_hosts ${DTF_WORKER_HOSTS} \

--data_dir /home/user1/mnist/data --train_dir /home/user1/mnist/train'

Example: Enabling TensorBoard
TensorBoard is enabled by --tensorboard or -t . The address of TensorBoard is available at **Tracking
URL** section of the submitted application in Apache YARN Resource Manager web interface. For
using TensorBoard, output path must be specified by --output or -o . DTF_OUTPUT_PATH
environment variable will be set and can be used in task_command . Similarly, input path can be
passed to ytf-submit and will be available as DTF_INPUT_PATH .

$ ytf-submit --tensorboard \

-i /home/user1/mnist/data -o /home/user1/mnist/train10 -r "ps:1,worker:2" \

'python /home/user1/mnist/mnist.py \

--job_name ${DTF_TASK_JOB_NAME} --task_index ${DTF_TASK_INDEX} \

--ps_hosts ${DTF_PS_HOSTS} --worker_hosts ${DTF_WORKER_HOSTS} \

--data_dir ${DTF_INPUT_PATH} --train_dir ${DTF_OUTPUT_PATH}'

Example: Passing the script file
The training code itself can be passed to ytf-submit . The code will be copied to HDFS and will be
available at execution time. The path to the training code will be available as DTF_TASK_SCRIPT
environment variable.

$ ytf-submit --tensorboard \

-i /home/user1/mnist/data -o /home/user1/mnist/train10 -r "ps:1,worker:2" \

-s /home/user1/mnist/mnist.py \

'python ${DTF_TASK_SCRIPT} \

--job_name ${DTF_TASK_JOB_NAME} --task_index ${DTF_TASK_INDEX} \

--ps_hosts ${DTF_PS_HOSTS} --worker_hosts ${DTF_WORKER_HOSTS} \

--data_dir ${DTF_INPUT_PATH} --train_dir ${DTF_OUTPUT_PATH}'

Example: Using HDFS paths
Input and output paths can be HDFS paths.

$ ytf-submit --tensorboard \

-i hdfs://users/user1/mnist/data -o hdfs://users/user1/mnist/train10

-r "ps:1,worker:2" -s /home/user1/mnist/mnist.py \

'python ${DTF_TASK_SCRIPT} \

--job_name ${DTF_TASK_JOB_NAME} --task_index ${DTF_TASK_INDEX} \

--ps_hosts ${DTF_PS_HOSTS} --worker_hosts ${DTF_WORKER_HOSTS} \

--data_dir ${DTF_INPUT_PATH} --train_dir ${DTF_OUTPUT_PATH}'

Example: Using Docker
To execute the tasks as a Docker container, pass the Docker image name using

--docker_image <image_name> . The docker image is required to be accessible on

the execution host; and submission user has the correct permission to launch a Docker container.

Future Consideration and discussion

Considerations
Feature: implement job-level resource requirement
Feature: implement task-level resource requirement
Feature: client-mode
Feature: additional user files (directory?) to be transferred to task execution environment
Feature: support Windows
Feature: node label expression

Remove ZK dependency, AM implement REST API for Task Starter to call
Verification: Test under secure HDFS
Verification: Test under secure registry (ie: ZK)

Discussion
GPU support?
◦ There are a few open JIRA open in the Hadoop YARN community related to support from

GPU (and other resources other than CPU and MEMORY), but did not find official release
containing support for it yet. Keeping an eye out for YARN's support.

◦ YARN-4122: Add support for GPU as a resource
◦ YARN-5517: Add GPU as a resource type for scheduling
◦ YARN-3926: Extend the YARN resource model for easier resource-type management and

profiles

Better fault handling for life cycle management?
◦ Current design terminate the job when any of the worker task fails, and does not attempt to

restart/retry within the job. It keeps the design simple, and jobs can utilize check-pointed
data and rerun the job. Is there any benefit to do fine gain fault handling within the job?

APPENDIX

% ytf-submit -h
NAME
 ytf-submit - Submit a TensorFlow session to Apache Hadoop YARN

 This tool submits a YARN application master, responsible to allocate
 required resources, and execute corresponding tasks.

