From 1880182c9302ad3be06901924f025485def6674a Mon Sep 17 00:00:00 2001 From: Yash Katariya Date: Tue, 8 Sep 2020 19:49:53 -0700 Subject: [PATCH] Fix via nbfmt PiperOrigin-RevId: 330639253 --- .../udacity_deep_learning/1_notmnist.ipynb | 475 +++++---------- .../2_fullyconnected.ipynb | 399 ++++--------- .../3_regularization.ipynb | 195 ++----- .../4_convolutions.ipynb | 283 +++------ .../udacity_deep_learning/5_word2vec.ipynb | 508 +++++----------- courses/udacity_deep_learning/6_lstm.ipynb | 550 ++++++------------ ...c01_introduction_to_colab_and_python.ipynb | 76 +-- .../l02c01_celsius_to_fahrenheit.ipynb | 70 +-- ...03c01_classifying_images_of_clothing.ipynb | 158 +---- ...04c01_image_classification_with_cnns.ipynb | 154 +---- ...01_dogs_vs_cats_without_augmentation.ipynb | 119 +--- ...05c02_dogs_vs_cats_with_augmentation.ipynb | 141 +---- ...rcise_flowers_with_data_augmentation.ipynb | 116 +--- ...wers_with_data_augmentation_solution.ipynb | 123 +--- ...tensorflow_hub_and_transfer_learning.ipynb | 139 +---- ...rcise_flowers_with_transfer_learning.ipynb | 97 +-- ...wers_with_transfer_learning_solution.ipynb | 105 +--- .../l07c01_saving_and_loading_models.ipynb | 165 +----- .../l08c01_common_patterns.ipynb | 65 +-- .../l08c02_naive_forecasting.ipynb | 49 +- .../l08c03_moving_average.ipynb | 199 +++---- .../l08c04_time_windows.ipynb | 47 +- ...05_forecasting_with_machine_learning.ipynb | 93 +-- .../l08c06_forecasting_with_rnn.ipynb | 88 +-- ...l08c07_forecasting_with_stateful_rnn.ipynb | 71 +-- .../l08c08_forecasting_with_lstm.ipynb | 59 +- .../l08c09_forecasting_with_cnn.ipynb | 84 +-- .../l09c01_nlp_turn_words_into_tokens.ipynb | 52 +- .../l09c02_nlp_padding.ipynb | 72 +-- ...09c03_nlp_prepare_larger_text_corpus.ipynb | 47 +- .../l09c04_nlp_embeddings_and_sentiment.ipynb | 66 +-- .../l09c05_nlp_tweaking_the_model.ipynb | 66 +-- .../l09c06_nlp_subwords.ipynb | 79 +-- ..._lstms_with_reviews_subwords_dataset.ipynb | 140 +---- ...iple_models_for_predicting_sentiment.ipynb | 126 +--- ...p_constructing_text_generation_model.ipynb | 63 +- ...optimizing_the_text_generation_model.ipynb | 64 +- .../tflite_c01_linear_regression.ipynb | 31 - .../tflite_c02_transfer_learning.ipynb | 101 ---- ...c03_exercise_convert_model_to_tflite.ipynb | 72 --- ...ise_convert_model_to_tflite_solution.ipynb | 72 --- ...ite_c05_exercise_rock_paper_scissors.ipynb | 80 --- ...xercise_rock_paper_scissors_solution.ipynb | 79 --- .../ml/step2_train_ml_model.ipynb | 72 +-- .../ml/step7_improve_accuracy.ipynb | 67 +-- ...assification_with_TFLite_Model_Maker.ipynb | 65 +-- .../digit_classifier/ml/mnist_tflite.ipynb | 81 +-- ...ensorflowjs_to_tflite_colab_notebook.ipynb | 49 +- .../ml/ondevice_recommendation.ipynb | 44 +- templates/notebook.ipynb | 36 +- .../demo/image_classification.ipynb | 23 +- .../demo/text_classification.ipynb | 10 +- 52 files changed, 1409 insertions(+), 4876 deletions(-) diff --git a/courses/udacity_deep_learning/1_notmnist.ipynb b/courses/udacity_deep_learning/1_notmnist.ipynb index c543ad5947e..b22be9cc9d7 100644 --- a/courses/udacity_deep_learning/1_notmnist.ipynb +++ b/courses/udacity_deep_learning/1_notmnist.ipynb @@ -1,22 +1,9 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "version": "0.3.2", - "views": {}, - "default_view": {}, - "name": "1_notmnist.ipynb", - "provenance": [], - "toc_visible": true - } - }, "cells": [ { "cell_type": "markdown", "metadata": { - "id": "5hIbr52I7Z7U", - "colab_type": "text" + "id": "5hIbr52I7Z7U" }, "source": [ "Deep Learning\n", @@ -32,17 +19,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "apJbCsBHl-2A", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "apJbCsBHl-2A" }, + "outputs": [], "source": [ "# These are all the modules we'll be using later. Make sure you can import them\n", "# before proceeding further.\n", @@ -60,15 +42,12 @@ "\n", "# Config the matplotlib backend as plotting inline in IPython\n", "%matplotlib inline" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "jNWGtZaXn-5j", - "colab_type": "text" + "id": "jNWGtZaXn-5j" }, "source": [ "First, we'll download the dataset to our local machine. The data consists of characters rendered in a variety of fonts on a 28x28 image. The labels are limited to 'A' through 'J' (10 classes). The training set has about 500k and the testset 19000 labeled examples. Given these sizes, it should be possible to train models quickly on any machine." @@ -76,39 +55,21 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "EYRJ4ICW6-da", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 186058, - "status": "ok", - "timestamp": 1444485672507, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "2a0a5e044bb03b66", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "0d0f85df-155f-4a89-8e7e-ee32df36ec8d" + "id": "EYRJ4ICW6-da" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found and verified notMNIST_large.tar.gz\n", + "Found and verified notMNIST_small.tar.gz\n" + ] + } + ], "source": [ "url = 'https://commondatastorage.googleapis.com/books1000/'\n", "last_percent_reported = None\n", @@ -148,24 +109,12 @@ "\n", "train_filename = maybe_download('notMNIST_large.tar.gz', 247336696)\n", "test_filename = maybe_download('notMNIST_small.tar.gz', 8458043)" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Found and verified notMNIST_large.tar.gz\n", - "Found and verified notMNIST_small.tar.gz\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "cC3p0oEyF8QT", - "colab_type": "text" + "id": "cC3p0oEyF8QT" }, "source": [ "Extract the dataset from the compressed .tar.gz file.\n", @@ -174,39 +123,21 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "H8CBE-WZ8nmj", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 186055, - "status": "ok", - "timestamp": 1444485672525, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "2a0a5e044bb03b66", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "ef6c790c-2513-4b09-962e-27c79390c762" + "id": "H8CBE-WZ8nmj" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['notMNIST_large/A', 'notMNIST_large/B', 'notMNIST_large/C', 'notMNIST_large/D', 'notMNIST_large/E', 'notMNIST_large/F', 'notMNIST_large/G', 'notMNIST_large/H', 'notMNIST_large/I', 'notMNIST_large/J']\n", + "['notMNIST_small/A', 'notMNIST_small/B', 'notMNIST_small/C', 'notMNIST_small/D', 'notMNIST_small/E', 'notMNIST_small/F', 'notMNIST_small/G', 'notMNIST_small/H', 'notMNIST_small/I', 'notMNIST_small/J']\n" + ] + } + ], "source": [ "num_classes = 10\n", "np.random.seed(133)\n", @@ -234,24 +165,12 @@ " \n", "train_folders = maybe_extract(train_filename)\n", "test_folders = maybe_extract(test_filename)" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "['notMNIST_large/A', 'notMNIST_large/B', 'notMNIST_large/C', 'notMNIST_large/D', 'notMNIST_large/E', 'notMNIST_large/F', 'notMNIST_large/G', 'notMNIST_large/H', 'notMNIST_large/I', 'notMNIST_large/J']\n", - "['notMNIST_small/A', 'notMNIST_small/B', 'notMNIST_small/C', 'notMNIST_small/D', 'notMNIST_small/E', 'notMNIST_small/F', 'notMNIST_small/G', 'notMNIST_small/H', 'notMNIST_small/I', 'notMNIST_small/J']\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "4riXK3IoHgx6", - "colab_type": "text" + "id": "4riXK3IoHgx6" }, "source": [ "---\n", @@ -266,8 +185,7 @@ { "cell_type": "markdown", "metadata": { - "id": "PBdkjESPK8tw", - "colab_type": "text" + "id": "PBdkjESPK8tw" }, "source": [ "Now let's load the data in a more manageable format. Since, depending on your computer setup you might not be able to fit it all in memory, we'll load each class into a separate dataset, store them on disk and curate them independently. Later we'll merge them into a single dataset of manageable size.\n", @@ -279,96 +197,14 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "h7q0XhG3MJdf", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 30 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 399874, - "status": "ok", - "timestamp": 1444485886378, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "2a0a5e044bb03b66", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "92c391bb-86ff-431d-9ada-315568a19e59" + "id": "h7q0XhG3MJdf" }, - "source": [ - "image_size = 28 # Pixel width and height.\n", - "pixel_depth = 255.0 # Number of levels per pixel.\n", - "\n", - "def load_letter(folder, min_num_images):\n", - " \"\"\"Load the data for a single letter label.\"\"\"\n", - " image_files = os.listdir(folder)\n", - " dataset = np.ndarray(shape=(len(image_files), image_size, image_size),\n", - " dtype=np.float32)\n", - " print(folder)\n", - " num_images = 0\n", - " for image in image_files:\n", - " image_file = os.path.join(folder, image)\n", - " try:\n", - " image_data = (imageio.imread(image_file).astype(float) - \n", - " pixel_depth / 2) / pixel_depth\n", - " if image_data.shape != (image_size, image_size):\n", - " raise Exception('Unexpected image shape: %s' % str(image_data.shape))\n", - " dataset[num_images, :, :] = image_data\n", - " num_images = num_images + 1\n", - " except (IOError, ValueError) as e:\n", - " print('Could not read:', image_file, ':', e, '- it\\'s ok, skipping.')\n", - " \n", - " dataset = dataset[0:num_images, :, :]\n", - " if num_images < min_num_images:\n", - " raise Exception('Many fewer images than expected: %d < %d' %\n", - " (num_images, min_num_images))\n", - " \n", - " print('Full dataset tensor:', dataset.shape)\n", - " print('Mean:', np.mean(dataset))\n", - " print('Standard deviation:', np.std(dataset))\n", - " return dataset\n", - " \n", - "def maybe_pickle(data_folders, min_num_images_per_class, force=False):\n", - " dataset_names = []\n", - " for folder in data_folders:\n", - " set_filename = folder + '.pickle'\n", - " dataset_names.append(set_filename)\n", - " if os.path.exists(set_filename) and not force:\n", - " # You may override by setting force=True.\n", - " print('%s already present - Skipping pickling.' % set_filename)\n", - " else:\n", - " print('Pickling %s.' % set_filename)\n", - " dataset = load_letter(folder, min_num_images_per_class)\n", - " try:\n", - " with open(set_filename, 'wb') as f:\n", - " pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)\n", - " except Exception as e:\n", - " print('Unable to save data to', set_filename, ':', e)\n", - " \n", - " return dataset_names\n", - "\n", - "train_datasets = maybe_pickle(train_folders, 45000)\n", - "test_datasets = maybe_pickle(test_folders, 1800)" - ], "outputs": [ { + "name": "stdout", "output_type": "stream", "text": [ "notMNIST_large/A\n", @@ -458,17 +294,69 @@ "Full dataset tensor: (1872, 28, 28)\n", "Mean: -0.15167\n", "Standard deviation: 0.449521\n" - ], - "name": "stdout" + ] } ], - "execution_count": 0 + "source": [ + "image_size = 28 # Pixel width and height.\n", + "pixel_depth = 255.0 # Number of levels per pixel.\n", + "\n", + "def load_letter(folder, min_num_images):\n", + " \"\"\"Load the data for a single letter label.\"\"\"\n", + " image_files = os.listdir(folder)\n", + " dataset = np.ndarray(shape=(len(image_files), image_size, image_size),\n", + " dtype=np.float32)\n", + " print(folder)\n", + " num_images = 0\n", + " for image in image_files:\n", + " image_file = os.path.join(folder, image)\n", + " try:\n", + " image_data = (imageio.imread(image_file).astype(float) - \n", + " pixel_depth / 2) / pixel_depth\n", + " if image_data.shape != (image_size, image_size):\n", + " raise Exception('Unexpected image shape: %s' % str(image_data.shape))\n", + " dataset[num_images, :, :] = image_data\n", + " num_images = num_images + 1\n", + " except (IOError, ValueError) as e:\n", + " print('Could not read:', image_file, ':', e, '- it\\'s ok, skipping.')\n", + " \n", + " dataset = dataset[0:num_images, :, :]\n", + " if num_images \u003c min_num_images:\n", + " raise Exception('Many fewer images than expected: %d \u003c %d' %\n", + " (num_images, min_num_images))\n", + " \n", + " print('Full dataset tensor:', dataset.shape)\n", + " print('Mean:', np.mean(dataset))\n", + " print('Standard deviation:', np.std(dataset))\n", + " return dataset\n", + " \n", + "def maybe_pickle(data_folders, min_num_images_per_class, force=False):\n", + " dataset_names = []\n", + " for folder in data_folders:\n", + " set_filename = folder + '.pickle'\n", + " dataset_names.append(set_filename)\n", + " if os.path.exists(set_filename) and not force:\n", + " # You may override by setting force=True.\n", + " print('%s already present - Skipping pickling.' % set_filename)\n", + " else:\n", + " print('Pickling %s.' % set_filename)\n", + " dataset = load_letter(folder, min_num_images_per_class)\n", + " try:\n", + " with open(set_filename, 'wb') as f:\n", + " pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)\n", + " except Exception as e:\n", + " print('Unable to save data to', set_filename, ':', e)\n", + " \n", + " return dataset_names\n", + "\n", + "train_datasets = maybe_pickle(train_folders, 45000)\n", + "test_datasets = maybe_pickle(test_folders, 1800)" + ] }, { "cell_type": "markdown", "metadata": { - "id": "vUdbskYE2d87", - "colab_type": "text" + "id": "vUdbskYE2d87" }, "source": [ "---\n", @@ -483,8 +371,7 @@ { "cell_type": "markdown", "metadata": { - "id": "cYznx5jUwzoO", - "colab_type": "text" + "id": "cYznx5jUwzoO" }, "source": [ "---\n", @@ -498,8 +385,7 @@ { "cell_type": "markdown", "metadata": { - "id": "LA7M7K22ynCt", - "colab_type": "text" + "id": "LA7M7K22ynCt" }, "source": [ "Merge and prune the training data as needed. Depending on your computer setup, you might not be able to fit it all in memory, and you can tune `train_size` as needed. The labels will be stored into a separate array of integers 0 through 9.\n", @@ -509,39 +395,22 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "s3mWgZLpyuzq", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 411281, - "status": "ok", - "timestamp": 1444485897869, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "2a0a5e044bb03b66", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "8af66da6-902d-4719-bedc-7c9fb7ae7948" + "id": "s3mWgZLpyuzq" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training (200000, 28, 28) (200000,)\n", + "Validation (10000, 28, 28) (10000,)\n", + "Testing (10000, 28, 28) (10000,)\n" + ] + } + ], "source": [ "def make_arrays(nb_rows, img_size):\n", " if nb_rows:\n", @@ -597,25 +466,12 @@ "print('Training:', train_dataset.shape, train_labels.shape)\n", "print('Validation:', valid_dataset.shape, valid_labels.shape)\n", "print('Testing:', test_dataset.shape, test_labels.shape)" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Training (200000, 28, 28) (200000,)\n", - "Validation (10000, 28, 28) (10000,)\n", - "Testing (10000, 28, 28) (10000,)\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "GPTCnjIcyuKN", - "colab_type": "text" + "id": "GPTCnjIcyuKN" }, "source": [ "Next, we'll randomize the data. It's important to have the labels well shuffled for the training and test distributions to match." @@ -623,17 +479,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "6WZ2l2tN2zOL", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "6WZ2l2tN2zOL" }, + "outputs": [], "source": [ "def randomize(dataset, labels):\n", " permutation = np.random.permutation(labels.shape[0])\n", @@ -643,15 +494,12 @@ "train_dataset, train_labels = randomize(train_dataset, train_labels)\n", "test_dataset, test_labels = randomize(test_dataset, test_labels)\n", "valid_dataset, valid_labels = randomize(valid_dataset, valid_labels)" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "puDUTe6t6USl", - "colab_type": "text" + "id": "puDUTe6t6USl" }, "source": [ "---\n", @@ -665,8 +513,7 @@ { "cell_type": "markdown", "metadata": { - "id": "tIQJaJuwg5Hw", - "colab_type": "text" + "id": "tIQJaJuwg5Hw" }, "source": [ "Finally, let's save the data for later reuse:" @@ -674,17 +521,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "QiR_rETzem6C", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "QiR_rETzem6C" }, + "outputs": [], "source": [ "pickle_file = os.path.join(data_root, 'notMNIST.pickle')\n", "\n", @@ -703,65 +545,33 @@ "except Exception as e:\n", " print('Unable to save data to', pickle_file, ':', e)\n", " raise" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "hQbLjrW_iT39", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 413065, - "status": "ok", - "timestamp": 1444485899688, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "2a0a5e044bb03b66", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "b440efc6-5ee1-4cbc-d02d-93db44ebd956" + "id": "hQbLjrW_iT39" }, - "source": [ - "statinfo = os.stat(pickle_file)\n", - "print('Compressed pickle size:', statinfo.st_size)" - ], "outputs": [ { + "name": "stdout", "output_type": "stream", "text": [ "Compressed pickle size: 718193801\n" - ], - "name": "stdout" + ] } ], - "execution_count": 0 + "source": [ + "statinfo = os.stat(pickle_file)\n", + "print('Compressed pickle size:', statinfo.st_size)" + ] }, { "cell_type": "markdown", "metadata": { - "id": "gE_cRAQB33lk", - "colab_type": "text" + "id": "gE_cRAQB33lk" }, "source": [ "---\n", @@ -780,8 +590,7 @@ { "cell_type": "markdown", "metadata": { - "id": "L8oww1s4JMQx", - "colab_type": "text" + "id": "L8oww1s4JMQx" }, "source": [ "---\n", @@ -797,5 +606,17 @@ "---" ] } - ] + ], + "metadata": { + "colab": { + "name": "1_notmnist.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/courses/udacity_deep_learning/2_fullyconnected.ipynb b/courses/udacity_deep_learning/2_fullyconnected.ipynb index 98b97f98de1..6265bb3fe7c 100644 --- a/courses/udacity_deep_learning/2_fullyconnected.ipynb +++ b/courses/udacity_deep_learning/2_fullyconnected.ipynb @@ -1,22 +1,9 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "version": "0.3.2", - "views": {}, - "default_view": {}, - "name": "2_fullyconnected.ipynb", - "provenance": [], - "toc_visible": true - } - }, "cells": [ { "cell_type": "markdown", "metadata": { - "id": "kR-4eNdK6lYS", - "colab_type": "text" + "id": "kR-4eNdK6lYS" }, "source": [ "Deep Learning\n", @@ -32,17 +19,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "JLpLa8Jt7Vu4", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "JLpLa8Jt7Vu4" }, + "outputs": [], "source": [ "# These are all the modules we'll be using later. Make sure you can import them\n", "# before proceeding further.\n", @@ -51,15 +33,12 @@ "import tensorflow as tf\n", "from six.moves import cPickle as pickle\n", "from six.moves import range" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "1HrCK6e17WzV", - "colab_type": "text" + "id": "1HrCK6e17WzV" }, "source": [ "First reload the data we generated in `1_notmnist.ipynb`." @@ -67,39 +46,22 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "y3-cj1bpmuxc", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 19456, - "status": "ok", - "timestamp": 1449847956073, - "user": { - "color": "", - "displayName": "", - "isAnonymous": false, - "isMe": true, - "permissionId": "", - "photoUrl": "", - "sessionId": "0", - "userId": "" - }, - "user_tz": 480 - }, - "outputId": "0ddb1607-1fc4-4ddb-de28-6c7ab7fb0c33" + "id": "y3-cj1bpmuxc" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set (200000, 28, 28) (200000,)\n", + "Validation set (10000, 28, 28) (10000,)\n", + "Test set (18724, 28, 28) (18724,)\n" + ] + } + ], "source": [ "pickle_file = 'notMNIST.pickle'\n", "\n", @@ -115,25 +77,12 @@ " print('Training set', train_dataset.shape, train_labels.shape)\n", " print('Validation set', valid_dataset.shape, valid_labels.shape)\n", " print('Test set', test_dataset.shape, test_labels.shape)" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Training set (200000, 28, 28) (200000,)\n", - "Validation set (10000, 28, 28) (10000,)\n", - "Test set (18724, 28, 28) (18724,)\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "L7aHrm6nGDMB", - "colab_type": "text" + "id": "L7aHrm6nGDMB" }, "source": [ "Reformat into a shape that's more adapted to the models we're going to train:\n", @@ -143,39 +92,22 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "IRSyYiIIGIzS", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 19723, - "status": "ok", - "timestamp": 1449847956364, - "user": { - "color": "", - "displayName": "", - "isAnonymous": false, - "isMe": true, - "permissionId": "", - "photoUrl": "", - "sessionId": "0", - "userId": "" - }, - "user_tz": 480 - }, - "outputId": "2ba0fc75-1487-4ace-a562-cf81cae82793" + "id": "IRSyYiIIGIzS" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set (200000, 784) (200000, 10)\n", + "Validation set (10000, 784) (10000, 10)\n", + "Test set (18724, 784) (18724, 10)\n" + ] + } + ], "source": [ "image_size = 28\n", "num_labels = 10\n", @@ -191,25 +123,12 @@ "print('Training set', train_dataset.shape, train_labels.shape)\n", "print('Validation set', valid_dataset.shape, valid_labels.shape)\n", "print('Test set', test_dataset.shape, test_labels.shape)" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Training set (200000, 784) (200000, 10)\n", - "Validation set (10000, 784) (10000, 10)\n", - "Test set (18724, 784) (18724, 10)\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "nCLVqyQ5vPPH", - "colab_type": "text" + "id": "nCLVqyQ5vPPH" }, "source": [ "We're first going to train a multinomial logistic regression using simple gradient descent.\n", @@ -230,17 +149,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "Nfv39qvtvOl_", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "Nfv39qvtvOl_" }, + "outputs": [], "source": [ "# With gradient descent training, even this much data is prohibitive.\n", "# Subset the training data for faster turnaround.\n", @@ -285,15 +199,12 @@ " valid_prediction = tf.nn.softmax(\n", " tf.matmul(tf_valid_dataset, weights) + biases)\n", " test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "KQcL4uqISHjP", - "colab_type": "text" + "id": "KQcL4uqISHjP" }, "source": [ "Let's run this computation and iterate:" @@ -301,70 +212,14 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "z2cjdenH869W", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 9 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 57454, - "status": "ok", - "timestamp": 1449847994134, - "user": { - "color": "", - "displayName": "", - "isAnonymous": false, - "isMe": true, - "permissionId": "", - "photoUrl": "", - "sessionId": "0", - "userId": "" - }, - "user_tz": 480 - }, - "outputId": "4c037ba1-b526-4d8e-e632-91e2a0333267" + "id": "z2cjdenH869W" }, - "source": [ - "num_steps = 801\n", - "\n", - "def accuracy(predictions, labels):\n", - " return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))\n", - " / predictions.shape[0])\n", - "\n", - "with tf.Session(graph=graph) as session:\n", - " # This is a one-time operation which ensures the parameters get initialized as\n", - " # we described in the graph: random weights for the matrix, zeros for the\n", - " # biases. \n", - " tf.global_variables_initializer().run()\n", - " print('Initialized')\n", - " for step in range(num_steps):\n", - " # Run the computations. We tell .run() that we want to run the optimizer,\n", - " # and get the loss value and the training predictions returned as numpy\n", - " # arrays.\n", - " _, l, predictions = session.run([optimizer, loss, train_prediction])\n", - " if (step % 100 == 0):\n", - " print('Loss at step %d: %f' % (step, l))\n", - " print('Training accuracy: %.1f%%' % accuracy(\n", - " predictions, train_labels[:train_subset, :]))\n", - " # Calling .eval() on valid_prediction is basically like calling run(), but\n", - " # just to get that one numpy array. Note that it recomputes all its graph\n", - " # dependencies.\n", - " print('Validation accuracy: %.1f%%' % accuracy(\n", - " valid_prediction.eval(), valid_labels))\n", - " print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))" - ], "outputs": [ { + "name": "stdout", "output_type": "stream", "text": [ "Initialized\n", @@ -396,17 +251,43 @@ "Training accuracy: 79.2%\n", "Validation accuracy: 75.6%\n", "Test accuracy: 82.9%\n" - ], - "name": "stdout" + ] } ], - "execution_count": 0 + "source": [ + "num_steps = 801\n", + "\n", + "def accuracy(predictions, labels):\n", + " return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))\n", + " / predictions.shape[0])\n", + "\n", + "with tf.Session(graph=graph) as session:\n", + " # This is a one-time operation which ensures the parameters get initialized as\n", + " # we described in the graph: random weights for the matrix, zeros for the\n", + " # biases. \n", + " tf.global_variables_initializer().run()\n", + " print('Initialized')\n", + " for step in range(num_steps):\n", + " # Run the computations. We tell .run() that we want to run the optimizer,\n", + " # and get the loss value and the training predictions returned as numpy\n", + " # arrays.\n", + " _, l, predictions = session.run([optimizer, loss, train_prediction])\n", + " if (step % 100 == 0):\n", + " print('Loss at step %d: %f' % (step, l))\n", + " print('Training accuracy: %.1f%%' % accuracy(\n", + " predictions, train_labels[:train_subset, :]))\n", + " # Calling .eval() on valid_prediction is basically like calling run(), but\n", + " # just to get that one numpy array. Note that it recomputes all its graph\n", + " # dependencies.\n", + " print('Validation accuracy: %.1f%%' % accuracy(\n", + " valid_prediction.eval(), valid_labels))\n", + " print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))" + ] }, { "cell_type": "markdown", "metadata": { - "id": "x68f-hxRGm3H", - "colab_type": "text" + "id": "x68f-hxRGm3H" }, "source": [ "Let's now switch to stochastic gradient descent training instead, which is much faster.\n", @@ -416,17 +297,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "qhPMzWYRGrzM", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "qhPMzWYRGrzM" }, + "outputs": [], "source": [ "batch_size = 128\n", "\n", @@ -459,15 +335,12 @@ " valid_prediction = tf.nn.softmax(\n", " tf.matmul(tf_valid_dataset, weights) + biases)\n", " test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "XmVZESmtG4JH", - "colab_type": "text" + "id": "XmVZESmtG4JH" }, "source": [ "Let's run it:" @@ -475,67 +348,14 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "FoF91pknG_YW", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 6 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 66292, - "status": "ok", - "timestamp": 1449848003013, - "user": { - "color": "", - "displayName": "", - "isAnonymous": false, - "isMe": true, - "permissionId": "", - "photoUrl": "", - "sessionId": "0", - "userId": "" - }, - "user_tz": 480 - }, - "outputId": "d255c80e-954d-4183-ca1c-c7333ce91d0a" + "id": "FoF91pknG_YW" }, - "source": [ - "num_steps = 3001\n", - "\n", - "with tf.Session(graph=graph) as session:\n", - " tf.global_variables_initializer().run()\n", - " print(\"Initialized\")\n", - " for step in range(num_steps):\n", - " # Pick an offset within the training data, which has been randomized.\n", - " # Note: we could use better randomization across epochs.\n", - " offset = (step * batch_size) % (train_labels.shape[0] - batch_size)\n", - " # Generate a minibatch.\n", - " batch_data = train_dataset[offset:(offset + batch_size), :]\n", - " batch_labels = train_labels[offset:(offset + batch_size), :]\n", - " # Prepare a dictionary telling the session where to feed the minibatch.\n", - " # The key of the dictionary is the placeholder node of the graph to be fed,\n", - " # and the value is the numpy array to feed to it.\n", - " feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}\n", - " _, l, predictions = session.run(\n", - " [optimizer, loss, train_prediction], feed_dict=feed_dict)\n", - " if (step % 500 == 0):\n", - " print(\"Minibatch loss at step %d: %f\" % (step, l))\n", - " print(\"Minibatch accuracy: %.1f%%\" % accuracy(predictions, batch_labels))\n", - " print(\"Validation accuracy: %.1f%%\" % accuracy(\n", - " valid_prediction.eval(), valid_labels))\n", - " print(\"Test accuracy: %.1f%%\" % accuracy(test_prediction.eval(), test_labels))" - ], "outputs": [ { + "name": "stdout", "output_type": "stream", "text": [ "Initialized\n", @@ -561,17 +381,40 @@ "Minibatch accuracy: 82.8%\n", "Validation accuracy: 78.8%\n", "Test accuracy: 86.1%\n" - ], - "name": "stdout" + ] } ], - "execution_count": 0 + "source": [ + "num_steps = 3001\n", + "\n", + "with tf.Session(graph=graph) as session:\n", + " tf.global_variables_initializer().run()\n", + " print(\"Initialized\")\n", + " for step in range(num_steps):\n", + " # Pick an offset within the training data, which has been randomized.\n", + " # Note: we could use better randomization across epochs.\n", + " offset = (step * batch_size) % (train_labels.shape[0] - batch_size)\n", + " # Generate a minibatch.\n", + " batch_data = train_dataset[offset:(offset + batch_size), :]\n", + " batch_labels = train_labels[offset:(offset + batch_size), :]\n", + " # Prepare a dictionary telling the session where to feed the minibatch.\n", + " # The key of the dictionary is the placeholder node of the graph to be fed,\n", + " # and the value is the numpy array to feed to it.\n", + " feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}\n", + " _, l, predictions = session.run(\n", + " [optimizer, loss, train_prediction], feed_dict=feed_dict)\n", + " if (step % 500 == 0):\n", + " print(\"Minibatch loss at step %d: %f\" % (step, l))\n", + " print(\"Minibatch accuracy: %.1f%%\" % accuracy(predictions, batch_labels))\n", + " print(\"Validation accuracy: %.1f%%\" % accuracy(\n", + " valid_prediction.eval(), valid_labels))\n", + " print(\"Test accuracy: %.1f%%\" % accuracy(test_prediction.eval(), test_labels))" + ] }, { "cell_type": "markdown", "metadata": { - "id": "7omWxtvLLxik", - "colab_type": "text" + "id": "7omWxtvLLxik" }, "source": [ "---\n", @@ -583,5 +426,17 @@ "---" ] } - ] + ], + "metadata": { + "colab": { + "name": "2_fullyconnected.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/courses/udacity_deep_learning/3_regularization.ipynb b/courses/udacity_deep_learning/3_regularization.ipynb index 68e3c8a98e4..42af91a1a00 100644 --- a/courses/udacity_deep_learning/3_regularization.ipynb +++ b/courses/udacity_deep_learning/3_regularization.ipynb @@ -1,22 +1,9 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "version": "0.3.2", - "views": {}, - "default_view": {}, - "name": "3_regularization.ipynb", - "provenance": [], - "toc_visible": true - } - }, "cells": [ { "cell_type": "markdown", "metadata": { - "id": "kR-4eNdK6lYS", - "colab_type": "text" + "id": "kR-4eNdK6lYS" }, "source": [ "Deep Learning\n", @@ -32,17 +19,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "JLpLa8Jt7Vu4", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "JLpLa8Jt7Vu4" }, + "outputs": [], "source": [ "# These are all the modules we'll be using later. Make sure you can import them\n", "# before proceeding further.\n", @@ -50,15 +32,12 @@ "import numpy as np\n", "import tensorflow as tf\n", "from six.moves import cPickle as pickle" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "1HrCK6e17WzV", - "colab_type": "text" + "id": "1HrCK6e17WzV" }, "source": [ "First reload the data we generated in `1_notmnist.ipynb`." @@ -66,39 +45,22 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "y3-cj1bpmuxc", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 11777, - "status": "ok", - "timestamp": 1449849322348, - "user": { - "color": "", - "displayName": "", - "isAnonymous": false, - "isMe": true, - "permissionId": "", - "photoUrl": "", - "sessionId": "0", - "userId": "" - }, - "user_tz": 480 - }, - "outputId": "e03576f1-ebbe-4838-c388-f1777bcc9873" + "id": "y3-cj1bpmuxc" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set (200000, 28, 28) (200000,)\n", + "Validation set (10000, 28, 28) (10000,)\n", + "Test set (18724, 28, 28) (18724,)\n" + ] + } + ], "source": [ "pickle_file = 'notMNIST.pickle'\n", "\n", @@ -114,25 +76,12 @@ " print('Training set', train_dataset.shape, train_labels.shape)\n", " print('Validation set', valid_dataset.shape, valid_labels.shape)\n", " print('Test set', test_dataset.shape, test_labels.shape)" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Training set (200000, 28, 28) (200000,)\n", - "Validation set (10000, 28, 28) (10000,)\n", - "Test set (18724, 28, 28) (18724,)\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "L7aHrm6nGDMB", - "colab_type": "text" + "id": "L7aHrm6nGDMB" }, "source": [ "Reformat into a shape that's more adapted to the models we're going to train:\n", @@ -142,39 +91,22 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "IRSyYiIIGIzS", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 11728, - "status": "ok", - "timestamp": 1449849322356, - "user": { - "color": "", - "displayName": "", - "isAnonymous": false, - "isMe": true, - "permissionId": "", - "photoUrl": "", - "sessionId": "0", - "userId": "" - }, - "user_tz": 480 - }, - "outputId": "3f8996ee-3574-4f44-c953-5c8a04636582" + "id": "IRSyYiIIGIzS" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set (200000, 784) (200000, 10)\n", + "Validation set (10000, 784) (10000, 10)\n", + "Test set (18724, 784) (18724, 10)\n" + ] + } + ], "source": [ "image_size = 28\n", "num_labels = 10\n", @@ -190,46 +122,26 @@ "print('Training set', train_dataset.shape, train_labels.shape)\n", "print('Validation set', valid_dataset.shape, valid_labels.shape)\n", "print('Test set', test_dataset.shape, test_labels.shape)" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Training set (200000, 784) (200000, 10)\n", - "Validation set (10000, 784) (10000, 10)\n", - "Test set (18724, 784) (18724, 10)\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "RajPLaL_ZW6w", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "RajPLaL_ZW6w" }, + "outputs": [], "source": [ "def accuracy(predictions, labels):\n", " return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))\n", " / predictions.shape[0])" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "sgLbUAQ1CW-1", - "colab_type": "text" + "id": "sgLbUAQ1CW-1" }, "source": [ "---\n", @@ -244,8 +156,7 @@ { "cell_type": "markdown", "metadata": { - "id": "na8xX2yHZzNF", - "colab_type": "text" + "id": "na8xX2yHZzNF" }, "source": [ "---\n", @@ -259,8 +170,7 @@ { "cell_type": "markdown", "metadata": { - "id": "ww3SCBUdlkRc", - "colab_type": "text" + "id": "ww3SCBUdlkRc" }, "source": [ "---\n", @@ -276,8 +186,7 @@ { "cell_type": "markdown", "metadata": { - "id": "-b1hTz3VWZjw", - "colab_type": "text" + "id": "-b1hTz3VWZjw" }, "source": [ "---\n", @@ -297,5 +206,17 @@ " ---\n" ] } - ] + ], + "metadata": { + "colab": { + "name": "3_regularization.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/courses/udacity_deep_learning/4_convolutions.ipynb b/courses/udacity_deep_learning/4_convolutions.ipynb index cc614fa23a6..87676a2d2a0 100644 --- a/courses/udacity_deep_learning/4_convolutions.ipynb +++ b/courses/udacity_deep_learning/4_convolutions.ipynb @@ -1,22 +1,9 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "version": "0.3.2", - "views": {}, - "default_view": {}, - "name": "4_convolutions.ipynb", - "provenance": [], - "toc_visible": true - } - }, "cells": [ { "cell_type": "markdown", "metadata": { - "id": "4embtkV0pNxM", - "colab_type": "text" + "id": "4embtkV0pNxM" }, "source": [ "Deep Learning\n", @@ -32,17 +19,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "tm2CQN_Cpwj0", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "tm2CQN_Cpwj0" }, + "outputs": [], "source": [ "# These are all the modules we'll be using later. Make sure you can import them\n", "# before proceeding further.\n", @@ -51,45 +33,26 @@ "import tensorflow as tf\n", "from six.moves import cPickle as pickle\n", "from six.moves import range" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "y3-cj1bpmuxc", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 11948, - "status": "ok", - "timestamp": 1446658914837, - "user": { - "color": "", - "displayName": "", - "isAnonymous": false, - "isMe": true, - "permissionId": "", - "photoUrl": "", - "sessionId": "0", - "userId": "" - }, - "user_tz": 480 - }, - "outputId": "016b1a51-0290-4b08-efdb-8c95ffc3cd01" + "id": "y3-cj1bpmuxc" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set (200000, 28, 28) (200000,)\n", + "Validation set (10000, 28, 28) (10000,)\n", + "Test set (18724, 28, 28) (18724,)\n" + ] + } + ], "source": [ "pickle_file = 'notMNIST.pickle'\n", "\n", @@ -105,25 +68,12 @@ " print('Training set', train_dataset.shape, train_labels.shape)\n", " print('Validation set', valid_dataset.shape, valid_labels.shape)\n", " print('Test set', test_dataset.shape, test_labels.shape)" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Training set (200000, 28, 28) (200000,)\n", - "Validation set (10000, 28, 28) (10000,)\n", - "Test set (18724, 28, 28) (18724,)\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "L7aHrm6nGDMB", - "colab_type": "text" + "id": "L7aHrm6nGDMB" }, "source": [ "Reformat into a TensorFlow-friendly shape:\n", @@ -133,39 +83,22 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "IRSyYiIIGIzS", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 11952, - "status": "ok", - "timestamp": 1446658914857, - "user": { - "color": "", - "displayName": "", - "isAnonymous": false, - "isMe": true, - "permissionId": "", - "photoUrl": "", - "sessionId": "0", - "userId": "" - }, - "user_tz": 480 - }, - "outputId": "650a208c-8359-4852-f4f5-8bf10e80ef6c" + "id": "IRSyYiIIGIzS" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set (200000, 28, 28, 1) (200000, 10)\n", + "Validation set (10000, 28, 28, 1) (10000, 10)\n", + "Test set (18724, 28, 28, 1) (18724, 10)\n" + ] + } + ], "source": [ "image_size = 28\n", "num_labels = 10\n", @@ -184,46 +117,26 @@ "print('Training set', train_dataset.shape, train_labels.shape)\n", "print('Validation set', valid_dataset.shape, valid_labels.shape)\n", "print('Test set', test_dataset.shape, test_labels.shape)" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Training set (200000, 28, 28, 1) (200000, 10)\n", - "Validation set (10000, 28, 28, 1) (10000, 10)\n", - "Test set (18724, 28, 28, 1) (18724, 10)\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "AgQDIREv02p1", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "AgQDIREv02p1" }, + "outputs": [], "source": [ "def accuracy(predictions, labels):\n", " return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))\n", " / predictions.shape[0])" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "5rhgjmROXu2O", - "colab_type": "text" + "id": "5rhgjmROXu2O" }, "source": [ "Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes." @@ -231,17 +144,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "IZYv70SvvOan", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "IZYv70SvvOan" }, + "outputs": [], "source": [ "batch_size = 16\n", "patch_size = 5\n", @@ -296,67 +204,18 @@ " train_prediction = tf.nn.softmax(logits)\n", " valid_prediction = tf.nn.softmax(model(tf_valid_dataset))\n", " test_prediction = tf.nn.softmax(model(tf_test_dataset))" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "noKFb2UovVFR", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 37 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 63292, - "status": "ok", - "timestamp": 1446658966251, - "user": { - "color": "", - "displayName": "", - "isAnonymous": false, - "isMe": true, - "permissionId": "", - "photoUrl": "", - "sessionId": "0", - "userId": "" - }, - "user_tz": 480 - }, - "outputId": "28941338-2ef9-4088-8bd1-44295661e628" + "id": "noKFb2UovVFR" }, - "source": [ - "num_steps = 1001\n", - "\n", - "with tf.Session(graph=graph) as session:\n", - " tf.global_variables_initializer().run()\n", - " print('Initialized')\n", - " for step in range(num_steps):\n", - " offset = (step * batch_size) % (train_labels.shape[0] - batch_size)\n", - " batch_data = train_dataset[offset:(offset + batch_size), :, :, :]\n", - " batch_labels = train_labels[offset:(offset + batch_size), :]\n", - " feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}\n", - " _, l, predictions = session.run(\n", - " [optimizer, loss, train_prediction], feed_dict=feed_dict)\n", - " if (step % 50 == 0):\n", - " print('Minibatch loss at step %d: %f' % (step, l))\n", - " print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))\n", - " print('Validation accuracy: %.1f%%' % accuracy(\n", - " valid_prediction.eval(), valid_labels))\n", - " print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))" - ], "outputs": [ { + "name": "stdout", "output_type": "stream", "text": [ "Initialized\n", @@ -424,17 +283,34 @@ "Minibatch accuracy: 93.8%\n", "Validation accuracy: 82.9%\n", "Test accuracy: 90.0%\n" - ], - "name": "stdout" + ] } ], - "execution_count": 0 + "source": [ + "num_steps = 1001\n", + "\n", + "with tf.Session(graph=graph) as session:\n", + " tf.global_variables_initializer().run()\n", + " print('Initialized')\n", + " for step in range(num_steps):\n", + " offset = (step * batch_size) % (train_labels.shape[0] - batch_size)\n", + " batch_data = train_dataset[offset:(offset + batch_size), :, :, :]\n", + " batch_labels = train_labels[offset:(offset + batch_size), :]\n", + " feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}\n", + " _, l, predictions = session.run(\n", + " [optimizer, loss, train_prediction], feed_dict=feed_dict)\n", + " if (step % 50 == 0):\n", + " print('Minibatch loss at step %d: %f' % (step, l))\n", + " print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))\n", + " print('Validation accuracy: %.1f%%' % accuracy(\n", + " valid_prediction.eval(), valid_labels))\n", + " print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))" + ] }, { "cell_type": "markdown", "metadata": { - "id": "KedKkn4EutIK", - "colab_type": "text" + "id": "KedKkn4EutIK" }, "source": [ "---\n", @@ -449,8 +325,7 @@ { "cell_type": "markdown", "metadata": { - "id": "klf21gpbAgb-", - "colab_type": "text" + "id": "klf21gpbAgb-" }, "source": [ "---\n", @@ -462,5 +337,17 @@ "---" ] } - ] + ], + "metadata": { + "colab": { + "name": "4_convolutions.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/courses/udacity_deep_learning/5_word2vec.ipynb b/courses/udacity_deep_learning/5_word2vec.ipynb index c70ffe5577b..e975713ba9b 100644 --- a/courses/udacity_deep_learning/5_word2vec.ipynb +++ b/courses/udacity_deep_learning/5_word2vec.ipynb @@ -1,22 +1,9 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "version": "0.3.2", - "views": {}, - "default_view": {}, - "name": "5_word2vec.ipynb", - "provenance": [], - "toc_visible": true - } - }, "cells": [ { "cell_type": "markdown", "metadata": { - "id": "D7tqLMoKF6uq", - "colab_type": "text" + "id": "D7tqLMoKF6uq" }, "source": [ "Deep Learning\n", @@ -30,17 +17,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "0K1ZyLn04QZf", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "0K1ZyLn04QZf" }, + "outputs": [], "source": [ "# These are all the modules we'll be using later. Make sure you can import them\n", "# before proceeding further.\n", @@ -57,15 +39,12 @@ "from six.moves import range\n", "from six.moves.urllib.request import urlretrieve\n", "from sklearn.manifold import TSNE" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "aCjPJE944bkV", - "colab_type": "text" + "id": "aCjPJE944bkV" }, "source": [ "Download the data from the source website if necessary." @@ -73,39 +52,20 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "RJ-o3UBUFtCw", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 14640, - "status": "ok", - "timestamp": 1445964482948, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "2f1ffade4c9f20de", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "c4ec222c-80b5-4298-e635-93ca9f79c3b7" + "id": "RJ-o3UBUFtCw" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found and verified text8.zip\n" + ] + } + ], "source": [ "url = 'http://mattmahoney.net/dc/'\n", "\n", @@ -123,23 +83,12 @@ " return filename\n", "\n", "filename = maybe_download('text8.zip', 31344016)" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Found and verified text8.zip\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "Zqz3XiqI4mZT", - "colab_type": "text" + "id": "Zqz3XiqI4mZT" }, "source": [ "Read the data into a string." @@ -147,39 +96,20 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "Mvf09fjugFU_", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 28844, - "status": "ok", - "timestamp": 1445964497165, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "2f1ffade4c9f20de", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "e3a928b4-1645-4fe8-be17-fcf47de5716d" + "id": "Mvf09fjugFU_" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data size 17005207\n" + ] + } + ], "source": [ "def read_data(filename):\n", " \"\"\"Extract the first file enclosed in a zip file as a list of words\"\"\"\n", @@ -189,23 +119,12 @@ " \n", "words = read_data(filename)\n", "print('Data size %d' % len(words))" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Data size 17005207\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "Zdw6i4F8glpp", - "colab_type": "text" + "id": "Zdw6i4F8glpp" }, "source": [ "Build the dictionary and replace rare words with UNK token." @@ -213,39 +132,21 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "gAL1EECXeZsD", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 28849, - "status": "ok", - "timestamp": 1445964497178, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "2f1ffade4c9f20de", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "3fb4ecd1-df67-44b6-a2dc-2291730970b2" + "id": "gAL1EECXeZsD" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Most common words (+UNK) [['UNK', 418391], ('the', 1061396), ('of', 593677), ('and', 416629), ('one', 411764)]\n", + "Sample data [5243, 3083, 12, 6, 195, 2, 3136, 46, 59, 156]\n" + ] + } + ], "source": [ "vocabulary_size = 50000\n", "\n", @@ -272,24 +173,12 @@ "print('Most common words (+UNK)', count[:5])\n", "print('Sample data', data[:10])\n", "del words # Hint to reduce memory." - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Most common words (+UNK) [['UNK', 418391], ('the', 1061396), ('of', 593677), ('and', 416629), ('one', 411764)]\n", - "Sample data [5243, 3083, 12, 6, 195, 2, 3136, 46, 59, 156]\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "lFwoyygOmWsL", - "colab_type": "text" + "id": "lFwoyygOmWsL" }, "source": [ "Function to generate a training batch for the skip-gram model." @@ -297,46 +186,35 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "w9APjA-zmfjV", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 113, - "status": "ok", - "timestamp": 1445964901989, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "2f1ffade4c9f20de", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "67cccb02-cdaf-4e47-d489-43bcc8d57bb8" + "id": "w9APjA-zmfjV" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data: ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first']\n", + "\n", + "with num_skips = 2 and skip_window = 1:\n", + " batch: ['originated', 'originated', 'as', 'as', 'a', 'a', 'term', 'term']\n", + " labels: ['as', 'anarchism', 'a', 'originated', 'term', 'as', 'a', 'of']\n", + "\n", + "with num_skips = 4 and skip_window = 2:\n", + " batch: ['as', 'as', 'as', 'as', 'a', 'a', 'a', 'a']\n", + " labels: ['anarchism', 'originated', 'term', 'a', 'as', 'of', 'originated', 'term']\n" + ] + } + ], "source": [ "data_index = 0\n", "\n", "def generate_batch(batch_size, num_skips, skip_window):\n", " global data_index\n", " assert batch_size % num_skips == 0\n", - " assert num_skips <= 2 * skip_window\n", + " assert num_skips \u003c= 2 * skip_window\n", " batch = np.ndarray(shape=(batch_size), dtype=np.int32)\n", " labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)\n", " span = 2 * skip_window + 1 # [ skip_window target skip_window ]\n", @@ -365,31 +243,12 @@ " print('\\nwith num_skips = %d and skip_window = %d:' % (num_skips, skip_window))\n", " print(' batch:', [reverse_dictionary[bi] for bi in batch])\n", " print(' labels:', [reverse_dictionary[li] for li in labels.reshape(8)])" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "data: ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first']\n", - "\n", - "with num_skips = 2 and skip_window = 1:\n", - " batch: ['originated', 'originated', 'as', 'as', 'a', 'a', 'term', 'term']\n", - " labels: ['as', 'anarchism', 'a', 'originated', 'term', 'as', 'a', 'of']\n", - "\n", - "with num_skips = 4 and skip_window = 2:\n", - " batch: ['as', 'as', 'as', 'as', 'a', 'a', 'a', 'a']\n", - " labels: ['anarchism', 'originated', 'term', 'a', 'as', 'of', 'originated', 'term']\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "Ofd1MbBuwiva", - "colab_type": "text" + "id": "Ofd1MbBuwiva" }, "source": [ "Train a skip-gram model." @@ -397,17 +256,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "8pQKsV4Vwlzy", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "8pQKsV4Vwlzy" }, + "outputs": [], "source": [ "batch_size = 128\n", "embedding_size = 128 # Dimension of the embedding vector.