SYNOPSIS
 Usage: ytf-submit [OPTIONS] -r <cluster_requirement> <task_command>

DESCRIPTION
 task_command
 The command to be execute for each of the task of the session. The two
 environment variables DTF_TASK_JOB_NAME and DTF_TASK_INDEX will be set
 before the task is executed.
 See also TASK EXECUTION ENVIRONMENT

 -r, --cluster_requirement <requirement>

 Specify cluster requirement for the session.
 Format: <job_name1>:<num_tasks1>,<job_name2>:<num_task2>,...
 Example: "ps:2,worker:4"
 See also TASK EXECUTION ENVIRONMENT

 Additional options:

 -c, --task_vcores <vcores>
 General form to specify number of vcores required by each of the task.
 DEFAULT=1

 -c, --task_vcores <job_name>:<vcores>
 NOT IMPLEMENTED YET
 Job-level form to specify number of vcores required by tasks in specific
 job. Overrides "general" form.

 -c, --task_vcores <job_name>[<task_index>]:<vcores>
 NOT IMPLEMENTED YET
 Task-level form to specify number of vcores required by a specific task.
 Overrides both "job-level" and "general" form.

 -m, --task_memory <memory>
 General form to specify amount of memory required by each of task; with
 unit in MB. DEFAULT=8192

 -m, --task_memory <job_name>:<memory>
 NOT IMPLEMENTED YET
 Job-level form to specify amount of memory required by tasks in specific
 job. Overrides "general" form.

 -m, --task_memory <job_name>[<task_index]:<memory>
 NOT IMPLEMENTED YET
 Task-level form to specify amount of memory required by a specific task.
 Overrides both "job-level" and "general" form.

 -i, --input input_path
 Input path, this variable is not interpreted by YARN-DTF at the
 moment, it serve as a convenience. Its value will be set as
 environment variable {DTF_INPUT_PATH} in tasks execution environment.
 DEFAULT=

 -o, --output <output_path>
 Output path, this variable is not interpreted by YARN-DTF at the
 moment, it serve as a convenience. Its value will be set as
 environment variable {DTF_OUTPUT_PATH} in tasks execution environment.

 However, when TensorBoard integration is enabled, this option becomes
 mandatory. See also --tensorboard option.

 Its value will be set as environment variable {DTF_OUTPUT_PATH} in tasks
 execution environment.

 -s, --script <script_file>
 A local script file to be transfer to tasks execution environment, where
 a file named by variable {DTF_TASK_SCRIPT} will contain the content of
 the script file. For example, if the script is a Python script,
 the execution command can be written as "python ${DTF_TASK_SCRIPT} ..."

 -t, --tensorboard
 Enable TensorBoard integration. When enabled, YARN-DTF will start an
 additional YARN container as tensorboard with output path specified in
 --output option. DEFAULT=disabled

 --docker_image <image_name>
 Enable tasks to be executed as a docker container. The docker image is
 required to be accessible on the execution host. In addition to variables
 in TASK EXECUTION ENVIRONMENT, the following paths are mounted in
 container to the execution host.

 HADOOP_HOME, HADOOP_CONF_DIR, JAVA_HOME.
 DTF_INPUT_PATH and DTF_OUT_PATH if they are not hdfs path.

 -q, --queue
 Specify which YARN queue to submit this session to.
 DEFAULT=default

 -n, --name
 Name of this session, will be used as name of YARN application.
 DEFAULT=TensorFlow

 --client
 NOT IMPLEMENTED YET
 Specify if an additional task should be started on locally. This
 would be useful if user interaction is required.

 This task will same execution environment as the rest of the tasks,
 and will be assigned with DTF_TASK_JOB_NAME=client and DTF_TASK_INDEX=0;
 however, will not be part of the TensorFlow cluster and dynamic port
 allocation would not apply.

TASK EXECUTION ENVIRONMENT

 The user specified 'task_command' will be executed as a YARN container
 allocated to the session. The following environment variables will be
 set for the 'task_command' to consume.

 DTF_TASK_SCRIPT:
 Name of file which contains the content of the 'script_file' specified
 during submission.

 DTF_INPUT_PATH:
 Input path specified during submission.

 DTF_OUTPUT_PATH:
 Output path specified during submission.

 DTF_{JOBNAME}_HOSTS:
 Variable with a list of host (and port) allocated to the job with name
 {JOBNAME}.
 Format: "host1:port1,host2:port2,..."
 The number of host:port in the list should match one specified in
 "cluster-requirement". For example, DTF_PS_HOSTS and DTF_WORKER_HOSTS
 would be commonly used for PS and WORKER jobs.

 DTF_TASK_JOB_NAME:
 Name of job this task is assigned to. See also DTF_TASK_INDEX.

 DTF_TASK_INDEX
 Index of the job this task is assigned to.
 The tuple of DTF_TASK_JOB_NAME, and DTF_TASK_INDEX can also be used
 to cross reference with DTF_{JOBNAME}_HOSTS. For example, to get the
 dynamic port allocated to this task.