\n", @@ -461,86 +315,18 @@ " valid_embeddings = tf.nn.embedding_lookup(\n", " normalized_embeddings, valid_dataset)\n", " similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings))" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "1bQFGceBxrWW", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 23 - }, - { - "item_id": 48 - }, - { - "item_id": 61 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 436189, - "status": "ok", - "timestamp": 1445965429787, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "2f1ffade4c9f20de", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "5ebd6d9a-33c6-4bcd-bf6d-252b0b6055e4" + "id": "1bQFGceBxrWW" }, - "source": [ - "num_steps = 100001\n", - "\n", - "with tf.Session(graph=graph) as session:\n", - " tf.global_variables_initializer().run()\n", - " print('Initialized')\n", - " average_loss = 0\n", - " for step in range(num_steps):\n", - " batch_data, batch_labels = generate_batch(\n", - " batch_size, num_skips, skip_window)\n", - " feed_dict = {train_dataset : batch_data, train_labels : batch_labels}\n", - " _, l = session.run([optimizer, loss], feed_dict=feed_dict)\n", - " average_loss += l\n", - " if step % 2000 == 0:\n", - " if step > 0:\n", - " average_loss = average_loss / 2000\n", - " # The average loss is an estimate of the loss over the last 2000 batches.\n", - " print('Average loss at step %d: %f' % (step, average_loss))\n", - " average_loss = 0\n", - " # note that this is expensive (~20% slowdown if computed every 500 steps)\n", - " if step % 10000 == 0:\n", - " sim = similarity.eval()\n", - " for i in range(valid_size):\n", - " valid_word = reverse_dictionary[valid_examples[i]]\n", - " top_k = 8 # number of nearest neighbors\n", - " nearest = (-sim[i, :]).argsort()[1:top_k+1]\n", - " log = 'Nearest to %s:' % valid_word\n", - " for k in range(top_k):\n", - " close_word = reverse_dictionary[nearest[k]]\n", - " log = '%s %s,' % (log, close_word)\n", - " print(log)\n", - " final_embeddings = normalized_embeddings.eval()" - ], "outputs": [ { + "name": "stdout", "output_type": "stream", "text": [ "Initialized\n", @@ -628,10 +414,10 @@ "Average loss at step 34000 : 3.48593705952\n", "Average loss at step 36000 : 3.50112806576\n", "Average loss at step" - ], - "name": "stdout" + ] }, { + "name": "stdout", "output_type": "stream", "text": [ " 38000 : 3.49244426501\n", @@ -721,10 +507,10 @@ "Average loss at step 78000 : 3.41976813722\n", "Average loss at step 80000 : 3.39511853886\n", "Nearest to been: become, be, remained, was, grown, were, prem, already," - ], - "name": "stdout" + ] }, { + "name": "stdout", "output_type": "stream", "text": [ "\n", @@ -785,72 +571,80 @@ "Nearest to they: we, there, you, he, she, prisons, it, these,\n", "Nearest to more: less, most, very, quite, faster, larger, rather, smaller,\n", "Nearest to other: various, different, tamara, theos, some, cope, many, others,\n" - ], - "name": "stdout" + ] } ], - "execution_count": 0 + "source": [ + "num_steps = 100001\n", + "\n", + "with tf.Session(graph=graph) as session:\n", + " tf.global_variables_initializer().run()\n", + " print('Initialized')\n", + " average_loss = 0\n", + " for step in range(num_steps):\n", + " batch_data, batch_labels = generate_batch(\n", + " batch_size, num_skips, skip_window)\n", + " feed_dict = {train_dataset : batch_data, train_labels : batch_labels}\n", + " _, l = session.run([optimizer, loss], feed_dict=feed_dict)\n", + " average_loss += l\n", + " if step % 2000 == 0:\n", + " if step \u003e 0:\n", + " average_loss = average_loss / 2000\n", + " # The average loss is an estimate of the loss over the last 2000 batches.\n", + " print('Average loss at step %d: %f' % (step, average_loss))\n", + " average_loss = 0\n", + " # note that this is expensive (~20% slowdown if computed every 500 steps)\n", + " if step % 10000 == 0:\n", + " sim = similarity.eval()\n", + " for i in range(valid_size):\n", + " valid_word = reverse_dictionary[valid_examples[i]]\n", + " top_k = 8 # number of nearest neighbors\n", + " nearest = (-sim[i, :]).argsort()[1:top_k+1]\n", + " log = 'Nearest to %s:' % valid_word\n", + " for k in range(top_k):\n", + " close_word = reverse_dictionary[nearest[k]]\n", + " log = '%s %s,' % (log, close_word)\n", + " print(log)\n", + " final_embeddings = normalized_embeddings.eval()" + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "jjJXYA_XzV79", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "jjJXYA_XzV79" }, + "outputs": [], "source": [ "num_points = 400\n", "\n", "tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact')\n", "two_d_embeddings = tsne.fit_transform(final_embeddings[1:num_points+1, :])" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "o_e0D_UezcDe", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 4763, - "status": "ok", - "timestamp": 1445965465525, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "2f1ffade4c9f20de", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "df22e4a5-e8ec-4e5e-d384-c6cf37c68c34" + "id": "o_e0D_UezcDe" }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3MAAANpCAYAAAChBGCHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdAldUfx/H3BdlbQEVzoyDukZaae5aZ5tbcIzUz9x5Z\njhwNNXMVztTExFHqT9Ny50hFc+ZKEVBwAbLh/v4gSXILChc/r3+69/Lc53yfewL8cM5zjsFoNBoR\nERERERERk2KW0QWIiIiIiIjI01OYExERERERMUEKcyIiIiIiIiZIYU5ERERERMQEKcyJiIiIiIiY\nIIU5ERERERERE5TmMBceHk7fvn1p2LAhb775JgEBAdy6dYvOnTtTv359unTpQnh4eHrUKiIiIiIi\nIv8wpHWfuaFDh/Lqq6/SvHlzEhISiI6OZvbs2bi4uNC9e3fmzZtHeHg4gwYNSq+aRUREREREXnpp\nGpmLiIjg4MGDNG/eHIBs2bLh4ODAtm3baNq0KQBNmzbll19+SXulIiIiIiIikiJbWt4cGBhI9uzZ\nGT58OKdOnaJ48eKMGDGC69ev4+bmBoCbmxvXr19Pl2JFREREREQkWZpG5hISEjhx4gRt2rTB398f\nGxsb5s2bl+oYg8GAwWBIU5EiIiIiIiKSWprCXK5cuciZMyelSpUCoH79+pw4cQI3NzdCQ0MBuHbt\nGtmzZ3/kedJ4256IiIiIiMhLJ03TLN3d3fHw8ODChQsULFiQvXv34unpiaenJ/7+/vTo0YM1a9ZQ\np06dR57HYDAQGhqRllIkE3N3d1D/ZmHq36xLfZu1qX+zLvVt1qb+zbrc3R2e+j1pCnMAo0ePZtCg\nQcTHx5MvXz4mTZpEYmIi/fr148cffyRPnjx89dVXaW1GRERERERE7pHmMOft7c2PP/543+sLFy5M\n66lFRERERETkIdK8abiIiIiIiIi8eApzIiIiIiIiJkhhTkRERERExAQpzImIiIiIiJgghTkRERER\nERETpDAnIiIiIiJighTmRERERERETJDCnIiIiIiIiAlSmBMRERERETFBCnMiIiIiIiImSGFORERE\nRETEBCnMiYiIiIiImCCFOREREREREROkMCciIiIiImKCFOZERERERERMkMKciIiIiIiICVKYExER\nERERMUEKcyIiIiIiIiZIYU5ERERERMQEKcyJiIiIiIiYIIU5ERERERERE6QwJyIiIiIiYoIU5kRE\nREREREyQwpyIiIiIiIgJUpgTERERERExQQpzIiIiIiIiJkhhTkRERERExAQpzImIiIiIiJgghTkR\nERERERETpDAnIiIiIiJighTmRERERERETJDCnIiIiIiIiAlSmBMRERERETFBCnMiIiIiIiImSGFO\nRERERETEBCnMiYiIiIiImCCFOREREREREROkMCciIiIiImKCFOZERERERERMkMKciIiIiIiICVKY\nExERERERMUEKcyIiIiIiIiZIYU5ERERERMQEKcyJiIiIiIiYIIU5ERERERERE6QwJyIiIiIiYoIU\n5kREREREREyQwpyIiIiIiIgJUpgTERERERExQQpzIiIiIiIiJkhhTkRERERExAQpzImIiIiIiJgg\nhTkRERERERETpDAnIiIiIiJighTmRERERERETJDCnIiIiIiIiAlSmBMRERERETFBCnMiIiIiIiIm\nSGFORERERETEBCnMiYiIiIiImCCFOREREREREROkMCciIiIiImKCFOZERERERERMkMKciIiIiIiI\nCVKYExERERERMUEKcyIiIiIiIiZIYU5ERERERMQEKcyJiIiIiIiYIIU5ERERERERE6QwJyIiIiIi\nYoIU5kREREREREyQwpyIiIiIiIgJUpgTERERERExQQpzIiIiIiIiJkhhTkRERERExAQpzImIiIiI\niJgghTkRERERERETpDAnIiIiIiJighTmRERERERETJDCnIiIiIiIiAlSmBMRERERETFBCnMiIiIi\nIiImSGFORERERETEBCnMiYiIiIiImCCFOREREREREROULaMLEBERkcxnxYqlbNiwHoBGjZpQrVoN\nBg78kFKlyvLnnwG4u+dg0qTPsbKy4sqVQL74Ygq3bt3E2tqaoUNHki9fgYy9ABGRl4BG5kRERCSV\nU6dOsnHjT8yfv4i5cxeyfr0/ERHhBAZeplmzlixZshJ7ewe2b98GwJQpE+jffzDffbeE3r0/4vPP\nJ2fwFYiIvBw0MiciIiKpHD16hGrVamJlZQ1A9eq1CAg4jIdHHjw9iwDg5eVNcHAQ0dHRHDt2lNGj\nh6a8Pz4+IUPqFhF52SjMiYiISCoGg+GBr1taWqQ8NjMzJykpDqMxCQcHBxYsWPaiyhMRkX9omqWI\niIikUrp0GXbs+I3Y2Biio6PZseNXSpcue99xRqMRW1s7cufOza+//pLy2tmzf73okkVEXkoamRMR\nEZFUihb15s03G9G9e0cA3n67KQ4OjveN2N19PmbMeKZN+4xFi3xJSEigTp16KdMxRUTk+TEYjUZj\nRhcBEBoakdElyHPi7u6g/s3C1L9Zl/o2a1P/Zl3q26xN/Zt1ubs7PPV7NM1SREREntnx4+eYP38j\nf/xxMqNLERF56SjMiYiIyDNZt24/LVpEM3JkC1q1smLhwu0ZXZKIyEtFYU5ERESeyeLFNwgLex0w\nEB5emqVLYzK6JBGRl4rCnIiIiDwTo9HwyOciIvJ8KcyJiIjIM2nd2gEXl0MA2NmdpkULLZItIvIi\n6aeuiIiIPJMWLSpToMAJ9u3zo2TJXFSvXiujSxIReakozImIiMgze/VVH1591SejyxAReSlpmqWI\niIiIiIgJUpgTERERERExQQpzIiIiIiIiJkhhTkRERERExAQpzImIiGSAyMhI/P1XZXQZIiJiwhTm\nREREMkBERDj+/n4ZXYaIiJgwbU0gIiKSAebMmcmVK4F07tyWIkW8qFatJlWrVmP48EE4OjoyfPgY\nfvppLUFBV+jRozcrVixlw4b1ADRq1ISWLdtk8BWIiEhG08iciIhIBujVqy958rzCggXLqFTpdY4e\nPQxAWNg1/v77IgBHjx6hbNlynDp1ko0bf2L+/EXMnbuQ9ev9+euv0xlYvYiIZAYKcyIiIhnAaDSm\nPC5VqgwBAUe4ePECBQsWxsUlO9evh3H8+DFKlCjN0aNHqFatJlZW1tjY2FC9ei0CAg5nYPUiIpIZ\naJqliIhIBnN3z0FkZAT79u2hdOmyhIeHs3XrFmxtbbGxscFgMKQ63mg03veaiIi8fDQyJyIikgFs\nbW2JiopKeV68eElWrlxOmTLlKF26DCtWLKVUqbIAlC5dhh07fiM2Nobo6Gh27vwt5WsiIvLy0sic\niIhIBnBycqZkydJ06NCK116rTKlSZThwYB958rxCzpy5iIgIp3Tp5MBWtKg3b77ZiO7dOwLw9ttN\nKVKkaEaWLyIimYDBeO+k/QwUGhqR0SXIc+Lu7qD+zcLUv1mX+jbzuHr1KsHBoXh7e2JtbZ0u51T/\nZl3q26xN/Zt1ubs7PPV7NM1SREQkE/P13U61apepV8+DRo02cflySEaXJCIimYTCnIiISCYVHx/P\nrFnx3LxZEyjA0aPt+eKLgxldloiIZBIKcyIiIplUXFwcUVH2qV6LibHMoGpERCSzUZgTERHJpOzs\n7Kha9W8gGgBHx8M0bOiUsUWJiEimodUsRUREMrHZs5tRvPhPhIVBzZq5qF27UkaXJCIimYTCnIiI\nSCaWLVs2+vVrkNFliIhIJqRpliIiIiIiIiZIYU5ERERERMQEKcyJiIjIA02ePJ6LFy9kdBkiIvIQ\numdOREREHmjo0FEZXYKIiDyCwpyIiMhLIDo6mjFjhhEaGkpSUiIfftgHBwc3vv76S6Kjo3FwcMBo\nNBIaGsrVq8GMGPEx/v5+tG79Ht98M4OkpCQGDRrGwoXfcvr0SfLnL8DkyV/i6upGnz49KF68JIcO\nHSQyMoJhw8ZQunSZjL5kEZEsT9MsRUREXgL79u3BzS0HCxcuY/HiH6hWrRrTp09lwoQpfPfdEgoX\n9uTatWssW7aKfPnyU6BAAQwGAwcO7KNBgzdp2/Y9xowZTrly5alf/03atGnPvHnfAGAwGEhKSmL+\n/EX07TuQBQvmZfDVioi8HBTmRETkpRcZGYm//yoADh06yJAh/TO4ovRXuHARDh7cx+zZMwkIOEJQ\nUBDnz5+jX7/edO7clj17dnPtWgizZ8+kWLES7N27G4CDB/dRu3Y9SpQoxZ07kSxZspBjx46yeLEv\noaGhKeevXr0mAF5e3oSEBGfINYqIvGw0zVJERF56ERHh+Pv70bRp84wuBUgOl1u2bKJp0+YcOnSQ\nFSu+Z8qUL9N0zrx58+Hr+z179+5i/vxveOONKhQsWJg5c3xTjomIiGDv3l34+a1g9+4d5MiREzCQ\nJ88rnDhxnGzZsuHunoMvvpiJq6tbqvNbWFgCYGZmTmJiYppqFRGRJ6OROREReenNmTOTK1cC6dy5\nLbNnzyA6OopRo4bSrl1zPvlk9Auv5264fBpJSUmP/HpYWBiWlpbUq9eQNm3ac/ToUW7dusWffx4D\nICQkhKCgK9Sr15BOnboRGxtLSEgwFSu+BsDGjeuwsrKmXr03mTx5AgkJCVy4cP7ZLlBERNKFRuZE\nROSl16tXXy5cOM+CBcs4fPgPhg8fyNKlfri6utGrV1eOHj1CqVIvbkGPe8NltmzZsLa2YdSooVy4\ncA4vr2KMGfMpAM2bv03t2vU4cGAf7dp1wMHBEV/fecTFxZEnzyuMGDEWGxsbTp06ycSJ47hy5TLm\n5ubkyZOXyZMncft2DNOnTyMyMpLIyAgSExNxdnYmWzYLGjZshJ/fcl59tRKHD//BX3/9xfTp3zB9\n+uf89dcZWrR4m65d36dgwUIPuALDC/usREReZgpzIiLy0jMajakeFytWHDc3dwA8PYsSEhL8QsPc\n48LlsWMBlCxZGoPBgJOTM76+S7l16xajRg1h+vRvsLKyZunShYwePYzg4CvcunWLZctW4eTkzNat\nm9m//3eKFy9OaGgEX3/98MVKPvpoIJA86jdt2nTs7R0eePzMmXNTHjs7O+Pntzb9PxQREbmPwpyI\niMh/3L3/C8Dc3OyF3wP2uHAZHBxMyZKlAahduy4Ax48f4+LF8/Ts2QWA+PgEwsKuMWHCVEaMGES/\nfr2B5GDm6ur+xLVs3nyETz4JJCzMHR+fv5k3rw5ubtn/aSOedet2YzQaady4CpaWlo85m4iIpCeF\nOREReaiFC79l8+aNODu7kCNHTry8itGmzXsZXVa6s7W1JSoqKqPLeKj7w2VCynMbG5uUxxUqVOLj\njycAMHXqRDZsWM/UqZNwcHAkVy4PgoKCuHPnDtHR0VSsWJEiRbyoVKlySp+2b9+SqVNnYDQmMWBA\nH4oXL8mmTfs5f96PhAQPdu0yMn7893z11TvEx8fToYMfW7e2BQysWLGM779/FysrqxfzoYiISPos\ngJKYmEiTJk3o2bMnALdu3aJz587Ur1+fLl26EB4enh7NiIgIEBwcRLt2zZk8eQLt27dkwIA+xMbG\npns7R48eZfv2bSxatIJp02Zw6tRJDFn0VignJ2dKlixNhw6tmD17RoZf57OESx+fEhw7FsCVK4EA\n9OnTH2dnF775Zj4RERE4O2dn0aLlJCUlYWZmxv79+++bOmq458KvXAnknXfe5fbtYSQkeNw9gtu3\nbQHw89vO1q0dAAfAnh07OrFs2fZnvWQREXkG6TIyt3jxYgoXLsydO3cAmDdvHpUrV6Z79+7MmzeP\nefPmMWjQoPRoSkREgMDAy4wbN4mhQ0cyZsxwtm/fRr16DdO1jUOHDvHGGzWwsLDAwsKCKlXe4J7Z\nf1nO2LHjH/h6//5DXnAlqcOllZUV2bO7PvY9Li4ujBz5MR9/PIK4uHgAEhISMDc3x9XVjbNnz/Dm\nm7UJD7+NmZkZc+fOZe/e3VStWo3mzd9m1ar1AMTGxtC3b09y5sxF9uyu5Mo1HisrX5KSbLh+/UMq\nVkwOfPHxRlL/M8Kc+PhHr6gpIiLpK81hLiQkhO3bt9OzZ08WLlwIwLZt21i6dCkATZs2pX379gpz\nIiLpyMMjD56eRYDkTZqDg4PSvQ2DwZDq3i3IwknuH7Nnb+P77+NJTDTn3XcTGDy4QYbV8iTh0s9v\nXaqvlStXgfnzF6c8b9GiMVFRUZiZGRgz5lPy5s1HixaNSUhIwMnJCTMzAxYWFhQpUpRDhw4SFxfH\nwYP7KVOmHBcunGPKlAnMmjWeRYv+4tKlq0RHf0rPnsv/OXcV/PwWs39/J8BAuXILadv2zXT/HERE\n5OHSPM1y4sSJDBkyBDOzf091/fp13NySNxN1c3Pj+vXraW1GRETuYWlpkfL4eW3SXK5cOXbv3klc\nXBxRUVHs2bMrw6cfPk8HDhxn6tTCnDnTnHPnmjJjxqts3Lgvo8t6qMGDP+LOnchHHnPt2jUaNVrP\n0aNedOz4FZcvhxAbG4u1tTUXLlzA1taO06dPUatWXVavXklwcBC7du2gcuU3SEpK4tixo0yaNI6g\noGVky7YVa+uklKmYtra2/PDDW3z88Y+MHbsKP7+G2Nvbv4hLFxGRf6RpZO7XX3/F1dUVHx8f9u17\n8C88g8GQag7+w7i7O6SlFMnk1L9Zm/r3xYqNtSNbNvOUz93e3gozs8R07wd395LUr1+XLl3a4ubm\nho9PMXLlcsuy/X3hQiiRkZVSnsfGFiAo6Gimvd6FC30f+XWj0UhiIoSFVSE21gczsxF07dqNhIQI\nmjdvxrFjx/D0LMTly5dZunQBwcHB5MuXj7//Pk/16q+zfPkinJwc+emn9Q9tw93dgbFjW6b3pUk6\nyKz/30r6UP/KXWkKc4cPH2bbtm1s376duLg4IiMjGTx4MK6uroSGhuLu7s61a9fInj37Y88VGhqR\nllIkE3N3d1D/ZmHq3xfvxo07JCYmpXzukZGxxMTEpXs/uLs70LhxS1q16khMTAx9+vSgdeuCWba/\ny5cvjIfHbwQH1wTA1XU/ZcrkzhTX+7//bWDVqh9ISIjHx6cEAwYMpVWrJvj6LsXR0emBq462aNGa\nhIT82Nntxs3tC8zNw8mevTEJCetZvdqf6OgoTpw4ycCBw6hVqw6jRw/D0tICOzt7rK2dWbhwBb16\ndWHlSn9q1qyD0Wjk3LmzKdN7JfPSz+WsTf2bdT1LSE9TmBswYAADBgwAYP/+/fj6+jJ16lSmTJmC\nv78/PXr0YM2aNdSpUyctzYiICBAXF8fhwydwdXVk0aIVKa+n91YBcXFx/PzzXlxd7dm2bTV//32B\nuLg4GjZsRJEiXunaVmZSuHBepk+/yXff+WE0GmjdOjvly7+a0WVx8eIFtm3bwpw5vpibm/P555PZ\nvHljyqyXkyePp6w6Gh8fT5cu7+HtXYxs2bLh6BhHeHgcly/74ez8A0lJSzAYzOjQoTO//76L3Lnz\nUqtW8u/omjVrM2bMCF55pRtjxqxn5Mh6jBkznmnTPmPRIl8SEhKoU6eewpyISCbyXPaZ69GjB/36\n9ePHH38kT548fPXVV8+jGRGRl0ZERAStWn1HaOgerl79mM6d/Tl/fjmffPIZBQsWSrd2YmJiaNvW\nn1272gLxNGhwmgULPsHc3Dzd2sjMatQoRY0apTK6jFT++GM/p0+folu39kDyfXDR0cnbFhiNRo4d\nC7hv1dG7ihZ1p2xZC+LjV1GqlBmbNsWwYsVaNmxYT6FChejZs1/Ksb/9FsOZM39w5owd27bFcePG\nMr7+uhmffz7jxV6wiIg8sXQLcxUrVqRixYoAODs7p6xsKSIiaTdjxg4OHhyJq+sM7O1/Y+3aS3Tv\nXjVdgxzAokW/sWtXZyB5gZVNm1qxfv0umjSpnq7tyNNp2LAR77//QarXWrRo/M+jh686ajAY6NKl\nBl5e3ty6dYuff/7moW0cOWIN2P3zzJJDh+wYMuQn4uKy8e67r1CtWon0uBQREUlH6bJpuIiIPF8x\nMeaAGdevf4Cd3W6yZbtMzZr10r2d+/cOsyImJiHd25HHu7s5/OHDh1i+fCkffvg+sbGxjB07An//\nVQB07tyOCxfOsWzZYjp0aMWZMyfZs2cX8fHxTJw4jtOnTzJu3Eh27Uq9mbednV3K3rB3ubqm3qQ8\nOPgKCxe2YdmyFvTuncDBg6ef7wWLiMhTU5gTETEB775bmNy5t2BufhODIQp7+zDy5Xsl3dtp1+51\nSpVaTPLoTgKvv76UJk2qpHs7mcXKlcuIjY3J6DIeKjDwMp06dWP06E/4668ztG37LgcP7vtnS4Lk\n1aI9PYvSrl1Hbt68yaBB/Shc2JOAgCNUqFARL69iDB48glmzpv9zncn32ZUtW4GzZ8/SuXNbtm37\nBYCxY1/l9dcX4e6+gcKF53DnzuspdVy79gb/+9+FDPgERETkUZ7LPXMiIpK+ypYtwqJF8PHH3cmf\n/zVKlnRm/vxvUm0gnR5cXJzx86vFkiWrcHKyokWLxlhbW6drG5mJn98K6td/EyurzHmNdzeH9/Qs\nQkhIEAkJCVy5EkjevPnw81tLixaNqV69FnZ2dlSqVJk5c2YSEhJCdHQ0S5cuxNzcnBkzPic+Pp7Y\n2Bj8/NYC4OjoyKpVq1KtiFegQG7Wrn2XuLg4LlzITf36iUSlDNZF4eqqv/+KiGQ2CnMiIiYiKOg0\nxYvnYfz4oSQlJdGzZxcOHTpIuXIV0rUdFxdn+vZtkOWWv46OjmbMmGGEhoaSlJRIzZp1CAsLpW/f\nnjg7uzB9+uyMLvE+928OH/vAY6ZMmcCpUye4du0anTt349dft/LxxxPImzcfAElJSQwe7M/Oneew\ns4ulf393unat9ZA2LfHyKkyfPv9jwYJQYmIcqFnzBN26NX8+FykiIs9MYU5ExEQ0bNiIhg0bAWBm\nZsa8eQsztiATs2/fHtzccjB16nQA7tyJZMOG9cycORdHR6cMri5txo4dz6lTJ5g1azrvvdeJO3fu\nsGrVipSR2wkTFrNkSUfAEYAxY36mWbNbwMNXKR00qD49e0YQGxtH9uwlU7ZCEBGRzENzJkREMrmp\nUzdRpcoWqlX7H99++1tGl2OyChcuwsGD+5g9eyYBAUews7PP6JIe6+kClCHl+E6dupGQkEDHjq1p\n374lBw78wt0gBxAUVIRLl4Iee0Z7ewdcXV0V5EREMimDMfV6xhkmK03lkdSy2lQtSU39+3z9/PM+\nevb0JDa2AAAODkdYtSqesmW9n3vbaenbjRt/YsWK7zEYDBQu7Mno0Z88cx11677Bli07n/n994qI\niGDv3l2sW+dP+fKvsmHDer77bonJj8w9zurVe+nXz5OYmOStLHx8fuDgwcZERmql0qxIP5ezNvVv\n1uXu7vDU79E0SxGRTOzMmZspQQ4gIqIkR4+ufiFh7lmdP3+OxYt9mTt3AY6OToSHh6fxjOkzKhQW\nFoaDgwP16jXEzs6en35ai61t8hL9WSXMHT78FzNmnCEmxoIGDazo2DF5f8B3332d69e3sm3bYWxt\n4xg4sDg2NjZERuofhCIipkxhTkQkE6tcOR8uLge5eTN5kZPcuX/L9Js3Hzp0gFq16qYEJEdHx8e8\n48U4f/4ss2ZNx8zMQLZsFgwaNJw//wxg4MAPcXfPkSkXQHmQNWt+ZO3aHwGIjIzEwyM37dt3Yt68\nbzhx4haRkaUICZnE3r2XWbmyHo0avc2BA/to164DBQoksXTpUj77zMiBA7Xo2PH9DL4aERFJC4U5\nEZFMrFIlHz777Hf8/FZhZmaka1cPChZM//3l0pPBYCCTzOBPpWLF16hY8TWMRmPKKJ2XlzfNmrXK\n6NKeSpMmzWjSpBkJCQl89FEv3nqrMYsW+dK2bS9atSqBi8tPuLgs4MaND4iNTcLJyRlf36WEhYXy\n/vud8fVdir29A0OHfsTOnb/xxhs1MvqSRETkGWkBFBGRTK5p09dYtqw+S5c2oGbN0mk6V3BwEB06\nPN/wUq7cq/z66y+Eh98GSPlvZhAREUHLlj9QqVIIlSvv5vvvd2d0Sc/sq6+mUb78qzg4OHLx4nl8\nfb+kUKH2ODquxcIiGIPhOtmyGahduy4AJ08ep1y5Cjg5OWNubs7bb7/NkSOHM/gqREQkLRTmREQk\nXRUsWIgOHbrQp08POnVqy9dff5XRJaWYMmU727d3JTKyMoGBTZg2LYbo6OiMLuupbdiwnmvXrtKl\nSw+MRiMVKlRiyZKVDBw4DHv7jtjbV6Br1w04ONhgY2MD3D9imhlHT0VE5OlomqWIyEvqypVARo8e\nypAho/D2Lpau5753TzyAFSuWsmHDegAaNWpCy5Zt0rW9J3X7tgX3/h3z5s1cREREpAQeU3Dq1ElW\nrFjKrFnfAuDjU4IvvpjMlSuBtGjxGo0aRRMWFkrevPlo0cI35X3e3sX56qtp3L59C3t7BzZs2EDj\nxtoIXETElCnMiYi8hC5dusjHH49k5MhxFC7smebzrVq1h3XrIrGwSKBPnyKULVsk5WunTp1k48af\nmD9/EUlJRnr06EjZsuUoUsTric6dnnuc1azpxLp1J4iK8gGSKF/+GO7upnXP3OrVK4mIiKBv3+TF\nS7y9fRg58mM+/ngEcXHxAPTo0Zu8efOlep+bmxs9e/ahb9+eGI1G6tSpTdWq1V54/SIikn60z5w8\nd9oPJWtT/5oGP78VrF37I/ny5ePYsWM4OjoyceI08ucv8ND3PGnf/vbbUbp1syM8vAwAhQqtYePG\ncri4uACwcuVyIiLC6do1OXx8++0cnJ2dad68ddov7Bn4+//Otm23cXSMY+jQ6plmtc0XTd+7WZf6\nNmtT/2Zd2mdOROQldvdvcw8ayVqzZhXTp88mPj6eAQP6kDOnBwEBhx8Z5p7U7t1BhIe3SHl+/nx1\nfv99Hw0bVnlgPUaj8YE1nj79N7NnHyc+PhvNmuWkVq20LfbyME2bvkbTps/l1JnW5s2HmTs3hPh4\ncxo3tqBbt5oZXZKIiKQDLYAiImLCgoODaNPmXcaPH0uHDq24du3qfcdMnTqRoKArDBz4IT//vBYL\nCwsmTpzXjaYmAAAgAElEQVTKpk0/s2XLpjTXkC+fNWZmoSnPnZ1PUKxY3pTnpUuXYceO34iNTV5s\nZOfO3yhVqmyqc9y6dYuuXU+ybFkr/Pya8eGHBg4ePJ3m2gQCA4MZPDiOnTtb8vvvzZgwwZv//e+P\njC5LRETSgUbmRERMXPJCJp/g4/PgzcQHDx7B/v2/M3PmXO7cucPOnduxtrZmypSv6N+/N7a2dlSp\n8sYzt//ee9U5eXINmzc7YmWVQI8eNhQoUCrl60WLevPmm43o3r0jAG+/3ZQiRYqmOseOHcc4c6ZB\nyvPQ0Cps3epHhQpPdl+dJNu1awcXL57nvfc68d13c7G1tcPK6hWSkrZjb59IZGR97O0Xs3OnB++9\nVyOjyxURkTRSmBMRMXE5c3o8NMjd6/btW5iZmbNgwTIA7O3tmT9/cZrbNxgMTJzYlAkTHjx9EqBV\nq3a0atXuoecoVCgXtrbniIoq8885b5Ejh0Waa3vZVK1aLWVRE4PBgMEA5cp5Ym29mjt3kvvm9u1u\nvPba2YwsU0RE0onCnIiIibOxsX7sMeHh0dSvf5bIyLxUqfIDCxY0xdr68e97Gg+6N27t2l1cu3aH\nd96pQM6cbg99b4kSRejXbwsLFvxNfLwN9epdoWPHd9O1vsfp1asLs2f7PvTrdeu+wZYtO19gRakF\nBwcxcOCHlChRimPHAvD29qFhw0YsWDCPmzdvMXbsp1y4cJ7Tp0/Sv/8QAIxGKFDgFcqVS+L8+d0Y\njZE4OMzD0/MTALZs2cTSpQsxGo28/npVevX6MOVaW7Row549u7CysuKzzz7HxSV7hl27iIg8mO6Z\nExHJ4kJCgrl924wbN2oQE1OerVs7M336tufaptFopF+/H+nZsyKjRjWnWbODnD8f+Mj39OtXlwMH\nqnLgQCm++qo5ZmYv9lfUo4JcsvTbIuFZXbkSSOvW77Fs2Y9cuvQ3W7duZvZsX/r0+YjFixc8dGQ0\nf353Ro0qxy+/1OWVV7JjMBi4evUqc+Z8zYwZc1iwYBmnTp1g587fAIiJiaFEiVIsXLiM0qXLsm6d\n/wu8ShEReVIKcyIiJu5x+7CFhd0iKeneiRgWREQ83x//gYGB+PuXIinJDTBw5kwLvvsu4LHvs7S0\nxM7O7rnW9jB16ybfNxgWFsYHH3Snc+e2dOjQiqNHj6QcM3PmF7Rv35KPPurNrVu3AOjTpwezZ8+k\ne/eOtGnzLgEBRx54/vTg4ZGHQoUKYzAYKFiwEBUqVASgYMHChIQEPfF5jEYjx44do2zZ8jg5OWNu\nbk7dug04cuQwABYWFlSuXBUAL69ihIQEp//FiIhIminMiYiYmIiIcE6dOk1UVBQeHrlZtGjFA4+7\ndu0aoaGhFC1amBw5OpKU5ASAq+teGjTI+8D3pJcHbWFqNGb8yNajJde3ZcsmKlV6nQULlrFw4XI8\nPZMXa4mJicbb24clS1ZStmw5FiyYl/wug4GkpCTmz19E374DU15/Hiwt/72P0MzMDAsLi5THiYmJ\n91/RIz7y+/8I8O89j+bm/4Z/MzPDA88tIiIZT2FORMSEbN58hJo1/6BaNUfq19/B4cN/3XeM0Wik\nf/9VVKp0lddeC2LUqJ9ZtKgO77+/gg4dVjF7dhJVqxZ/rnXmzZuXd94JwGC4ARjx9PyRrl1LPtc2\n04uPT3E2bFiPr+88zp07i62tLZAcmGrXrgdAvXoNU43YVa+evG+bl5d3phnFMhqNPCBTA8lBrlSp\nUhw5cojbt2+RmJjIL79spkyZci+2SBERSRMtgCIiYkK+/PIKly61BuD06aJMm7aC778vkuqY1at3\nsHx5Y5KSXAFYssSTGjUC+PTTRg88Z3BwEEOH9mfx4h/SrU6DwcCMGc2pXn0H169H8/bb5cidO0e6\nnf95Kl26LLNmzWfPnl1MnPgxrVq1o0GDt1Id89+Nzy0sLAEwMzN/rqNY/x1Ne9AU27uv3V3N8mHc\n3d3p2bMPffv2xGg0UrnyG6lWwnxUGyIikjkozImImJA7d6xSPY+KsrzvmKtXo1KCHEBiYg6CgyOe\ne23/ZTAYaN68+gtvN61CQkJwd3fn7bebEBcXy19/naZBg7dISkri119/oXbtemzZsum+jc+ft/9O\nqR0xYmyqr90N4w0bJof2Ll16PPDYmTPnpjyuU6c+derUT9XO7du3+PbbxSQmJmJubk6NGrWpUaN2\n+l6MiIikC02zFBExIVWrRmIw3ATA0jKQGjXun0fXqFEZChZcl/Lc03Mtb7316OlzSUlJTJ48gfbt\nWzJgQB9iY2PTt3ATcHcE6vDhg3Tu3JYuXdrx669badGiDQDW1jacOHGcDh1acfjwITp37vawMz1V\nu8HBQXTo0CotpaebefN+o3LlE1SunEiLFquIiHjxfwQQEZEnZzA+6C71DBAaql8YWZW7u4P6NwtT\n/75YRqORefO2cvFiEqVK2dKmTdUHHnfixAUWLjwFGOnWrQRFi+Z76DmDg4No3bop3323FE/PIowZ\nM5yqVavRrl1L9e0L8DymuT6J/37vhoff5vXX/yQ0tME/ryTRq9cPjBv34Om5knnp53LWpv7Nutzd\nHZ76PZpmKSJiQgwGA++/X+exx/n4FGTKlIJPfF4Pjzx4eibfe+fl5U1w8JMvc/8y+vvvYEaO3E9Q\nkB1Fitzm88/rY29vn+bzXrkSyOjRQ6lTpwHHjh0hJiaGwMDLtG7djtjYOH75ZRMWFpZMnTodR0fH\ndLiSf0VERBAefu99jWZERlo89HgREcl4mmYpIiL/WfL++S7ikRUMGbKPzZvf488/m+Lv34FRo35J\n8zkvXbrI6NFDGTlyHM7Ozly4cJ6JE6cxf/5i5s37Bjs7O3x9v6dEiZJs2vRzOlxFah4eualU6Q8g\nue+dnf+gfn33dG9HXi6DB3/EnTuRjzxm8WLfF1SNSNajMCciIvKULl26dyqMGZcvp21U7ubNmwwf\nPoixYydQuLAnAGXLVsDGxgZnZ2fs7R2oUiV5pclChTyfaoPwJ2VmZsbChY3o08ePjh1/ZNasKOrV\n01YFkjZTp07Hzu7R3x9Llix8McWIZEGaZikiIk+05L38q0CBcM6dM5K82EkCBQs+euThcezt7cmZ\n04OAgMPkz18Ag8Fw3wbhd58/bIPw9GBvb8+YMW89/kB5KURHRzNmzDBCQ0NJSkqkY8duODk58c03\n00lMTMTb24dBg4bzxx8H+PnndXz66WcAHDp0kBUrvmfKlC9p3vxtfH2X4ujoxP/+t4FVq34gISEe\nH58SDBw4jLlzZxEXF0vnzm0pVKgwo0d/msFXLWJaFOZERF5y/13yvk2b915Y2w/6x52ZWeafNPLF\nF1UZOXIpwcH2FCkSzqefNkzT+SwsLJg4cSoDBvTBxsbmkcdmknXL5CWwb98e3NxyMHXqdBYu/Jb5\n87/h6tUQXn21EmXLVuDYsQA6dWqDlZU1Fy6c4+zZ03h6ejF16iRy5MhBjx6diIgI54svpmA0JrF/\n/+/Y2zswfPgYpk6dyLvvvknFiq9jaWnFggXLmDbtM7p160BsbAw1atSma9f3AWje/G0aNmzE7t07\nSUxM4NNPPyNfvgIZ++GIZBKZ/zemiIg8F3fu3GH9+p0cOHAsQ9q/ePEC27ZtYc4cXxYsWIbBYMbm\nzRszpJan5eHhjq9vEzZurMOMGe8+NoA9jsFgwNramilTvmLlymXcuRP5n9HR1Jt4a+RUXoTChYtw\n8OA+xo8fy6ZNPzN27AS8vX24dOkSAMHBweTMmQtf36W89loVxo0bTUJCAqGh17CwsGDu3AU4OjoB\nEBh4GSsrawA++qg3CQkJNG78LufOncVoTAKgR4/efPvtYhYuXM6RI4c4f/4skPz/vLOzC76+S2nS\npDnLly/NgE9DJHPSyJyIyEvo2rXrtGu3nYCAd7G0DKFTp3WMH9/4hdbwxx/7OX36FN26tQcgNjYW\nV1fXx7wr67l3ZNTe3p758xffd4yf39qUxw0bNkrZGFzkecqbNx++vt/z5ZdTSEhI4Pffd2Nubk6V\nKm8QFxfLxYvnCAqyonPntkRFRXHz5g0OHz6Ik5MTderUT/VHh0KFPKlY8XUaNXqHgQP7smLFagCC\ngq5w4cJ5ALZt28y6dWtITEzk+vUwLly4QKFCyfeQVq9eC4CiRb3Zvn3bC/4kRDIvhTkRkZfQrFl7\nCQjoABiIi3NgyZLr9O59hdy587zQOho2bMT773/wQts0Fdu2HWXSpEvcvGlD+fI3mTHjbaysrDK6\nLHmJhIWF4eDggLe3D0lJifz55zFCQoLJk+cVHBwcMDMzo3v3njRv3prExERat27KunVryJ07D9bW\n1qnOVaRIUVavXkX16rWwtLQgPPw2UVHRmJmZYW5uxuXLl1ix4nu+/XYJ9vb2TJw4jri42JT3371n\n1Nz8+d0zKmKKNM1SRMTEzJnzNatX+6U8/+67uU897Sg+3px7p+7Fx9sRHR2TXiU+kfLlK/Lrr1u5\nefMmkLxpdUhIyAutIbNKSEhg1KhAAgLacOlSE/z92zFlypaMLuup1K37RkaXIGl0/vxZevTohL+/\nH7t27aBz5+707z+EzZs34u+/CltbW5ydXYDkhXl8fEqwb99ecuTIec9Zkn/O5MiRk+7dezF+/BgC\nAy/Tv38fbtwIA6BChUoMHPght2/fws7Ojhs3rvP773te9OWKmCSFORERE1O7dl22bfv3H/a//rqV\nOnXqPdU52rQpQt68d+9Pi6Zu3T0ULPjkm4ynhwIFCtK9ey8GDPiAjh3bpPrH3cvu9u3bXL36yj2v\nWBISYplh9Twb3ddn6ipWfI1Fi5azfPlq2rbtwIQJY/nss08pWtSL7t17Mm/eIjZu/JlOndrSvn0r\nChYsxObN2zE3N0+ZYunntxZLS0sMBgO1a9dl6tTp5M2bj+++W4KPTwkAGjR4k5Ur1/LGGzVo27YZ\n48aNplSp0g+pSveMitzLYMwky2KFhkZkdAnynLi7O6h/szD1b8Z4770WfPXVbG7evMEXX0xm9uzv\nnvocp0//zdq1J3F2NqNLl1pky5Z65n16922vXl2YPfvBmwPfu5S5JK9Y2ajRjxw40BkAc/MQPvlk\nH92710q3Np73927dutXYsmUHUVFRDB8+iIiIcBITE+jevRdVq1YnODiIQYP6UqpUWf78MwB39xxM\nmvQ5VlZWnDx5nM8++xQzMzMqVKjEvn17WLz4BzZsWM/p0yfp338IAEOG9KNNm/aULVueadM+49Sp\nE/ethLh37y6+/vorrK1tKFmyFEFBQUyZ8iXR0dF8+eUULlw4T2JiAl269KBq1eqcP3+OSZM+ISEh\nnqQkIxMmTOGVV/I+t8/peXjSvk1MTMTc3PyJzhkdHY2NjQ2ffjqGY8eOMmHCZIoU8Xqm+vbsOcGm\nTZdwdjbywQe1NH34Ken3btbl7u7w+IP+Q/fMiYiYoJo16/Dbb79w/fr1px6Vu8vLKz9DhuRP58oe\n7m6QMxqNLFmyg2PHYihUyIyePeu8sBpMhcFgYPbsKkyc+D3h4da89hp061Y3o8t6JlZWVkyaNBVb\nWztu3bpFz56dqVq1OpC8wuG4cZMYOnQkY8YMZ/v2bdSr15CJE8cxbNgYihcvwZw5Xz9iJObfUZoe\nPXrj6OhIYmIi/fr15ty5s7zySl6mTp3EN998S65cHnz88UjunmrxYl8qVKjIiBFjiYiIoEePjlSo\nUIl161bTokUb6tVrQEJCQqa8P+vu3+EfN0K1cOG3bN68EWdnF3LkyImXVzH27NlJkSJFOXo0gLp1\n61O6dDm+/jo53Do5OTNy5FhcXd24ciWQL76Ywq1bN7G2tsbOzo7Q0GsEBQVRpcobFCnixfz5swkN\nvcawYaOfeEuR3347Su/eBsLCWgBxHDq0gCVL2jzwWuLi4pgyZTOBgZYUL26gT586GpUT+Q+FORER\nE1SrVl0mTx7P7du3mDVrfkaX80Tq1n2DLVt20rlzf06cuILRaMHq1R0IDFxLs2avEB0dxahRQ7lw\n4RxeXsUYMyZ58+CXdY+pfPk8mDPnxa4w+jwYjUbmzPmagIAjmJkZCAsL5ebNGwB4eOTB07MIAF5e\n3gQHBxEZGUl0dDTFiydPwatbtwF79ux8bDv/XQnx4sXzJCUlkjt3HnLl8gCgTp36rFvnD8D+/b+z\ne/cOli9fAkB8fDxXr4ZQvHhJFi/2JTT0KtWr18o0o3LBwUEMGNCH4sVLcvr0SYoVK86pUycwGAx0\n6NCV2rXrcujQQXx95+Hq6kJAwFESExPp2fMDVq/2Y/v2bSmfw+XLlzAzM2PTpp/x9Z3PvHkLyZ+/\nACNHDuGDD7rj7p6D48f/pG3b9+jWrRfHj//JvHmzWLBgGRMnjqNy5arMmjWd6OhoRowY+1TXsX59\nMGFhzf95ZsnOnWW5ejUkpbZ7DRiwjpUr2wDW+Ptf586djQwb9mYaP0mRrEVhTkTEBBUsWIjo6Chy\n5MhJ9uymspy/ge3bt3HxYggXL27E3PwG+fI1Z9euzjRrBn/9dZqlS/1wdXWjV6+uHDsWQMmSpVPt\nMeXvv4rly5cydOiojL4YeUKbN2/k9u1b+PouxdzcnBYtGhMbGwf8u0IhgJmZOYmJsfe9/967QczN\nzUlK+vf53dUOg4KuPGAlxDjuv28v9Z0lEyZMJW/efKley5+/AMWLl2TPnp0MGvQRQ4aMoFy5Cs9y\n6enuypVARo/+hNDQa6xZ8yOLFq3g1q2bdOvWgTJlygJw9uxfzJq1iWXLVrJgwXxCQkL47rulfPjh\n+xw7dgQzM3Pefbclr79ehfPnz9KtW8d/Apw7YWFhxMfHM3/+Yt55pz6LFy9g166dGAwQH58AJPfH\nwoXf4eNTnCFDRj71NVhaxpPcD8l9Y2d3E1vb3A889vBhZ8D6n3ZdOXDA1O4bFXn+tACKiIiJWrRo\nBdOnz87oMh4rODiIDh1aAXD06BGcnEoABhITXYmOfhVr6wsYDAaKFSuOm5s7BoMBT8+iBAcHp5zj\n3j2mgoODMuIy5BnduXMHF5fsmJubc+jQQUJCgh95vL29Pba2tpw48ScAW7duTvlarly5OXv2NEaj\nkatXQzh58jgAUVFRWFvb3LcSYr58+QkKupLS5tatW1KmWVas+BqrVq1IOfeZM6eA5GCYO3cemjdv\nzRtvVOfcubPp80Gkg5w5PfDxKUFAwGHq1m2AwWDAxSU7ZcqU4+TJE/98H/ng5uaGuXk2HBwcqVTp\ndQCcnJwJD0++zyoqKor+/T9gxIjBAHh7F2PBgmU0bdqcdu06YGZmwMHBkXz58jNt2nQWLFjG0qUr\nAVLaOH36FOHh4U99DQMGvE758guBSzg47OH99++kbCz+Xy4uqVfYdXKKfur2RLI6jcyJiJgIo9HI\n6tU7CQmJon794nh6Zo7pX0/HQP36Obl504/Tp0tgb3+ZJk2qAmBh8e9f3ZP3kkpIea49pkzP3Xub\n6tVrwNChA+jYsTVeXsXIn7/gfcf89/mwYaOZPHkCZmYGypQpj52dPQClS5fBwyMP773Xgvz5C+Ll\nVQwAT88iFC3qRdu2zciRI1fKSohWVlYMHDiMgQM/xNrahmLFfFLa6NSpGzNmfE7Hjq1JSkoid+48\nTJ78Jdu2beF//9tAtmzZcHV1o0OHLs/3g3oKNjbJo1QGg4H/rl9397rufh+VKlWa+fNnAwaioqI4\nceJPbGxsAfj++0V07fo+FSu+RsuW73DjxnUAkpKSCA8Px87Onty5c3P16lUSEhIxGo2cO3c2ZUps\npUqvU7HiawwZ0o8vvvgaW1vbJ74Gd3dX1qx5m+PHz5AzZ3by5Cn50GNHjCjM8OHLCArKQ5EiFxk5\nsuITtyPyslCYExExEYMHr2bp0rdISnLH13cj8+dHU65c0Ywu64kkJiYSFxfLtm1bSEhIYM2aFVy8\neIEJE4Jo3boRFy6cz+gSJZ1t3rwdSB4RGjt2PAMHfghAYmICc+d+TcOGjbC1taV163cZO/ZTmjRp\nxpdfTqF7947Ex8fRvXtPqlatzqhRQ7lx4zoDB/blypVAqlWrkXI/5b0edu9WuXIV+P77VQB8/vlk\nvL19gOSgN3jwiJTjbt68we7df/DWW415771O6flRpLtSpcqydu1qGjZsxO3btwkIOEyfPv1SfR95\ne/vg5OTE2LHDyZXLAw+P3ERGRmIwGIiJicbNzR0LCwu8vLw5cuQQnTq1JSwslLJlywMwZsx4OnRo\nxaBBHwIG6tSplxLmDAYDNWrUJioqimHDBjBt2gwsLZ98CqSVlRXlyj08xN1VuXIxfv3Vi/Dw2zg5\nldXiJyIPoDAnImICwsNvs25dXpKS3AG4fLkhixevxMPDnoEDP8Tb24czZ05RoEAhRo8eh5WVdQZX\nnNqlS39jZWWFv/8GOnRoRadObXBxceGDD/rh4pKdixcv8GT/TtMeU8/Kz28Fa9f+iJeXN6NH3x+G\nnrcrVwIZP34Kw4ePoVu3DmzdupnZs33ZtWs7ixcvoECBgimrS/700zpGjx5GnjyvkC2bBYmJiXz6\n6SSyZbPgnXca0Lhx04cuTDJ58nhatWpHgQLJI4Dr1/uzceNPxMcn4OXlxTvvvHvfe7ZtC2DQoNsE\nBpYlb97DTJ3qRK1aD9vnLOPc/X+/evWaHD9+lE6dkleB7N37owd+H+XIkZOPPhpE/vwF6NKlHS4u\n2ZkxYw67dm1n9OihODg4Ur58BaKiopgxYw6+vvNSRtk8PHLj4ZGbKVOmkytXrpRz3hua33qrMW+9\n9eSL9AQHBzF0aH8WL/6BU6dOsGnTBvr1G/TAY+/druTuxuQicj+FORERE2AwGDAzS0r12t2VwC9f\nvsSIEWMpUaIUkyZ9wurVq2jT5r0MqPLh3NzcU/az6tdvMH5+K5g0aVrK18uWLZ8yIgCk7CMG4Oe3\nLuWxt3cxZsyY8wIqznrWrFnF9OmzcXNzT3ktISHhvv0FnxcPjzwUKlQYSF7Ap0KFiv88LkxISBCh\noddSrS7p6urGhAlTOXHiT44eDcDW1g5IXvTk8uW/HxjmkpKS7lscp2XLtrRs2faRtc2YcYXAwOT7\nOi9fzs3MmT9kujDn4ZGbRYv+vcevd++P6N37o1TH/Pf7KGfOXHz22SfExcXx5ptvp4w4Vq1aPWV7\niHt16dIj1fPFi39IeZyYmMjnn2/mr7+ykS9fLMOG1cfCwuK/p3hi3t4+KaOkIvLsFOZEREyAg4Mj\nLVtew9f3EnFxr1Co0Dq6dfMGkv/6XqJEKQDq138TP78VmSrM3bhxnRs3rtO370Ag+d6/Jxld+/HH\nPaxZE4GlZSK9exemfPln26BYYOrUiQQFXWHgwA+5ejWEKlWqERoagqtrDt5//wM+/XQM0dHJi0sM\nGDCEEiVKpSxz7+zsct92ESdPHmfGjM+Jjo7BwsKCGTPmYGlpyZw5X3PkyB9cv34do9GIk5Mznp5F\naNy4KWFhoXTs2AZnZxccHR2xsLBgwoSP8fEp/s/m1dm4ciWQrVt3p7Q9f/5sjh37N8j5+a0gLi6O\nL7+cyooV3zN9+mzq1n2Dd95pxsGD+xkwYAjz5n1Dnz798fYuxv79v+PrO4+4uDjy5HmFESPGYmNj\nw+zZM9m9eyfm5uZUrPgaMTGpQ0VMzLOHlMxk7NjxT3zsnj0n+PXXS3h4WNCpU8379o3r1WsSf/zx\nFwZDEnv3Fuf69RiOH59OixZt2LNnF1ZWVnz22ee4uGTnypVAxo0bRWxsDFWqVMPPbwVbtuxIdb57\nR94OH/6DGTM+B5L/cPX118nbrTxsuxIR+ZfCnIiIifjkk8ZUq7afS5f28+ab5ciVy53g4KBUwehJ\ng9Kz6tWrS8rm308qe3ZXkpKSUhar2LJlE6VLl3nke3bsOMawYTm4fbs+AH/+uZYNG9xwdTWVbRgy\nl8GDR7B//+/MnDmXVat+YM+eXfj5/cDt27HExsbw5ZezsLS05PLlS4wbN4pvv10MwNmzZ+7bLsLb\n24exY0fwySef4e1djKioKCwtLfnpp7XY29szfPhYRowYhI2NLRMnTsXOzp5Ro4bi4ODAokXL+fnn\ndfj6zqN27bqp/l+tWPE1/vrrTMrz06dPsnz5avbt28vcubM4diyAFi1aM2fOTD76aCBVqlQDICYm\nhuLFS9CnTz8gOQwYDAZu3brF4sX/Z+8+A5o6uwCO/zNI2MsFooKigoLgrnsWt7Yqjrq1asW6xf1q\nnbgHWndFcSuu2rp3XXWhOHHjYIlMIRAgyfshEkGw1bo6nt8ncnPHc29Sm3Ofc88JwN9/CUqlMevX\nr2HLlg20adOOkyePs3HjdgBSUpJJTT3F9evhpKc7oFA85csv/1tFdvbvv8SQIabExbUDErh6dQcL\nFngb3g8Le8idO7d58mQ7IKNgwUlcvnwfrTYNd3cP+vbtz5IlC9m9eyfdu3+Lv/8cOnToRMOGjdi1\na/ufHn/z5vUMHz4ad3cP0tLSDDN+r7cruXr1Ch4ef/xvhyD814hgThAE4R/kyy9zV3OLjo7i+vVr\nuLuXe6tA6X28ayAH+h/XxYo5snPnVmbMmIyTUwm+/tr7D7c5dSqcxMR2htcPH9bj7NkztGhR652P\nL7ySVQGxVq06LwtWqMnIyGT+/Jncu3cXqVTK06dPDOtntYsAXraLiMDU1Ix8+fLj6qoPzrOesbpw\n4Xfu37/Hrl3b0Wgy0Wq1PH36hCpVvuDu3VAKFCgE6GeP586dkSOQk0gk9OjRmw0b1tK9e0dUKhVK\npZL8+QsglUqxtrYhMjKScuWyUh9fbSuVSqlXr2Gu87xx4xphYQ/o109fjTIjI5Ny5TwwMzNHoVAy\nffpkatSoTc2atfH1bULRoqe4ceMM7u4WtG/f5MNd9H+AnTtjiYur9/KVNYcP26FWq1EqlQBcunQe\nne4pxYq1BUAiUWNsXJSMDCNq1ND/N+niUoaLF88BcOPGNWbMmAeAl1djFi/2/8PjlyvnycKF82jU\nqKibZbUAACAASURBVAl16zagQIGCQO7vX1RUpAjmBOE1IpgTBEH4h3vXQOl9eHnV5tChk++0jZ2d\nvaGa4NtydDRBKo0xFHyxsrpJmTJF3mkfwptlL5CzZcsG8uXLz/jxU9BoNDRoUMPwXu52EZo/LFQz\nbNhIHj9+RGxsLH379s+2rYyAgPWG16amptSt24Dffz+DlZUNgYGb0Wq1SKUSAgM3G1LwALy8mhAa\netPQqsLWNh/lynkY9qVQKN84G1258hdMnDgt1/KVKwO5ePE8x48fYceOrfj7L6VDh9w3CqZNm0jN\nmrVzBYvva9Wq5Ziamv1t0qGNjDJyvFYq03I9S9mkiRcnT5bhwYPCFC0aycyZbowYccHwvlQq+ctt\nQ7p06UGNGrU5e/YUPj7fMm/eopfjyv39EwQhJ9E0XBAE4R9OJpMxfvwU1q8PYurUmYa76R/H26dw\nqtVqZs3ay6hRB9m79+I7HaVTpzr07r2fYsV2UapUEOPGxeHs7PSOY/37yN44HWDjxnUEBKz4jCN6\n5dixw8TFxQGwf/8etFp9oZ3ExARu374F6J9vOn1aH8QXK+ZEbOxzQkNvAtC2bQvi4+OoWrU6O3Zs\nw9OzIseOHebmzeukpaWRlJSIu7uHofn3wYP78PSsAOgD/axjnDr1G5mZr3oLJieraN58J+XLn+bX\nXx8QHa0fo6mpKSkpKX94ThKJBDe3cly7FkJ4+FMAUlNTefLkMampqSQnv6B69ZoMHDiMe/fu/OF+\n3tW0aRM5fvwIgOFavmm/Pj5/3MNu7dqcM+F/tv5fNWCAG6VLBwHxWFhcoHdvqaFgEUClSlUJCbnI\n+vV1uXjRjW3b6mFnZ/7G/bm5lePYMf01OHz44BvXyxIe/pQSJZzp3Lk7rq5lefz4kahaKwhvSczM\nCYIg/AMdP36V48cjMDdP5F0CrE/pu+92sHdvD0BBUNB15sw5S5s21d9qW4lEwtSpXzNlysd9BvBz\n+TznlD2t8dVSR8fiXL58iR49OvHFF9UNjaWtrKwNqZTZyeVyJk+ezvz5s1Gr1cTFxZKRkUnLll8T\nGRnBlCnjSU1NZeDAfjg4OODqWpYhQ0YyffokNm5ch42NjaG8fatWrRk9eniuYwPcufOCq1e7AaDT\nXWbnzkf06KHfZvjwgRQoUBB//6VvvJbW1taMGzeRiRPHkp6un3nq27c/pqamjB49nPT0dEDHwIHD\nDNvs2/crmzdvQCKR4OxcEplMxpUrl9myZQOxsbH07z+IevUa5ijeATBv3kzKlHGjadMWHD9+hOTk\nZNauXU3nzt0wMzNnxYolaLVarK2tWbBA/3dY2APkciPat/+K9u2/wdu7Y65zWLduTY6m5X8lzflt\nuLo6sXevDWfOnMfZ2Z5SpRrkeN/JqTh9+vjw7bedSUhIxMTEhNmz/XOlymYZNGg4kyePZ9261VSt\nWg1zc/M818v6MyhoE8HBF4mJeUbx4s5Uq1aTa9dC3rJdiSD8t0l0WQn0n1lMzIvPPQThIylQwEJ8\nvv9i4vP99H7++Ry+vvlITKwAJNGhwzYWLWr3p9u9q7w+Wy+vOrmq0uUlOTmZypWvExfnZVjWtu12\nli5t9MHH+U+Qvb8WwKZN60lNVeUqBf8pZAUsRkYyHB1LIJPJMDU14/btmzkCluxjzh68JCYmMHHi\nOJ4/j8Hd3YMLF84RELCe6OgoRo8eTrlynty/f5fZsxdy9OhBjh07THp6BnXq1OPbb78jMjICX99B\neHhU4Pr1EAoUKMj06XNzzSh7eR0mJKS14XXFijvYv9/r9dP5YB48uM+4cSNYvnw1lpZWJCUl8eOP\n80lLS2Py5OmEhT1k9OhhbN68M8f12LfvV378cT5KpTEVKlTit9+OUbKkC6AlJiYGlUpFQMB6IiLC\nWb58MTY2Nly7FkKxYo7cvXuX7dt/oWPH1hQv7kxqqgqNRsPw4WM4c+Ykmzevp0QJZ0qUcGb8+CmG\nNGeVSsWYMb68eJGERpNJnz4+1KpV13Btv/iiKhcuXHzjtf2rOnf2fqv2Fmp1miGV9/DhAxw5cihH\nK5I38fObRI0atT54Wuu/jfj/7r9XgQIW77yNmJkTBEH4h/nllwQSE798+cqS48cLkZ6e/rKgxd+D\nsbEx5uYveJm9B+gwNVV/ziF9VjKZDK321b1TtTrts4zjwYP7rF0bwPLlq3F2LsL9++H8+ON84uJi\nWbo0wBCw/NGP6dWrV+LpWYEePXpz9uwpfv31Z44evcbUqc9QKp8RFVUcf/9uPH4cxtOnT2jduh2h\noTe5fTuUkJDLFCxYiKdPnzBp0nRGjRrHhAljOHHiKI0aNc1xHHf3JEJC1IASSMPD449TK9/GihVH\n2b1bg1yuoU+f/DRvXtnwXnDwBRo08MLS0goAS0tLAGrX1vdjc3IqbkhHff161qlTDw+PCtSsWYff\nfjuGhYUFs2bNZ8eOIJYtW4SdnT0REeE8eHCPdeu2snfvLxgZGXHv3j2srKyRy40oV84TH5+BaLVa\n0tLS8PQsz44dQaxevTHbEfVTVUqlkunTZ2NqakZCQgL9+vU09I17+vQJCxf6M2jQyDde278ir/YW\nERHh2NnZM3iwL3Pm+BEdHQVAs2at+PnnHcTGPkcikWBnZ59rBjL7LGjJkqX43/8mAXDlSjBz5/5I\nYmIKtrZfMnlyGzw8Sr73+AXh30oEc4IgCP8wSmXOYgXGxrmLFXwsb5seKJfLGTzYhBkzDhAbW5SK\nFS8wYkTtjzy6vy9b23wkJMSRlJSIsbEJZ86colq1Gn++4Qf2VwKW14WEXMbPTz/LUr16LSwsLFm6\nNJKIiEYUKbKWsLChzJ+/merV73LhwjnOnTtLWloaFhaWPH36hIIFC2Fv70DJkqUAcHFxJTIyItdx\nZs5sgaXlDsLCFDg7pzNmTPP3OvcDBy7i51cWlUp/3Hv3juHuHo6jowOg/27nlayUvTF21vsymRyd\nTmu4nrGxz4FX17NWLX3bhEKF9FUhs5Qp44adnT0Acvmr/RobG3PkyEGUSiW1a9ejVKnSf3guOp2O\nZct+JCTkClKphOfPY4iP139u9vYOuLq6EhPz4o3X9q/Iq73FkiU/oVAomDhxHO3bd8LDozxRUVH4\n+g5k/fogVq1azsWL51m0aDkpKcl06tSW1q3b8ehRmOGmgqWlFS9evDCc1/nztzh/fgtGRgmkpfkw\nZEgZDh50+mT/xgnCP434L0MQBOEfZsgQD65f38KtW7WxsrpHv37KXA1+35dOp0OlUuVYlpiYYPix\n+ja6dq1FixZxPH8ei6Nji7/VzOGnJpfL6dGjN336dKdAgYI4ORX/LM/N5RWwqFQqFi9ewNmzp7lz\nJxS1Og21Oo379+8RERHOt992RSKRYGGhT/9Rq9WMGeOLTqfDwaHIy++KEnv7YchkyRQr9jVPn8YR\nF1eBLl16oFAoCA29ydChI4mPj2fq1AnExETTp083Bg0ajlQqQ6PJPWurUCiYNKnFBzv3K1eeo1LV\nN7x+9qwa588fNARzFStWYexYXzp27PwyzTLxjfuys7MjLOwhVap8gVqt5tKli4aiLoAh8Chb1h2t\nVmsIqN4UkJiYmDBmzETu3buNn99EOnToTJMmbw5eDx7cR2JiAgEB65HJZLRr1wq1Oh0AheJVkPim\na/s+cre3gIsXz/Po0UPDOiqVitTUVCQSCTVq1EIul2NlZY2NjS1xcbG5bipkfbckEglSqSs6XT7S\n0/Mhkz3n3r1SPH8eYwiCBUHISQRzgiAI/zClShVjzx5bQkJu4+hoR5EiFf58o3cQHHyXUaNuEhFh\nR/Hi4fj7V8XKSsnAgd/xzTdd32lfNja22NjYftDx/VN5e3fMs8jFp5Q9YClQwMIQsDx//pw2bdrh\n7u5B3bpfsH37Vo4cOUihQnasWrWOn35axt69vwD6oL5OnfqMGvU/Jk36Hy9eJFGrlopDhzIBHVFR\ni+jVaytXr/7C06dPadasJQAxMc+YP382LVp8RUzMM6ZMmYWv70CaN//qk5y7h0c+jI3vk5bmDEDB\nguepUuXVDFjx4iXo1q0XAwb0RSqVUbq0C/B6wQ7934UK2VG//pds2bKJxMR4KlWqApArALSxsUGh\nUDBu3AiSk1NQqZKz7evVepmZGVhaWtKy5dekp6u5e/c2TZo0Ry6X5/lMWkpKCjY2tshkMoKDLxIV\nFfkBrtC7yd7eAnSsWBGYYxYzS/YZSKk0q71F3rOgAHZ2MuAFYIFEosPR8QH58n28ZyUF4Z9OBHOC\nIAj/QObm5tSsWemj7HvKlFBCQvT9r2JiYMqUDaxZ04pNm3Z8lOP9W92794S5c0NQqRR4eRnTpUud\nzz2kHAGLQmFEiRKlkEj0lSvd3fW92+RyI86d+53Hjx+h0Wjo2bMTKSnJpKenk5KSjEKhJDo6iq5d\n21OihDNyuRFjxjQhNHQLyclS5sy5TseOfWnbdjd16tQnMHAVarWaO3dCCQsL4/HjMCIiwhkzZhgq\nlYrMzIxPMkvZtGkVRo06xC+/hGBkpKF3b1ucnIq8tk4LmjZ982zgwYMnDH/37z+I/v0HsW/fr2za\ntI4tWzZy+fIl6tf/EjMzM8N6MpmcgIANBAdfZMsWfe+86tXrk5qaZgjounbtxZgxw5DL5Ziamhme\nH2vVqjU9enyDi4sr48dPMVynRo2aMGrUMLp374iLSxkcHYsbjvf6tfwU17ZKlWoEBW2mUyf9zZ67\nd+/8QaqoJI9Z0CTDrH+zZp7IZDs5f96CjIxMZs4snmeQKAiCngjmBEEQhBxiY01yvI6LM3nDmsKb\npKWl8d13l7l2rTMAx4/fwcLiHF999cVnHtmrgCWrIl5kZAQDB35neH/WrPls374VZ+dSLFuWsxR+\ncnIyUqmUefN+BPT9wZ48eYKVlTVFixakZ89xVKz4qqhImzbe2Nracvv2LYYOHUnz5l8yfPgEbGws\ncXJy/DQnnM3333vx/fcfdp9vGwBWrFiZChUq4eu7nY0bK5OZaU3Dhv1IT09/4z58fAbi4zMw176s\nrKxzfTZZAgM3G/7+8E3J825vMWSIL/PmzaR792/QaDSUL18RX9/RudbLktcsaFa7CplMysyZ+iqm\njRpNoUaN3O0xBEF4RQRzgiAIQg6enomEhmZVEUyiQoXPU3nxn+zhw0dcu/YqqElNLc3Zs1f56tNk\nFL6z6Ogorl+/hrt7OQ4d2o+bmzu//LLLsCwzM5MnTx5TvHgJLCwsCQm5gqdnefbv30OFCvoZYp1O\nx9Gjh6hYsTIhIVcwN7fA1PTVDFVaWhrp6fZ07HiS1NSG9Oz5K126lKJUKZfPddqf3Jkzl9m4sS6Z\nmfqZtCNHerBq1W58fJq8975TU1NZvvw46eng41MTC4u3f771bQUF/QyQq6WGlZU1kyZNz7X+6+tl\nteaAvIPg778fTGamxvA6+0yoIAh5E8GcIAiCkMPcuS3Jn38Hz56Z4+SUyrBhzT73kP5x7O0LUqjQ\nTaKjswIVFfZ/4/oNxYo5snPnVmbMmIyTUwm8vTtStWp1/P3nkJycjEaTSYcOnShevATjxk1kzpzp\npKWl4eBQxDCjIpFIUCgU9OrVGY1Gw5gxEwzLJRIJS5Yc49q1lRQs6Iel5WT27UtBo3Fl6tQZn/PU\nP6m4uBQyM/NnW6JEpXr/NMiMjAw6d/6ZU6d6AnJ27/6ZdetcKF7c4b33/alMnvwrGzYUIDNTQbNm\nR/H3b/vBCzsJwr+RaBoufHSiueW/m/h8/51WrVpOwYK2tGz54ZuR/1cEBf2Ov38cycnG1KwZy8KF\nbZDJZJ97WAbZ0yyzNzT/qwYO/I4BA4bi4uKa5/tTpux/rbl9JDt33v5oz37+HalUKtq23cOlSz0A\nKSVK7GLTJtf3DrqOHz9P+/buQCHDsqFDtzJmzPv1l/Px6cXSpXmnc35IZ85coX17O9LTS71cksDc\nuSfo2rXBRz/2P5H4/+6/l2gaLgiCIHwQn6Ns/r9Nu3bV8PbWodVq/1ZBXF4+9uedmJiIVhuDtfXP\nJCR8BWipWnUvlSt/uLzTXbu2Y2xs/Icl/T83U1NTNm1qxJIlW8nMlPLNN27vHMidPHmcokUdcXJ6\nVfTEzMwYmewFGk1WMKdBofjr9+qzKmh+ikAO4NGj56SnV822xJqYmPRPcmxB+KcTwZwgCIIAQGDg\nKvbv34ONjS0FCxaiQAGbzz2kfzyJRPK3D+Ts7QvnKJrxVy1atDzP5bGxcXTocIyrV/sBV3F0nEKr\nViUYPLgJSqXyvY8LoNFoOHBgzycLPt6HtbUVY8f+9YDzt9+OU7NmbZYvX8yzZ9Gkp6vx9u5Ihw53\nOH++LQkJbSlY8ABhYY5cv16UZcsWER0dxeDBvtSqVQeNRsOyZT9y5col0tMzaNOmHV991Ybg4Iv8\n9NMyLC0tefz4ERs3bsfLqzaHDp0EYP36NRw6tB+JREr16jX57rvv2b17J7/8spOMjEyKFCnC+PGT\nUSqNmTZtImZm5ty+fZPY2Fj69x9EvXoN33hOjRtXwsXlZ27fbg9AkSKHaNYs7xleQRByEsGcIAiC\nQGjoLY4ePcSaNZvQaDLp1asLlSt/2P51wn9TQMDvXL3aHX0lxPI8elSI2rVv5tmAPjU1lQkTRhMT\nE4NWq6F79944OBThxx/nk5qaipWVNePG/UC+fPkZMKAvpUu7EBJyBS+vxlSpUo1Nm9bzzTddCA9/\nyrx5s0hIiMfY2JhRo8ZRrJgTR48eZs2alUilMszNzfnxxxWf5Bps3LgWhUKBt3dHFi6cy/379/D3\nX8qlSxfYs2c3TZs2Z9WqFaSnpxueQzQxMWHp0kWcPn0SmUxG1arVqFu3PqdPn+TKlcuYmJgwY8Zc\n1Oo0+vbtgYNDUaTSNLp31zJt2lG8vBoxfvwoChQogIdHeaZNm0jjxk05c+Y0L14kMWrUOGrUqE3/\n/r2pWrUaAHfv3mbduq3ZGnTrZ2zPnj3N6dO/sWJFIEqlkqSkJADq1WtAq1b6ypMrVy7l119/pm3b\nDgDExcWydGkAYWEPGT162B8Gc7a2NgQGlmPp0s1oNDI6dXLC1dXp43wYgvAvI4I5QRAEgatXL1On\nTv2XMyVKatas88amvoLwrgoXHoBcHolEkk5CQkugJF5etWnd2puzZ0+TL19+evf2YcaMyTx79owJ\nE6ZQq1YdkpIS6datA7a2+dBotBQqVIgVK5bQuHEz7t69Q3R0FEZGRnTs2IV69arRr98AAIYNG4BM\nJkOhUGJv78DcuTNp2LAR/v5zsLd3oFixIgwbNuqTnb+nZ0U2b16Pt3dHQkNvkZmZSWZmJiEhl3F2\nLklgYAALFizB2NiY9evXsGXLBtq0acfJk8fZuHE7ACkpyZiZmVOrVh1q1qzNvXt3GTt2BOHhT5BI\npIwYMZbvv+9NRMQ9lEolFhYWZGRksHz5GnQ6HQ0a1CAuLo7SpUsTGnqLSZP+h5NTcVJSUnj69Aky\nmYwyZdyyBXKvXLx4nubNWxlmUrMC8fv377Fy5VJSUpJRqVL54ovqgH5GunbtugA4ORUnLi7uT69R\niRJFmD27yJ+uJwhCTqJMkCAIgkD2/lF6IpATPoxvv61OvnzuPH68jcePAyladC3ly5ciLS2NSpWq\nsm7dVkxNzVi1ahnTps3C1NSUmTOnEhJyhaCgTSQmJr68saDj4MF9PH36BIDUVBU+PoMMwU7Wd/jE\niWNERIRjZGSERAJ37twiNjaWevUavOyvVwC1Op19+379ZNfAxcWV27dvoVKloFAocHcvR2joLa5e\nvYJSqSQs7AE+Pr3o2bMT+/fvJTo6CjMzcxQKJdOnT+bEiWMolcaG/V25cplNm9axYMFitFotOp2W\nKVPGo9FoiI2N1V8NiQSpVEpw8EWkUikajYbq1WsAMGrUOLRaLT/+uIKtW3+mShV9/0Nj41c9Jb29\nWxpu6EgkEvK6t+PnN4nhw0cTGLiZXr36kJ6uNryXvdG3uDEkCB+PmJkTBEEQKF++AtOmTaJLlx5o\nNJmcPn2K4sU7fe5hCf8CtrY2tG0bh6lpfaRSCWq1mvBwfbCVNZPj7FwShUKBo2NxAgM307Ztc1au\nXEJCQryhOItUKiVfvvz06NEbAFNTMxwccs/kBAdfwNTULNdzgJcvX+LBg/vExj4nMTGRkJBgWrb8\nGktLq498BUAul2Nv78Devb9Qrpwnzs4lCQ6+QHj4U+ztHahc+QsmTpyWa7uVKwO5ePE8x48fYceO\nrfj7LwUgIyMdqVSKkZERJiamqFQqRo36HyNHDmX9+q0A6HTg4lKGSpWqvHytQ6fTUbVqdXbs2IZC\nocTMzJzHjx9RsGChXMfOXhSnSpUvWLNmJY0aNUGpNCYpKQlLS0tSU1XY2uYjMzOTAwf25rkfQRA+\nLhHMCYIgCJQu7UrDhl706PENNja2lC3r9rmH9LcTGRnB8OEDcXf34Nq1EFxdy9K0aQtWr15BfHwC\nP/wwhTJlxHV7XXDwRa5fv8q2bdtRKpUMHPgd6elqZLJXP0EkEglyuRHPnz/HwsICiUTKN990ZebM\nqVhaWjF8+Jgczcvj4+Py7EGm04GRkQJrayuOHTtM/fpfotPpuH//Hn5+kxg2bCTVq9di375f+fHH\n+Tx79uyTBHMAnp7l2bRpPWPH/kCJEs4sXDiPMmXK4uZWjnnzZhIe/hQHhyKkpqby/HkM+fMXIC0t\nlerVa1KunCcdOugrf5qampI/fwG0Wh1t2jQnNTUVY2MT0tPTSU1V4ec3iUePHpCc/IKrV0M4fvwI\nz5/HALBq1QocHIrg5laOkyeP07mzNzY2tigUCsLDnxIfH8fRo4dp0OBLQF/VslevLmg0mVSp8gXf\nftsNIyM51avXom/f/vTu3Y++fXtgbW2Nm5s7KpXKcL7Zg0FRHVcQPh4RzAmCIAgAdOvWi27dehle\ni15GuYWHP2Xq1FmMGTOB3r27ceTIQZYuDeDUqROsXbua6dPnfO4h/u2oVClYWFi8TCd8yI0b19+4\n7oMH91i82J+0tFTWrPmJFi2+5vr1EJYuXUhKSgppaSo6dOiMo2PxPLeXSPSzSJcvX2T37p0EBgag\nVqtp3LgpqakqduwIYunSRURGRlCokB0lS5bKcz8fg6dnBdatW427ezmUSmOUSiWenhWwtrZm3LiJ\nTJw4lvT0DAD69u2Pqakpo0cPJz09HdAxcOAwABo2bMS0aRNJS0tl6tSZuLiUoX//3vj5TUIul/P8\n+XN27NjB0KG+REVFIpFI8PbuyPLli+ndux9Nm7YA9NUply5dRXDwRc6d+515834E9M/mZRk4cCht\n27Zn585t3LkTapj1y/L11958/bV3rnPNaiSf5eDBEx/sOgqCkJMI5gRBEP7Drl9/wPjx14mONqNs\n2Xj8/ZtiZmb2uYf1t2Vv70CJEs4AFC9egsqVq77825moqIjPObS/rS++qMGuXdvp0qUdRYs64u5e\nDsg9WyORQNWq1ahatRqNGtVl5cpAdDodK1Ys4cyZk+h0OgoVsqdRo6bcuXObcuU8cjQoVygUdOzY\nBdBXZdy/fy9GRnLq129Ijx69sba2ZsOGdVhbW9O8eascs0ifQqVKVTh27Kzh9aZNOwx/V6xYmZUr\n1+baZuXKwFzLypXzZP78xQwY0NdQIXL8+MkEBW3i3r27jBo1DtAHVH5+kwzbWVvbULNmbcPrrEIn\nzs6lWLzYn6VLF1GjRm08Pcsb1qlbV9+0u3RpV06cOPqn5xgWFs66dVeRy7X061cTGxvrP91GEIT3\nI4I5QRCE/7DRo69x/rz+B/C9exqsrTcxZ86Ha+T8b6NQvCrqkPXMUtbfGo3mcw3rb83IyIg5cxbm\nWp59tqZXr755vieRSPjuu+/57rvvc7xfoUIlKlSo9Mb9denSgy5degDw/HkcPj47iYqywtW1F5Mm\nNUWhULzXOf0dZA+GdTodEok+7dTExCTXujduPCAhQUVg4DF8fFogl7/6+Ve0aDECAjZw9uwpVq5c\nQuXKVQ3PJWZ932WyP/9+P3kSRefON7h7tz2g48SJNWzfLm4OCcLHJoI5QRCE/yidTkd4uHm2JTIi\nInL/EBT+fsaM8TU0jG7X7htatWrNr7/uYsOGtZibW1CyZCkUCgVDh44kPj6euXOnEx0dBcCgQcMp\nV87zM5/Bp9O6dSC3b3sC6Zw+XQ2p9ADTprX83MN6b9HRUVy/fg1393IcOrQfDw9P7t69nWu9+/cj\nGDLEFLm8INOnV+fy5SBWrepoeD/rOcVGjZpiZmbOnj27/9J4tm27wt277V6+khAc3JF9+w7h7V3/\nL+1PEIS3I4I5QRCE/yiJREKpUgmEh+vQl3VX4eKS/rmH9beWOzXw8xR5GDNmApaWlqjVafTp050a\nNWoRGBhAQMAGTExMGDzYh1KlSgPg7z+H9u074eFRnqioKHx9B7J+fdAnG+vrIiMjGDVqKGvXbnnv\nfQUHX2Tz5g3MmjU/z/c3bz7N7dudAeeXSzYRGip77+N+bhKJhGLFHNm5cyszZkzGyakErVt7s337\n1lzrnj4dTXi4D9bW0RQpMoCrV02JiHiVbpn1nKJUKkEul+PrOzavI/7p99vMTAKkAfoWClJpHDY2\npu9xloIgvA0RzAmCIPyHLVpUlwkTNhATY4qbWyrjxjX73EP627K3L5yj3H32Ig+vv/exBQVt4uRJ\nfVrhs2fR7N+/hwoVKmFhYQFA/foNefLkMaBv+Pzo0UPDtiqVirS0NMDik433c7lwIZlXgRxAWayt\nj3yu4Xwwdnb2rF27BZksZ2AaFJRzVm3s2B8YN+5XQEdCQhcSErpgaXkChUJpWDfrOcXXZd+Xq2sZ\nFi5c9odj6tmzASdOBHLoUCPk8jS8vc/SoEHu4iiCIHxYIpgTBEH4DytUKD/Ll4tn5N6WTqdjzZrj\nPH6cTrVq+WncuNKfb/SBBQdf5NKlCyxfvtpQ6t/R0YlHj8KyjTP7TKGOFSsCczRx/qsOHNjL1Vgz\nsQAAIABJREFUtm1byMzMoGxZd4YNG0WTJvVo1+4bzpw5hVKpZMaMudjY2BIe/pRJk/6HWp1GzZp1\nCArazKFDv+XYX2RkBFOn/kBqaioAw4aNxN3dg+DgiwQErMDa2oaHD+/j4lKGCROmAPD772dYtGge\nSqUxHh7lc40xO3t7LZAK6NOHTUxuMHVqi/e+Dh/Sm67poUMnATh27DBnz55m7NgfmDZtIgqFgrt3\n7+DhUZ7GjZsye/Z01Go1Dg5FGDNmAhYWFnTt2hVHR2euXLmEWp2Ou/sTrl//DmPj+1SsuISxYzPQ\naDLp1asvtWrVzfE5xMa+4MWLlsjlxahX7wkREefy/BxeZ2RkxNq1Hbh8+QbGxgrc3LxFSwJB+ARy\nN2kRBEEQBCFPY8bsYvToWixe7E2/foVYv/63P98om8jICLp16/BeY8he6v/RozBu3LhOamoaV64E\n8+LFCzIzM3NUHqxSpRpBQa9mDfN6rupthIU95OjRQyxbFsDq1RuRSmUcPLiPtLQ03N09WLNmI56e\nFdi9eyegT+/s0KETgYGb39hM2tbWlvnzFxMQsJ5Jk/xYsOBVa4d79+4wZIgv69cHERERzrVrIajV\nambNmsasWQsICFhPXFwsfxQvDB78Jd7emyhadBdly27mxx/tsbe3/0vn/2d8fHr96Tpbt25ErU4z\nvH7TNdWnPeu9HhA9fx7D8uWrGTBgCFOn/sD33w8mMHATzs4lWb16BaCffX38+BGrV29k1KhxWFv/\nSt++k/n224307t2WlSsD8fdf9rINRJrhc+jVawQ3b44lKekUV660Zf36QoSGhub4HK5evWIYi5dX\n7Rxjk8lkVK7sgbu7qwjkBOETETNzgiAIgvCWjh61QKezBSAlpQz79t2kS5e32zYzM/ODjCGvUv8F\nCxaka9ee9OnTHUtLSxwdnTA11VcRHDLEl3nzZtK9+zdoNBrKl6+Ir+/odz7upUvnuX07lN69uwKQ\nnp6OjY0NRkZG1KhRCwAXlzJcvHgOgBs3rjFjxjwAvLwas3ixf659ZmRkMn/+TO7du4tUKuXp0yeG\n98qUcSN//gIAlCxZmsjICIyNjSlc2AEHhyIANGrU1BA85sXIyIglS9q9rPb4cYOLpUsD/nSdoKDN\nNG7cDKVS/1zZm65pdlqtzvC3RCKhfv0vkUgkJCcnk5ycjKdnBQCaNGnO+PH6z1WlUmFrmx/Q97eT\nSCSMHu3L4ME+3L9/k02b1gGQkZHBs2dR2NrmZ/78mfz+ezBWVrYoFI8ASEkpgY2NfY7PISoqMtuM\nqAjYBOFzE8GcIAiCILwlE5MM8uVbiEZjRUJCd5TKDJYvX4ytbT6ePYvm3LkzSCQSunX7loYNvQgO\nvshPPy3D0tKSx48fGRozg74B+fjxoxg58n+4upZ56zG8qdS/i0sZWrVqTWZmJuPGjaBOnXoAWFlZ\nM2nS9Pc+d4CmTVvkahOwadN6w99SqeSdWjRs2bKBfPnyM378FDQaDQ0a1DC8Z2T0qn3Aq9L4rwcP\nOt7Gp5gl8vKqzaFDJ9+YIhoUtJnnz2MYNKgf1tY2+PsvJSws7OX4pDg4FGHs2B8wMTFh9eqVLF26\niAsXzuHuXo5jxw5TqJAdp079xqVLFyhb1g1b2/xkZGTQr18v0tPVAKSnZ5CRkcHTp0+Jjn5Gz56d\n6NKlJ6mpqSxZog+mhwwZwZo1P5GYmIiDQ1GUSmO2bNnAnTu38fT05PDhh0gkKszND2BmFoWNjTmD\nB/fnxYskoqIiMTKS06hR049+PQVBeDsizVIQBEEQ3pKPjxUyWWEsLbfh7LyTAQNKcvToIQoWLMi9\ne3cIDNzMggVLWLLEn9jY54A+rXHIkBFs3LgdnU4ffDx+HMb48aMYN27SOwVyfyQgYAU9e3aie/eO\nFC5cBDc3T+bN28f8+ftITEx87/1XqlSVY8eOEB8fD0BSUiJRUZFvXN/NrRzHjumLjRw+fDDPdVSq\nFGxt8wGwf/8etFrtH47B0dGJyMgIwsOfAnDo0IF3Po+P51XAmFeKaLt2HcmfvwCLFi3H338pCQkJ\n3Lp1HaVSydy5i3BxcSUwcBVRUZFIpVK0Wi0//bTW8D2ytrahVq06VK1ajU2b1mNubo61tQ3fffc9\nAQEbKF7cmczMDIyMjHBwcKBQoUKsXr2R/PkLYGxsjJGREVWrVsPPbxLNmrUkMHATHh6eLFgwB5Uq\nBaXSGLlcR7NmVZBIoGjRSfTunYyVlQXTp88mIGA9derUe+NnKQjC5yFm5gRBEAThLXXsWIN69aIY\nPVrG4ME2qNWxlCrlwtWrV/DyaoJEIsHGxpby5Sty69ZNzMzMKFPGDTu7V89pxcfHM2aML35+c3B0\ndPpgY/v++8GGvxMTE2nb9jBXr3YHdBw4sJpt25phbm7+5h38CSen4vTp48OwYd+j1eowMjJi6NCR\nb2zPMGjQcCZPHs+6daupWrVajmNnrde6dTvGjRvJ/v17+eKL6piYmGZbJ/cYFAoFI0eOY+TIISiV\nxnh6ViAi4mme49VoNLmqPX4quVNEI3P19rtx4xpRUZEYG5vg7d0CrVaHqakptWvXw8LCkmPHDnP1\n6hVDsF+3bgNu375F4cJFuHTpPADffz+IsWNHoFanYWRkRL58+tRKiUSCVCqlV6/OaDQamjdvRVJS\nIj169GbLlg1s3LiODRsCsbcvzM2b1/n++8Hs3fsr8fFxfPll45cpumnUrl2WzZuDWbbsR0JCrvD8\neQwqVQrx8XHY2Nh+ugsqCMIbiWBOEARBEN6BnZ0dXbt248SJY8THx9K8eSsuXjxnmHXLkhWwGBvn\nbMRubm5OoUL2hIRc/qDBXHabN5/h6tVu6GeLJAQHdyco6Gd69mz0Xvtt2NCLhg29ciw7ePCE4e96\n9RpSr15DAAoUKMCKFWsAOHz4gKFVQvY2DkWKFCUwcJNhex+fgQBUrFiZihUrA/pqjzdv3uDq1Stc\nv36VYcNG8exZdI5qj35+k96p2uOAAX0pVcqFK1cuodFoGDNmAmXKuJGamsr8+bN4+PBBjmqP7yor\nRTQoaDNHjhzk3r07NGrUJNd6lSt/wcSJ03ItNzExYdWqdVhaWgFw5swpFAojxo79gdDQm5w/f/bl\ndT1I797f0bZtB6KiIhk48DvDPooVc2LyZH167b59v5KUlIhSqcTU1JSAgPXI5XIyMzP5+usmFClS\nlNq161KjRi3q1WuIj89AvLzqULFiZaKiIjl37gwBAeuRyWS0a9cKtVr0oxSEvwuRZikIgiAI76hu\n3fqcO3eG0NBbVKtWAw+PChw5cgitVkt8fDwhIZcpW9YtV4AH+mfe/Pxms3//Hg4d2v9RxmdsLAey\n/+BOw8Tk085ShYaG0qNHJ7p3/4Zdu7YzYMCQd95H9mqPP/20jjt3IvD1nZXjuv6Vao8SiQS1Oo3V\nqzcyfPhopk+fDMDatQFUrlw1V7XHv2rXrm3Url2Xr75qA4CpqSkpKSkAlC3rzrVrIYaU0eTkF4aA\n922lpKQYZgD37HnVF04mk+UYd/br5e7uwZEj+lTJgwf3GQqovC4jI5PmzQ+ycOEFXrzQz3IGB1/8\nw9RaQRA+PTEzJwiCIPyrZRWmeF/BwRfZvHkDs2bNRy6XU6lSFSwsLJFIJNStW58bN67So8c3SCQS\n+vcfjI2NLWFhD3OlC0okEoyNjZk1awFDh/bH1NSMmjVr53nMrVs38tVXbQzVD99Wp071OHAgkMOH\nvQEtTZrsoF2792uJ8K48PcuzZs3G99pH9mqPT54kkJhoyosXVciXT8eNGw9wcyuRY/23rfYI8OWX\njV+OswIpKSkkJydz/vzvnD79W65qj8WKOf3pWHOmm8Ls2X5ERIQTHx9Perqa3347RmJiIp07e1Oy\nZClWrAikQoVK9OnTnfR0NXK5EUOHjmDJkoXExDxjwIC+jBz5P9zdy6FSpTJkyPfodFoKFy5iOE6n\nTt2YNu0HAgNXUb16LbKe29uwYQPdu/cwFECRSCSG8Q0ZMpLp0yexceM6bGxsGDv2h1znsGvXWdLT\n5dy82RaptAGJiR3p3NkbN7dyODoWz/OcBUH4PEQwJwiCIOQQGnqL/fv3MG3aJFatWo6pqRnffPOW\n9fffko9PL5YuDSAqKpJr10Lw8sqdgvbhfPgfnFqtlhs3rjF16izDsv79B9O//+Ac61WoUIkKFV41\nFs+eYmhubs7KlWv/8Divl7J/fQxSad4JNvoGzu05fPg8UqmEhg07fLbnx95X06YtaNq0JTVrpqNW\n6wMzG5sANmy4jZ9fCdRqdY71jY3fLfDNkhWXTJs2m6JFixmWBwVtZuzYEbi4uDJ+fN4Ns+FVumn2\nFNHz539n1ap1rFq1HBsbW6ZPn0tw8EUWLdK3bLC3L0zhwg4sWfITCoWCCRPGULFiZaZPn4NOp0Ol\nSiEs7CHu7u74+c1BJpMxZ84MatfWp366u5dj06YdhjH06eMDgJWVVa7vVtOm+mbpdnZ2+PsvzTX+\n7EHdtWuJ3Lt3GQCt1ob79zcyadIlGjWqnuc5C4Lw+YhgThAEQcjB1bWMoejC+9x5z8zMRC7P+38z\nWT25IiLCOXTowEcO5vR0Oh1LlizMs31AXqXkAX7//QyLFs1DqTQ29NZ6+PABI0YMRiaTMXbsCNLS\nUpFIpBgbG6PT6ShWzJELF86RlpaGvb09CxYsoVAhO/r2/Z6wsOJIpR589ZWMHTsmvnMpey+v2nz1\nVVsuXjxPvXoNuH07lOnT9Y22L1z4nZ07t+PnNxsAuVxOkyY18r4Y/xCVKlVl9Ojh1KvXEJlMg1Sa\ngFSagkaTn9TUaLRaLb/9dgwzs9yFXczNzbGwsCQk5AqenuXZv3+PIbDW6XQcPXqIihUrExJyBXNz\nC8zMzKlatRrbtm1m6NCRANy5E8quXdvw919qSGf8I3l953U6HdeuhTBtmv5zqVixMomJiahUKUgk\nEmrVqoNCoX/GLjj4ouG7J5FIMDMzZ//+PTl60anVavLly/cXr+jbcXOzRKl8jFqtD2rz5TvPyZPh\nPHmSQs+eDd54E0EQhE9PBHOCIAj/cpGREYwaNZS1a7cAsHHjOtLSUrl8+RJly7oTHHyR5OQXjB49\nAU/P8kyfPpkjRw7h5laWGzdu0rVrD8LDnzJv3iyCgy9QurQrAwYMZcuW9URHRwH6yoXlynmyatVy\nIiKeEhERgZ2dPV279mT69ElkZmai1erw85uNg0MRQ+rjsmU/8vhxGD17dqJp0xb89ttxBg/2pVSp\n0gD4+HyLr+8YnJ1Lvvd1OHHiqKF9QEJCPL17d6N8ef1Mz717d1i/Poh8+fLj4/Mt166FULq0K7Nm\nTWPRouU4OBRhwoQxSCRQvHgJatasjY2NLXXq1Gf48IFYWFiyZs1GlixZyC+/7GLgwKHUqlUHb++W\nzJ8/m169BnL5spzY2BokJzcmNPQuJUq8KsOf1/HbtevI1q0bWbRouaEQRlpaGm5u7obnzzp39iYx\nMQErK2v27PmFFi2+eu/r9HeSVUFzxozJlC6dQHy8FdHRP2BsXJXHj7fj43MCV9cypKamGrbJfgNi\n3LiJzJkznbS0NEMft6x1FAqFodrjmDETAOjRozcLF86le/eOaLVaVCoVcXGxDB8+kKZNWxAScpmI\nCH3z8pEjx+HsXDLXd37QoGHMmuVHZGQEMTHPCA29CcCJE8c4cuQgmZkZJCUlodVq0Wq1nDlzkqNH\nDyGRSEhLS8vzOcu8+vt9TG3a1CAs7AAHDlwiNTWeiAhYvrw3kERwcBCLF7f/ZGMRBOGPiWBOEATh\nPyb7j12tVsvKlYGcPXua1atX0K/fQC5fvkT58hVZvHghdevW5cGDe8yadYmvv26LVquhd28fRo8e\nxrRps/DwKE9UVBS+vgNZvz4IgEePHhnSxhYsmE27dp1o1KgJmZmZ2RpK68fg4zOQTZvWM2vWfAAs\nLCzZt+8XSpUazuPHj8jIyPgggRzwp+0DcpaS1/9gL1zYAQcH/TNKjRo1ZffunQCGmZbTp3+jWbOW\n7Nv3KypVCsbGxmRkpNOkSXNkMhkFCxbi6tXLnD9/h7S0VzM7KlUptNpXP9rfppQ9gFQqNVSLBGjc\nuBkHDuyladOW3Lhx3TCr80/wtq0DslfQPH78ApGRT2natB/W1qNyrZs9VRCgVKnSLF++Os/9Nm7c\nnEGDhhteJye/ICzsCT4+g3K0UWjXrhWLFi1n1arluLiUMaRKTp06gdWr9c8EZv/OZ6VKtmvXEW/v\nlhQr5oiTUwl2797BunVbCQm5zPjxozl16jdiY2NJSUkxpEqOGzeCnTu30b79N2g0GtLSUg2zk+3b\nd8LGxoakpERUqlTs7Oz+9Nq9j2HDGjNsGAwatJ/Q0HYvl1py8GAJww2E1w0Y0JeBA4fh4uLKiBGD\nmThxGjodHDq0n9atvQF9gZoFC+YwderMdx7TtGkTqVmzdo7/BgThv04Ec4IgCP9hdevWB8DFxZWo\nqEiuXr2Mh0d5kpKSMDc3p1q1GoSGhhITE839+3dQKJTMmeNHYmIC8+e/el5MpVKRmpqaK23Mza0c\na9cGEBMTTd26DShSpGiO478+C1G//pcEBq6if//B7Nmzm2bNWn6wc5VIJG9sH5BVSh5AJpO+DDpf\nTzHNua1Op8tzn1nvAUil+mClenVXjI33kZKin40zM7uFTvdqZi738TPzPAeFQpkjGG/WrBWjRg1F\noVDQoMGXnyX9bc2anzh4cB/W1jYULFgIF5cy1KlTj3nzZpGQEI+xsTGjRo2jWDGnHK0DypXz5MWL\nJMPr+Pg4Ro8ez969vxAaepOyZd0NwdmcOTMIDb2JWp1GvXoNsbb+EgBv75Y0bdqC06dPotFkMmXK\nDIoUKUanTt4sWxaAtbU1Wq2WTp3asnz56jwDEIDjx68xcmQMYWHuODufY84ce2rWLGt4P69UybCw\nh2+RKinFzMwcZ+eSHD9+BC+vOkil+psJkZERWFpakpSUyIIFs6levRbDh49m9mw/9uz5GalUiq/v\nWNzc3HP095PL5QwfPuqjB3NZjIw0OV4rFKnI5UZ5rpv9uzl7tj+gzwzYuTPIEMzlz1/gLwVyWfsX\nRVcEIScRzAmCIPzLyWSyHLNA6emvCkZk/SiTSmV5BjD58uUnKSkBMzNzlErjl72vLGnR4ktWrAjE\nyCj3j7rsxTq8vJrg5laOM2dO4us7mJEjxxqKQ+TF2NiYypW/4OTJ4xw7dpiAgA1/9bRz8fCowM8/\n76Bp0xYkJiYSEnKZAQOG8PDhgzzXd3R0IjIygvDwpzg4FOHQoQM59nXw4D7q1m3AsGEDsLKywtTU\njLS0NOzsCnPkyEEaN25GcvILypRxw9m5GF9+ac2FC9tRKlVUrHib48c1eR43u6xS9llplq/Lnz8/\n+fPnJzAwAH//JX/twryHW7ducOLEUQIDN5ORkUGvXl1wcSnDrFl+jBgxhiJFinLjxnXmzp1pKLqR\n1TpAIpHg5zeJ5ORkli9fzalTJxg9ejjLlgVQvHgJevfuxt27dyhVqjR9+/bH0tISjUbDkCH9efDg\nHiVKlEQikWBtbUNAwHp27tzGpk3rGTXqfzRu3JSDB/fRvv03XLx4npIlS+cI5BYtWp7jPObPf0xY\nWEcA7t93ZsGCzTmCuSzZA/fsTbOzvvOZmZk51gsK+hnQf687dOicZ6pkz559OHfuDLt2bcfS0pLp\n0+fmeF+tVlOyZCmWLFmFiYlJru3/iqwiR0OG+L5xneDgiwQGriIiIoLSpbejVr9AoylEhw5NuHXr\nBkuW+KPRaHB1LYuv75hc/xZ4e7dk1ap1LFu2iPDwp/Ts2YkqVarRpk07RowYzLp1W9FoNCxduojz\n588ikUhp1ao1bdu2Z/XqlZw5cxK1Wo27uwcjR44z7DevmyeC8F8mgjlBEIR/OVvbfCQkxJGUlIix\nsQlnzpziiy+q57lu+fIV2LZtM8WKOZGcnMzp06dwdi7Fw4f3sbCwwNLSEp1Oh6urG0FBm+nUSV+U\nIetH9+siIsIpXNgBb++OREdHc//+vRzBnKmpGSpVSo5tWrb8mpEjh1C+fMUc6W5/Vdad/HdpHwCg\nUCgYOXIcI0cOQak0xtOzAhER+p5gvXr1Zfr0yRw7dgSFQkFaWio9enRCItEfZ+/eX9i4cR3JyS/o\n1asvACNHDmT06OGo1WsoXLg6Jiam2caY99hbtWrN8OEDKVCgIP7+S/OclfDyakJiYuJblc//0K5d\nC6F27XoYGRlhZGREzZq1SU9Xc/16COPHv0qDzMjQBznZWwdkyWrLULy4M7a2+ShRwvnl6xJERUVQ\nqlRpjh49yO7du9BoNMTGPufhw4eUKKFPv61btwEApUu7cuLEUQCaNWvJmDG+tG//DXv2/IydnT19\n+nQnMzODsmXdGTZsFE2a1KN1a2/Onj1NfLwUY2NX8uefg1weRWKifsZ6795fiIuLZfTo4UREhDNj\nxlQWLlxKcPBFYmKeYWpqRkREOCEhlwkJCebx40dUqlSF4cMHkpqqQq1Op0WLr6hatVqeqZImJsbI\n5XLq1m1A0aLFmDJlQo7re/nyXYYMucPdu2VwcjrJjBkO1Knj9t6fW/YiR38mKiqCuXNHExOj4bff\ndlGoUBR+fktZuHAZRYoUZerUHwypodllzaL5+Azi4cMHhpTUyMgIw+e/e/dOoqOjWLNmE1KplKSk\nJADatu1Az559AJgyZQKnT598Y/sOQfivE8GcIAjCv5xcLqdHj9706dOdAgUK4ujoBOSVsiShdGlX\nKlaszOHDB+nbty9ly7phbW3D5cuXyJcvPz16dCIzM5Patetw+/ZNunfXP9tTvnxFfH1Hv9zvqz0e\nPXqIAwf2IpfLyZcvP9269TIcG6BkyVLIZDJ69OhEs2Ytad/+G1xcXDE3N6d581Yf5Pyzl09/m/YB\nWZUMAb74ojobNmzLtU/9DMqcHMtUKhXPnkVjb18YpVKZaxsbG9scz2/5+AwEcpayf/34bdt2oG3b\nV/3hsp+LRqMhKiqS4OCLtGz5dR5n/inkTjPV6XSYm1sYfry/7vXWAVkzOlKpFIXi1eyOVCpFq9US\nERHO5s0b+OmndZibm+PnNynH7HLWNq/SY6FQITtsbW25dOkCV6+GULq0C8uWBSCTyZg7dyYHD+4j\nLS2NSpWq0r//YNq27UJy8hyePg3E1PQs+fOPAwYB+l5z//vfJJRKJZ06edOxYxusra1RKPSfsUQi\nISbmGYsWLcfOzp6NG9exZ8/PyOVypFIJP/+8ndq16+aZKqlQKPHzm2RIue3Xb2COazN79m1u3dIH\nSffueTJnzmbq1HEjNTWVCRNGExMTg1aroXv33lhZWRlmy8qX92TAAF+MjIy4desGCxfOJTU1DSMj\nI/z9lxIaetPQM/HmzessXDiP9HQ1SqWSMWN+oFgxR8MYChYsZLj5U7iwMWvW/EThwg6GlOmmTVuw\nY8fWXMFc9u/Dm1y6dJ6vv/Y2pAdbWloCEBx8gY0b16FWp5GUlESJEs4imBOENxDBnCAIwn+At3dH\nvL07vvF9a2trQ0rY6NHjGT16PAUKWBAT84L09HR8fAbmmVL5uqxZqCxduvSgS5ceudbLCkrkcnmO\nnlcZGRnEx8eh1WqpWrXa25za38KxY1cZOzaaR49KUrr0YRYudMHD48MUbslLRMQzevf+jefPNyOT\nSXF2bvDRjvVHPDw8mTXLj65de5KZmcmZMydp1aoNhQsX5tixw9Sv/yU6nY779+9RsmSpd96/vtea\nCmNjE8zMzIiLi+X338/kCL7fpGXLr5k8eTwlSjjnKO2fnp6OjY0NRkZGhiCladNaXL8ejonJTsqU\nUbBx46vZ4saNmxmK4HTo0AkLC0vat/8GL686L7dtQXR0FHZ29gDcvHktRw/AjIwMnj59gpubO506\ndcvVhiMgYP0bz+HFC2Wer8+dO0P+/AUNz6UlJyfTrVsHw2zZnDlT2blzG61be/PDD2OZPHkGrq5l\nUKlUuW40ODkVZ/HilchkMi5cOMeKFYtz9E/MfsMnK1BPSkrMsex9vL69Wq1m3rxZrFq1jgIFChIQ\nsIL09PT3OoYg/JuJYE74P3vnHRbF1cXhd5elSK8qikRABBVFECtW7L0XiNIixoLGFmvsBaMkdgVR\nEMUSNcZesNdYsUQFKwQQLKj0ust+f6xsqJaoMeab93l8dGbuvXPv7IL3zDnndwQEBARKRS6XM336\nHn77TQ+xWIaraw6TJnX8JPfKz89n9OidnD37J+XKHaBVq8/lafp7+PvH8vChwjNx504dFi7cQljY\npzPmFiy4wJUrnoAXAIsXb6VXL/k7iUMUFIIfNWrYB8/D1rYmTZs2x8NjAIaGRlhZVUNHR5vp0+fi\n77+A0NBgpFIpbdq0UxpzxedY+Li0a9WqWVO9ug1ubr0pX74ideqUVPl83bpY+GZz5s+fRc2adtja\n1iySryaTydiy5S8jSiwW07ChDa6u7QHYuLGoKmYBcrkcsbjkM9bQKJrLNnbsBOrXL/oyIiLiirKm\nYlLSS/z8zpGWpk6LFuX4+uvSvU5Nm+Zx5cozZLLyQDJNmiiMTCsra1auXMrq1ctp0qQZmpqaRbxl\nPXr0ICQkFCen+hgZGStDKjU1NUvcIy0tjTlzZvD4cRwikUiZ91fA06dPuHXrD+zsanPkyCFsbWuw\ne/dOZS7p4cMH3mhca2pqkpmZWeo1J6eG7N69E0dHJ1RUVEhNTVV+hrq6emRmZnLixFFcXNqWOb6A\nwP87gjEnICAgIFAq27efZu1aF6RShcdh1aqHNG58lRYt3u4VeV/Wrj3G1q29AV2MjIzYu/cpQ4c+\nJjQ06IuQIk9LKxo6mJFRMszy49/vL6MiJUUbqVT6Tt7Tj60G6Oo6CG/vIWRnZ+PrOwQbmxqYmlbi\np5+WlWhbvHRA4WNT00q0atUGN7feSmXMhIQE7t+/S0xMNGpq6mhpaTFx4jRevnyBj4/FVRY3AAAg\nAElEQVQH27fvARR5WH5+swgN3cqdO7fw85tHRkYaYrGY+vUbsmDBXK5du0LNmnZcuxZB48bO5ORk\ns3r1ciIirvD4cTytW7cjKiqSgIDl5ObmMGbMCO7du4tUKsXUNIjTp48TFxfHokVLAJDL8xk3bhQJ\nCfGkpCQTGxuDuXlVkpKes2iRH4aGhrx8+ZJ+/Vzp0qVHkZqKjx+bcf36KkDEoUMPUFU9T79+JQu8\nT5jQESOjE9y5k4elpZjhwxXqrlWqmBMcvInffz9LUNAq6tWr/7c/v7VrA3Byqo+fnz9PniQycuS3\nRa6bm3/Fb79tY8GC2VStakn//l9Tq1Ztpk2biEwmo0aNWvTo0afM8fX09Kld2x539/40auRMr159\nld/Brl17EBcXi4eHKxKJhG7detKrV1+6du2Bu3t/DA2NqFnTrsh4gpqlgEBRBGNOQEBAQKBUoqNT\nlIYcQHa2BQ8eRNCixce/V2KiDFDky8jlIrKyTIiOTvxipMgbN04jKioV0EUieULTpm9XqvwQWrZU\n59ixR2RnWwK5NGjw5I2GXGjoOg4d2o+BgaGyfMD27dvZtGkzeXlSzMzMmDZtNjKZDA8PN7Zs+RWJ\nREJGRjqenl+zZcuv/PbbDnbv3omKigpVq1owa9Z8ABYunEdMzCNyc3Pp2LEL1tY2f2tNZSljzp07\nk7FjJ2Bv78C6dYGEhKxh1KhxSKV5JCYmYGqqUA9t3bod2dlZjBw5mceP26CnF06lSnU4cGCvsvB4\nXFwspqaVcXZuTljYemWdxVmzfuDy5QuMGzeRdu06cvXqZebP92f//j0sX/4zR48eIj9fjrW1NQ8e\n3MfR0Ync3FzGjPmeZ8+esnZtgFKx08zMnLS0dLKyshCLxaxevZyOHbsoayqOGzeJhg1fUGCMZ2dX\n4+zZ6/QrpQ63SCRi8OCSIbRJSUno6OjQrl1HtLS02blzO0+eJCq9Zbt378bBoR7m5lV58SKJqKg7\n2NrWJDMzo4jaLEBGRoayxuH+/XtK3EtFRYVp04rWL6xXr36pSrOFVUILDG2AGTPmFmkXGrpVOfbI\nkWMYOXJMkes+PsPw8SnpOS7+MkBAQEAw5gQEBAQEyqBzZzuWLj1BYqJC2c/c/CDt2tX92+MdPLiP\nrVs3KUPnBg8eyvz5s0hJSUEul2BoqM/Ll4pwqgoVHuHg0JczZ/Yrc2qioiJZsWIxWVlZ6OnpM3Xq\nDIyMjImMvM2CBXMQi8U4OTXk4sXzbNjwCzKZjICAFVy/fpXc3Dx69epL9+69PvzBlIKfX3fMzI4Q\nEyOndm0NPDzaf5L7FODh0QJ19XNcuBBB+fJSxo0rOyw1KiqS48ePsH79FmQyKd7eA7G1rUHbtm1p\n2VKRvxUUtJp9+3bTu3d/HBwc+f33szRr1pKjR8Np2dIFiUTCpk2h7NixV2nkFVB8o/53KU0ZMzs7\ni/T0NOztHQDo0KEz06YphHZcXNpy7Fg4Awd6cvz4UebMWcCKFdvJzExDW/sKMpkh8fFxJCdfYcqU\nGezatYOqVS0wMDAkIGA5xsYm/P77Wc6ePcWIEd8RGXmbiIgrbNu2hS5depCXl8uBA3vIz8+nXLly\nTJkyk6ioO+zevZO7dyORy+UMGtQPfX199PUNSE1VhCdKpVIGDPhaKUrTrl0LtLS0ld9jXV1djIxu\n8VfkoRQDg7z3elaPHj1g5cqliMUiJBJVxo+fTHp6mtJb5uBQlx49+iCRSJg924/FixeRk5ODhoYG\nixevfP2SRDGWm5s78+bNIDR0HY0bN6VoeZLP8zIlJSWFn38+Q1aWKl26VKZ5c7u3dxIQ+D9FMOYE\nBAQEBErFzs6SlSufEha2HbFYzuDBVlSp8vcKFT969JANG4IJDAxBV1eP1NRU5s6dQadOXenQoTP7\n9+9BLA5CVTWVly//oEWLr9DW1gFQ5vEsWbKIH3/8GT09fY4dC2fNmlVMnjyd+fNnMWnSdGrVsiMg\nYIVy87lv3260tbUJCtpAbm4uw4cPpkGDRpiaVvpoz6gAsVjMyJHtPvq4b2LAAGcGlK1po+TmzWs0\nb97qtfCFOs7OzZHL4d69eyxa9BMZGelkZmYpxUC6du3B5s0baNasJQcP7mPixB8ARZ7WzJlTad68\nJc2atfwEKyq9AHtZuLi0Zdq0SbRo4YJIJKJyZTOysmTk5lYjLu4XACSSaJycPJR9ChdnB5g2bQ4v\nX75g06ZQpRImKBQy160LpGLFSsTHx+PpOZi5c6fTr58bcnk+8fFxGBgYsnHjL7i59Wbt2o2IxWLG\njfuVkydT+O23RCIi9jFjRpcSaypXrhxTp+qwcOF2UlL0qFfvTyZOfD/l1gYNGpUqEFTgLSsQLwJF\nXmNhFVUoquBqZ1ebLVt2Kq8VeMSKq6z+U+Tl5TFo0GEuXPACxOzbd46goDul1v0TEBAA8eeegICA\ngIDAv5emTe0ICOjAqlUdcXQsWUfuXYmIuIyLS1tl8WtdXV3u3PlDqezXvn0nkpL+JCioHZ07V8fE\nxEDZVy6XExsbQ3T0Q0aPHo6XlxsbNgTz/Plz0tMV4Wy1aine3Ldt20G5eb58+QKHDu3Hy8uNb7/1\nJDU1hfj4uL+9hi+X0j0rkydPZty4SYSGbsXb20cp91+7tj2JiYqSBzKZDAsLSwAWLVpCr159uXs3\nCh8f9yLGz8egTh17zp07Q25uLpmZmZw/fwYNjXLo6Ohy48Z1AA4d2q80QipXNkNFRcz69Wtp3Vph\nSHt5daRcuVg0NK4B+dSqtRMNjb/CTwsbVvr6iiLiNja2PH36tMR8/vjjBiNHjkFPTw97ewdSUlLI\nzs4GRDRt2pzKlSsTEXEFAwNDXr58werVW9m0qSu5uZVIS7MnKKgRJ09eUY5XuKZir14NOH++HVeu\n1CEsbECpwiT/JHK5nLCwU8yZc4jDh69+1rncvfuACxdaULBFTUpy5uDB2M86JwGBfzOCZ05AQEBA\n4JMjEpXudSnLE1NaZJeFhRUBAcFFzqWlpb1xvNJUBf/fqFvXgXnzZjFwoCcymZRz587QvXsvMjIy\nMDQ0QiqVcvjwAcqXr6Ds06FDJ2bPnoan52BA8VyfPn2Co6MTderU5dixcLKzs9DS+vCi7gWUpYw5\ndepM/P39yM7OpnJlsyJ5Uy4u7Vi9ehk+PsMBMDOriL//HObPn4hUmoOOjoScnGxl+8JKjQUeXLFY\nhfx8GWKxSolriu9TUbVNkQgkElWlYmdCwmNGjhyKnp41+fkFpTlE5Oaa8+efV99YU1FLS+ujPb8P\nYdasfQQGtkEmK4+WVhSzZp3G3b35Z5mLsbE+OjqJpKUVqMFK0db+tDmoAgJfMoIxJyAgICDwyXF0\nrM+UKeMZMODr12GWKdjZ1eHYsXDat+9EePhBZV6UXC6nsE0mEokwN69KcvIrpUS6VColLi4WCwtL\nNDU1uXPnFjVr2nHsWLiyX4MGjdm5cwcODk5IJBJiY/+kfPkKJYpWv4n09HSOHDlEz55lq/X9E6xb\nF6isbwYQGLgSQ0Mj8vJyOXHiKLm5eTRv3pJvvlEoEU6ePJ5nz56Sm5tD376utG7dFk9PVx4/jqdK\nFXO2bt1Ez549cXXtSW5uHuXKafDixQvl/dq27UBQ0GratlXk/slkMubMmU5GRjpyuZy+fQd8VEOu\ngNKUMa2tq5cIE/yr/UBcXQcWOdeoUUP27PkVUBhvPXp0IDU1hZ9+Ws7Ikd8qw0m//34qNja2JCcn\nIxaL2b59NxERVyhfvgKjR3/PkiX+hIcfVJ7X1zegR4/evHiRBKBU7HR378/ChUtJTc3l8uVw4uP9\nALCy2kWHDvXw8Ci9puK/ifBwzdflDyAjw5YDB+7g7v555lKxoikjR95i9epjZGQY4+x8ke+++7JK\nlQgI/JMIxpyAgICAwCfHwsISd3dvfH2HIBarUL26DaNHT8DPbxabN2/EwMBA6XEpLM5QgEQiYc6c\nH1m61J/09HRkMin9+7thYWHJpEnT+PHHeYjFIurWrac0Mrp27UFiYgLffDMQuVyOgYEh8+cveuc5\nS6VS0tJS+e237Z/dmOvcuRtTpnxPv36u5Ofnc/z4EYYMGcHVq5cICtpAfn4+kyaN48aNa9jbOzB5\n8nR0dXXJycnGx8eDFSuCcHf3plmz+gwePJRWrdogkUg5evQYmzcrDJ/CoiY3b16nVas2ymcpkUhY\ntWrtJ1/nx1LGLEAikeDpORgfHw9MTMrz1VdVAUpRSS3sfVP87e09BD+/2Xh4uFKuXDl++GFmob4l\n71W9ujlr1mSxceM2VFTk+PjUQE1Nwvff7yUlRYOmTdU/m7frbWhoFBVgUVOTltHyn2H06La4u78g\nPT0dM7P+ygLsAgICJRHJ3yfb+BNSkKgr8N+jcCK2wH8P4fP97/KlfLZZWVmUK6co2jxt2kQiIq5i\nYlK+hGKmvr4BU6ZMp0KFisybN7NI/bq2bZtx5MgZIiKusHZtALq6uvz5ZwzVq9ty9uwpzM2/on79\nRgwfPuqzrXPMmBEMHz6KFy9esG/fbkxNK3Hy5DG0tbVfP4dsBg3ypHPnbqxbF8iZMwqP0JMnCfz8\n8wpq1rSjRYuGnDx5AZFIhIFBObp374mNjS1NmjTD2bkZEomExYsXcvHiBfz9l2JmVoWwsDOcOpWF\nnl42kyc3xcjI8LM9gy8JuVxO797bOHv2G0CEmlo08+ff+UcMuvf92d227XdmzlQlKckOC4vzLF9u\nSoMGNT7hDAU+hC/ld7PA+2NiovPefQTPnICAgIDAF83582cJCwshKyuLpKTnTJmykGXLnrN/v5gz\nZ0YzbFg/evTozf79e1iyxB8/P/9S5Nb/Or5//y4bN26jYkVTnjxJJDr6ISEhm//ZRZVCly492L9/\nL69evaBz525cvXqZgQM9S5RbiIi4wtWrlwkMDEFdXZ2RI78lNzcXADU1deXaJRIJQUGhXLlyiZMn\nj7Fz5zaWLl3NmDETlGNt3XqOKVNsyM62AuQ8eBDMb7/1/SJq/30KQkNPcfZsDrq6CsPW2LhswzY5\n+RV//GFNwXcrN9eCCxciPlv44pvo168xTZsmEhl5A0fHuhgYCAa7gMCXguC3FhAQEBD4omndui0h\nIZvp06c//ft/zeLFzzh/fiAPH7qRkvKSkycVm+n27Tvxxx/X3zpejRq1qFhRUSz9nw5e8fUdQlRU\nZInzBw7s5fr1q1y8eJ6oqEgaNWpCw4aN2L9/D1lZWQA8f/6MV69ekZmZgY6ODurq6vz5Zwy3b98q\n9V6ZmZmkp6fRuLEzI0eO5cGDeyXanD2b8dqQAxBx40ZNkpKSPtp6vyQ2bTrDDz/UYvfu3mzc6Mbg\nwcfe+P3Q1tbB0PD566N8QIaBQc4/Mte/Q6VKprRu3VAw5AQEvjAEz5yAgICAwH+CAsXMhISiYSqJ\nieVKtFVRUSE/X7ERz8/PRyr9K2dIQ6Nk+38CmUxWSi7XX4jFYurVq4+Oji4ikYj69RsRExPD0KFe\nAGhqajJt2hwaNmzCrl2/MnBgX6pU+Qo7u9rKMQqPnZGRwYQJY1577eSMHDm2xD2NjHIBKQXbBWPj\nRHR1rT/amr8kfv89i5wci9dHIv74w5YXL15gbGxcQnCmW7eedOrkQpMmzkgky0lNdUVffwUmJr0Z\nNGgjRkbGDB48jICA5Tx79pRRo8bRtGlzfH2H8N1347G2VpQBGTbsG8aPn4yVVbWyJyYgIPB/jWDM\nCQgICAj8JyhQzLSy0iUuTo5YnEJ2tj36+hFAxyKKmRUrmnL3biQuLm04e/Z0Ecn6wmhqapKZmfnW\ne2/evAE1NTX69BnAsmU/8fDhA5YuXc3Vq5fZv38PjRs7Exa2HrlcTuPGTRk2bCSgyNXr3r03V65c\nYuzYCUXG3L9/D2Fh69HW1qFateqoqkq4ffsP5s5dqGzTt+8A+vYtWTnc339ZqfMMDz+l/LeJiQlB\nQaFvXNfEiS48eBBCRMRX6OklM3Gi0evi4/9/GBrmUNiwNTJKRFdXIdBSXHCmZUsXsrOz6datDT/9\nNJ+srCw6dFhC48bOjB49nilTvmfdugCWLl1NdPQj5s2bQdOmzencuRsHD+7F2nocsbF/kpeXJxhy\nAgICb0Qw5gQEBAQE/hMUKGZu3LieOnW2AGY4OjYjO/ssHh6uRRQzu3XryaRJ4/D0dKNhw8aUK/dX\n0ebCjjE9PX1q17bH3b0/jRo5lymAYm/vyNatYfTpM4CoqEikUilSqZQbN65RpYo5AQErCA4OQ1tb\nh7FjfTlz5iTNmrUkOzubWrXs8PUdXWS8pKQkgoPXEBwchpaWNj4+HiQkxNOtWy8qVzb7oOckl8vZ\nvv0UmZlyWra0oWrVSmW21dTUZNOmAWRmZqKhofHZVAWLC9Z8DiZNas2jRyFcu2aOnl4ykyaZoKam\nBsD27VuUgjPPnj0jLi4OsVhMy5atEYlEaGlpoaqqqiyLYGVVDTU1NVRUVLC0tCIxMRGAVq3aEBq6\njuHDv2P//j106tT18yxWQEDgi0Ew5gQEBAQE/jN07NiFjh27FDs7sEQ7AwPDIrXLCjxljo5OODo6\nFWk7Y8bct97XxsaWu3cjyczMQE1NDVvbGkRFRXLz5nWcnZvj6OiEnp4+oKjhdv36NZo1a6nc8BdG\nLpdz584tHBzqKft07tyVuLhYRoz47q1zeRNyuZzRo39l69buyOWGWFjsJTg4m1q1LN/YT1NT843X\nPyVvCz/9p9DU1CQsbABZWVloaGgo51O64ExOEbEZABWVv7ZcIpEIiUQVUITPymSKotgaGho4OTXk\nzJmTnDhxlODgTf/gCgUEBL5EBAEUAQEBAQGBQty8+YAffjjIrFn7ePny1Tv1kUgkmJpW5sCBvdSu\nbU+dOnWJiLjM48fxmJqaFhPKkCs3+cU3/AUUP/WxdFiePXvGnj22yOUKkYvo6K5s2FBS+ORTcPjw\nAXx8PPDycmPRovnk5+fj7+/H4MHuDBrUj3XrApVt+/TpyurVy/H2HsjJk8cAhSEaEXGFyZPHK9td\nvnyBKVO+/0fmX0C5cuWKfGaFBWdiYqLLFJx5V7p27cGSJf7UqFFLWXZCQEBAoCwEY05AQEBAQOA1\nkZExeHk9Zc2afqxcOQA3t2PvlDMHYG9fly1bwqhb1xF7ewd27fqV6tVtqFGjFtevR5CSkoxMJuPo\n0XDq1nUscxyRSETNmnZcvx5BamoKUqmUEyeOfpT1icVixOL8Yvf79IqdMTHRHD9+hICAYEJCNiMS\niQkPP8iQISNYu3YD69dv4fr1CB49evB6TiL09PQJDg6jdet2ynOOjk7ExsaQkpIMwP79e+nSpfsn\nn/+baNiwCTKZjIED+xIYuFIpOFPcSC95XPo1GxtbtLW16dy526ebtICAwH8GIcxSQEBA4F/I/fv3\nSEp6TuPGzp97Kv9X7N4dRVxc39dHIiIiunP27BXatWv81r729g5s3BiCnV1t1NU1UFdXx97eASMj\nY4YO9WXUqKHI5XKaNGlG06aKwtFlhQ4aGRnj7T2Eb7/1Qltbh+rVbT4ozDA/Px+xWIyJiQl9+pxh\n40YLpNKKWFvvZPBgu7897rty9eol7t6NYvDgQQDk5uZiZGTE8ePh7NmzC5lMxosXSURHR2NpqRD8\naN26baljtW/ficOHD9CxY1du377F9OlzPvn834SqqmqpgjOFxWaKH3t7Dylx7eHDP4mMjMPaujz5\n+fk0aNDo00xYQEDgP4VgzAkICAj8C7l//y5370a+lzEnlUqRSIRf6x+Cjg5ADqBQbFRTe4qJid47\n9a1Xrz4nTvyuPN6yZafy323atKdNm/Yl+hTf8C9fHsi6dYHcuHGNfv1c6dSpK4GBKzE0NCIvLxcf\nH3dyc/No3rwl33zzLUCpsvhQVClz3LiJ1K5tD8CCBT1p2fIC6ekRNG/uRIUKRu/6eD6Ijh278O23\nI5THCQmPGTvWl7VrN6Ktrc38+bPIzf2rDlu5ckVLRBSEqnbq1I2JE8egpqaGi0ubzybK8jHZsOEM\nc+fqI5MlU7HiTLy8/oWVxQUEBP6VCP/rCwgICJTCwYP72Lp1EyKRiGrVrBk8eCjz588iJSUFfX0D\npkyZToUKFZk3bybq6hrcv3+XV69eMmnSNA4c2EtU1B1q1rRTqie2bduMbt16cunSBQwNjZk1az76\n+vr4+g7B13cMtrY1SE5OxsfHnS1bdrJ2bQC5ubncvHmdQYO8adzYmcWLFxId/QiZTIq39xCaNm3B\ngQN7OXXqONnZ2eTn57N8eeBbVibwJnx8XDh/PoTjx5ujppaGh8cDHBz+2XC3jh27MGzYcB4+NKB1\na3OOHz/CkCEjuHr1EkFBG8jPz2fSpHHcuHENe3uHUmTxW6Orq1umUqZIJKJjx8aYmOjw/HnaP7Km\nevUaMGnSOPr1c8PAwIDU1BSePn2ChkY5tLS0ePnyBRcunMfBod5bxzI2NsbY2JjQ0GCWLl31D8z+\n03L27GnWrDlEcvJyjIyukpT0LWfPaiISBVK3riP16tVn27bNdO/eC3V1jc89XQEBgX8ZgjEnICAg\nUIxHjx6yYUMwgYEh6OrqkZqayty5M+jUqSsdOnRm//49LFnij5+fPwDp6WkEBoZw9uwpJk0aR0BA\nMBYWlgwe7M6DB/epVs2a7OxsbG1rMnLkWNavX0tIyBrGjJlQqkqfRCLBx2cYd+9GMnq0QtwhMHAl\nTk4NmDJlBmlpaQwZ4oGTU0NAEZIZGroVHZ2ixbIF3h81NTU2bnTlwYOHlCunQ5Uq/3ze0oIFvxMb\na0ZEhB1bt56mUaMKREXd4fLli3h5uQGQlZVNfHwc9vYObNoUSnj4QfT09Hn27Cnx8bHUrGlXqlLm\n56JqVQt8fIYxduwI8vPlqKqqMmbMBKpXt8HNrTfly1ekTh37N45R+OekbdsOpKSkYG5e9RPP/NPT\ntGlz8vJyAZDLFWvMy5MoPa8A27dvpX37Tu9lzBWE1goICPy3EYw5AQEBgWJERFzGxaUturqK8Dpd\nXV3u3PlDaby1b9+J1asVOTIikQhn52YAWFhYYWhohKWl1etjS548SaBaNWvEYrFSyKFdu45Mnfpm\nBT65XF5EAfHSpQucO3eaLVs2ApCXl8fTp08QiUQ4OTUQDLmPiFgspnp1689y7/T0dMLDzcjNHYCu\n7q/I5S/IzKyFXJ7PwIGedO/eq0j7All8LS0t1q/f/FoWX2EYlKWUWUB+fn6Z1z4FrVu3LZEHV6tW\n6fl627fvKXJc4OEu4ObN63Tt2uPjTvADWLcuEE1NLVxdi5bBuHHjGqNHD6dt2w5cvXoJNTUNxoz5\nnpCQNbx6lcyMGXOIjn6EhcUBYmObAKCunkD37pWUtfWSkp6TlPScUaOGoq9vwNKlq/H39yMqKpKc\nnGxatmytNPz69OlK69btuH79Cs7OLTh58jjBwWEAxMXFMmPGFOWxgIDAfwPBmBMQEBAohkgkKiYl\nr6C0c6AQQACFEaCmpqo8X7h+VPFxCjbZKioqyOWKTXXhfKHSmDdvEVWqmBc5d+fOrRK5RQJfFoVD\nei0sLFFXb4S6+jm0tBT5dKqqX9OwYQPmz5/NjRvXeP78GQkJj+nevReWllYkJT0jLS2Nr7/uQ3x8\nHPfv32Xz5o3K8X/++Udq1KhFx45dlJv9y5cv0rlzR/bvP/jFbPZlMhlz5x7k5Mk1qKlJGDjQ+4PG\nK/h5/hj16940Rl5eHgMGDGTy5OkMHuzOsWPhrF4dzNmzp9iwIYTmzVvSoIEFPXpc4fDh21hZGdOv\nnzPz5x9FJBLRp88AfvllM8uXBypfMA0ZMgJdXV1kMhmjRw/n0aMHWFpWU6qA7ty5k+fP07hy5RL3\n79/D2ro6Bw7sFRQyBQT+gwj+dwEBAYFiODrW58SJo6SmpgCQmpqCnV0djh0LByA8/CD29g7vNWZ+\nfr5SXv7IkUPUqaPob2paiaioOwDKeloAWlpaRSTxGzRoxI4dW5XH9+5FAWUbmAJfBgUhvcuXB7B+\n/WbGjJlAzZq/kZ3tTGpqF8TiuqSnH6F+/UZYWlpx+vQJUlKSMTQ0YsuWjTg5NaRKla/Iz8/H3Lwq\n9vYOypp0BQZGYUOjsOT/0KFD0dbW5v59RZ2599nsr1sXyJYtH8/oe5fx5s8/yMqV3bh9+wTXroUz\nevTp975PYmICrq69mDt3Bv36dWfhwnn4+Ljj4eGKp6crJ08eIzExATe33owf/x29enXmhx8mkpOT\nDSg8XwW/F6Ki7jBy5F+hkA8e3GPoUG8GDOjF3r27lOclElUsLa24du0qL1++wMmpAZmZmRw8uJ+L\nF88TFLSahIR4BgxoTrNm1bCyqvTWdRw/Ho6390C8vQcSHf2I6Oho5bXC3s8uXXpw4MBe8vPzOX78\nCG3bdnjvZyYgIPDvRjDmBAQEBIphYWGJu7s3vr5D8PR0Y8WKJYwePYEDB/bi4eFKePhBvvvur8LF\nxTfLpaGhUY47d27j7t6fa9ci8PIaDICr60B+++1XvL2/JiUlBVD0d3BwIibmEV5ebhw/fhRPz8FI\npVI8PAYUKbBcWs7d52LdukCuXLn0uafxRVFaSG9aWiwODsEYG++lSpWnSKV5ZGVlUatWbTw8vmHD\nhl8ICgrFyMiY9PQ0pkyZQZUq5vj5+bNsWQDVqilCRIsrZRbwMTb7H/s79y7j3bmjBmgV9ODePf2/\nda/Hj+Pp1asvtWvb8/DhA4KCNhASsonU1FRiYhRGUVxcLNWr29CsWQu0tLTYuXPHG+cpl8t5+PAB\ny5YFEBgYTEhIEC9eJJXoIxKJUFVVZf36tWhr62BmVgUfn2GYmJQv1ObN809IeMzWrZtYtiyA0NAt\nNGnStEwV0JYtXbhw4Rznz5/B1rYGurq67/ewBAQE/vUIYZYCAgICpdCxYxc6duxS5NzSpatLtCuc\ny2NqWonQ0K2lXgMYOXJMif7m5lUJDd2iPPbxGQYoNvVBQRuKtP3++ynvNM9PidoUXuUAACAASURB\nVEwmQ0VFpdRrhQUbBN6N0kJ6ZTIp+fky+vYdwIgR3xW5JpEUDeOVSouG8W7deo6tW2+TkfGU06dv\n0by5HTk5RcN3i2/2Q0LWUK+e01s3+6Gh6zh0aD8GBoaUL18BG5saPH4cz88/LyQ5+RUaGhpMnDgV\nQ0NjPD1d2bFjLwBZWVl8/XUftm/fw5MniSXaFxcxuX//LosW+ZGTk0PlymZMnjwdHR0dXr0KwMQk\nknLlriAS5aGpmY2n5zqSkp7z1VdVSUtLIzY2BiMjYzQ1tRCJwMSkAjExjwgJ2URCQgLz5s1ALpez\natUyIiNvk5eXR7Nm9dHW1iYjI4ONG9dz+PABxGIxu3f/ikgkRktLi0ePHpTIhyv+OTZr1gI1NTXU\n1NRwdHTizp1bSiO9OFevXsbXdzSRkbcAhfAOFOTKlmyvqalJRkYGurp6ZGRkvLMKqJqaGg0bNsbf\nfwGTJ08vc/4CAgJfLoJnTkBAQOAf4GN6MtauPUn79ofp0OEQmzad/VtjZGVl8f333+Hp6Ya7e3+O\nHTtCVFQkvr5D+OabQYwdO5Lnz58D4Os7hGXLfmLwYHc2bAimT5+uSgMkKyuLXr06I5VKmTdvpjJU\nNDLyNsOGeePp6YaPjwdZWVnIZDJWrlyqDGvbvXtnmfP7J0hMTMDdvf87tz94cB9JSUnK423bNivD\n76BoCN674uBQr0RIb6NGzvTo0UdpyBWEQRZQPCRRU1OTzMxMTp/+gx9+MOXSJTdSUzMYPfoF9+8/\n5OrVK2Xev/Bmv1OnskMso6IiOX78COvXb8Hff6kyNHjhwvmMGfM969ZtZPjw7/jppx/R1tbG2ro6\nERGK+54/f4aGDZugoqLCwoXzSrQvoOBHZO7cGYwY8R2hoVuwsqpGSMgaACwtDTE3v4lY7ImeXmXU\n1V+xfv1mevbsg0wmIy0tlXnzFpGc/ApDQyO6dOmBuro6ubk5SKVSlixZxMCBnqirq9OzZx/KldOk\nefNW1K3rSJcuPWjfvhO2tjXQ1zfAwMAQsViFNm3aMWHCVExMKgCKHNf8fMV3Pycn942frUgkLrKu\nv84rThQ24guHxJb2q6Jbt56MGzeS774bhrV1daUK6KxZ096qAtqmTQfEYrFQhFxA4D+K4JkTEBAQ\n+AcoK+TtTWRlZTF9+iSeP39Ofr4MD4/BLF7sT1xcc9TUbpOfr8HcuV7UqnWX9PSnbNgQjFSah66u\nHjNmzMXAwJDMzEyWLFnE3buRgAhvbx9atHAhLGw9UVGRmJiUp0oVc+ztHZg2bQILFvyMnp4+x46F\ns3jxYsaMmYxIJEIqlbJ2rcJTeO9eFNeuXcXR0Um5UZdIJMqQz7y8PGbMmMLs2Qt49OgBt2/fRE1N\njX37dqOtrU1Q0AZyc3MZPnwwDRo0wtT07TlCoDCWgoPDyvR2fGoOHNiLhYUVxsbGAISErCUnJ4dB\ng7xYtuwnXr58ASi8Lvv370FTU4uoqDtlKg5evnyRr7/2UIb0isUqVK9uw+jR4/n55x/x8HBFJpNR\nt64j48dPAhSGQfEXA3p6+tSubY+f3yTU1LqSmvo9aWkd0dZeyowZGtjY2LxxXW3adOD06ZNv3Ozf\nvHmN5s1boa6uDqjj7Nyc3Nwcbt26wbRpE5Xt8vKkALi4tOX48SM4Ojpx9Gg4vXv3IzMzkz/+uFlq\n+wIyMtJJT09X5qR26NCZadMUa1dRUWHePB8cHZ2Ii7Nm4MC+LF36ExkZGdjY1EAikdC4sTNyuRx3\ndy927tyGlVU1rl+/yuPH8URHP2Tt2gBycnLYsCEYFRUVIiNvU6FCRVq0aMW2bZtp0qQZv/22nRcv\nkl6LE8k5cuQQ9vZ1AahY0ZSoqDs0atSEU6f+ynGVy+WcPXuKQYO8yMrK5Nq1qwwbNpLc3FzMzKoo\n21WrVp0WLVyIjLzzWgDlFwCaNm0BgLf3EGXbEyeOKr37vXv3p3fvv148FPf6F1BcBRQUdexyc3P/\nNeHYpSGUURAQ+PsIxpyAgIDAv5SLF89jbFyeRYuWAoqNbl6ejOxsCxITF6Cjswsdnd1cvtyaAQOa\nsmbNegD27t3Fpk0b8PUdzfr1a9HR0VGGf6alpZGcnMylS7+jrq5O/foNSU9PY8OGYB49esjo0cMB\nxebK1LSici4FZRWg9I16AXK5nNjYPzEyMsbWtgbR0Q+RSFRRUVHh8uULPHz4QOm9y8jIID4+7p2N\nuU+xGZXJZMyePY1796KoWtWSadNmsXnzRs6fP0NOTg52dnWYMGEqJ04cJSoqktmzf0BdXZ1OnbqR\nlZVJWFgoV65cIi8vD7lcjlQq5caNa6iqqnLnzi3k8nxq17bn2rWrJRQHC6tGFg+VnTXLr8hxaOg6\njhw5VCTEsW9fV6ZNm0BenhQzMzO8vL5n3DgbqlZtTUzMYaTSZkycCHPnTlGOV9pm/+bN63Tu3O0t\nz7fkNblcjra2DiEhm0tcc3Zuzpo1q0hNTeXevSjq1atPZmYGOjqlt39fqlQxx8jIGEtLS0JDgzE3\n/wpQhJ6qqEiUirEFf2SyfCwsrOjXz43582cRGrqV4OA13Lt3lytXLjF37gwyMtKxsamBTCbD3Pwr\nYmNjCQ8/RL169enRow8AXl5DWLBgNmvXauPgUK+IR83KyppRo4aSnJyMl9dgjIyMSUxMKJYzp/jb\nw+Mbfv75R9zd+yMWq+DtPYTmzVu+9Zm/D1FR0cyaNZ3s7GT09P5efuHHYvLk8Tx79pTc3Bz69nWl\nW7eetG3bjO7de3PlyiXGjp1AYmICO3b8glSaR82adowbNwmxWIy//4JSX4oICAgoEIw5AQEBgX8p\nVlbWrFy5lNWrl9OkSTPs7euipiYBLAFIS+tMhQpzaNjwW549e8r06ZN4+fIFeXl5VKpUGVB4iWbP\n/ssw0NHR4dy5MyQmJmBoaMTRo4dJTk7mq6+qYmFhRUBAsLKtiYkOz5+nAQoBlwKcnZsTGLiSMWNG\ncO3aVeLjY/H09CE5+RWBgasASEp6rlTjTEp6zrhxo7h58xqNGjkzZ84CQKHquWLFYuRyOY0bN2XY\nsJHK82Fh60uc/xTExv7J5MnTsbOrg5/fbHbu3EHv3v3x8vIBYM6c6Zw7d4ZWrdqwc+d2fH3HYGNj\nC8Avv2wCwM/PnylTvkdNTY379+9x8eLvqKmp0aVLN/bt28PJk8eRSvOIjo7G0rIaQIl6a2+icIij\nTCbF23sgtrY1aNGilbLWWlDQalRUnjJ8eAb791egRo35fPONEzExz2nZ0qVEnqNMJmP58gPs2LEG\niSSTNWuCS7u1krp1HZg3bxYDB3oik0k5d+4M3bv3olKlSpw4cZRWrdogl8t58OA+1tbV0dTUxNa2\nJkuXLsLZuRkikQgtLe0S7R8+fKAUbJHLQUtLGx0dXW7cuI69fV0OHdqvzAeTy+XKlwinT59EW1uH\nrl17cvXqFe7diyI3N5fHj+MBOHz4AHXrOpKamoqOji6XLv3O8+fPOHXqGDVq1GTECB8qVjTF2ro6\nGRnp+PqO4ddff0Ff3wBQeAFVVSU0bdqcqVNnKp+DvX1dtmwpGR5c2KNWmMJ5tI6OTjg6OgGKvMXC\n476JzMxMJk8eT1paKjKZFB+fYTRt2oLExATGjx9FnToO3Lp1AxOT8vj5/YS6ujoBAdvx9w8gL0+b\nvLxGmJmdf6d7fSomT56Orq4uOTnZ+Ph40LKlC9nZ2dSqZYev72hiYqLZtCmUgACFx9TffwHh4Qfp\n0KEzQ4YML1KG4eHDB1hZVfus6xEQ+DchGHMCAgIC/1KqVDEnOHgTv/9+lqCgVdSrVx8NDTVGj37K\nwYM7AClZWVCnjjW+vkNwdR2Es3Mzrl27SnDwGuU4pZUvqF27LjNnzkNdXZ1z586wa9cO4uLiuHXr\nD+zsaiOVSnnw4AF6ehVK9NXU1MTY2JiEhAS6devJ2LETychIZ8GCOXh6DqZ/fzdcXXsRHf0IuVzO\n3btRhIRs4siRw6xcuYQnTxKRSCSsWLGENWvWY2xswtixvpw5c5IaNWoRELCC4OAwtLV1lOebNWv5\nSZ5x+fIVsLOrAyiKwW/fvhVTU1M2bdpAbm4OqampWFpaKQvDF89zKl++IgcO7KV2bXsePLjPjRvX\niIuLRUVFheXLF2Nu/hX6+vqoq2uUqTj4NkoLcZTLea3EuJqMjHQyM7No2LAxkydPoksXMzZv3oC7\n+xiGDvVm4sQfiownl8sZOnQ7u3e7AZ2oVOkI9+49wcmp7PDV6tVtad26LZ6erhgYGFKzZi1EIpg+\nfS7+/gsIDQ1GKpXSpk07rK2rAwqDdfr0ySxfHqgc5969e+zbt6dI+wJjTiRSFE1v3NiZVauWkp2d\nTeXKZsqQQpFIhJqaGt7eX5OWloZYrIKXlxuvXr3CxaUtzs7NmDZtItnZWaioqNCjRx82bAjGyakh\nO3b8gpaWFjdv3iA9PQ25XI6lZTVOnz5JQkI89+7dVd4DFN48FRWJUlF20CBvXFzavPNnVhY7d/7O\nlSspmJmJGTq0zTuFFqqrq+PntwhNTS2Sk5MZOtRLGZYZHx/HrFl+TJw4lenTJ3Pq1HHatevIypUr\nePz4J7KznTA2Xkhy8gdP/YPYvn0LZ84oQs2fPXtGXFwcYrGYli1bA3D16iXu3o1i8OBBAOTk5GBk\nZAQoyjDs2bMLmUzGixdJxMQ8Eow5AYFCCMacgICAwL+UpKQkdHR0aNeuI1pa2uzbtxsAHZ1X7Nnj\nyeHDBzhxwhGAzMwMjI1NAIVQRwH16zdk585tjBo1DlCEWdaqVRs/v9l4eX2NuroaKioquLt7Y2pa\nmaVL/UlPT0cmk/LNN960bFm6VH2bNh1YsmQRaWm1uHHjOtra2mhoqGNmZoZEImHOnAUsXryI58+f\nkZeXh6qqGj179mHr1jBGjRqKTCZ7HaanjYqKCm3bduD69WuIRCIcHOopw8IKzn8qY65wCFxBaN7P\nPy9k3bqNmJiUJzh4Dbm5uaW2B7Czs2PLljCmTJnB/v17OHBgL+XLl8fWtiZRUZGEhGzi1auXeHq6\nfcgsSz07f/5sFiz4CSurahw8uI9r164CULu2PYmJiUREXEEmk2FhYVmk39OnTwgPt6dA5j8hoS1b\nt27HyenNuXXu7t64u5cs1P3TT8tKbd+yZWtOny5aqkIsFpfavsCzlZiYwLlzp5W5ZAUkJiZw585t\ntLV1ycvLe12K4SdiY2NYtMiPq1cv8+RJIkuXBqCjo4Ov7xBWrVrKzZs3aN68JRKJBIlEFR0dbVas\nWMOCBXPQ1NRETU0NY2MTzM2/omvX7oAi5PVThPSuXXuC2bNrkZ1tBaQQHb2LRYt6vbWfXC4nIGAF\nN25cRywWkZT0nFevXgJgalpZaQzb2NiSmJhAeno6+fnZZGcrvICpqd0xMNhX5vifmoiIK1y9epnA\nwBDU1dUZOfJbcnNzUFNTL/KcO3bswrffjijSt6AMw9q1G9HW1mb+/FlFfh4FBAQENUsBAQGBfy2P\nHj1gyBBPvLzcWL9+LR4e3wAKg8zDw5UdO35h5MixgGIzPG3aRL75ZhD6+vrKTZKHxzekpaXh7t4f\nT083rl27ir6+PrNn+6GlpUl+vpy8PCkqKhKsrauzYsUa1q/fzMaN2+jbty8Ay5cHKkMLC+jTpz8H\nD56gcWNngoJWcerUcczMzGnRwgUAW9uaBAaG4OMzDBeXNmhoaCASiaha1ZLJk6czZsz3NGjQCC0t\n7dcjllX8XP5JhRuePn3CrVt/AAXF3BXKgLq6emRmZioLvUOBPHx6kWMrq+q8fPkCO7vaqKiooKam\nRqNGTbh+/RpffVUVN7feTJs2merV32wovYm6dR04ffokOTk5ZGZmcO7cGQCysjIwNDRCKpVy+PCB\nIn06dOjE7NnTSi0CrpDPzyh0Ro6qqrREu09JZmYm3303HG/vgXh4DODsWYXXJiBgOY8fx+Pl5caq\nVQqjb/PmDUyaNI6cnGzEYhEbN25DW1uHU6eOM3fuzFKVLwuL9ri7e9O0aXN8fb8jOHgTlSubAYq8\n0KCgUEaMGM20afMZNOggTZv+jKPjcZo1O8D27Rc+6pqPHs17bcgB6HHmzLsJ+YSHHyQlJZng4DBC\nQjZjYGCoVNJUUytcqkIFmUxRqkJbWwUTk98BUFePQ+/zaAYBKHMl1dXViYmJ5vbtWyXa1KvXgBMn\njvHq1StAoer65MkTMjMzS5RhEBAQKIrgmRMQEPi/4ODBfdSv30ipRPgl0KBBo1IVBr/+2r1EHlnT\npi2UoVeFKSs3x9HRqUQdu/ehuNdw164dvHz5gqioO9ja1iQzMwN1dQ1lWGJQ0AmOH5fy8uVTmjR5\nQrNmDVmyxJ+UlGS0tXU4ejScPn0GUKNGzVLPfwpEIhHm5l/x22/bWLBgNlWrWtKzZx+l8WtoaETN\nmnbK9p06dcXf3w8NDQ1Wrw6mW7eerF8fRJ06dVFX1wBg7doN6OrqYW1tS1hYCGpq6mRnZzFixCjl\nWKWJkLyJskIcBw8eypAhnujr61Orlp0yRxEUHs2goNW0bdu+xHiGhka4u//OmjVR5ORUplatPfj6\nNvw7j/BvU1bo4LBho4iOfqQUSbl06QLx8XEsWPATo0ePIC8vjxs3rmFjY8vjx/Gkp6eVqnwJRUV7\noGS4cYsWrQDYuTOOJ0/yuHBBExgHKF4wzJ59iDZtXmJgYPhR1qypmVfkWEvr3TxMGRkZGBgYoqKi\nQkTEFZ48SXxje21tbSpUMOabb2JISIgjNvYMiYnab+zzKWnYsAm7dv3KwIF9qVLlK+zsagNFvdxV\nq1rg4zOMsWNHkJ8vRyKRMG7cRGrWtFOWYShfvuJbyzAICPw/IhhzAgIC/xcUl5X/cvlwL9Xu3eeI\niUnDxaUatWv/vdyTR48esHLlUsRiERKJKuPHT0Yuz2fx4kXk5OSgoaHB4sUrEYlEPHz4hN27a5OT\nY0GlSuEsXhxN+/YuDB3qy6hRQ5HL5TRp0oymTZsDlHn+Y6y9MBUrmrJp044S5318himLtxemRQsX\npecRSsrFFzbSWrduW0Lk5NSpCB48eEbr1nWoWvXdFDwLKCvEsUBlsTg3b16nVas2hTyfRZk2rQtf\nfx3D7dtnaNmyFTo6Ou81nw+lrNDB4gbXpUsXuHz5IjdvXuf586eIRCLi4+MQi1VIT0974z0Ki/ZA\nyRBZVVVFoe6oKG1EonwgnwJDDuDpUysSEp5+NGNu7FhbHj7cRmRkPUxN7/Ldd2/+XVQw33btOjBx\n4lg8PAZgY1ODr76yKHNNBcd+fn5MmDAJkQjq12/EkyePPsoa/g6qqqr4+5cMrS1erqW0nxkouwyD\ngICAgg8y5hITE5kwYQIvX75EJBLRr18/3N3dSU5OZsyYMSQkJFC5cmWWLFmCrq7ux5qzgIDA/yGl\n1Vw7evQwfn7+AFy+fIHffvuVuXN/xM9vNnfvRiISiejcuRvly1dQysoXeFWiox+xYsVisrKy0NPT\nZ+rUGRgZGePrOwQbG1tu3LhOVlYmP/wwiw0bQoiOfkTr1m3x8RlW6lzeR53wQ9i+ffcH9Z8xYy9B\nQa2QSk1Zu/YMy5bdoFWr93/bXZbXMDAwpMhxx45dOHlSlZwcxQY0ISGAhIS7xMbG0aZNe9q0Kek5\natOmPS1auJCYmKDMA4QPX/s/wfbtv7NxYyoAbm7aDBjgDMDChQdZscKB7OxmVKkSzurVKTRoUOOj\n3lsul7NmzTHCw3eRlfWAwMA1b2zfsGFtLC2rftQ5vCuFQwdVVFTo27dbmUW4Bw70pEGDRkycOEaZ\nS7dlSxhaWtro6paufAlFPXGKENm/QktzcnKYPn0Sv/yyCyOjLF68ADAG7gOKHLRata5gadn6o63Z\nzs6KgwdNefgwhipV7JTKmWVRYOzo6ekXUZktTIFSJoCr60Dlv2vVqsX69X+VgBg+fNSHTP2zcPz4\nTVaufExOjoQOHcDX95/5HSsg8KXxQcacRCJhypQp1KhRg4yMDHr16oWzszO//vorTZo0wcfHhzVr\n1rBmzRrGjx//seYsICDwf0hpNdeCgwNJSVHUUNq/fy9dunTn/v17JCU9V276MjLS0dLS5tdftyll\n5aVSKUuWLOLHH/8qkL1mzSomT56OSCRCVVWNtWs3sH37ViZNGkdIyCZ0dHTp378H/fu7ERFxpcRc\nvgSkUim7d2shlZoC8PRpMzZt2v63jLn3wcxMBKQBCu9P5cr3MDV1KLP93bt/MmLETSIja2Fmdp45\nc4xp167uJ53jx+Datbv88IMRr14pwvuioq5hZXUHR0cbtm5VIztbYSTExXVg7dptH92YmzlzLwEB\nHZDLe6Ki8oywsONMnmz+3uMkJiYUMZxAUR7h0KH9jB79cf4vLyt0UFNTs0i4aMOGjQgKCqBOnbqI\nRCKeP3+GRKLIExOJREyZMhN/f78SypcF1wto3bodP/44jx07flGWxijg++/t8fVdS4UKSWhoHKdK\nlaqULy9hzJja76U6+i5oampSu3bNjzpmYY4cucrNm89p1coSR8fqn+w+n5qkpBeMH59KfLyihuXN\nm9FUqXKB7t3LLmwvIPD/ygcJoJiYmFCjhuI/Iy0tLaysrHj69CnHjx+nZ8+eAPTs2ZOjR4++aRgB\nAQGBt2JlZc2VKxdZvXo5N25cR0tLm/btO3H48AHS0tK4ffsWjRo1wdS0EgkJj1myZBEXL/6OpqaW\ncoyCN/WxsTFERysKZHt5ubFhQzDPnz9XtisI67O0tMLS0gpDQyNUVVWpVKkyz549K3UuXwIikQix\nOL/IueLHn4IRI9owcOCvWFjsws7uF2bN0kJXt2xFhh9//IObN93Iy7MnOron/v7xn3yOH4OLFx/x\n6tVfnqHkZAcuX/4TuVxOfrHHnJ//8UVdzp3TRC5XyLnLZOU5c0bto41ta1vjoxhyhUMHo6Ii8fAY\nwKFD+5Whg3p6+tSubY+7e39WrVpG/fqNaNu2AzNnTgFg+vRJZGVl4uo6EC8vH6ytqxMYGEJo6Bbm\nz1+EtrbiZ7G4aE/t2vaEhW0jODiMypXNmDVrPqqqqvz44zwWLZqBk5MtFy82ZPPmDhgb/0ZWVhih\noStIS1OEcvr6DiEqKhKA5ORk+vZVCMs8evQQHx8PvLzc8PBwLVLnruD8okXzyS/+BfgErF59DB+f\nSvz4Y1/69NEmOPjkJ7/np6Jv367Ex9dHReUppqajyM624ObNlM89LQGBfyUfLWcuPj6eyMhI6tSp\nw4sXL5R5KcbGxrxQxC8ICAgI/G2K11xzcmpAly49mDhxDGpqari4KGo26erqEhq6lYsXz7Nr168c\nP36EyZOnA39tJOVyShTILkxBLk2Bl64AkUiETCYrdS6enoM/8RP4cFRUVPj6axnLlt0lK8sac/ND\n+PhYvr3jByIWi/n5597v3D49vagRkpb2cb0jnwpHR3P09G6QklKgiPkHDg6KUg09emQSFPSYvLzK\nVKx4mkGDKn/0++vo5BQ51tb+cAn3x4/jmTZtIm3adOD69QgWLlzMunWBPH36hMTEBJ4+fUK/fq5K\nkZr169cSHn4QfX0DypevgI1NjSLhf+8SOjhjxlwA0tJSefXqJX37DqBv348jgpOdnc2aNSd58eIV\ncXGxzJw5X1mj7ezZU2zatIGxYydgb+/AunWBhISsYdSocYhEolJVVXfv/pW+fV1p164DUqkUmUxG\nTEw0x48fKbUA9qdk1y4ZmZkKb1x6ug07d97Cu2Sa5Wfj7NnTxMQ8YuBAz7e2VVFRoWLFazx50pbE\nxGWoqcVRo8aX8dJMQOCf5qMYcxkZGYwaNYqpU6cq34oVUNYvQAEBAYH3obh64v79ezA2NsbY2JjQ\n0GCWLl0FQEpKMhKJhBYtXKhSxZy5cxVhV4Vl5c3NvyI5+VWRAtlxcbEl6nGVhlwuL7P+25fAuHHt\nadz4Bvfv36J16zqYmVX83FMqQbNmIs6dUxg+kEHDhq8+95TeiQYNajFt2mk2b76HXC7C1VWDxo0V\nCqMzZ3bF0fEcf/55DhcXG2rV+vhG9LhxFjx5spPoaBuqVYtk/Hirt3d6A7GxMcycOZWpU2eRmprC\n9esRymtxcbEsXx5IRkY6bm696dmzL/fuRXHq1HFCQ7eSl5eHt/dAbG3/XijpvHn7CQszJC9Pnfbt\nj/6PvfMOqKn/4/jrdttLQ0h2KDREZkY/hOxRZBXx8JgP2VtWZh57RzYRHnvzGI+RyCoy00BG2rfu\n7f7+uE+XFIoQz3n9wznne77ne86593Y+5/P5vt8sXuySK4PtTyGVSunRYzdnzvRCVfU5Zcv6I5Mp\nXhzkRh0zJ6ysbP7N7D+nYcNGlChR8pMG2N8SVdWs2T+xWPbNj5kX6tVr8J6Y0acRiUTMmqXG4sUr\nSEzcQps2g9DWljJu3EgkEglRUZE0aOConAt4+fJFpSdkZrltfpfICggUVL46mEtPT2fIkCG0adOG\nJk2aAGBsbExsbCwmJia8ePECI6PPK0GZmHxfJS2B74twf39tvsf9vXs3hNGj56CiooKqqire3t6Y\nmOjRsWN7Nm7cSPXqCrnrV6+iGDVqnLKsadSokZiY6OHm1glf39loaWmxbds2li5dwvTp00lISEAm\nk+Hh4UHNmraoqYkxNNTGxEQPQ0MdNDRUleenpibGyEiHV6+ilGNRU1NjypQpP9VnvG3berlu+yPO\na+rUDpQseZIrV4IpVUrO2LHuiMXi7z6OL2H48JYMH57ztt69czZgz4lt27ahqalJu3btctU+MjIS\nP7/p3LixnaioaEqUaJmrh9mc7q9EosPbt3FMmDCKJUuWYG5uzqVLl5TfBV1dTZycGmNqaggYUrhw\nYUQiCQ8fhtG8eTOKF1f8zXdyaoyOjkaeP0MXLoSwcqUdqakKb76AADsaN75Av365v345cf58MGfO\nNAcUc+7S0ozYt+8B9epZoa+vzfPnCYjFKsrxpqTooKYmxsREDy0tDQoVEIHtwgAAIABJREFU0sTE\nRA+ZLAkVFREmJnp07epK/fq1OX36NGPGDMPb2xtdXU06duyAl5fXV403r/zxhynDhl0kNTUGE5NV\nqKtLWbz4FlOmTOHcuXP8+eefyGQyDA0NWb9+PXFxcYwbN47IyEi0tLSYOnUqFhYWLF68mOjoaCIj\nI4mJicHDw4MePRSB6bp16wgMDATAxcUFDw8PIiMj6dOnD3Z2dgQHB2NlZUX79u1ZsmQJb968Ye7c\nudjY2BAYGMjt27eZOHEiL1++ZPLkyURGKspSp0yZgp3du3m0IhF4eDjSuHF5+vc/wJw5nQgMDOTR\no/vs2bMHdXV1mjdvzu+/90FNTY2tW/3ZvHkjmpqarFq1in37Ahg4cGD2i/QL8TP9zRH4tnxVMCeX\nyxk/fjzm5ub07NlTub5Ro0bs3r2bvn37smfPHmWQ9yliYz8tMSzw82Jioifc31+Y73V/LSxsWbt2\nc5Z1sbEJnDv3D82bt1aOwdjYjJUr/bO1s7Orw8aNAQDEx6dhbGzGggXLs7Xz9V2m/H/ZspWYNm2u\nsu/MbUWKlMpxLL8aP/K7265dDTLjmNevkz/d+BdDJpPRuLGiJC+31//16ySkUhlJSTIMDIqSmCj9\nrHT/x+7v69dJaGvrULhwUU6fPo++fhHi4pKRSKTExiaQlCRBS0us3Fcuhxcv3pKUlEZiYqpyfXKy\nhMRESZ4/Q9evPyY19X2POH0ePkz46s+iVCpHVTUeqdIfXY5UmkJsbAKJiRJUVNTR0dHl+PGz2NpW\nZcuWHVhZVSU2NgFj4yJcvBhEsWJl2LVrLxkZcmJjE4iKisTMrATNm7fjwYMnBAffpEaNWqxbN5xW\nrVwwNDQkPv4tyckpFCv2bbPgTZvasmTJWdasWc+ffy7BxKQI8+fPZtOm7axevZxly9ZQrJgpCQmK\na7lgwXzKlq2At/dsgoODGD58BOvWbSEpSUJ4+IMsmVcnp9aEh98jIGAnq1atJyNDTt++HlSoUAVd\nXT0iIiLw9p7FsGFj6dPHncDAvSxevJpz586waNFSfHzmkZCQSkpKGrGxCUyaNAVr66pMmTKLjIwM\nUlKSs9xfuVzx2c/8XMfGJpCQkErVqvakpMhJSZFQsmRpbt26R0JCAuHh4bi4uAKQni7F2trml/xN\nzkR4rvp1+ZIg/auCuatXr/LXX39hYWGhfHvo5eVF3759GTp0KLt27VJaEwgICAjkN56e3dHW1mbI\nkI+kQvIZuVzO/v0XiI6Ox9m5KqVKmX6X434JP6NJ+q9ETEw0w4cPxtKyMvfuhVGmTDkmTvTm0aNH\nH7XEqFjRghs3QmjSpCnJycloaWnTpUt3wsPvMneuDxKJBDOzEowdOwk9PT3CwkLx8ZmKSCSiZs38\nNf1WU1Nj5sy5eHkNQktLC2Pjd5+jD73gFIiwsbFlzpyZ9OjRC6lUyoUL52jbtkOej92kSTUsLfcR\nFqZQMixe/CTNm1f40lNRUrlyRbp1C2TLFg3kcglaWnEMHPiu7O9T6phdunRn4sSx/PXXburUqUem\n5+HJk8c5evQgqqqqGBsXxt3dEz09vRwNsL91MAfw+nU0SUmvGDduOFKpDIlEwp07t7Czq0axYorf\nq0xPwZs3Q5gxYy4A1arZ8/btW5KTkxCJRNStWw9VVVUKFTLA0NCI169fcePGdRo0+B8aGpqAwncx\nJOQa9eo1xNTUjHLlFGW9ZcuWw96+5r//N+fZs+hs4wwODmLSpGmAYk5tbkWk1NXVlP9XUREjkylK\nSe3tazFlyow8Xy8BgV+Brwrm7O3tCQsLy3Hb+vXrv6ZrAQEBgc/i57fpux5v3Li9+Ps7IZUWZe3a\nA6xZk4SNzZeZbn9rfh2T9J+Xp08jGDduMlZWNvj4TGXXrh2cPXsaHx9fDAyyW2JIpVLWrNkAgJ/f\nKjKnm0+fPhkvr9HZRDl8fLzx8hqDrW1Vli1b+Nnx7NmzC01NzWxCHDlZEYhEIjQ1NZkz50+GDRuA\nh0cf5XgUc+Hf7f/2bRwSiQRLy8rUq9cADw83jIyMMTcvn20efW4wNDRg/Xprli3bjkymQufOpbCy\n+rr5f5nMnduBzp1vEReXSL16u9HUVAQm74u0fOiVCFCqVBn8/bcqlzNN5Xv06EmPHj2ztf+YAfb3\nwNm5FRMmjFFmbs6fP8uJE0dzbJtzYI7S/gEUwZZMJsumfyCXy5XrsgZZivLz9/fNy7HzgkgkokoV\na3x9ZyuzpCkpKbx8GUvJknm35RAQ+BnJNzVLAQEBgV+Z+Pi3BAaaIpUq3q4/ftyK9et34Ov7bYK5\ngmCS3rp1S7p16/1Nzu+/QJEiRbGysgGgWbMW+Pv78fDhA4YNGwBARkYGxsbvTNEbN26arY+kpEQS\nExOziXIkJmaur/pv/y25ePHCJ8fTrl3uFEVNTYsrzah1dXVZvVoRYGaKV3h69s3SXl1dAwMDhdVE\nly498PTsS2pq6r+frS8TQClXrgTz5pX4on0/h7291TfpFxSCcNu3n0NVVYSbmyPq6vlnD5Ebqlev\nyZgxwxkwoC+gRnz8W8zNyzN//ixiYqIxNS1OfPxb9PULYWNjx9Gjh+jZsw/BwUEYGBiira2DXC4n\nIeEt7u6d3wvwRdjaVmXGDG+6d/cgI0POqVPHcXZupQzKMr0IczfOGuzevZNOnbogk8lITU3Jkp17\nP3DM/P/HBPUMDAwYP34KU6aMIy0tHYC+fQcIwZzAfwYhmBMQEBAogBQEk/QuXdrTurUr+vr6P/JS\n/LS8/+Apl8vR0dH5pCWGpuY7wZLExAQCAwO4c+cWL1/GMmHCaCZO9GbgwN/IyJAxcOBvpKamKlX8\nEhLiefkylpSUFLS0tFi+fDHnz59FLBZTq1ZtBgz4g7VrV6KtrUOXLt0JCwuld+/pyGTyLCWaMpmM\nFSuWcP36VdLS0unQwZW2bTsQHByEn98qDAwMefToARYWlZg0aRoBAduIjY2lc+euiMW6lC9fjPj4\nl6SlpeHs3IoKFSy+3QUuYCQmJtKp00GCgjwAKfv3+7N5s6syS/U9KFOmLL/91h9PT0/S0qSoqqri\n5TWaUaPGM378SDIy5BgZGeHruwRPz774+EzFw6MLWlpaTJgwBcj83GYPmipWtKRFi1b89psHADVq\n1OLmzRs0adIMkUiEpWUlLC0rMXOm92eDsaFDRzBnzgwOHNiLiooKI0aMo0qVd0F2poXF+y8WnJ1b\n4ezcStlmzpwFyv9Xq2avfOkgIPBfQwjmBAQEBHKBvn4hOnaMYf36GKTSYpQuvZ+ePb9+Hs/HMDev\nwNKlC1m+fDF169bH1raq0iTd2bk1t2/fYtKkaSQmJipN0uvUqUfNmrWVfeRkkg7ZM0I5maQDlCxZ\nkufPnxWYYM7JqT7Hjp390cPINc+fP1PaXxw7dpgqVazYt29Pri0x4uLe0KlTVyIiIpBIUtm1K4DU\n1JR/Pxur6d69E8uWLWLlSj/Wrl3F4cP72b59Mx06uHL27Gm2bNkFoLTkeL880sfHm6lTvSld2iJL\nieb+/XuV2bi0tDQGDOij/Ezdv3+PTZsCMDYuTP/+vbl5M4TWrduxaNFqrl//i4wMQyIjT7JhgwG2\ntt/uu1FQ2bDhLEFBPQExoMrp093Yu/ckLi7/y/djfWxO5s2bN9i8eT0gx9KyEiNGjEVNTQ0Xl9Y0\nauTEpUsXSEh4J9yiq6tLr159cHRsDLz7jsXERHPunCKgmj17AdOmTSQlJQWAUaPGY2VlQ9++PYmI\neMy4cSNo2bINwcFBbNu2mTlzFhAf/5axY4cTHR2NpqYWDx7cx9m5FdHRUcyc6Z2jR+GX8PBhJMuX\nh5CRIaZLl7LY22d9efCz/WYICHwJX2faIiAgIPAfYsaMtqxaFcK0aTvZtcvim86XyzQmNzcvz+rV\ny1i/fg0tWrThyJFDnDhxJJtJup1ddfbs2cWsWdOUfXxokr5u3RbWrduCv/82fH0XK9t9yiQ90+Kh\nYPBzeZaWKlWa3bt30L27K4mJibi4uDFt2mxWrFhMz55d6dWrK7dv3/jo/rq6elhZ2TB+/BRiYqLx\n919DerqU4cMV3mdt2rTj4cP7tGjRmEOH9pGQkMjz58/Q0dFFXV0DH5+pnDlzSilYkUlmiaa9vT2g\nKNHM5MqVixw+fIBevbrSr19P4uPfEhn5FJFIRKVKVShc2ASRSET58hWJiYnh8uWbpKVpkXlvYmIa\nsW/fgxzPJzExkd27d37RtXRxaU18/Nsv2vdX5enTCDp0cGXTpgB0dHTYunUTM2d6M3XqLPbt24dM\nJlNeb5FIhJ6eHv7+2+jYsRMLF85Xrs9K9u+YkZERCxYsxc9vE97eM/nzT0Wpd//+g7GxsWPdui10\n6tQ1yz5r167EwqIS/v5b6ddvINOnTwIUnnuXLoVQpkxr5s5dxLp1qz86p+5zvH79hp49b+Lv78bG\nja707fuasLDHnz0fAYFfDSEzJyAgIJBLRCIRrVo5fJdjFRST9IJIcnIyY8eOICEhHplMym+/9ade\nvYZs2bIBdXV1XFzcWLRoPg8e3GfhwuVcvXqFAwf+UqrnfS/EYjETJ2Y9ZoUKFVmyZFW2tosXr8yy\n7Orahb//Pq3cZ9iwUezatYPw8LtKURszs5I0auSUo4rf6tX+BAVd5vTpEwQG7mDhwuXZ2mTyoRCF\nl9coatSonWVdcHBQlkBfLFZBJpNSpIghItH7D+MS9D6irJ2QEM/u3QG0b++SbZtUqigJ/BCZTIZY\nLM5xrlRBw929Pvv3r/+3zFKGo+MW2rbNfq75xYdzMtevX0Px4maUKFESUJQlBgbuoFOnLgA0adJM\n+e/ixb65Pk56upQFC2Zz/344KioqREY+BT4tYPKhUmZMTAxubu2JjIwhMbE2s2e7cfjwegoXLsSb\nN68pXPhdpcDBg/u4ezeUYcNGAXDkyEF27tyOVJrOw4cPOHnyAs2bO1K5cm2Sk6MpWXIX0dHLiIxs\nSkDASiIjvUlNTcHBIXcG5QICPztCMCcgICBQAHn48D5Lly5ERUWEqqoqI0aMA8DJqTlv376lVKky\nAMTGxjJzpjdyuSKD9vvvgwFo0aI18+b5KAVQpk2bzcKF80hMTEQmk9K5c9dswdyHKoUFFQ0NDXx8\n5qKtrUNcXBy//96LevUaYmtbjW3bNuHi4kZYWChSqRSpVEpIyDWqVq32RccaOfIPpkyZ8Unp9EGD\n+jJo0DAsLbOKfaSlpfHPP+epU+fLXgB8WKZpY2NLePhdbt9+xMaNMaSkpPDixZVsKn6FC5uQmppC\nnToOWFvb0rlzW0Dx8C2XK0RNdHX1uHr1KqVKVeTo0UPKY9asWYfAwJ3Y2dmjqqpKRMQTihQpCsCL\nF8/x8OiCSCQiLU1CqVKl2bRpFerqbyhduiOxsb9Tt+4btLTeZCmla9asBSdOHCUtTcLz589p3tyR\nFi1aU7p0WZYtW6hU8ty+fQ/z5vkQFHQFNTVVtLV1cHHpTJEixYiNfcGgQX3R1y/EkiWrkEgkzJ8/\ni7t3QxGLxQwaNIxq1ew5eHAf5879jUQiISoqkgYNHBkwYMgXXf+8oqurS0BAS7Zt24Oamgg3t46o\nqalx9uxpSpYsTZkyZfP1eB/OydTV1cuSvXxfbfJj+4rFYjIyFEFZRkYGUml6trbbt2/G2LgwEydO\nQyaT0ahR3VyN7/1gLyUlmebNf2PFCglyuS4gIiTEg5o11yGVZs3MvT/mx48fcfLkMVas8EMsFuPo\nWJujRw+RmpqKjY01u3aNQF9/N4UK7eD16y6EhR3C3b0LzZq1IDAwIFfjFBD42RGCOQEBAYECSM2a\ntbPMf8vkxo3rtG7dTrlcvnyFHC0aGjZsRMOGjZTLuckI2dlVx86uunJ548aNBdKYVi6Xs2LFEkJC\nrqOiIuLly1jevHmNhYUld++GkpychLq6OpaWlQgLC+XGjevKt/x5Pc6cOX9+NiuU03ZT0+K4u3ty\n8eKXB3OZZZqzZk2lTJlytG/vwo4dW/HyesqDB4qytqJFZYwc6YWamhhQqPhpa2szZsxw0tLSADmD\nB3spx5k51HHjJjN16lRksgxq1KitPIfWrdsRExNN797dkcvlGBoaMXPmXJ49iyEy8imBgfvR1y/E\n7NnTOXr0EAMHDsXOrjqbN29ER2caGzacZd261Tx9GqE0nXZza09iYiLTp89h7doVynLNnTu3IZPJ\n2LQpgNu3b/4ryjOZ8eNHUqpUaW7eDKFFizYMHtwXIyNjlixZhVisOM/AwABUVFTw999GRMRjhg0b\nxNatgYBibt/69VtQVVWja9eOuLq6YWJS5IvuQV7R0dGhd+9mWdb9/fdpHBzq53sw92Gwb2lZib17\nA4mKisTEpBJHjhzM8hLjxImjdO/ekxMnjiozesWKmXL3biiNGjXh3Lm/kb5zVFeSnJykvH6HDx9Q\nll5ra+uQnJyU49jeV8ocPXoYGRkZnDq1BS2tsqioSHjzxhOx+BlJSXGMGTMMNTU1hgwZjrW1bZZ+\nTp48yqVL/+DkVB8dHV1kMhkxMdGoqanRu7c7UVH72bkzA1XVqzRurM7jx9HKDGSzZs4sX744p+EJ\nCPxSCMGcgICAwE/CtzRJT09PZ8uW06SmyujUqTaGhgb5foz84ujRQ7x9G4ef3ybEYjGurm2QSNIw\nNFTF1NSMgwf3YW1ti7l5eYKDFZmr0qXL5KrvmJhovLwGUaWKNXfvhvL48SMOHDiOvn4h1q9fw9Gj\nhzAwMKRIkaJYWFRS+pOdOnWc+fNnkZiYwJgxk6hSxYo1a1aQlpbGjRvX6dHDk0aNmuTpPHMq0+ze\nfSS//95Yufz8uSfu7vqMHJk1gFi92j9bf+9bClhYWLJ3715lsJ6ZvRKJRPTrN5B+/QZm2Tc5OYnO\nnbuir6+wIBg9egKtWjmxYMEcAAoV0gfkSCSSbKbT+vqF0NTUomJFhThFpk1DTEw0IpGIsWOHK0V5\nAgK2EhZ2hxcvnvP2bRyRkRFYW9ty8OB+Dh8+oPTIu3kzBBeXzoDCA65YMVOePo1AJBJRvXpNtLV1\nAIW6Y0xMdJ6Duc+V7Do7t2Tt2lWkpaUpzcU/VBGtWbM2DRv+j/Pnz3L9+jX8/dcyffoczMzyx3Lh\nw2C/c+duVKlizcSJowE5FStWol27d2WeCQkJeHh0QV1dXVma26ZNe8aMGU7Pnl2pVasOWlrayvaZ\nAX779q6MHz+Kw4cPZmlTvnwFxGIxPXt2pUULhXJp5suCD5UyjY0L4+fnj5vbAF6+1AFeY239O4UK\nGTNrlkKVcsSIwWzaFJAlo3f69Elq1arL7Nm+BAYGsHz5Yjw9+7J1q+IF1qRJrahe/S8uXXrK1Kmd\naNkya7mygMB/ASGYExAQEPhJ+FYm6VKpFA+PAI4f9wDUCQjYyI4d/+Ps2WMEBV37oqzWtyQpKQlD\nQyPEYjHBwUE8exaj3GZrW5WtWzcxbtxkypUzZ9EiXypVqpyn/qOiIpk4cSqVK1vh6toGgNDQ25w5\ncxJ//22kp6fj6dk9S1llRkYGq1f7888/51m3bhV//rmM337rz927oQwdOvKLzjOnjF+FCsXR1b1H\nYqLCX05F5SVmZprZ2uU3IpFI+ZB94EAQhw69JjFRwqpVvhQvXixb+w9Np98n06ahWLHiFC9uppSY\nDw4OYs2aFVSsaMmQIcNZsmQBaWlpjBgxlrNnz/DyZSy9e/dg7dqNnxxrVgNr8ReJ+HyqZNfcvDz+\n/n78+ecyNDU12bRp/UdVRHV0dKlXrwEODvWzZMrzg5yC/erVa+DntxkTE71sWfVu3dzp339wlnWG\nhkZZTNIzt79vCVCiRMkshumZbVRVVbPNxczM7Ovr6ys9MQFcXdsgFosZMqQrx4+foVmzyyxd+gJd\nXRPGjlVkjpOTk5WKmZm8ePECiSSNN2/e/JtpW5Tl+w6K+cGZ5u/W1racOHGUpk2dOXr08EevnYDA\nr4SgZikgICDwH+fUqSCOH+8AqAMq3Ljhjp/fPz96WNnIDG6aNm1OWFgoHh5uHD58gNKl35Wv2dhU\n5fXrV1hZWWNoaISGhobScDu3FC1qSuXK7zyv5HI5N2+GUL++I2pqamhra+PgUD/LPg0bKuTnLSws\nlQ+bijlqHxeJ+BTvP0y/j7V1Rby8HlGy5G6KFduPu/sBunT59kIP1arV4NSp4+zde46hQw3YubMx\nr183wt19PunpinlW4eH3Prr/y5exREQ8Jjk5WWnTkJSUQEJCPKB4ofDo0QP09PRQUVEhJiaa27dv\nAYrgWl1dne7de2JgYMDz58+xta2qnOsXEfGE58+fUbp0mRyv95fcgw9Ldq2srJUluxoaGjx+/JD+\n/T3p1asrhw8f/KyK6Jd+Dj5F3kRhfvxk2MOHgwkMvM3bt2k0bVobkLNqlb9SZTcw8ABaWlpZzkss\nVqFPn9/x8hrI7797IpFIePXqVY4+dgB//DGCwMAAPDzcePky9qcQzhEQ+FqEzJyAgIDAL8DnysLq\n1HFg06b1yOVy6tSpp3y77uRUn6pV61Kq1J+8eDEVdfXHGBmt4syZdNTVv49yZ27JNBIuVMjgo8bb\n9vY1OXXqXSCaOY8qL2hp5ZTpEn3wQJ714TxT6VFFRfzFUuu5ITExETOzOC5fbk9s7AuWLPkTkajD\nNzteJmXLlsPd3ZMFC3woVMgQTc3KvHgxAZFoBO7unRGLValatRojRihsEz58hi5e3IyjRw+RkBDP\nqVPHadWqHZ6e/Vi+fBE9e3ZFJpPSsWNnZDIZoaG32bVrO1ZW1gAsW7aQ2NgX9O/fh1q1alOhQkVK\nly7DvHk+eHi4IRaLGT9+CqqqqlmMqTP5kgd6VdWPl+yampphb18rTyqi+R1UfCzY/xgBAXvz9fh5\nJTExlbFji6OiUgMNjet4ee2mRo3aBARso2vXHgCEh9+lQgWLLN8za2tb5PIM1q3bwu7dO1m2bBFV\nqlgpfwsAHB0bK33yTE2LZ/lt+O23/t/pDAUEfhxCMCcgICDwC/CpsrCSJUuxYsUS/Pw2oaurh5fX\nIM6ePU39+o6kpqbi7NyEFy9iiYoywtR0OAYGrqxf3xJv77GUK/dzmT9HRT1nzZqrZGRAr162lClj\n9tV9ikQibGxsmTNnJj169EIqlXLhwjnatv10EKWjo0NycvJXH/993pf3L1bMlOnTZ+dr/5/C2bkV\nISEifH07AopSxrQ0N5YsqYCxsbGy3ftz8wB8fZcwevSwbCWBQBYxH4B27Tpma5OTEqm6ujrjxk3O\ncYzOzq2Uy5klnF/Cx0p2q1Sxxtd3dq5VRBU2ITkLhfxXSEmRk5xcAV3dSECds2cNOXHCiz//nIuH\nRxdkMpnyZcD7Afkff4zA23sCmzf7U69ew08GxSdPhrBnzzM0NaX88Yc9ZmZFv9PZCQj8WIRgTkBA\nQOAX4FNKjg4ODahWzZ5ChRSiJk5Ozbl+/Rr16zuioqLC//7XhIYNM5g7dxl375qyeHEHdHV1adGi\nBaGhHy+dK2i8fv2Gbt0uc+dOF0DE8eMBBASoUbx43sQvsj4wKv5vaVmZevUa4OHhhpGRMebm5dHV\n/ZhdgWIfOzt7Nm1aT69eXb9IACUnVqxYTFRUJL16daVEiVI8efKIDRu2c/DgPs6ePU1qaiqRkU9x\nc+uGRJLG8eOHUVNTZ+7chejr6xMVFYmv7xzi4t6gp6eDl9cYpc1Fbhg6tDG3bq3j4kVLdHVfM2iQ\napZA7mPkJTPl53eaPXvSUFWV0aePCS1a2Odqv4sXb3Ht2lNq1CiDvX2lz+/wGWxt7di4cR1WVtZo\naGgqS3YNDAwYP34KU6aMIy1NUWL6KRXRxo2bMnv2DHbu3M60abPyTQDlZ8LC4g/u3DEgPr490J6K\nFbdjaGiEt7dPtrbvB+S5zbT9808oAweKefXKBZATHLyRv/5qhra2do7tBQR+JYRgTkBAQOAX4NNl\nYQr58Xe8859SV9dAJBIhFotxcLBGKn2pDFK+xTyfb8nevZe5c6czmcFUeLgLu3cHMHCgc677+LB8\n7f3ytC5deuDp2ZfU1FQGDeqLhYUiYHjf3qFQoUKsWOGHRCJBX1+f1as3fOVZZaV//yE8evSQdeu2\n8OxZDKNGDVVuy1wvkUjo3LktAwb8gZ/fZhYv9uXw4QN06tSFOXNmMHLkOEqUKEl09ENmz579SUPx\nD9HU1GTjRjfi4t6gpVVJKTzxKfJSEnjy5DWmTatAUpIlAOHhp6lcOZIyZT4dAPn7n2HatNLEx3fC\nwCCYqVPP4+b2dWXC1avX+GjJbrVq9jne25xURK2tbdm0acdXjeVnx8vLmnv3tnH7dk2KFLnPkCGG\nn93n9u1wbt9+SsOG1hQtavLJtseOPeHVK9d/l0TcuOHEtWuhODhU/+R+AgK/AoIAioCAgMAvQmZZ\nWNWq1bC1tWPPnl1UrGhBpUpVuH49mLdv45DJZBw/fjTH0rVKlay4fj2Y+Pi3SKVSDh/+udTgChfW\nQSR6/d6aBAwN1fOt/zlzZtCrV1d69+6Oo2MjKlSwyLI9Pj4eV9cd1KwZhYPD3wQEXMy3Y2fyfoD9\nYbBtZ2ePlpYWBgYG6Orq4eCgEEYpV648z55Fk5KSws2bN5g4cTS9enVl8uTJvHr1Ks9jEIlEGBoa\n5SqQyyvBwS+UgRzA8+d1uHQp7LP7bd2aSny8Yo5dXFw1tmxJzPex5YV//gmlY8cDODkdZ/Lkv366\nFyP5jYVFaQ4ebMSxYy84c6YinTrV+WT71atP07ZtBoMGNaNVqztcvhz6yfaGhgDvlDB1dSMwMyuc\nDyMXECj4CJk5AQEBgV+Ej5WFGRsX5vffBzFkyO/I5XLq1q1PvXqKB/33y98KFy6Mp2df+vXrha6u\nHjY2VnxDLY98p1UrBzp33smuXfbI5WJatbqAm1unfOt/8uTpn9zu43OGv//2BFRISIDZswNp2zYN\ndfX8Cyg/RVZJfhXlsoqKCjKZDLk8Az09Pdat2wKQo3z9j8bKygiT9TckAAAgAElEQVRNzQekppoD\nULhwENWrf8m8zR8XPKWmpjJy5BPu3XMD4MaN1xQrdoL+/b+8zDYxMZFjxw7Tvr3LR9s8exbDzZsh\nODk1/2RfMTHRjB49jA0btn/xeL4ELS0tbG2rfLadXC7Hz09CfLyivPbJk1asWLGdmjU/Xjrbv38T\nQkI2ceaMBRoaifTtm0qZMk75NnYBgYKMEMwJCAgI/CJ8qiysSZNmNGnSLNs+76vCAbRo0ZoWLVoD\nBfNh/1OIRCIWLnRhyJCHZGRIqVCh83eVJo+P1+D9gpe4uMIkJSWirm6Ub8fQ1tbOs6hKZlZIW1uH\n4sWLc+rUcf73vybI5XLu3w+nfPmCI3LTvHkNRo48xt69IaiqSunTx5Dy5W0+u1/Xrlrcv3+D+Hgb\nDAyu0q2b/ncYbc48exbDw4fvsrZyuRH37+fd6+593he++RjR0VEcO3bks8Hcz4BUKs6ynJ4u/khL\nBaqqqqxe3Zk3b16jqaklzJUT+E8hBHMCAgIC/2Ey3/gXK1aF06efYGqqjofH/34qf6ZDh/azbdtm\nRCIR5ubladTICX//tUil6ejrF2Ly5OkYGhpx7dpVFi2aDygCv6VL16ClpcWWLRs4deo4aWnpNGjg\nSO/e/b5oHI6Oeuzff4+UlIpABtWq3cPAoGo+nqnClsHa2hZ3986ULl1WeZ+yS/Jn9eHK3DZp0nTm\nzZuFv78fkIGjY5MCFcwBDB7sxODBn2/3Pu7uDbC0vM3VqzuoWbMs1avX/TaDywXFiplSvvxpwsIU\nQaiKykssLD4djHyO94VvatSohVwOly5dQCQS4e7em8aNnVixYgkREY/p1asrrq4uVKtWh2nTJimN\nuL28RmFl9fnA+EcjEolo2TKFVaueIZUWw8AgCBeXQrnaz8jo82I8AgK/GiJ5ASnk/pne/grkjZ/t\n7b5A3hDu789NTEw0Awf+TmjoLF69qoVI9IZu3fbg6+uS473N/JNRUIK9hw8fMH78SFauXIe+fiHi\n4+MRiUTo6ekBsG/fHp48ecygQUMZPXoYPXr0wsrKhtTUVNTU1Lh69QqnT59g1KjxZGRkMGbMcLp1\nc8+z0XgmAQH/cOZMAoUKSRgzxlE5joKI8N39dly5cpc5c+6TmKhO3bqpTJjQ6qu+M5liNxs2bOf0\n6RPs3RuIr+8S4uLe0KePO6tWrSci4glbt25izpwFmJjoERkZi0ikgrq6Ok+fRuDtPYE1azb8sDLL\nvCCXy9m58zyPHiVSv34p6tSp/KOHVKAQvru/LiYmef+bIWTmBAQEBP7DrFixmNjYWHR0fBCJ6iKT\nGXPhwjbc3XfSokVz3Nx6EhMTjZfXIKpUseb27ZukpaWRmJiISARSqRQHh/oYGRVm//49SKVSrK1t\nmTv3TzQ0NJkxYwoaGpqEh9/lzZvXjBkzkYMH9xEWdofKla2UXmGXL1/Ez28VaWlpmJmVYNy4yWhp\naX12/MHBV2jUyAl9fcWbe319fR48uM+kSWN4/foV6enpFC+u8JqztrZl0SJfmjZtTsOGjTAxKcLl\nyxe5cuUSvXp1BSAlRSHt/6XBnKtrHVxdP9/ueyOVSvH1PcajR2IqVJAzdKgwn+hbUqOGBQEBFp9v\nmEvef+9+48Z1nJyaK4VoqlatRmjoHXR0dLLsk54uZcGC2dy/H46KigpPn0bk23i+NSKRCFfXej96\nGAICPwWCmqWAgIDAf5j+/YegoWFIRMQekpProqb2hPT0AaxZs4Hbt28TEnINgKioSDp0cMXXdwmx\nsS9ITU1h2bK11KlTjzt3bvP27RuOHTvLtGmziI2NZf9+haS/SCQiMTGBlSvXMWSIF2PGDKdrV3c2\nbtzBgwf3CQ+/R1xcHBs2+LFw4TL8/DZhYWHJ9u2bczV+kUiUTSlwwYI5uLi44e+/jZEjxyGRSADo\n3r0nY8ZMRCKR0L9/byIiHivXr1u3hXXrtrBtWyAtW7bJp6tbcBg7dh/z5rVi166OzJrlxJQp+3/0\nkAS+kJw+8zll/bZv34yxcWH8/bexZs1G0tPTv9cQBQQEviNCMCcgICDwH0Yul2NsrEGFCjvR1j6J\nru5JTE0X0a9fTx49ekRk5FMAihY1pXJlKwCKFCmGqakZ5cqZY2lZCV1dXUxNzRgwoA/Lli0iJiaa\nR48eKY/h4FAfgLJlzTEyMqZcOXNEIhFly5bj2bNobt++yePHD/n9d0969erK4cMHef78Wa7GX61a\nDU6dOk58/FsA4uPfkpycROHCCl+qQ4feBS1RUZGUK2dOt24eWFpWJiLiCbVq1ebAgb+U84piY1/w\n5s2br7yqBY/gYD0gUxSiEEFBn896ChQc3he+sbGpyokTx8jIyODNmzeEhFyjcuUqaGlpk5ycpNwn\nOTlJOYfs8OEDZGR8nQiLgIBAwUQosxQQEBD4j6Ohoc6BA7WYOvU4Fhbt6NdPIQCSOS8jJiYaLa13\nnmJqaqqoqWXK3iuEHfbu3c3ChcvQ1tZmwIA+pKVJ3mv/TiL/Q/l8mUyGiooYe/taTJky47NjXbt2\nJdraOnTp0h2AsmXL4e7uyaBBfVFREVOxogWenn2ZOHE0enr6VK9uz7NnMQAEBGwlODgIkUiFcuXM\nqV3bAVVVVR4/fszvv/cCFA/NEydOw9Dw86bGPxMGBikfLKd+t2P/DHO0voSzZ09TsmRpypQp+82P\n9b7wTe3adSlfvjw9e3ZBJBIxYMAfGBoaoaenj1gspmfPrnTq5EL79q6MHz+Kw4cPUqtWHbS03ik8\nFpQ5rwICAl+PEMwJCAgI/IfJfONvYGCAm1tH1qxZQUqKO1paWjx//py3byWf7wRIS5NgZGRMYmIC\niYm5n5gvEomoUsUaX9/ZREVFYmZWgpSUFF6+jKVEiZLKNu+3/xBn51Y4O7fKsq5evYYAyGQyxGJF\nwDl06Mhs+6anp9OmTXtcXd0+O9bZs6fj5tad0qXLsGGDH+7unkDuPMB+NOPHWzJy5GYiIkpStuwT\nxo8v+KqGBZ2//z6Ng0P97xLMQXafwwED/siyrKqqysKFy4F3L2L8/bcqt/fvr5AINTUtjr//tm88\nWgEBge+FEMwJCAgI/If58I2/k1NzZZZKX1+PsWOnZJO9zy6DD02aNKVv355oa2tnM8n+VDB27tzf\nrF27EhUVFYYM6YeGhhYxMVFYW9vy5s1r5s5dxJEjBzh8+ACGhkYUKVIUCwuFeXBUVCS+vnOIi3uD\npqYmo0ePp1SpMsyYMQV1dXXCw+9hY1OVQYOG5njuvr5H2bBBjFSqRsuWL5k1q/1HMxYZGRmMHj1B\nubxx43plMJcbD7AfTbVqFTh2zJz4+LcUKlT1izIz69ev4ejRQxgYGCrvg719DebO9UEikWBmVoKx\nYyehp6dHWFgoPj5TEYlE1KxZ6xuc0ddz5MhBdu7cjlSaTuXKVgwfPgZf39mEhYUikaTi6NhYaVOx\nfPlizp8/i1gspmbN2jRs+D/Onz/L9evX8Pdfy/TpczAzK/GDzyhnNm8+x7p1ichkYtq1gz/+EMRv\nBAR+JQRrAoFvjiCh+2sj3N9fl299bxUP/N7Mn78YVVU1Bg/uy6RJ0+jduwcrVvhRubKVss2qVf7I\nZFI8PbvTrl1H3Ny688cf/Rk5chwlSpTk9u1brFq1lIULlzNjxhTi498ya5bvR4OWoKDb9Ox5grS0\nUsTF9aBIkYlYWQWzbds2rl69wv79ezl37m/atu1AUNBlvLxGsWrVMgYNGsapU8fZtm0T5cqZU7as\nOTKZjHPnzlCqVGlq1KjNgAFDcvSui4mJZsSIIdjY2HHrVggmJkXw8ZmPhobGN7vGnyIv9zc09DZz\n5sxg1Sp/0tPT8fTsTtu2HTh8+ABeXqOwtbVj7dqVJCUlMmTIcDw83PDyGoOtbVWWLVvIxYsXClSZ\n5ePHj1i+fBEzZ85DLBYzb94srKysqVu3Pvr6+shkMoYOHcDQoSMpXLgw/fv3ZsuWXQAkJSWio6PL\nzJneODjUp2HDRj/4bLKTeW9DQx/Qtm0qcXG1AdDUfMTKlQ9xdq75g0co8DUIf3d/XQRrAgEBAQGB\n78alS6EsXPiIlBRVmjRRYeDAJnna//r1YOLji+Dg8AhNzQTq1ClLSMi1LGIrN25co0GD//0b8Gjg\n4NAAgJSUFG7evMHEiaOV/aWnSwFF9u9//2vyyezTvXvRxMc3w9BwI3FxPVBXf0BSUipSqZQbN65T\ntWo1jh8/QpUqVsrMXmZGsn//wQQGBrBu3RZA4QH26NED5fLlyxeJjHzK6tUblN51ISHXKFKkKJGR\nT/H29mH06PFMmjSWM2dO0rSpc56u24/g5s0Q6td3RE1NDTU1NRwc6pOamkJiYoLSxqF585ZMnDiG\nxMREEhMTsbVVGKY3a9aSixcv/MjhZ+Pq1cvcvRtGnz49AEhLS8PY2JiTJ4/y1197kMlkvHr1kseP\nH1GmTFnU1TXw8ZlK3br1lYI+QDZVyYLG1asPiIt7p86amlqWO3eCcC74HzkBAYFcIgRzAgICAgJ5\nJiEhnj/+iObhw84ABAU9plixC3TsWDfXfVy4cI+wMCvevGkMwD//nKN69bgsYivwYUCmeHiWyzPQ\n09NTBlAfoqmpmeP6TBo3tsPM7Boy2W1EokTU1FKoWtWasLBQQkKuMXToSFRUVHB0bPzZ8/jwgf5j\n3nVFihTF1NSM8uUrAGBhYUlMTPRn+y8YZJfDzy0FNeBxdm5Fv34DlcvR0VF4eQ1izZqN6OoqMm9p\naRLEYjGrV/sTFHSZ06dPEBi4Qzk3raALidSrV5lixc7x7Nn/ANDXv0WNGmY/eFQCAgL5iWBNICAg\nICCQZ0JDH/LwYXXlskRShpCQvJX9qKmVQVf3DCJRKiJRMurqtzA0NM3SpmpVO/7++zQSiYTk5CTO\nnz8HgLa2DsWLF+fUqeOAImC4fz8818cuWrQwK1eWxchIjQYNJuPkZE7jxo4EB18hKipKmY350of1\nj3nXva/mee/eXRISfo5SKRsbW86fP0taWhrJyclcuHAWTU0t9PT0CQm5Dijk7+3sqqOrq4uurh43\nbijWHz166EcOPUeqV6/JqVMnlDYU8fFvef78GZqaWujo6PD69StlNjElRZGBrFPHgcGDvbh//x6g\nEA9KSkr66DEKAmXKlGDePBUcHQOoV28X3t4RNGhg/aOHJSAgkI8ImTkBAQEBgTxTvnxJihe/RXS0\nQnFSRSWWsmXVP7NXVtq1q8mJE28oVcoVAG3tilSvbs2+fe8CqIoVLWnc2ImePbtgaGhE5cpVlNsm\nTZrOvHmz8Pf3QyqV0qRJU2XWKzdBmI1NeTp1asKBA3/Rvv1kypUzZ9EiXypVqvzZfVVVVZFKpaiq\nqmbxAAOoVas2q1evoGlTZ7S0tIiNfYGqqlq2PkJD76Cjo/PZYxUELC0rU69eAzw83DAyMsbcvDx6\nerqMHz+FefN8SE1NxcysBOPGTQZg3LjJ/wqgQI0atQtcBqtMmbL89lt/vLwGkpEhR01NjWHDRlGx\nogVdu3akSJFi2NjYAgq/tjFjhpOWlgbIGTzYC4DGjZsye/YMdu7czrRps76bAEr//p4sX+730e0u\nLq3Zu3cPoFBxbdq0Gk2bftmxnJzqc+zY2S/b+V/27NmFpqYmzZu35ODBfdSsWYfChQt/VZ8CAgLv\nEARQBL45wkTdXxvh/v66fO7eHjx4lUWLnpOSoo6jYzJTprTO80P74cNX2b//FWpqaQwbVp1SpUw/\nv1M+cvXqFUaMGMLhw6fQ0NCkS5cOtG/vQqdOXWnatCFHj55Rth08uB+DBg3DwsLyX3XDv7GwsGTi\nxGl4e0/gwYNw7O1r8fTpE8LD7xEf/xZDQyN0dfVQV1dHIkklJiaGbdsCuXHjOt7eE9HR0aZo0WIs\nX+733YVQ8vrdTUlJQUtLi9TUVAYN6svo0eOpUMEiWzu5XK4UCSloQdx/AVfXNuzZs5v0dPFX9+Xk\n1IBjx/7Oh1EpGDy4HwMHDsXSslK+9flfRPi7++vyJQIoQjAn8M0RfnR+bYT7++vys93bK1duEhn5\nmiZNqqGnp/iDGBYWyuHDBxg6dMRH9wsPv8fLl7HUqePw1WM4ffoEly5dZPTo8YBC+XDEiCHMmuVL\noUIGnDhxlMuXLzJ27KQsweGPIK/319t7Ao8fPyQtLQ1n51Z0794zW5t79yIYOjSIBw/MKFXqGXPm\nVMbOrkI+jvrH8ezZS0aO/JsnT/QpUyaeuXMbUrSo8XcfR2a27OXLl0yePJbk5CRkMhkjRozFxqZq\nlmBu7NgRvHjxnLQ0Ca6uXWjTpr2yD1fXLly4cA4NDQ1mzZqPoaER0dFReHtPIDU1BQeHBgQEbMtz\nMHfo0H62bduMSCTC3Lw8ZmYl0NLSxtTUlBkzvDExMUFDQ4O+fQfw11978PGZB8CVKxfZvXsXM2fO\nzfdr9qvxs/02C+QeQc1SQEBAQOA/yZQp+1mzphppabZYWe1h48ZamJkVxdKy0mezAOHhd7l7NzRf\ngjlz8wosXbqQ5csXU7duffT0dHn48AEDB/YlKiqJtDQRGhradO4cBRRccZCc+NC0OiemT79OUJAH\nAG/ewPTpW9i169cI5saMOcuRI+6AiLAwOaqqG/Hza//Njjdy5B9MmTIDHR3dD7Yosp3Hjh2mVq06\nuLt7kpGRQWpqarY+xo6dhL6+PhJJKr/95oGjY2P09fVJTU3FysqGvn0HsGzZIv76azceHr1ZuHAe\nHTq40qxZCwIDA/I85ocPH7Bhgx8rV65DX78Q8fHx7Ny5DZEIHB0bs2vXjiwvMJYs+ZO3b+MoVMiA\nAwf20apV2zwfU0Dgv44ggCIgICAgUGBJSUlh5Mg/6NmzK+7unTlx4hhBQZfx9OyGh4cbPj5TiYmJ\nYdMmM0QiCSVL9iY+fgd9+vQlOTmZ4OAgRo0apuxr5kxvfvvNA0/Pbpw7dwapVMqaNSs4ceIYnp7d\nOHHiGG5uHYiLiwMUZuFubu15+zYuV+MtWbIUfn6bMTcvz+rVyzh9+iRly5qjodGV27fPEB5+hlu3\nDjFhQhBQ8NUQ88rr11pZll+90vpIy5+PqCg93qmriv5d/nbMnbswWyAnl8uVLwAqV67CwYP78PNb\nxYMH99HW1s7WR0DAVnr27Eq/fp68ePGcyMgIANTU1Khbtx4AFhaVePYsBoBbt27QpEkzAJo1y7t/\nQXDwFRo1ckJfvxAA+vr6PHnymNevXyvb7Nmzk6Cgy/8eowVHjhwkISGB27dvUbt27tVwsx733fdc\nQOC/hpCZExAQEMhHZDIZYvHXz1URUHDp0gUKFy7C3LkLAUhMTMTdvTOLFq2gRImSTJ8+mQMH9pKW\nVh9TUy9iYv5EIrHC0XFztjloGzb4YW9fk3HjJpOQkEDfvh7Y29fit9/6c/duKEOHjgQgIuIxR48e\nolOnLgQFXaZ8+YoUKmSQq/G+fPkSPT09mjZ1RkdHlz17dhIXF8fr169QBALpqKs/ISZGl5IltUlK\nSszPy/XDqV49lcuX4wF9IBU7u/gfPaR8o2zZeEJCMlC8B8+gbNm3+dZ3TuWQLi6t8fPbRFJSEl5e\ng6hSxZq7d0OVwZytrR1Ll67mwoVzzJw5hc6du9G8eUtln8HBQVy9eoWVK9ehoaHB4MH9/hVxAbH4\n3eOfiooImUyWZTw7dmxRBnWfYseOLbRt2wENDYUViEiU3cLiyZPHqKm9EwBq185FmZlr0aINo0cP\nQ11dnUaNmqCiIuQYBATyihDMCQgICOSB9evXcPToIQwMDClSpCgWFpW4cOEsFSpU5MaNkH8VFSuy\nbNlCZDIZlpaVGTFiLGpqasqHM339QoSF3WHp0oUsXryStWtXEh0dSVRUFHFxcXTr5k7r1u1+9KkW\nCD4sW9TW1qZ4cTNKlFCoaDo7tyIwcAcNG6Zz544xEokVJUocoWtXy2xB9eXLFzl//m+2bt0IQHp6\nOs+fP8uS7QBo2bINY8YMp1OnLhw4sJeWLVvnerwPH95n6dKFqKiIUFVVY8SIsaioqDBkyBhKlTqJ\nSJTBmzfuVKiQQosWrZk3zwdNTc0fIoDyLZg0qQV6eke4e1eF0qXTGT0699euoDN/vhNqapuIiNCl\ndOkEfHy+UCIyB7KXQzbKkrWNiopk4sSpVK5shZNTAwCePXuGiYkJrVu3Iy1NQnj43SzBXHJyEnp6\nemhoaPDkyWNu37712XFYW9ty4sRRAgK2IZVKc2wTExPNiBFDsLGx49ChfZw7dwYrK1siIp4QEfGY\np08jePAgnKlTfThx4hgPHoTz4sUzunbtSGpqCitXLqFNm/Y4Ojbm8eOHREZGsGDBXOrXb0h6erry\nt9LZuRXnz59FJpMybdosSpUqw507t1i0yJe0NAkaGhqMHTuZUqVKf+XVFxD4uRGCOQEBAYFcEhp6\nmzNnTuLvv4309HQ8PbtjYaGYj6Uo19uARCKhS5cOWTJHu3fvpFOnLp8sqXv48AErV64nJSWZXr26\nUadOvWzy3R+TCf+Vpb8zyxb/+eccq1cvo3r1Glm2ZwZhkyY1Y/To07i5BdCypQWVK5fNsb8ZM+ZS\nsmSpLOvu3Mn6kFukSFGMjIy4evUKoaF3mDJlZq7HW7NmbWrWrJ1t/e7dW5g06QiPHmlRr14y06Y1\nRVdXl4YNG+XYz6BBfRk0aNhPp/onFosZMaL5jx7GN0FPT4+lS7/NHLmAgK2cPatQTn3x4gVPnz7N\nsr1oUVMqV7YC3pXmXrsWxNatG/+1x9BhwgTvLPvUqlWXPXt20b27KyVLlsbK6p2/3Pu/Renp6Vy5\ncomePbsikaSyYsUSXrx4ztatG5FIFPPw5s3zISwsFIkklerVaxIZ+RQHh4aIRCLu3r3Lw4cPcXHp\nRJs27Zk/fzb//HMBZ+dG1KpVBzU1NRwcGjB+/BTOnDnJzJnePH0agb19TWbO9MbTsx+nTh1HU1Mr\ny2+lgYEhfn6b2L17J1u3bmL06AmUKVOWpUtXIxaLuXLlEqtWLWX69Dn5f0MEBH4ihGBOQEBAIJfc\nvBlC/fqOqKmp/fuAUl+5rXFjxVv6iIgnOWaOOnXq8tF+RSIR9eo1RF1dHXV1dapVsyc09Bb16zt+\n2DLH/du166j8/6FD+ylXrvwPCeYSExM5duww7du7EBwcxLZtm5kzZ8FX9flh2WJgYADPnsUQFRWJ\nmVkJjhw5iJ1ddcqWLYeqqpTWrUthaVmW5OQkZelXJjVr1mbnzm0MGzYKgHv3wqhY0TKbTxxA69bt\nmDp1Is7OrfJlXpumpiY+Pq1YtuwEkZFaHDlyg44dPz4/SCQS/XLz6QRyJudySEmWNlpa7z7LmXYZ\nzs6tcHZula2/gIC/MDDQIz09gXnzFuV4zPctN9TV1ald2yGLAmv37p3Q0NCgRo3adO/uSokSJVmy\nZBXdu7ty8+Z1Chc2oVGjxuzcuZVOnboQEnKNq1eD8PNbjYqKGD09PczMSlC8uBnq6ho4ONQnODiI\nAwf20bBhI6pXr8H06ZOJj3/Lhg1rady4KQ0bNmLYsEHK38rMFx0VK1py5sxJABISEpg2bTJRUU8R\niUQfzR5msnbtSrS1dejSpfsn2wkI/MwIwZyAgIBArsk+HyQTTc2chR7kcrnyoVwsFpORodhfIknL\n1nbLlg2oqyuMt/fv/4udO7ezcOFyrl69wv79ewFYtWpZNjnxzAcWU1NTwsJCmTp1grJ079GjhyxZ\nsoCUlBQKFTJg/PjJGBt/m0AvISGe3bsDaN/eJd/6/LBs0ctrFMnJyUycOBqZTEalSlVo184FVVVV\npk71YcGCuUgkEjQ1NVmwYOm/QZGir549+7Bo0Xw8PNzIyMigeHEzZs9egJ2dPZs2radXr650796L\nxo2dcHBowMyZ3rRokX9lgsOH72bLFldAl61bH/D27WmcnSsyfPhgLC0rc+9eGGXKlGPixKwZlnnz\nZhEWdgeJJBVHx8b07t0PUGSKFy2aT0pKKmpqaixatAJ1dXVWrFjC9etXSUtLp0MHV9q27ZBv5yCQ\n/7xfDvn48aNclUPmJ+bmFfD1nUvnzl4UKWLOpElugKK0c8IEb6ysbPj9d0/c3NoTF/eGxMTELGIr\nYrEKGRkZ3LwZgra2NkWKFOXx40c8fvwQU1OFb+SHLyZOnTpOZGQ86ekZFC9uSq9efXnwIJz3m6mr\nqyn7z5zTt2bNCuzta+DjM49nz2IYPLjfJ89NeCEi8F9ACOYEBAQEcomNjS1z5sykR49eSKVSLlw4\nS5s2igflzCCvVKnSxMREZ8kcVa1aDYBixUwJC7tD7dp1OXPmhLJfuVzOuXNnGDp0JFu3biQ8/B7G\nxsaA4s3zjRvXqVq1GsePH8lRTjwzYPlQ+lsqlfLnn3OZPfudx9mqVcsYO3bSN7k+K1YsJioqkl69\nuqKqqoqmphYTJozm0aMHWFhUYtKkaYDC+y2nADM8/C5z5/ogkUgwMyvB2LGTqFmzNhs2+FGxogU3\nboRw8eIFDh7cz9atu1BVVSUpKZEuXTqybVsglpaVWblyXZYx2dlVx86uOgAaGhqMHDku27j19fVZ\nvXoDoBCwCQq6QUzMU8qXr5iv83HOnzcEFOqEqanmHD9+HWdnePo0gnHjJmNlZcP/2TvzgBjzP46/\npmu6iwodEklFypH7vuW2ZLGI3NbNSm65rXWvYyMikZy5WbfcVO4rQqdC0TXVzPz+mF+jUVjk2n1e\n/3iO7/U8M43n83w+n/dnzhwfduzYptJvwIAhGBoaIpVKGTlyCJGRD7C2LsXUqRPw8ZmLg4Mj6enp\naGlpsXfvbvT19fH13UBWVhZDhvSjevWamJtbFNp1CBQu7w6HfGOIfEmjJClJQlTURNLScjAy2kqX\nLjMwMpJjamqGk5MzsbExxMfHYWdXjqioR5QpU5Z79+6ojCESiVBTU6NKlWr4+MyhU6fW2NiUYdCg\nYVy6dJG0tDQMDAyV7S9cuMb9+2uxtBzG1auehIU95ty5/TYq9kAAACAASURBVEoBFLlcztq1qwkL\nu4JEkoWmpuJxNS0tjVu3bhASspOXL18oX4qdPXuaa9fC6N27O1ZWVkye7JPPMy8g8G9FMOYEBAQE\n/iEODuWpW7c+Hh5dKVrUBFvbsujr66uExInFYiZMmJrPcwTQp88A5s71Yc0afSpXrqrsoyiua8eK\nFUu5c+c2w4eP4vTpk5QpY8udO7eJiAhj5Mjf8smJX758ocB15hqWT55E8ehRJCNHDgEUMvsmJmZf\n7P4MHjycR48esm5dIGFhV/D2HkNAQDAmJqYMHtyXa9fCKV/e6Z0G5syZUxk92gsXl8qsXbuadev+\nYvjwMcpwqjVrFAZXXFws586doV69hvz992EaNmxcKAqi2dnZ9OkTzKVLLzE23ouTU3MVz+rnoqcn\neWtf8SBarFhxnJycAYVUe3DwFpV2x44dJiRkF1KplOfPk4iKegiAiYmpMqcu11Ny6dJ5IiMfcOKE\n4mVBWloa0dFPBWPuO0ZTU7PAcMh16wLIzs7G3NwCf/8tBfQsHLZvDych4RfkcjEymQEyWQBGRmqA\n4nckLS0NLS2xUpHy2rVwdHS0kUiyUFNTVypkurhUJjT0FP369URf3wCZTEZcXCz6+voEBm4kJyeb\nYsWKk5WlS0aGBnK5AfHxszEzm8/s2c9p2rQmGhqKOTIzJTx8GIm//xYuXbrA+PGjef48CWfnSvz1\n159YW5eibduOHDy4//9zV+Hp0yfMm7cIX9+V7N27m06dfv5i90xA4HtCMOYEBAQEPoJu3Xri6TmA\nzMxMhg4dgIODYz7lyapVq+HntylfXxeXSmzevKPAcW1t7Zg0aTojRgxBLpdTsaILtrZluXr1EjEx\nMdjYlP6gnHguucaHXA6lS9uyapXfp17uR5E3BFUul+PoWAFTU4XxWLZsOeLj49DX1y/QwExLSyU1\nNRUXl8oAtGzZmsmTxyvHy81JBEU+W2DgBurVa8iBA3vx8ppUKOtft+4Yhw97ANq8fDmex49jOHbs\nIk2a1CgUQZJRo0yZOnUfsbFlqVAhjDFjVAUtgHzGY2xsDFu2bGLNmo3o6+sze/Z0srKyeJ99OXr0\nOKpVyy/CIvDjMGfOfjZsMCYnR0yLFn+zdGnnLybbL5XGY23dGblcHblck+TkrtSpc5Xdu7fRt29P\n1q7diJqaGteuhSOVyrCxKU27dh05efIopqamnDhxjOzsbPT19Zk/f7HSQ6+oxReDtrY2GzYEKfNo\nvbwmsXfvVIyNN5GYOIEnT3ZSp44f48e7c/ToEQCaN29B2bLlEIlEVK9ek0aNmnL79i2SkhIZOfI3\nqlRxxdDQkP79BwOgr6/P69ev8fDoSnp6BjVq1Poi90pA4HtEKOghICAg8BHMnz+LPn2607dvDxo2\nbIydnf1njbd790X8/e+zbNl9Jk3a/X+DL4BKlarg4lKZXbu2U65cufeOoZDWV2zr6r6pXWZtXYrk\n5JfcuHEdUChuPnr08LPW+zFoamopt/PmvZQubcu6dYGsWxeIv/8WFi5cxjtSEZXkzUmsWNGFuLg4\nrl69jFQqpXTpMoWy3rQ0OfAmNEsmK8rLlwphlM/xzuWKNLRvX52TJ505efI1+/c3xsHBBoCEhHjl\nZ3TkyEGcnV0AxeealpaGtrYOenp6vHjxnPPnzwJgbW3D8+dJ3LlzC1DkXUmlUqpXr8WOHduUcz55\n8pjMzMxPXvv3wODBnu8937lzW169Kpyab82a1ftwoy/MpUs3WLnShefPW5CS0pCtWzsTEHDii803\nffpAHBzakpAwlVevfqV/fyk9evSiVCkbbGxs6NHDnbJl7di+fR9z5y4kOfkl27dvRV1dg2LFihMY\nuB03tzbY2tqxbp0vGRmZjB07nk2bgnF1rabytyMSgY6ODt27N0BLK5JSpdywt69P/fqqnvWC6tUB\nZGVlsWrVJWrVklCr1k3WrFEIucyePZ0xY8bj778FT8/++QRkBAT+zQieOQEBAYGPYOrUmYU21vPn\nz5k0KYeEhFUAREY+Z9iw9bx48Rwnp4qIxdqIxWKlt0r1oUh1O3f37dplM2bMY8mSBaSmpiKV5vDz\nz90Lzfh5m4JUId/G2tpGaWA6OVUkJyeHp0+fULp0GQwMDImICMfFpRIHD+5T5roVRMuWrfDxmUzv\n3v1UjuetgXXjRgRmZsWYM+cPxowZpvSsJScn079/L4KDQ9i/fw+nT58gMzOTqKgo7OwukJTkiIHB\nXnR1k6lb9y/l2IcO7WfevBlIpVK8vafg6FiBjIwMFi2az6NHD5FKc/D0HEDdug3Yv38PJ08eIzMz\nE5lMxrJlqwEwMjLOV4Dc2roUO3duZe5cH2xsytCxY2dCQ08jEomwsytHuXL2dO/eiWLFSigNvYIE\nXxYvXkHbth2Ii4ulb98eyOVyihQpyuzZv3/U5/i9sXLl+z3LhZtP9u0FM6KinpGZWSnPESOePcsv\nmFRYaGlpsWFDV2JiotHRscHEpCpxcbGoq6szefIMlbbvii6oWbMZCxfeJDOzDi1bimnTpgGASoho\nlSquVKniCsDo0a3p0KECT548o1q1Cujp6amM5+xcmd27d+Dm1oaUlBQiIsIYOnQkQUFXSUhIJCvL\nkcTEyixevIMuXVLIyEinaFETcnJyOHRoP8WKFQd4p2CVgMC/CcGYExAQEPhGREY+JSGhvHJfLjch\nM9Oa48fPKY/lfXDKKyfesGETGjZsAoCn5wDl8QYNGqvULrOzK8fy5W8Mki+JkZExFSu60KvXz4jF\nYooWNcnXRkND450G5sSJ01iwYA6ZmZlYWloxYcLUd87VrFlLfH1X0qxZi3znoqOfMn36HLy8JjJl\nijcnTx57r9R/bp6fRCLB3b0dDRqIKF36ZzQ0rnHq1HG6dOmGXC5HIslk3bpAIiLCmDPHhw0bgtiw\nwQ9X1+pMmDCV169fM2CAB66uNQC4f/8e/v5bMDAweO99K+ihOdf4A955H94WfJHL5aSkJNO370AG\nDvz1vXP+SOTWV0xKSmLqVG+lF3LsWG+cnSuptPX2HsuzZwlkZUlwd+9Gu3YdlWO4u3dTUYJNSEhg\n+/Ygnjx5zMuXL5QvTYB8c40Z442Li+pcoPAK+vkFYGhoVGjX27RpFRwc9nLnjjsA5ubHaNnSrtDG\nLwiRSKQsp5L32D8hPT2dwYNvcfu2oqTAqVP3MTa+QIcONfK1vXs3ipUrbyKTqdOtmzUNG1YvcM4G\nDRpx8+Y1evdW1JwbMmQERYoURUvLkdTU4lhbd0Iu10QisefVKwf69RvEgAG9MTY2pkIFJ+VLpbwv\nugQE/q0IxpyAgIDAN6J8eVvKlj3PgweKhyht7UhcXY0/0OufExQUyvnzqRQvLmX06KbKsgdfknd5\nLnNru8G7DUw7u3L51ChB1bDJ5dq1cBo1aoqenn6+c+bmlpQtq3j4tbd3IC4u9r1rrlzZFR0dHXR0\ndDA0NGT27CGYmpqyb5+UyMj7gOKhsGlTheHo4lKZtLQ0UlNTuXjxPKGhp9i8eSOgEFFJSIhHJBLh\n6lr9g4Zc7tify/PnL+jf/2+uX7fFxOQZkycXo3Xrd3s2fywU9+fIkYPUqFGLXr08kclkBYaPentP\nwdDQEIkkk/79PWjYsAmGhoZkZmYWqAT76lUKP/3kTnT0UyIjHyjHyTuXXC4nIyOj4JV9AUuhSBFj\n1q934s8/t5CTozB6nJxsC32e9/ExoiuRkVHcvv3GKMvMtOPixXA6qKYSk5T0Ak/Pu9y/ryh9cPLk\ncTZtilS5trwvrIYMGcGQISNUxmjRwow9e0rz+PEAQEq9en5YWFjSoUNnOnTonC/nNO+LLgGBfyuC\nMScgICDwkUil0kJRT9TXN2D58lIsXryZzEwtmjfXpEOHRoWwQli37iRTppRHIikDSHjwIIA1a7oU\nytjfkjNnIli79i9evoxi+fJVBbbJrU8FoKamjlQq+X+NP0XO3tv5NKrt1ZT7ampq7xSZAZRv/GfN\n+p2SJa1Vzt26dQMdnYJrD+alsJQKZ806w5kznoCIlBSYM2czrVoVnhLn90D58hWYM8eHnJwc6tVr\niJ2dai5pXFws/ft7KEV3oqOfsnLlUqKjFQWm163zZdmyhTRr5kZ8vCLn8sKFcwwfPoYVK5YAIjIz\nM7h2LZySJa2ZPn0iO3YEY2BgwLhxE6lY0YWUlGSmTZtIUlIiTk7OXyyMr0wZK/74w+qLjF3YWFmV\noHjx2yQk5IZvv8LSMr8kw5EjV7l/v51yPy6uEYcPB3+Uodq8eRWWL7/KoUPbMDDIZuzYNqipqXH7\ndhReXuFERxtgZ5fC4sX1MDf/csq9AgLfE4IxJyAgIPAW69ev4fDhAxgbF6FYseLY2zty9uxp7OzK\nce1aBE2bNqds2XKsWLEEqVSKg0N5xo71RlNTUyXs6s6dW/z55xKWLVvN2rWriY2NJiYmhuTkZH75\npRdt23bA2rooBga7UVdP49QpKdWqFSkwnOtjOXlS8n9DDkDMpUtm5OTkoKHx4/7sr1t3kpkzy/D6\n9QaMjcM5deox3buX/HBHFEbT3bu3cXSsoJTt/xBvq3MeO3aEKlVciYgIR1/fAD09fapXr8m2bVuU\nnsd79+5QrpwDERFh3L59E4BTp05gbV0KG5vSH3nF/5yUFG3y5nu9fGlEVlYWYrH4i835tXFxqcyf\nf/py9uwZZs+exs8//0LLlq2V52/evE5mZgarV69DLBbz888dlMa4mpoavr7+nDsXysqVy1RUSUuU\nMKd9+05oaKizcaM/zs6VmDZtIlOmzCQ5+SVBQYFMnuzFrl0HWbfOFxeXyvTu3Y9z586wd+/ur34f\nvjeKFCmKj48GixcHkZ4upn79ZAYP7pivXenSxdDWfkRmpkI0SiR6QYkSH//9bN68Cs2bqx6bNCmC\n8+d7AhAdLWfKlE34+rb/+IsREPgB+XH/VxcQEBD4Aty+fZOTJ4/h77+F7OxsPD17YG+vePDLrXUm\nkUjo1u0nli5dhZVVSWbOnMrOndvo0qXbez0hDx9Gsnr1ejIy0unT5xdq1ar7j8O5PhZ9fdUQNEPD\n9ELxJn5LtmzJ5PVrRY5hcnIltmx5QPfu+du9/RmIRCK6devB5MnehITspFatuuQaPm/n0snlb4y4\nvOdEIhFaWlp4ev6iFEAB6N27H0uX/oGHR1dkMhkWFpbMm7dIZczTp09Qp069L2rM1a6txaFDT8jK\nsgakVKoU+68y5ADi4+MxMzOjbdsOZGVJuH//rooxl56ejpqaGmKxmMePo4iPj1PmweV+9+3tHUhO\nfqnsY2BgyNGjhwG4e/dNIeyLF88TFfUQkUhEWloqaWnpZGRkEBERxuzZCwCoVauuSiHs/zIdO9ag\nY8f8pTXyUrOmM4MHHyAgIJKcHDGtWj2hW7dOhTJ/QkJeARURz57pFsq4AgI/AoIxJyAgIJCH69cj\nqFevIZqammhqalKnzhup8txaZ0+ePMbCwlIpGODm1oYdO7bSpUu3d44rEomoW7cBWlpaaGlpUaWK\nK7dv3/hg6Nin4uVVncjI9dy44UyxYk8YO9bshw+5e3v5IlH+ELe3wxa7deuh3Pb336zczq1P5ebW\nhkqVqtCt209UqFARHR1tduwI5uzZ02RlZVO/fkMA5s9fzJQp45HJ5MjlcmJjY3FwKM8vv3TO54kF\nRfkELS0tbty4RmjoacLDw/D3X8vMmfOxtCz88Lm+fRuioXGSCxcuUaSIhAkT2hT6HAXxJQRA3ib3\nexsWdpnNmzeioaGBrq4ekyZNV2lXtWo15HI5PXq4U7JkKaWiYd4x1NTUkclkyuOlS9uyY0cwMTHR\n2NqWVbbLyclGKpWiqamJpaUVkyZNV4bNCgqJ7+ZDvzHe3m4MH56GTCbFwKD6e9t+DI6OKdy7JwXU\ngUwqVCicl2ICAj8CgjEnICAgoELB9Y1AtdZZXvK+jVbkZin6SyTvlxMXidQ+GDr2qZQsWYI9e9oT\nHx9H0aK10NX98d9U9+ihy8OHYSQnV8LE5DK9ehWeARETE83kyT6kpaVy/PhRfH03IJPJGD9+DBER\nYSQnv8TUtBi//64w1tLT0wDVh9f7959y40YSder8jYXFZapXF+Pk5EzduvWpU6eeisrol8DDowEe\nHl90iny8qx5YYZIriuHm1gY3t/xGanBwCAC6unqIxWJWrFiDtrYOw4YNpEQJc+LiYlm+3FfZXkdH\nhwkTpnL16mW0tbVZunQlW7YEkJaWxuLFKwCoU6c+dnb2dO+uCN27f/8eJUqY4+JShSNHDuLh0Zdz\n50J5/frVF732fyNvlyEoDBYvbomR0WZiY3Wws8ti0iS3Qp9DQOB7RSgaLiAgIJAHZ2cXQkNPk5WV\nRXp6OmfPnlaey31otbYuRVxcLDEx0YCi/lilSlUARf5NbiHnkyePqvQ9c+YkWVlZpKQkExZ2BUfH\n8sTHx2NsXIS2bTvQpk0H7t+/W2jXoqGhgZVVyX+FIQfQo0c9tmzJYcaMYIKC1OnUqVahjV28uDnl\nyztx4cJ5Ll26oCwM/+TJY6Kjn1KmTFkuX77AypXLiIgIR1c3/wPp8uWRpKQU5/79joSF1eLixafK\nc/8Gb05GRga//TaC3r2706vXzxw9egSAbduC8PTsgYdHV548iQLg1asUvL3H4OHRjYED+yiVIj08\nupKWlopcLqdVqyYcPLgPgBkzpnDp0oXPWp+Ghga9e/ejf38PRo8eSqlSNkD+UNq8uYW5h+vUqc/J\nk8dp3botw4atxtW1FXfv3sLDoxs9enRh925FiRBPz/5ERITRs2cXTp06QYkS5p+1ZoHCQU9PjwUL\n2hMY2Jzp09ugqan54U4CAv8SBM+cgICAQB4cHMpTt259PDy6UrSoCba2ZdHX11d5IBSLxUyYMJXJ\nk72QSqU4OlagQ4fOAPTpM4C5c31Ys0afypWrquRc2draMXz4IJKTk+nTpx8mJqYcOLD3vaFjPyJx\ncbF4eY1iw4agTx4jLOwKmpqaODk5qxyvUsWBKlUcPneJ+dDR0VZu9+jRm/btf8rXxs9vE+fOncHX\ndwWurtXp3buf0hMrk8lITMybo6ZOWtqbHMUfPcQV4MKFsyreybS0VFatWoaxcRH8/ALYuXMbmzcH\n4OU1ibVrV2Nv78icOX9w9eplZs6cwrp1gVSs6MK1a+EUL14CS0tLrl0Lp2XL1ty8eYNx4yZ89ho7\nd+5K585d33ne2NiY4GCFaEneItYlS1qjqdmBS5d6cumSNocOXWHx4k5Mn+6q0t/Q0IiFC5d/9joF\nBAQECgvBmBMQEBB4i27deuLpOYDMzEyGDh2Ag4MjbduqFk2qWrUafn6b8vV1camkUug7L7a2dvmM\ntXeFjv3XuXr1Mrq6evmMuS9NjRo18fVdRfPmbujo6JCY+AwNDU2kUikGBgY0b+6Gnp4++/YpQvty\nPbE1a9bG1PQySUm5RpuEIkUUuVm6urqkpaV91ev4Etja2vHnn0tYuXIZtWvXU6qu5oaPlivnwMmT\nxwBF7umsWb8DCqMpJSWF9PQ0nJ0rEx4eRokS5nTo0JmQkJ0kJSViYGCAWKxd8MRfgdevX3HmjC2g\nWENyclX27dtOq1Zv2oSEnOPu3RRq1LCgfv2v+70UEBAQeBeCMScgICDwFvPnzyIq6iFZWVm4ubXB\nzs6+UMbN65yZO3c/e/ZooaEhpW9fXXr1qvfujj8gUqkUH5/J3Lt3BxubMkyePJ1Hjx6xfPkiMjIy\nMDIyZuLEqZiYmBIcvIXdu3egrq5O6dJlGDRoKCEhO1BTU+fw4f2MHDmuUMo1vI9cz1m1ajWJiopi\n0KA+gMIQmzTJh5iYaP78cwlqaiI0NDQYO1bhRcrriW3SxJGjR69QqtQOzMzCcHCwARTCOfPmzWLb\ntiBmzJj7RQRQvgYlS1qreCerVq0GvKnTp66uWpcvf2ipiEqVKrNjx1YSEuIZMGAIp04d5/jxo8ow\n5W+FWKyNru4rXiqFLuVoa7/JeV2w4CBLllRHIimFoeF1fHxO0737v+tvVkBA4MdEMOYEBAQE3mLq\n1JmFPqan5wDl9s6doSxfXoesLMVD/YwZF6hWLRJHx39ePPd758mTx3h7T8HJyZk5c3zYvn0rp0+f\nYM6chRgbG3P06GH++msF3t5T2LTJn23b9qChoUFaWip6evq0b98JXV1dunbt8eHJPpO3FTDd3bvi\n7q4aqmdpaUX16jXz9X3bE+vllbvVjPT0dORyORUruhAQsPWz1zlv3kx+/vmX95Y4OH36BCVLfpma\ndklJSUrvpL6+AXv27HpnW2fnyhw+fIDevftx9epljI2LoKuri66uLsnJyUilOVhYWOLsXInNmzcy\nerTXO8f6GmhpaTF4sDoLFpwgObkUlSqdZsyYOsrzISHqSCSlAHj1qiK7dt0tsCyGwIc5cGAv1arV\nxNTUFPg6iqgCAv9mBAEUAQEBga/M/fuvlYYcQEqKC9euRX27BX0BihUrrgyRbNGiFRcunOfhw0hG\njRpCnz7d2bDBj8TEREARvjdt2kQOHz6AmtqbPLMfVTPk8eM42rbdQdWqETRtuodLlwpH1MbLa9IH\njbRTp04QFfWwUOZ7m4cPHzBgQG/69OnOunW+eHj0Ja+YCLzJK/X0HMDdu3fw8OjGX3+tYNKkacpW\nFSo4UbKkwjBydq7E8+dJODt/Wc/rP2HAgIacPm3F4cPxhIS4YWFRTHlOU1Om0lZdXfZ29/8cv/02\ngrS01I/qI5VK2b9/D0lJicpjX0MRVUDg34xI/p38BSUmvv7WSxD4QpiZGQif778Y4fP9eE6fvoGn\npw4pKYoHWCurQ+zZUwZLyxLfeGWqfOpnGxcXy7BhA9m2bQ8AV65cYvv2rbx48ZxVq/zytZfJZISH\nXyU09DQXLpzF338L/v5r0dHRVakT96l8qrdKEf65HXt7ByZPnvGP+/XtG8KePb8o92vWDCQkpG2+\ndnFxsYwZMwwHh/Iq4ajXr19jxYolSKVSHBzKM3asN5qamgwdOoBhw0Zjb+9As2b1cHfvxtmzZxCL\nxcyd+wfR0U/x8hqNnp4++vp6H6xpJ/zt/nMCAs7g41OE5OTKWFicYuFCHRo3dvnWy3onX/qzPXhw\nH9u2BSGV5lC+vBNjxoxn4cJ53LlzG4kkk4YNm9C370BA4Xlr0qQ5ly5doGvXX/j99zmYmZmhra3N\nihVr6dHDHTe3NoSGnkYqzWHGjLlYW9t8sbX/GxD+dv+9mJkZfHQfwTMnICAg8JWpV8+J2bMTaNx4\nGy1aBLN4seF3Z8h9LgkJ8dy4cR2AI0cOUr58BZKTXyqP5eTk8OjRQ+RyOQkJ8VSp4srgwcNITU0l\nIyMDXV1dZS23zyEnJ+eTvVW7dm1j8eIV/8iQy8nJUW6/eKFaj/D584LrEwI8ffqEn35yJyAgGD09\nPTZvDmD27On4+MzF338LUqmUnTu3AaqKmJmZmTg5ObN+fSAuLpUJCdlJxYou1K1bn6FDR7BuXeB3\nmZuXlPSCfv124uZ2hF9/3U5q6o8hDNOjR11CQrRZunQ/e/aU+q4NuS9FXFws3br9xPjxY1i4cB53\n795m8eIV3Lp1k9mzpzNgwK+sWbOBBg0ac+jQAR4+fEBg4AaeP0/i4MF91KlTj+bN3ShdugwSiYQy\nZcrSv38vZDKZUhG1Q4fObN4c8K0vVUDgh0LImRMQEBD4Bri718bd/VuvonB428NUooQFVlYlGTly\nCFpaWshkMkaOHEvr1u0ZOXIwMpkMHR0dBg8eRsmS1owbN5KYmBhAjplZMfT19alatTrDhw8iMHAj\nRYsWJTs7mypVXLlx4xqvX7+mePHivHjxnCJFiiKVSklPT8fQ0AiZTIpUKqNGjZpcuxZB/foNCQ09\nTXh4GP7+az/orcrl999nExsbw5gxw3Bza0NERBixsbFoa2szbtxEbG3LsnbtajZs8KN8eSeMjY15\n+vQJDg7lycm5TunSS0lMnIC29mV0dPYzYsQO6tdvQKdOP6vM83Y46vr1a7CwsMTKqiSgUDvdsWMr\nXbp0U+mnqalJ7dp1AbC3d+Ty5Tc12r6TgJsCGTPmBAcO9AJEXLkiRV19E0uXdvzWy/pHODjY4uDw\n78lr/RRiYqKpW7c+d+7cIisri2HDBpKRkU54+FWOHTtMSMguHj16iI6ODkeOHCIlJRlTUzOWLl3F\nokW/ExERBsCzZwn89JM75cs74e7erkBFVAEBgX+G4JkTEBAQEPhs8nqYTExMaNu2I0WKFKFHj94c\nPHgcV9fq7Nq1je3b93LkyGnKli2HkZExr1+/Ji0tjcDAbRw7dpY1azYCcOzYEUaN+o2jR88wZ84C\nkpISadOmHbVr18XWtiwtWrTG3z+Iv/7yp1+/QWhpadG//2A2bAjCyMiInJwc1qzZQK9enp/krfrt\ntwmYmpqxbNlq4uJisbd3xN9/MwMH/srMmVOU7eRyOUuWrGTOnD9o1KgpcXGx7NgRRMuWnbG0HE3j\nxlL27duFuroagYEb882T19sml8vR11cNsXmXYaau/uZdrJqaSEVF8nuuaRcVZcibPDt1Hj36+JAi\ngW9H8eLmlChhjptbG8zMirF8+V8EB+9BXV2dTZs2MHLkWBwcHKlbtz737t3h0qULJCY+w8trNE+e\nPCY6+ikAJiamlC/vpBz3XYqoAgICH0bwzAkICAgIfDZve5iCgzcD0KRJMwBu375JlSquGBkZA9Cs\nWUvCw8NQU1OnUqUqGBoa0bdvMNeuFcXUNA0joxOEhp5i8+aNZGdno6amhomJGRUqVCQ09DT79oWg\npaXJwYP7SU19TWxsDFu2bERf3wB1dXWaNGmusr5P9VbJ5fJ31kwTiUSoq6ujpaVFXFwsu3Zto0uX\n7jx9+oTY2GNADqmpF0lM7ERi4jOeP0+iT5/uVKtWkyFDhgNvwlGdnCpy5MhBHBwc2b17BzEx0Vha\nWnHo0H4qV676j9erra3zXde0s7Z+ze3buXtySpYUnY+NGwAAIABJREFU8n5+JHR0tKlatTrjx49B\nKlWIwLx6lULFii5cvnyRc+dCqVWrDtu2BWFnV44ePXoTELCe5ctXK9UqDx8+gKam5re8DAGBfxWC\nMScgICAg8Nm87WESiRSBHzo6OsrzqgaVqnE1a9ZR9uzpBWjw+DHY2/uyadNyrK1LKQVVSpWyoVQp\nG+RyOZs2bWDJkj+YNm0WjRs3Y+XKZURHP8XXdwUJCfFoa6vmqX2ut+qfGoMaGprs3r0dd/duzJs3\nE4lEgq/vSp4/T0IkUmPVKj+uX7+Gp+cvZGZmoqurx/btQUyfPpHs7GyCgnYhk0np2rUjpUuXwd7e\nkaCgQDp37opEImHRovlkZ2cjkWTy5EkU1tY27NgRzPPnSQwY0BsLC0sCAzcWWNOuIAn4jIwMpkwZ\nT2JiIjKZFA+PfhgZGRUowNK5c9vPFqqYN68O4E9MjCFlyqQwe3bTj+ov8O2xsSlN//6DmTFjMkOG\n9EdbW5uff/6F8+fPsnnzRsqXr4izswvm5pbs2xeCTKYw+hITn6GhoUmjRk1YsuQPPD1/YeXKtwWR\nRN+1Z1lA4HtECLMUEBAQEPhs3hY8cXZWFYhwcKhAePhVUlKSkUql/P33YSpXrkqFChUJD7/K06cZ\ngAZqaskApKc7ERQUqOwfHx/HjRvXiY2N4erVy7i5tUZLS4v4+HiePn3CmTMnKVvWjm7deirru+Wi\nq6v7Wd6q3JppQJ6aaXrvNPCcnJzZuNGPnJwcoqOf4O7elRYtWiMSiVQETv74YxkikQhHxwps2bIT\nLS0txGIxqalpODiU57ffJtCqVVulx1NHR4dJk6azdu1GVq70448/5gFgbFwEI6MiLFmykmnTZhEQ\nsBU/vwAVQ04qlRb4kHzhwllMTYuxfn0gGzYEUaNGrfcKsHyuUIWFRTE2bvyJY8easmZNJ4yNv//a\nYnFxsfTq9fOHGxbA1auXGTduVCGv6NuR+x1q0qQZZmbFWbHClzVrNtCsWQtMTExwcanMihW+zJw5\nn19/HUGzZi3R19dn2LCBTJkynoyMdGrUqI21dSn8/DYhFosJDg5RvmBwcHBk6dJV3/ISBQR+OATP\nnICAgIDAZ2NtXYqdO7cyd64PNjZl6NixM9u3vymUbWpqyqBBQxk+fBByuZzatetRt259AMaNm8jM\nmXMpVWonOTnFiYlZg7V1JSASD4+uZGVloaOjw86dW7l48TwSSRYWFhaYmJiyc2cw+/fv4cWLF+zc\nuY3ixUtQooS5iuHSpElz5s2bVaC36v0ovASengOYM8cHD49u/zeopinOFmAciUSKENIKFSrSvXtn\n1NTUyMrKAkAsFnP16mWlwElcXCwGBoZERFylS5duWFpa8fhxFHfu3KJr118IDw9DJpMikUjYvHkD\n169fY9CgPkgkWVhZWfH69Wt69x7A7duvgGSaN/+JNm3q4+XlDUCzZvVo374Tly9fZPTocco1SiSZ\nTJgwjrZtW2FrW54//1zCypXLqF27Hrq6uu8VYBGEKv67mJtb4O+/RbkfHLxb5Xzec7m4u3fF3b1r\nvuP+/lt4/vwFq1adQyZTo2dPF2xsLAp/0QIC/wEEY05AQEBA4LNRV1fPJ+EfHByist+0aQuaNm2R\nr2/NmrXZs2c38+cf4OpVDWrWDGDq1MaUKKHwhsTFxeLlNeqjar3lpWJFFwICtn644VvkfVidM2dB\nvvOengNUvFNFihSla9cexMREk5j4il9/nYSv7zwiIx/Qp08//v77EPr6Brx6lQIoHo69vCayc2cw\nAC4ulTl37gzq6hpUrVqdgwenIpPJadmyNceOHcHAwABLSytycnJYsWIN/v5r8fV9iLr6bRISJvP6\ndQf09VtTu/YJ6tVrSGZmJhUqODF06EjlGtPT05kyxRs3tza4u7uTmPgaP79NnDt3Bl/fFVStWk3l\nGhUhs2+M1v+qUIVUKsXHZ/I/qgd4/vxZli1biFisjbNzJUQixX3s1q0Tq1b5YWxsjEwmo3v3Tqxe\nvU6ZR/pvRiaTsXDhYW7dUsfCIpORI2vSrdspIiI8ABEHDwYTFKSOlVXxb71UAYEfDsGYExAQEBD4\nbD43z0UkEuHl1eqjxt+37yJhYS9wdDSgU6c6yuPJySnMnHmS58+1cXUVMWRI0y+Wh5N33Nzt8eOX\ncvfufeRydcTidExMzDA0NEJHR5fr1yOQSCQFCpy4uFRmxowptGrVFmNjY1JSUkhOfkmjRk3w9V1B\n8eIlSE1NxdW1Grdv3+LcuVCyshzR0DBDLtcH1DEwqEJ4eBj16jVETU2Nhg2bKNcnl8sZP34Mv/zS\ni2bNWgKQlJSEgYEBzZu7oaenz44dwcTHx6msr1KlKl/k3v1IPHnyGG/vKTg5OTNnjg+bNwcQErKT\npUtXYWVVkpkzp7Jz5zbat/+J+fNnsWzZaiwtrZgyReElFYlEtGjhxuHDB+jSpRuXL19UKrr+F5g1\naz/LlrUCjIBsLl/+g4iIUeQqm96/78727cGMGNHyWy5TQOCHRDDmBAQEBAQ+i7fDr77G+H/9dYyZ\nMyuQmdkELa1oHj06yNixigfBgQMPcfx4H0CNgwfjEYmOMmTIlxHaOHz4pMoaHz9+wsmTfcnMdEVD\nIxpLy/6sXLkJP79VlCtnz+TJPty4cY3Jk72QSqU4OlagQ4fOAMrC6i4ulQEoW9aOly9foKGhgbm5\nJc7OLhw+fIBTp05w5MhBsrNzsLe3JzJSBogwNLyGk5NYaVRqaYnzGZvOzi6cP39Wacw9fPiAqVO9\n0dc3wNi4CGPHepOa+rrA9b0pKaDY/lQD+f79eyQlJVKrVp0PN/5O+Kf1ACtXroqFhaUylLd5czdC\nQnYC0Lp1O8aPH0OXLt3Yt283rVu3/TYX8w2IiNBGYcgBaBIXZ42a2ktkshL/P5aBvr4g4yAg8CkI\nxpyAgICAwA/H3r1SMjPLApCVZcWBAxqMHQsSiYQbNyzI1feSSktw5crXK6Kdnp5BVpYBkADsB9IR\niRoREDBY2aZq1Wr4+W3K11cs1ubYsbPK/XHjJiq3XVwqsW9fCBMmTKVMGVv69u2Js3Mlhg/vR8+e\nx2nYMI7GjTU5ePABjRvnz1HKpV+/Qfj5+fLHH/OYO3cm1avXpF69htSuXVfFi1fQ+vKGneYKVeSK\nwHyMYXf//l3u3r39UcZcTk4OGhrf7pGloHqAueGyuccK5s3xYsWKU7RoUa5cucTt27eYNm32l1ru\nd0eRIqoCRNbWUL/+frZvr0VOjpiWLY/g4dHlG61OQODHRjDmBAQEBAR+OMTinLf2swHQ0tLC1DSZ\nxMTcMzJMTDK+2rrKlStLw4aBHDumD7gBezh/vg27dl2gQ4canzyui0tlNm5ch5NTRcRibcRiMWlp\nOmzceJXevfty6NBWAgNVhWXyG1iKfXt7B5YuXUitWkepVq0m6urqhIeHERS0iefPnzNkyHAaNmxC\neno63t5jSUh4RlJSBmZmzRg8uAl2diaMHj2UChUqcvfubX7/fSkBAeu5c+cWEkkmDRs2oW/fgYCi\nvuDSpX+QkZGJlpYWixYtZ82aVWRlZXHtWjg9e3pSq1YdFi2az6NHD5FKc/D0HEDdug3Yv38PJ08e\nIzMzE5lMxrJlqz/5/n0ub9cDPHv2NCYmply/fo2goE3o6OhQuXJVSpWyIS4uVhmmeuTIIUAhRnPk\nyGnatu2Aj89k3NzaIBKJOH36BCVLlsLGpvQ3u7avwdSpNUlMXM/9+8WxsHjO1KmOVK1qx8CBd8nK\nekmlSl1RUxM8cwICn4JgzAkICAh8BbZuDaR9+58Qi7ULZbyCaoZ9DPv37+Hu3duMGjXuw42/QwYP\ntuDBgwPExNSkWLEwBg0yBRQGzNSp1vj4BJKUZISTUzyTJn29PBx1dXV8fKpz/LgmOTklefx4DwBn\nztyiQ4dPH/fu3dv8+usIxGJtlixZQGKinKNH56CjE4al5Q4aN7YlPv4poaGn0NTUpG/fgcyZswBv\n77FK8ZZx47yZPNmbZ8/iCQraia2tFZGRMSxfvogXL56zcqUfUVGPGD9+NA0bNkEsFjNkyBi6d48l\nJqYm1tZdGTq0PkuXPiYmJprJk30oX94JgAEDhmBoaIhUKmXkyCFERj7A2roUU6dOwMdnLg4OjqSn\npyMWi+nffzB3795m5MjfAFi9+k9cXaszYcJUXr9+zYABHri6Kgzf+/fv4e+/BQMDg8/4VD4PkUiU\nT61VU1OTCROmsmjRPJVwVA0NDcaNm8i4cSMRi7VxcalMbGw0uYZ0nTr1mT17Oq1aKUIsT506QZ06\n9f71xpyVVXF27eqERCJBLBYrjzs5OXzDVQkI/DsQjDkBAQGBr0Bw8BZatGhVaMbcPwlrmzdvJj//\n/As2NqWRyWQf9eY7Li4WT8+x+PkFfrjxN6BxYxcOHkwkLOwizs5lsLAokeecM40aVSQ7OxstLa2v\nvjZzc3NKlIggLi631p4EM7PPU350canCli0BdO7clbCwq7x8qQtooKNzhcTEn5DLM1izZpbSmHr4\n8AFVq1Zj4cJ5vHjxggULThMaGoJYrEGDBlWVLwEMDQ0BqFevAaAoCP3ixQtAETq4YMFC1NSSsbL6\nCw2NZyQmOnHu3HaKFzdXGnIAx44dJiRkF1KplOfPk4iKegiAiYkpDg6OgKLeH8CyZYto0KCRsu/F\ni+cJDT3F5s0bAcjOziYhIR6RSISra/VvasgBlChhzqZN21SONWtWn6pVqzFr1u94eY1i/PjJZGZm\nMn36JB49ekipUqVJSkqkZcvW2Ns70KxZff76awXHj/+NXA4GBgZcvx5BaOhpwsPD8Pdfy8yZ8z+i\nbMaPSV5DTkBAoHAQjDkBAQGBQiYjI4MpU8aTmJiITCalUaOmJCUlMnz4IIyNFcWdFyyYw507t/OF\npXXu3BY3tzaEhp5GKs1hxoy5WFvbkJKSzLRpE0lKSsTJyVklR8fbeyzPniWQlSXB3b0b7dp1BODv\nvw+hp6evrDP29OkTAgLWo69vQNmy5ZQy8z8qxYub0bKlWYHnRCLRNzHkAAwMDPH21mDx4mBev9an\nZs0YRo3q+Flj2ts7cPfubdLT0xCLxWRllURb+8b/jbmJJCauxNNzh9KYevToEWXKlKVFi1ZMmLCI\nXbu8sLZeR1xcbySSE3h7y1TG19R8813I/W4dPnwATU0ZCQnzycx0oHTpxmhqPsHSUo/bt9+8lIiN\njWHLlk2sWbMRfX19Zs+eTlZWFgW9b3hX8fJZs36nZElrlWO3bt1AR0fnc27bV2XHjmCMjIwICNjK\nw4eR9OnTHYArV+6RkZHBrl3hiESp1K1bj5CQnXh49KVu3frUqVNPWb/veye3TMiGDUHfeikCAgL/\nRzDmBAQEBAqZCxfOYmpajN9/XwJAWloq+/fvYdmy1UqPyIABv6qEpT18+IAyZcoiEokwNi6Cn18A\nO3duY/PmALy8JrFunS8uLpXp3bsf586dYe/eN2IU3t5T0NTUZOLE31i8+HeCgjbh6TmQjIwMihQp\nyvr1gTRtWhd1dXWKFSuBSCTiwYN7VKjgRExMNNOnT0IiyaROnfoEB2/hyJFTKtcjlUpZtWo54eFX\nyMrK5qef3Gnf/qevd0N/QLp2rUWXLjKysrLQ1q772ePlKlru37+H6tVrkpWVxIULB9DSisLRcS8v\nX15l3brAPMaUBIBWrdqxcWNfDAxOkJrqRnp6LSQSX54+fUzx4s4qIh5vk5aWRrlyZRg69Dpbt+5D\nQyOGBg1W0qzZGIKCljBixGCWLFnJ5csXSUlJ5uzZ0/j7ryU6+ikvX76kWbOWPH+eRJMmdejY0Z2L\nF88zevQ4RCIRGRnpyuLlRYsWZcuWTTx7Fk9iYiIZGekMGPDre0RFvk+uX49QFlcvU8YWW1s7Xrx4\nyYgRmWhoaHL58maKFr1I+/YXiI+PVvb70a5TQEDg+0LINhUQEPhPM3ToAO7cuV2oY9ra2nH58gVW\nrlxGREQ4enr6+docO3YYT88eeHr24NGjhzx69Eh5LvctfblyDsTFxQIQERFGixaKOmy1atXFwMBQ\n2T44eDM9e3bhzp3baGlpMXHiNGrWrAWgLAKdmZmJg0N5Nm4MolKlKhgbF0Eul7NkyQJ+/rk7/v5b\nKFas4IK9e/fuRl9fH1/fDfj6+rNnzy7lugTejZqaGtrahRNWCwpFy82bA6hUqQp//DGI0qV34+ho\nwsKF1dDT00dPT48XL55z/vwbRUxTU1OMjAwoWnQFKSk/kZVVFh2dmkyaNJ727duzfPlioOB6ec2b\nt+TOndvcvLmejh1jsbCwoEQJRbioRCIhIyODnJwckpISKVHCnFmzpmFsXIS6desTFxfDuXNn8PGZ\ng0Qi4cSJo+jq6uLgUB6xWExU1CPatGmOlZUVM2fOJzY2mhs3riOV5mBjU5qaNWshEn16+YNvxduG\n2dWr94mKak7uu/MXL6pz61aSSsH1s2fPIJFkfs1lfhYymYx582bRs2cXRo8eikQiUfkdTU5Oxt29\nHaDIzfX2HsOoUb/i7t6O7duDCAzciKfnLwwc2IdXr14BEBKyk/79e9G7d3cmTRqnvB+zZk1j8eIF\nDB7sSZcu7Tlx4ui3uWgBge8YwTMnICDwn+ZLPDCWLGmNn98mzp07g6/vCqVBlUvBYWkS5fnc8Ed1\ndTWVh76C3uBfvXqZK1cuMW/eIsaPH41MJuPWrVuUL++Empqa8to0NDQwMysGgL29IxERYVhYWHDz\n5nXmzl0IQLNmLfjzzyX55rh06TyRkQ+UD1JpaWlERz/F3Nzic26TwEfytqKloaEBrVo1o2JFZ8qV\ns6d7904UK1YCZ2cXlX4DB/Zg0aJVFCkSjqHheSZN6oazc1nMzAxITHydb57c2nlGRsasWuWnPJ6T\nk0P37p0wMjLCycmZMmVsuXPnNteuhdOqVTvu3bvDxInTAMULgPDwMIYNG4W6ujrBwSHK76LiXxHj\nxk1Q1rsbPdqL0aOHUrt2PSwsSnHp0i0aNWqKm1ubL3AnvwwVK7pw7NjfVKniyqNHD3n48AGdOvVC\nX//NyyJ19QTMzMSAQqpfV1eXI0cOKcVt/ikfmwNbmDx9+oRp02bj5TWRKVO8OXny2Ht/Rx89esi6\ndYFIJBJ+/rk9Q4aMwM9vE8uWLeTgwX106dKNhg0bK8PDfX1Xsnfvbjp1+hmgQHEeAQGBNwjGnICA\nwH+CuLhYxowZhoNDee7du4ONTRkmT56u0mbBgrn55NWvXLnEtm1BSkXAS5fOs3PndmbP/p2LF8/j\n5/cXWVlZWFpaMWHCVHR0dOjYsRVNmjTn6tXLuLpW5969u+jq6pGWloahoRFpaWloa+uoeFIqV676\n3vW7uFThyJGDeHj05dy5UF6/VrzRTk9Pw8DAAFvbskyfPochQ/qyd+9OXr9WDZ/T0NAkPPwqr16l\nIJfLiI2NUQpT/BNGjx5HtWo1/3F7gcKnatVqHD9+Trm/efMO5faECVPf2e/69Qh+/dWT1q2bfdb8\neUM9K1Z0wda2LFevXiImJhpzc3Pu3s3r4ZZ/VPHy3BcgY8cuY+3abaSm1qJ06ccEBjajSBHjz1r3\nl6AgT2Z2dhY3b16jR48uZGdnoampRaVK5enZcz9//51J6dK9KVo0iitXpBgZGf+/rxopKcl07Nia\ncuXKsWrVunf+rnTu3JYmTZpz6dIFfvnFgyZNPu/z/FTMzS0pW9YOUORyfshLX7myKzo6Oujo6KCv\nb0CdOorSGWXKlCUy8j4AkZEP8PVdSVpaKunpGdSooYgsEIlEBYrzCAgIvEEIsxQQEPjP8PTpE376\nyZ2AgGD09PTYsUNVoW7AgCGsWbOB9es3Ex5+VakI+ORJFCkpyQDs27eHNm3ak5yczIYNfixZsgI/\nvwDs7R0IClIUWpZKczhy5CByuYywsCv07t2Pdu06MGbMMEaMGIydXTmlJ2X69Mn5PClvePO229Oz\nPxERYfTs2YVTp05QooQ5ADVq1EYqldK160/4+6/F2bkSTZq04N69u6ojiUR4eg5g4MA+rFmzCn19\nA0QiERUqVOT4cYXH7e+/Dxe4iurVa7FjxzZychS13Z48eUxm5o8TFvZfZevWUFq2bEdo6BWaN3cr\nlDHzhnq6uFRm167tlCtnj6NjBcLDr5KSkoxUKuXvvw9TqVKVd47Tr98gDAwM+eOPeQAkJSWRmJjI\noUMdeP58ONraj7lypQ9Ll54plHUXNrneS3NzC/z9twBQpUo1LCysCAjYir6+ATk52ZiYmFKqFIwb\nN57Dh2dw4MAegoP3oK9vwMOHDxgxYgzm5hbs2rWfVavWvfd3RSQSYWRkjJ9fwDcz5AAV4SQ1NXWk\nUinq6urIZIoogrxRBvnbqyn3RSKRMvJg9uzpjBkzHn//LXh69lcZoyBxHgEBgTcInjkBAYH/DMWK\nFcfJyRmAFi1aERy8ReX82/LqeRUBDx3aj5tbW27evMGUKTM4dy6UqKiHDBrkCUB2dg4VKyrGFou1\nWb78L4oXfyOXb2/voAwbgnd7UoKDQ5TbDg6OLF26CgBDQyMWLlxeYJ8FC5Zy8eJ5/vxzCWpqIk6d\nOs6YMeNJTX0TQicSiWjVqi2tWrXlxImjnD17hpEjfyM6+ik+PpPZuHEd1avXRF8/f35f27YdiIuL\npW/fHsjlcooUKcrs2b+/+0YLfHP+/PMIc+dWRSI5jkj0gmnT9jNrVvvPHreg4uUuLpUxMTFl0KCh\nDB8+CLn8nxUvHzlyLLNnT2fFiqW4ulZn4cL5mJmpI5MZ8OzZNEBEdvaP85hSqlQpzp49Ta9eXYmL\ni6FWrTo8eHCfa9fCGTnyN44f/5tdu3YQG5uCRJLKypW7mT9/tMoYN29ef+fvCvBNjbj3YW5uwd27\nt3F0rPBJeW0ZGekULWpCTk4Ohw7tf2f+roCAQH5+nF9JAQEBgc8k70OlXC5X2X9fHlurVu3w8hqF\nlpYWjRs3VeaquLrWYNq0WQXO9bUl1atXr0n16qphkMuWrQYgMDCUnBxv6tU7QqtWWXh7t1bmnZiZ\nmfHXX+sBRSmDp0+fAIqHsz179pCY+BqRSMTAgb8ycOCvX++CBD6LY8dESCSlAJDLi3LqlF6hjPu+\nUM+mTVvQtGmLfH1yvVi5BAe/UWLN+1Jj06ZgevYM4u+/+wBaWFoeonNn20JZ99fA0NAIZ+fK1KtX\nn5SUFJUwVLFYzJYtm9DQ+Inw8IEULz6JXbvKYGGR3xv+Pf2uFMTbxrlIJKJbtx5MnuxNSMhOatWq\nS67Bnj+XTjU8Nfdcv36DGDCgN8bGxlSo4ER6enqB8/1ogjgCAl8DwZgTEBD4z5CQEM+NG9dxcqrI\nkSMHcXZ2ITT0NHK5/L15bKamppiamuLvrwh/Aihf3omFC+cRExONpaUVGRkZJCUl5quV9a2JjHyM\nj48+L14ocpMePYrBzi6Uzp3rAHDnzh0WLZqPXC7HwMAAb+8pKv3XrDlBQIAEmUxEp04iRoz4Pj0D\nAqro6KiGuunqSt7R8tsSFRXL1KmXePZMFyenVFavbouf325SU6F9ezucnH4cYw7ehKFOmDCVMmVs\nWbp0IY6O5f//+6JNRIQ56uov0dM7RXp6Da5ckaKrq6vMp/0Svytv14YLDNxIZmYGBgaG7N69A3V1\ndWxsSjN9+uwPjpU3rBSgW7ceym1//83K7f79BwPg5tZGRcQmryGf91yHDp3p0KFzvvnejmB4+8WA\ngICAYMwJCAj8h7C2LsXOnVuZO9cHG5sydOzYmdDQ04hEIpU8toIUAZs1a0lKSgrW1jYAFClShIkT\npzFt2gSysrIBRc7d92bMXb8exYsXDZX7WVmW3L//RrrexaUS69cHFtj3woWbzJ1bilevFGFef/wR\nSfnyl2nWzPWLrvlH4F3Fk9euXY2LS2VcXasX2O/06ROULFkKG5vSX3R9o0bZERUVzL17VbCyus3I\nkeZfdL5PZdSoC4SG9gLgyhUJuro7mD79x1GwfJt3haGWLWtHuXIOREb+TokSu8nIqArIKVo0gwYN\nOjJmzDDMzIqxZMnKd/6uyGQypk6dwMuXL5HJpHh49MPS0orlyxeRkZGBkZExEydOxcTElK1btxIY\nuJns7BxMTEyRyd4Uic/1bm3a5M+2bXvQ0NAgLS31W9yud3L0aDhr1sQjlYpwdzfA3b32t16SgMB3\ni0j+nWSTFiSPLPDv4F3y1wL/Dn6Uz/ddD9//lIUL52Fv70jr1u0KPJ+c/BKZTEbRoiafs8xCJyEh\nkVat7vL0qUIAw8DgJmvWvKRRo3eJrrxh69YTDB3ahryhUZMmbWP48PyhdP81PvX7NGvWNOrUqfdR\n8uq5AhMfS1paGlFRTyhZ0kJZrD4v3/pvVyaTUbnyceLiOiiPNW++nYCA5t9sTV+aU6duMmXKQxIT\ni+LgEMeqVY0wM3v3b4ZcLufRo0doamoSGXmPCxfO4+U1EYC0tFTGjh3O3LkLMTIy5ujRw1y8eB5v\n7yloakrJzlZ8ZxYtms+JE8fYvfsgAJs3B5CRkc7NmzfQ0dGhfv2G1KvX8LsI4QR49Cia9u3jiY9v\nBICxcRj+/hJq1arwjVf2/fCt/3YFvhxmZgYf3UfwzAkICPxn+NR8C0/PHujq6jJ8+JgCz0+cuJut\nWy0ANdq1O86CBZ2+m9yO4sXNWLQogdWrt5KdrUa7djo0alT/H/Vt0qTi/9g784CcsjeOf963fZUt\nS0mpVKRIYxiyJcY2zNjXMBh+1rGHoiyhLNmXlLJkZDD2nRFZxhZmZEmJNor29X17f3+8ekkhS9b7\n+Wfee+65555z79Wc55zn+T5UqhRCQoK8ftmyF2nU6PPaefyUFCRPvnEjjIoV9fH0XIi3t6fCWFu1\nahlnzoSgpKREgwYNadasBWfOhHD16hUCAtYze/YCMjMz8PKSJ9Y2MDDExcUNHR0dRo4cSs2aFly7\nFkbjxg7s37+XoKA/FbsoAwb0YevWHa818rStySyMAAAgAElEQVS0tKhdu+TpJ96XtzVwxWIxRkap\nxMUVlORhZJRN164d8fPbVKwB+qXTtGltTpyoRU5OzhsTykulUoYO3caBAw1RUsqgc+co4uPPs2rV\nMn74wQEdHW3u3Ytg7Nj/AfLvsXz5igDcvn0bL6+FZGSkk56eVkgdsiAht7e3D1euXMLffx2enh60\naOGIm9vsdx7b+vVrqFvXjvr1v2PkyKGMHPn7W6U/KeDUqRvEx/+iOE5OrsfZs8GCMScg8AoEY05A\nQOCb4OVYj7fBz2/TK88dPHgOf/8WSCQGAGzebM0PP4TQpUvJDKaPQdOm1jRtav3W11laGrNw4X38\n/ILJz4eePXX57rsv390pPPwmBw/uY+zYCe/VzuuSJ6ekJBMScpItW/4E5LsoWlraNGnSlMaNHWjW\nrCUAzs49GTduMra29Vi/fg3+/msZPXo8IpEIiUSCr28gIDeUzp49jYNDc44ePUzz5i3fabfuc8Pb\n244ZMzbz+LEmtWql4ObWnn79fD91t0oVkUj0RkMOIDDwBHv29AG0kEjgzz8r4etrhrJyJuvWrcTO\nzh4TE9NCid0LmDJlCnPnLsTU1Iy9e/9i0aL5pKamoK6uQWjoab7/vhEJCfHY2dnj7e2Jjo4u48dP\nea9x/frrb4XG+K4LWnXr1qBMmaukpMhjltXVI7GyKvdefRMQ+JoRjDkBAQGB9+Dhw2QkkufxSPn5\nFYiPz/iEPfqwtG5tR+uvzOvN0tLqnXYMXuZ1yZO1tXVQVVXD09ODH35woHFjB8W5guiG9PR00tPT\nsbWtB8CPP7bH1fX5hNrR8fmD79ixM1u2BOLg0JwDB/YyefL09+5/aSCVSvHwcOX27XCMjWvg6urO\n9evXWLnSB6lUiqVlLSZMcEFFRYWLFy+wcqUPampSWrV6Xl5ATk42U6dOokWLlrRq9SOurpN5/Pix\nIl7sc5Xp/1CkpEiA5yqkMpmYpKRM+vVri5aWNrt2bSc5OVkh6iSRSHjwIBoTkxpkZj6X+j969BBm\nZuYMGeJMxYr6GBubKN5TVNQ9UlNTKVeuPLt2/UlIyN/k5uagpqaGi8sMjIyqs3//HkJCTpKdnc3D\nhw/o2bMPOTm5HD16EBUVVby8fNDV1S3iQiyTydi3bzcREXcUXg27d+/k/v1IRo0aV9yQAbC1rcm0\naX8TELAdqVRM5875tG0ruHYLCLwKwZgTEBAQeA86dKjP+vW7iYiQx/0YGe2jXTubN1wlUBpkZWXh\n5jal0IS/atWq+PgsJDs7GxUVFXx8VhEe/h9bt25mwQK5cMTixQuIjLyHVCph0KChNGnSjP3793D6\n9ClycnKIiXlI06bN+d//RhMXF8v//jeYrKws0tPT+OmnNkyf7s6OHcE8eZKEqqoaly79w44dwSgr\nK3P16mUSEuLZsWMbU6a4cvbsGa5evUxgoD/Dho0C4PLli/j5rUVNTZ2oqHt4eLgCoK6uUchVMykp\nkcuXLyKVSjExqfEpH/UriY6+j4uLG9bWNnh6ehAUtIndu3eydOlqDA2rMXv2DHbu3E6nTr8wd657\nkfLu3XsBkJmZiZubC23bdqBNm3acPHmMChX08fLyAfjsBDtKg06d6hAUtJvIyJ8AGRYWfhw+fJbj\nxzeirKzChAkuiMVifHy8SU9PRyqV0KNHb0xMajBmzJgiUv8FypDx8XEkJaUwcOAQVFRU6NbtJ9av\n34iysjI9e/ZFSUmJf/45z9q1K5g9ewEAkZH3WL58LYcOHWDt2pV06NCZChX0qVatGgcP7qN7915F\nduNEIhEtWzoRGOjHiBFj2bDBl5Mnj+Hu7vnGsQ8Y0IwBA0rjqQoIfH0IxpyAgIDAe1C5ckX8/U3x\n9d1Gfj4MGGCGiYnBp+7WN8n586FFJvwDB/bBw2MelpZWZGZmoqamVuiawEA/7O0bMHXqDNLS0hg6\n1Bl7++8BuHv3Nhs2bEFZWYXevbvQrVtPUlJSePz4EdOnu7N5cwDKysocO3YYA4NqVKhQkcTEx5ia\nmhMe/i9r1mxAW1uHwYP7k5aWQrly5WjevCVWVrWpU8cWd/fp6OjoEhFxl7t3b9O+/U9Ur27Mf//d\nICcnh/T0tEKumoGB6/HwcGXAgMEf98G+Bfr6lbC2li9mtGnTjg0bfKla1QBDw2qAXI5+x45t2NnZ\nF1vevXsvZDIZU6aMp0+f/jg5yVNqmJqas2KFjyJezNa27qcZ4EfExMSADRty2bRpG0pK+fzvf32p\nXPn3IvWWL19bpKxXr160alVUFdTb+xCrVlUhPb0ijRr9ycaN7RXn0tLSmDVrBjExDxCJREilUsW5\nevXsycvL49ChfWhr62BtbcODB9HUqGFGRMSdV45BQ0MDO7vvOHMmBFvbemzZEkiNGoXTTbxrfN3+\n/Xu4desmv/8+6a2uExD42hCMOQEBAYH3xNLSGG9v40/djW+elyf82tralC9fQTFJ1NTULHLNhQvn\nOHPmFEFBGwHIy8sjISEekUhE/foN0NSUu7kZG5sQFxdLVFQUmpqa2NrWIyhoI6am5tjbN2DlyqXk\n5GSTnp7OkydJ5Ofn06dPV0BEfr6UIUOGk5cnISbmIXv37kYsFgEiVq/2w919GlJpPnFxcUydOoPV\nq5dz5colNDW1CrlqtmnTnoAAP5ycPl+Xsxd3ZmQyGdraOqSmphQqK44Xy0UiETY2tpw7F6ow5qpV\nM8LPbzNnz55m3bqV2Ns3+KyN2g+FlZUJc+aUPI3F7t0X2Lz5CaqqKnTrpsNPPz1PkZGQkMDq1fqk\npclzTIaGmuHjsw2QP39f39XY23+Hp6c38fFxjBr1PAZOVVWF1auXERPzEKlUysaNfmhpabNz53Zi\nYh6QnJyMsrJ8ShkefpM7d27h4TGdSpWq0K1bT/7660/u349CVVW+mNK1a0ccHVvzzz/nyc3Nfaf4\nus9FZEpA4FMj/tQdEBAQEBD4Nrh8+SKTJhXdWfhQFEz4TU3NWLduJX//fbxE182Z44W//xb8/bew\nffseqlc3BuQT2ALEYiWkUikikQixWKwQ1BGLxaioqFCuXHlmz16AsbEJpqbmbNoUzPHjoRw/foaT\nJ8/Rp48zf/yxGTMzc06cCOXw4VNIJHmYm9dk3LjJ1KtXn7lzvdDW1kZJSUzfvs5YWdVi3boAmjd3\nJDQ0hIkTx9CiRSu0tLRL4/F9EBIS4rlx4zoAR44cxNLSiri4WGJiHgJw6NB+6tWrj5FR9WLLCxg8\neBg6OrosXDgfgMTERFRVVWndui29evXj1q3wjzyyz59r1+4wZYoWJ05049ChzkyZos21a893zVJT\nU8nIqPDCFWKysp6v6WdkZFChglwNc9++3UXaHz58NAYGhlSsqM+gQb9x584tnJx+xMmpLbGxMTx5\nkoRUKmXJEi9MTExxdZ1F+/YdOXnyGI8ePSIhIR5VVVU8PFxJTHzMuXNnWLXKl7Jlyyru4e09j8GD\n+9OvX3fWr1+jKL9581+GDx/EgAG9GTp0AJmZmYUWAEJDTzNs2KBCCwcCAt8KgjEnICAgIPBV8PKE\n/+bNf3nyJInw8P8AyMzMKOQ6BtCgQUO2b3+ucnr7ttxIKG4HSSQSUbOmBVlZ2Qqxk9zcXEU7+/fv\nUfz29V1VpM3MzAxFHsKDB/cVSuRcHAVxeeXKGfLvv7FERt7D2fnXkj+Qj4xIJMLIqDo7d26jb99u\npKen06NHH6ZOnYGr62ScnXuipKRE585dUVVVLbZ8/vzZSCQSAMaOnUBOTjYrVy7l3r27DB06gIED\ne7Nhg+8H35ULDt5K377daNu2JZs3BwByqf2goFcr2X5unDlzl8TEhorjxMTvOXPmruK4Ro0aNG58\nBpD/G9DXD6FDByNAHuvWu3d/Vq9ezqBBfZ59m/Kdr4JYuOf/JuS/raxqo6uri1gswsysJllZWTx+\n/JjIyAju3r2Nu/s0AgP9ePz4MS1btqJMmbI8eZLEL790o2JFfapXN2HHju2FxjB06P/w9Q1kw4Yg\nrl69TETEXfLy8pgxYypjxkxkw4YtLFmyEjU1NcXO3N9/n2Dz5gC8vZd+leksBATehOBmKSAgIPCN\nUJxAiIGBIcuXy4VAypTRY9q0GZQvX4GHDx8wceICHj9OQiwWM3v2fKpWNWDFCh/Onw9FJBLRv/+v\nODo6KQQ89PTKEhkZgYWFFW5uswA4dy6UZcsWoaamjo1N6cY53bt3lxUrfBCLRQqBCJksn8WLvRR5\nvRYvXvFsciq/ZsCAwSxduhBn557k5+dTtaoB8+cvfqW0uq6uLvr6+kybNpH8fBnJyU9p0cKRAQMG\nM2+eBw8fPuDUqRNkZWUVafPnn7sxbdokDh7cz/ffN0JD47nbZ3EeY5mZGYwaNYKoqCzy8rR5+tSV\nRYsusHjx55nrr3LlKmzevL1Ief363+Hnt7lE5S+rdBaIdoDcSC4tdu3ajo/PKsXOFHx5bnx16lRF\nSyucjAxLALS0wrG2fq60q6SkREBAR5YuDSYjQ4n27avTqJEVwcF/AWBtXYegoB2K+kOGDAfk8Yxt\n23ZQLGAEB//F5csXUVFRVZxbvHgBHTp0wsLCkhMnjhZJlzBp0u8YGFQlLy9HEVPp5NSG/fv3Fqp3\n/Phhdu/ehVQqJSkpkaioewDFukvLZDIuXbpIePhNFi9eUawbtYDAt4BgzAkICAh8IxQnEDJhwmjm\nzVtEmTJ6HDt2mLVrV+Li4oa7+3RGjvwftrbfk5eXR36+lJMnj3H37m0CAraSnPyUwYP7U7euXFb/\n7t3bbNoUTPnyFRg+/FeuXw+jZk1LFiyYw7JlazAwMMTNzaVYo+VD0aBBw2In/GvW+Bc6rlevvsKl\nT01NjYkTpxa5pmCSWsCCBYsVv4ODi7qgAcyYMee1/TM0rEZAQJDiePhwuZqlnZ09dnb2ivLRo8cT\nEXGP3NxcKlUayNGj3RTn9u49iZvbE8qW/fR5t+LiYhk/fhTW1jZcvx6GpWUt2rbtgJ/fWpKTk5kx\nYxahoafR1NSiV6++APTr1x0vr6WUKVOm0MLCgAFDaNmyVSExjHPnQlmzZgUJCSmAFr/9No5Onb7/\noGNwcnKgdeu2xMQ8pE+fbvz661BiYh6SnJzM5csXqV27Dr169WXkyKFYWFgSFnaVrKxMpk93JzDQ\nn8jIezg6OikMn09Jkya2TJ58nKCgf1FRUaJLFxEODi0L1dHS0sLFpf0rWng9mpqaZGZmvraOkZEx\nyclPuXHjOmZm5vj47OXo0dXUqVMbPb1yQJSirkxW2GCOjY1h69bN+PpuRFtbm7lz3Z/F0xV/L5FI\nhIGBAXFxsURH3/8g6UYEBL5EBGNOQEBA4BvhZYEQHR1t7t2LYOzY/yGVSklNTaVGDTPOnj1DRMQd\nWrVqxePHac9yf6lw/XoYeXm53L8fhbGxCXXr2nHz5n9oaWlhZVVbsathZlaTAwf2sn37H1StaoCB\ngSEArVu3ZffunZ/wCZQOoaFh3LwZR8uW1piYGL5XW9nZ2Tg77+TUqSaoqz/B2PhWofNKSnmfVbLw\nmJiHzJ69ABcXNwYP7s+xY4dZvdqP06f/JjDQH3PzmoXqyyfvsmIXFgrOi0Qinj59yoIFc9DQ+ImL\nF0cjFmczZkwMOTmhdO/+IRPXi5g4cSoXLpxj/fqNnDkTQnZ2Nrdu3eTnn7sqdntEIhEqKqr4+gYS\nHLyVKVPG4++/GR0dXXr06EyPHn3Q1dX9gP16N4YNa8mwYVCxog6PH6d90LbLlNGjTh1b+vfvgZqa\nmsJl+EWUlZWZNWs+ixcv4L//YsjIKMPTpxNITVWlUaMdpKQkK2IqT548ho2NLWfOhCCTycjIyEBd\nXQMtLS2ePEni3LnQZ/GVxiQlJRIe/h+WlrXIzMxATU0dmUxG5cpVGDFiDFOnTmLWrHmfbcoOAYHS\nRDDmBAQEBL4RXlYEtLOzx8TElNWr/YiLi2Xy5N9ZtGgZZ8+efmUbbdt2xNj4ubpewcq6svJzsRAl\nJTESSV4xVxevZPgl4+NzhMWLrcjMbIyBwVGWLk3GwcH6ndtbufIEJ04MBFTIyIC7d1UwMlpOdPRv\nqKo+oFevxM8qLqhKFQOF1LyJSQ3s7Rs8+21KfHxsEWNOjui1qQZkMhn//nsda2sbgoPrAKrk56uS\nmanL0aP/0b37hx+HRCJh+PBf6dPHmZCQv8nJyWbXrj9p3tyRmJiH3L17h6SkRK5fD6NDh5+oUcNU\nYcxUrWpAQkL8Z2HMlTYzZswutvzF9ADm5jXp128EnTrVAOSLG6mp0KpVAkZG8ezcuQ01NTVyc3P5\n+eeunDkTgkgkwty8JjVrWtC7dxf09StjY2MLyA1EDw/PV7hLizAyMmbGjFm4uk5hwYLFVK0qpIYR\n+LYQjDkBAQGBb4TExER0dHRo3botWlra7Nq1neRk+Up5cPCWZ65m8t0IZWUVevbsyZMnTzE3r4mL\nixs2NvWYN28WNWqYUblyFQ4fPoCGhib//HOOsmXLsW/fbjZt2kB6ejrVqxtjbFyDGzeuERPzEAMD\nQ44cOfSpH8EHRSaTERQkIzNT7t4VE+OEn9+29zLmMjLEwHPDOCenCh4e1XnyZDfVqpWnWbOiucM+\nJYUVP8XPdnHlv6VSKUpKSshkz4VeCgRj3pRqQCQSoaSkhI5OGklJBaUytLSyS31MjRs7cOvWTZo3\nd0RTU5MFC+ZQrZoR48dPQSKRsHChJxUq6Bfq65vEbL41dHQ0UVFJJU+xpiOlTJkydO8+kfPnn9Kw\nYROGD2+FkpISy5Y9V618MUbyRSwtaxVxl37RFdrc3IJNm7aVxlAEBD57BGNOQEBA4BuhOIEQsViM\nj483T58+JT8/n169+mJgUI3Jk39/NqFW5vTpEM6ePUPz5o74+Hgzc+ZU1NXVAahf3x5HRycCA/3w\n81uLn98mfH1X888/5zEzM2fSpGlMmjQWNTV1bG3rERv78BM/hQ+LVFpYFDo///2CAn/6qQZ//nmM\n2FhHIJ8GDQ7i6NipSLLzL4UqVapy5kwIALduhStENF5eWHhRCl8kElG7dh0WLpzHr79+z8qV+0hK\nKouNzS0mT25W6n0uUG2UyWTk5uZy48Y1xGKx4rtPTU0rZMwJFMXa2oLevXewebMyEkk5vv9+F3p6\neoweXZ2srFZAOnfvBrNkSdd3av/gwUv88UciSkoyfv1VLuQiIPCtIhhzAgIC3zzp6ekcOXKQn3/u\nyuXLF9m6dXMhwYuvhVcJhCxfvlbhZtmhQ2eF8MOmTYE8fpyGt/c8cnPlS+wGBoaMHPk7165dxcfH\nm/nz59Cv3wB+/rkbISEnKVNGj/Hjp7B9+1aio6Np0KBhIYXD+Pg4jhw5qEgG/SUjEon45ZdcVq6M\nJifHiIoVz9Knz/tN8m1tzfH1vcXOncGoqkoYO7bNZ23Ivaz4WHD86FECDx8+oFmzlhw8uI9+/bpT\nq5Y11apVB15eWFBmwoTCIjR6enpMmjSNKVPGYW1tiK5uGZYtW6NITF1a43hRxbTgv9raOhgZVWfk\nyN+xsLDkypVLbN365aQs+FR4ef1C9+7XSUm5j4NDZ3799W+yssyfndXm9OmyyGSyt1YNvXz5NuPG\nqZGYKDcEr1w5wF9/xWNoWPkDj+DjUvA3ODDwj0/dFYEvDMGYExAQ+OZJS0tl585gfv753VaJv0ZU\nVFQVv5WUxEilkkLnd+3ajrq6BgcPngAgJORkodxsf/8dzqVLiWzZcoxOnbJwde0IyBXrjhw59FUY\ncwAuLu2wtT3H3bvnad7cFBubd3exLMDe3gJ7e4sP0LvSpSBxegEvusjp61fC0LAaampqLFq0vMi1\nlStXLnZh4UWXu4YNf6BiRX1WrVpf6nGCK1asY/Lk32nbtgN169oxefLvDBo0FICzZ0/zyy/dsLCw\nRCaToaOjy/z5zxd7XuyzQGG++66O4remZm6hc5qaOe+U/uHUqUiFIQfw4EFrTpzYSb9+X7Yx97ZI\nJJJSW9wQ+LIQvgIBAYFvntWrlxET85CBA3ujrKyMuroG06dPLpIzLTz8ZrE52b4GSiI7XkBg4Hpi\nY2OQSCRs2yaPtevXbxAeHq6IRCL+/fc/7t1LJiurPioqAezencfVq+vZuHELq1cvJzo6ioEDe9O2\nbUe6d+9VyiMrfdq1K738Z18yUqkUDw9Xbt8Ox9i4Bq6u7ly/fo2VK32QSqVYWtZiwgQXVFRUuHjx\nAitX+pCXl0dmpi6amr9gZSVTLBDk5GQzdeokWrRoSYcOnT9YH180Jl71281tNt7e8wgI8OPJk1SS\nk2uTl9caJ6cM3N07fnH56D4V48ZZc/t2EP/99x2VKt1l9OiiapglwcREGxWVGPLy5EInWlo3sbJ6\nPxXZklCQisPSslaJvumuXTvSsqUT58+HoqqqxsyZczAwMGTOnJk0buxA8+aOgDw9xpEjIUXuNXv2\nDLKysgAYN24S1tY2XL58EV/f1VSoUI47d+4Wygso8O0iGHMCAgLfPMOHjyYy8h7+/lu4cuUSLi7j\nC+VMu3btKrVqWbNkiRfz5xfNyfY1UBLZ8QL69/+V27dvkZycjI6OXMGvQoUKmJnV5MSJY+jolCc9\nvRWammeIj19IdnY9unffjJqaGsOHjyIoaNNX6cYqUJjo6Pu4uLhhbW2Dp6cHQUGb2L17J0uXrsbQ\nsBqzZ89g587tdOr0C3PnurN06WpmzTrP1av/kZOTzaFDXbGxWUxmZiZubi60bduBNm3afdA+Hj78\nN1B4l/HF3zk5OYjFYry8lhATE0fr1gkkJcnj9qKiHmFhcYo+fUo/ju9rwNLSmAMHKnHvXhRVq1q9\nc67ETp0aExa2l7/+0kBZWUq/fmLs7Vt94N4Wz4MH0UydOuON33T37r0QiUTo6OgQELCVgwf34eOz\nkAULFhdj/BddDChXrhyLF69AVVWVBw+icXefjq9vIAB37txiyZJ9qKp+/eqpAiVDMOYEBAS+eV50\nD5TJZEVypsXHx6GtrU1kpDwnG0B+fj7ly1f8JP0tLUoiO/6iS9n27bsV4haJiYloa+syZsx46tVr\nSKdOEaSkVKNiRU/y8+tQv37DZ8qGX196AoHi0devhLW1DQBt2rRjwwZfqlY1wNCwGiBXI9yxYxt2\ndvaK8n//vUVq6i/o6W0hOdmZ3FyYMmU8ffr0/+iuufv3X8bdPYn4eEOsrc/Qu7cGSUnPjQapVJ97\n97I+ap++dDQ0NKhd+/3FStzcOjB9en6hGMePQUm/6QKPg1at2ij+u2zZohLfJy9PwuLF87l79w5i\nsZiHDx8ozllZ1cbAwOCD5xEU+HIRv7mKgICAwLdF0XgxKSDPneXvvwV//y0EBGxl0aJlJWpv+PBB\nwHPxj6+N8PBYmjaN4OBBNRYtukl+vozly8uhr7+MmjWb0bFjBitXziE6OqpE7W3btoWcnNKXoBco\nXV6cZMtkMrS1dQqdL86wr1ixsHGkpAQ2NracOxdaOp18DQsWxBEZ+QtZWQ34558BnDiRjInJ8xyM\n2tr/8f33gqrlp0IsFn90F9eSfNOv6lNBuZKSEvn58m8/Pz+/2Jycf/yxmfLlKxAQsBVf342KlB4A\n6uoa7z0Oga8LwZgTEBD45ilJvJiRkTHJyU+5ceM6IA8+j4y8V6L2V63yA56Lf3xN5Ofnc+2ahMTE\nVujohBIdbc/ChRdp1MgKNTUxQUH98fCYhqVlLaKj76OlpU1mZsZr2wwO3kp29rdrzK1fv4agoM9T\nLTEk5CRRUZElqpuQEK/493LkyEEsLa2Ii4slJkaenuLQof3Uq1cfI6PqivKZM60wMVmEsrImjRtv\nQE9PjcGDh6Gjo8vChfNLbVwvk5+fT0qKeqGynJwKLF9elbZtt+Lo+CceHpG0bm1XKvd3cnIotnzO\nnJmcPHmsVO4p8GZK8k3Xrfv8mzh27LDivwU7epUrV+HWrZsAnD59ComksLgUQGZmhsLV/eDBfUIe\nQ4HXIrhZCggIfPOUJF5MWVmZWbPm4+PjTXp6OlKphB49emNiUuON7RcEuL8s/mFv3wBPT3ckEgn5\n+TLmzFmgcNf5/BEpkiXn5akWKs/KkkvpSyQS+vfvgUwGKSnJxMY+RCKRIBKJGDCgN61atSEs7DKP\nHz8mP1+Ks/Ngnj5NIjHxMaNHD0NPryw+Pqs+zfA+IR9rt6Fgx/ltOHXqJI0bO2BsbPLaeiKRCCOj\n6uzcuY158zwwNq5Bjx59qF27Dq6uk5FKpVhZ1aZz564oKyszdeoMRfmPP9Zm7NgJqKur062bPE5o\n7NgJzJ3rzsqVS/nf/0a/03jfBrFYjL39E2JicgFVVFWjcXBQ5rvvLAkIsCz1+xcXRwV8dLdCgcKU\n9JsuIC0tDWfnXqiqqjJz5hwAfvrpZ6ZMGc+AAb35/vtGaGhoKuoXvNuff+7GtGmTOHhwfzF1PtJg\nBb4YRLLPJIBB8P39eqlYUUd4v18xwvt9M05OTTly5BRXrlwqJP6xZIkXtWrVoXXrH5FIJEil0o+e\nU6xAoc3a2obr18OwtKxF27Yd8PdfS1paKtOmuWNgYIinpwexsbGoq6szadI0TE3NSElJZubMaVy7\nFsGjRw5oal4gKWk2Xl4ZaGo+Yc6cmZiammFlVZv//W802to6tGrVBGVlFSpXrkKLFo74+a2lTx9n\nQkNPo6ysjJfXEoYOHcD69RtLXY7+cyIgYD0HD+6jbNly6OtXwsLCCnv77/Dy8iQnJwcDA0NcXNyQ\nSPKYMGEM69dv5M6d2wwa1Ic//9yLvn4levToTGDgVry956Glpc2pUyd48iQJAwNDzM0tsLCwIjQ0\nBHPzmly7FsbPP3fC1LRWsQqtu3fvZM+eneTlSTA0NMTV1YPbt28xefI4tLS00dbWYvbsBRgYlL6K\n4Idg/fo1aGpq0atX3xJfk5OTg4uLL8nJqjRvbkH//k2LKBF+CLZu3cT+/XsA6NChM92791L8zZDJ\nZCxevICLFy+gr18JFRUV2rf/6Y33F/HSUSIAACAASURBVP4uf3jeNg9ct24/fZC/YzKZjKioKJSU\nlDAyMgKE9/s1U7GizpsrvYTgZikgICBQAq5eDSco6ChxcY/euY2X185q167Dxo1+bN4cQHx83CdL\nDh0T85CePfuyZcufREff59ixw6xa5cekSZMIDPTHz28tFhZWBAQE8dtvI5g9W67g6e+/Dlvbehw8\nuId27bRRUYnF2zuZevUqcfz4EdTU1PH33wJAjx4DadKkI9nZ2WRlZbF48XJatnRCKpUSHX2f33+f\nhJ2dPbt37/wkz+BTEh5+k+PHj7BhQxDe3j6Eh/8HwOzZMxkxYgwBAUGYmprh77+WsmXLkZubQ2Zm\nBteuXcHSshZXr14hPj6OsmXLoaYmdw2MirpHmTJl8PXdSF5eHuHhNxX3k0gk+PoG0rdvX5Ys8WLO\nnAWsX7+R9u07snbtSgCaN2/JunWBbNiwherVTdi79y/q1LGlSZOmjBw5Bn//LaVqyGVkZLB9+wmO\nH7/wQURz3mU3S01Njdq1lXFy0qB//6bv3M7rCA+/yYEDe1m3LoA1azawZ89O7ty5pTh/6tQJHjyI\nZvPm7Uyf7sH169eEnblPyNs9+/d/T/n5+Qwb9gdNmsho0iSbceO2CyJSAkUQ3CwFBAQE3sCKFcdY\nuNCE9PQOGBkdZtWqJ3z33fu7Wjk5/Ujt2nUIDQ1hwoQxTJo0FTs7+w/Q47ejShUDatQwBcDEpAb2\n9g0AqFmzJnFxsSQkxDFnjhcAdnb2pKSkkJmZQVjYFebO9UZFRYX588fQrt1uWrSow9Gjh7h1K5zs\n7CwGDuzNgwexpKToc//+MczNbZBItElLS8PIqDoqKio0bdqcdetWUrZsObS1tT/6+D81165doWnT\nFs+MeTUaN25KdnYW6elp2NrWA+DHH9vj6joFAGtrW65dCyMs7Cr9+g3k/PlQQKaoKxKJKF++AjY2\ndTEzMyc5OZmOHZ/nZnN0bA3AvXv3XqnQGhFxl3XrVpGRkU5mZhbff99IcX1pTyafPHlKr17HuHKl\nB0pKT+jZ808WLery1kZMcbudMTEPWbRoAcnJT1FXV2fy5GkYGRlz+vQpAgP9kEjy0NUtw4wZs8nO\nzmb37h2IxUocOXKAMWMmAnD16hX++GMzSUlJ/O9/o99rl+7atavP3r3cCG/WrCVXr15RnL969QpO\nTj8iEomoUKEC9et//L8PAnJeTFlREoKD/3rve27ZcpydO3sAuuTlQVCQAa1ancXZuc17ty3w9SAY\ncwICAgKvQSaTERAgJT3dFoDo6PasWfPHOxlzmppahcQ/YmNjqFrVgK5de5KQkEBExN1PYsypqqoo\nfovFYlRU5MfymDgpYrHKKyfwrypv27YD27f/gb//Fnr1mklcXFlACZlMCZEohadPn6CpqYWSkjKt\nW7dFS0ubDRt8MTGpgaamJhkZGV+dm+WBA3v57ruGVKjwcqL5tzNS6tatR1jYFRIS4nFwaMamTRsQ\niUT88MNz0YwX00C8/I4K1PBkMhkmJqasXu1X5B5z57ozb94iTE3NOHBgL1euXHre21LeGVq9OpQr\nVwYAIqRSTbZt+54hQ25Tq5ZFidt4cbdTKpUwaFBfLCysWLBgLhMnujxLg3CDhQvn4+OzClvbeqxd\nuwGAPXt2sXlzICNHjqVTpy5oamrSs6fcPXPv3l08eZLEqlV+REVFMmXKuPcy5op7li8WiUSlbzwL\nfL48fZoHPM8nJ5VW4PHj9E/XIYHPEsHNUkBAQOA1yGQypFKlQmUvH7+JggmbmZk5SkpKDBjQm23b\ntnD8+BH69evOwIG9iYyM4Mcf23+wfn9IbG3rcfjwAQAuX76Inl5ZNDW1sLW1U6RaOHv2DGlpqYhE\nIurXb8CJE88V9+rXt0JD4zzVq3dEJJIgFlegfPkK3Lt3l5ycbAYO7M2GDeto3rwlIBcIGD9+FGPG\nDP/4gy1F9u/fQ2Li4yLldevW49Spk+TkyN0nz5wJQV1dAx0dXcLCrgJyRbt69eoD8vdx6NB+DA2r\nIRKJ0NXV5ezZM9jY1FW0Wb26MWfOhDyTNJcRGhqiOFdgHJiYmLxSoTUrK5Ny5cojkUg4dGi/4toC\nQ7s0kUrFvGjg5uWpk52d++oLiuHF3U5NTS0aN25Kbm4ON26E4eo6mYEDe+PtPZekpCQAHj1K4Pff\nR+Ds3JOgoI1ERT1Xqn3RlhKJRDg4yJOEGxub8OTJk3cfKGBrW/fZu5e7H586dUKxwyo/b8exY0fI\nz88nMTGRy5cvvaY1ga+Nzp3rYWq6S3FsZRVMx47ffcIeCXyOCDtzAgICAq9BLBbTvn0Gvr7xSCSV\nKV/+PN27F1W7fB2HD/8NyBUxX1Zn7Nt3wIfq6jvz8u7Ai8cikYiBA4fg6emBs3MvNDQ0mD59JgCD\nBg1h5sxp9OvXHWtrWypXrgLIJ7lDhgxn0yZ/nJ17oaysjKNjM27erMHTpzNYsWIZhobVMDSshoaG\nJv7+W7h1K4L9+w+Sl5dHly496NKlx0cb//vwsniFg0OzQiIJW7ZsJDs7ixo1TAkPv4mb2xQSEx9z\n4MAJRYxkzZqWODo6MWBAL8qWLUetWrURiWDatJl4e3uSnZ2NgYEhU6fOAOQ7usnJyQoJdFvbes+S\ntj93UTU0rEaTJk1xdu5JTk4OpqZmaGtrF1JDVFVVfaVC6+DBwxg6dAB6enrUrm2tSN3h6Nia+fPn\nsH37H8yaNa9U4ub69KnD/v07iIj4BcjGyekwtrY937KVojteBXnBCuI4X2Tx4gX06tWPxo0duHLl\nEn5+a1/ZcsHOdUGb70PNmpa0a9eBIUOcAejY8WfMzS0U76hZsxZcvvwPfft2o1KlytSpY/Ne9xP4\nsqhWrTIBATkEBv6BWCxj6FB7ypUr+6m7JfCZIahZCpQ6gurS18238H5lMhk7dpzh/v0MmjY1xt6+\n5O5exXHx4i2OH4/EwECd3r2bfbaCBh/r3S5ffpRFi4xITzfFwuIwvr61sLCoXur3fV/Cw2/i6enO\n2rUbyM+XMXSoM25us5g1y01hzAUFbXoWOziEUaN+o2fPvqxZs7zEinjFcfnyRbZu3axQRX0VWVlZ\naGhokJ2dzciRQ5k8eRrm5s+/3c/t3+6LaoH378cxb94KxOJcRKJkzM0tuHr1ElKpFBcXN6ysar+2\nrdu3w5kzR/5u5G6W/ejU6RdOnTpO9+69adGiFTKZjIiIu5iZmTNoUB8mT3bFwsKSuXPdiYuLZdmy\nNWzduomMjAx+/fU3QO5++sMPTRSulQWqk58bn9u7FfiwCO/36+Vd1CyFnTkBAQGBNyASiejSpckH\naevIkSuMGaNMYmI3xOIkwsJ2smDBLx+k7S+JHTvOsmdPGioqWYSGqpOeLnchvHWrOytWbGXp0s/f\nmHuTeEUBL66Zyt12pXh4uHL7djjGxjVwdXVny5aNhIaGkJOTg7W1DZMmTQPg4cMHeHl5kpKSjFgs\nZtaseYXavnnzX7y85jJ79gL09MoyZ84xEhPVqF9fmbi4Y0RFRZKbm0vbth0KGXIlJS0tjcmTjxAZ\nqUO1aul4ejanfPnS3xmoXr0KTZtakpWVyZUrl8jJycbffwthYVfw9PR4ozH8qt1ON7fZeHvPIyDA\nD4lEQqtWrZ8Zc0NxdZ2Mjo4u9evbEx8fB0Djxk2ZPn0yZ86cUgigvLxzXVpER8exefNVVFRk/Pab\nAzo6bz/JExAQ+PoRjDkBAQGBj8j27Y9JTOwCQH5+eQ4cqMDs2bmoqqq+4cqvh2PHrjJpUhVSU1sD\nWYjFRwqdz839Mv7XJBKJOHBgL40bN8XS0gqZTEZGRjr5+c+Nt5yc7CKT/+jo+7i4uGFtbYOnpwc7\ndmynS5ceDBw4BIBZs9w4cyaExo0dcHefTv/+A3FwaE5eXh75+VISEuIBuH49jCVLvJk3bxH6+pVw\ndt7GgQPOgDJ79sQxdaqUGTPmvNcYJ08+wvbt/QAxly7JkEgC8fP7+IsPrVrJ1ftsbeuRkZFBRkY6\nWlqvVz7t338Q/fsPKlK+cOHSImVNmjSjSZNmRcqrVTMiICAIkBvitWtbo6z8/PsscKH+0Dx8mEDv\n3mHcvt0dkHLy5AaCgzuioaFR4jYOHNjL1q2bEYlEmJmZM3jwMObOdSclJQU9vbJMnepGpUqVmTNn\nJmpq6ty5c4unT58wZYor+/fvITz8P2rVsla49zo5OfDTTz9z4cI5ypWrgLv7XPT09IrNSaimps6c\nOTPR0tLm1q3/Cil/zp49g2bNWuDg0BwAd/fpODo6Ffv8BQQE3owggCIgICDwEVFWlhY6VlHJQ0np\n7QRVvnRCQuJJTa3z7EiD/Pw4IAWA8uXP8csvFT9Z394GW9u6JCcnk5eXS1ZWFiEhJ2nY8AeSk5+Q\nmppCbm4uoaGnFfU1NTXJzMxAX78S1tby2Kc2bdpx7dpVLl/+hyFDnHF27snlyxeJirpHZmYGSUmJ\nikmvioqKYhfw/v1IvLzmsmDBYvT1K5Gfn8/Vq+UpWKOVSKpw4cL7R1FERenwfKogIjJS93XV3wsl\nJaVChnBubs4r635s1+Rduy7g4HAAO7vTDBmy7ZmwzPsRHLyVvn27MWuWa5Fz27Zd4fbtbs+OlLhw\noTuHD/9T4rbv3LlDYKAfy5atZsOGLYwePZ5FixbQrl1HAgKCaN36R5Ys8VbUT09PY80af0aPHseU\nKePp3bs/GzduIyLiLnfv3gEgOzsbS8tabNy4jXr17PD3l8cVFpeTsIAC5c8FC5awevVyADp06MT+\n/Xuf3TedGzeuF1JiFRAQeDu+jOVPAQEBga+E4cNrcvnyTiIi2qCldZsBA/Lfy5gbPnwQq1b5ER8f\nx/XrYTg5/fhO7XTt2hE/v03o6pYhOHgrf/31JzY2dZg0ye2d+/YqDAyUkRtv8tQDeno1GTZsFzk5\nWrRsacT339t98Hu+SFxcLOPHj8La2obr18OwtKxF27Yd8Pdfy9OnycyYMQsAH5+F5ObmoKamhovL\nDIyMqpOTk83cue5ERNzFyMiYMmXKMHv2DNTU1LCxqceSJd6oqqrRpUsHzMxqYmxsorhvu3YdWbHC\nh6SkRHJy5O3KZDJEIhGLFskTd1esqI+f39pnxkLxBktBHrm8vFxu3w6nUaMmiMViypXLIi6uoJYM\nPb2s935WhoZpXLwoe9YXGUZGpRenU65ceYUhrK6uQWjoaUV+u+PHj2BnZ09Y2FW0tXXQ1NQqtX68\nTEZGBh4eGTx8KBfl+euvHMzMdjF5crv3anfXru34+KyiQoWiixfq6gC5gHzHXix+Qpky6iVu+9y5\nc7Rs6aRI76Grq8t//13H01NuwLVq1YZVq+Q7lCKRiMaN5caUiYkp5cqVL5R3Mj4+FjMzc8RisSJH\nYevWbZk2Te52+qqchK9S/qxb146FC+eRnJzMyZNHadGiJWKxsLcgIPCuCMacgICAwEfE2tqUPXv0\n+PvvY5ibV8XGxum92lu1Sp4jLDY2hiNHDr2zMffiTkfBJNPKqkapBNn/+mtLbt7cwYkT5VBTy2X4\ncE2cnT+u615MzENmz16Ai4sbgwf359ixw6xa5cfp038TGOiPq6sHK1asQ0lJiX/+Oc/atSuYPXsB\nO3duR0NDk02bgomIuMugQX1YuzaASpUqM336JHx8VqKmps6mTRuQSCQMGDBYcc9mzVpSs6Yl3bt3\n4s6d21hb1+HIkYPY2Nhy48Y1dHXLkJmZyYkTR2nZ0glNTU0qVtQnJOQkDg7Nyc3NRSbLV6gyuri4\nMnbsCNTVNahXrz7TplXD3T2IR4/0sbK6z/TpLd/7Oc2f3xKpNJCoKF2qVUtj/vzS20FRVlZmwIDB\nDBniTMWK+lSvbqw4p6qqyqBBfRQCKMXxooDKh+TJkyQePTJ6oUSNR4/ebzfdy2susbExjB8/irZt\nOxAWdoXY2FjU1dWZNGkagwY1Z/fuocTGaqOiEkOVKjLu3XPg9Ol9xMXFkpAQz6hRv3P9+jX++ecc\nFSroM3/+IpSVlQkPv8nGjRtJT0/n5s3/mDZtBuXLVyAtLY1lyxZz48Y1HB0L/91RUVEhPT2dI0cO\nFsk7KZVKeZmCRQh4fU7CVyl//vhjew4d2sexY0eYNm3mez1LAYFvHcGYExAQEPjIVKhQni5dmn+Q\ntpycHDhyJITVq5cTHR3FwIG9adu2I/b2DfD0dEcikZCfL2PuXC8MDAw5dGg/27f/gUSSR61a1owf\nP0WxKi6TyQpNMrt370b79l0+SD9fRCwWs2hRV6RSKWKx+JOoeVapYlBo98HevsGz36bEx8eSnp7G\nrFluxMQ8QCQSKSa0YWFX6dZNLpNvamqGqak5AP/+e52oqHsMGyaP0crLk1Cnjg1btpzmjz8yUFKS\n0b9/WRo2NMLIqDo7d25j3jwPjI1r8PPPXUlLS6N//x6UK1eeWrWsFf10dfXAy2suvr5rUFFRwcPD\n81l6AShbthwLFixmwoTRTJ06g1atbGnZsg4ZGeno6DT4IM+pbFk91q//eIZ216496dr1eRoCiUTC\n+fNncXRsw+jR4z9aP16kSpWq1Kmzm0uX5Hn81NUjaNjw/dxNJ06cyoUL51i2bA3r16/BwsIKT8+F\nXL58kdmz3fD330KXLrU4evQIY8ZMpVGj+vj5rSUuLpalS1cTGXmP334bwNy53owcOZapUydy9uxp\nGjVqwpIlXsybN49JkybTooUja9euZMSIMWhraxMVdQ9f30D2799TKJ8dQFpaKocOHUBFpfipYX5+\nPidOHMXRsfWzRQj59S/nJNTXr/TG8bdr15HBg/tToULFQkb727Jt2xY6dfpF4X78vvUEBL5EBGNO\nQEBA4ItGbggNHz6KoKBNCrn6JUu86NatN61b/4hEIkEqlRIVFcnx40dYvdoPJSUlvL3ncfjwAUWy\ncpFIVGiSaWpqWKry129yL42Li2XChNHY2NTjxo0wKlbUx9NzIYmJj1m0aAHJyU9RV1dn8uRpGBhU\no2fPXwgO/ou0tDTat3dk2bK12NrWZcSIIUydOqNQTrSXdx8KdhAKdiJ8fVdjb/8dnp7exMXFMnr0\nsFf2s2DHwd7+e2bOfC44cvbsDfr31yQlxRaAW7fOsn17Fps3by/SxpAhwxkypGiSdEPDaoVyE2Zk\nZHD9ejT9+snrVqpUmY0btxUai45O6cW1fUzCwu4wdmw4aWkShg07h5eXMg0bWr72mvz8fObPn1Po\ne4mOjsLLy5OcnBwMDAxxcXFDR0eHkSOHYmFhSVjYVbKyMpk+3Z3AQH8iI+/h6OikeB/Hjh1GX387\ntrZ+qKgY0a1bN7p1a/FBxiiTybh+PYw5c7wAsLOzJyUlhczMDJSUlGjbth0//GAPyP99Nmz4A0pK\nStSoYYpMJlO4NJqamhEXF0d09H0iIyPw8PAgNzeXxYsXoKysjEwmw9DQiNTUVJyde1G2bFmFsElB\n26tXLyMhQe6nu3KlD3p65ThzJoTLly9y9+4d1NU1+O+/f5k/fw4go2JFfXbv3qnISRgfH4e5eU3C\nw2/y6FECKiqq+PquZuXKpYwePb7Qok3ZsuUwNq5B06bN3+v5BQdvpU2bdm800kpaT0DgS0Qw5gQE\nBAQ+Ia9yDVu/fg22tvUUO0Zv4uWUobVr1yEw0I/HjxNo1qwlhobVuHTpArduhTN4cD8AcnJyKF/+\n7RKgf2wePnyAu7snkydPw83Nhb//Ps6+fXuYONEFQ8Nq/PvvDRYunI+PzyqMjKoTGXmP2NiYZ5P0\ny1hZ1eLRo0dvldy6QJWyIJapICk4QN269Thy5CB2dvbcu3eXiIg7iEQiateuw6JF84mJeYiBgSFZ\nWVkcO3aVlJTnBtrjxw0JDd2OlVWNd3oW8fGP6ds3hGvXOqKu/pDfftvHtGnt36mtL4F5827x77+9\ngd4ALFgQxI4drzfmHjyIZubMuYW+l82bAxk3bhK2tvVYv34N/v5rFcaF3OAIJDh4K1OmjMfffzM6\nOrr06NGZHj368ORJEsePH8HPb6NiAaRKlcwPPtZXpfx92fhQVn6+6KCk9HwK93z3WIaJiSl//hlc\nZCFm1KjfGDduMhYWhZ9hgVFnYWFFZOQ9AgP/4MKFc5w8eYx9+46Sn5/PlCnjkUqljBr1O87Ov6Kr\nq0tOTjZDhjizfPk6OnfuioPDd/z22wi+/74RU6dOJCsrk4CArURG3mPOnBkcPvz3s53WMJSVRTx8\nGI2TU5sSP6OsrCzc3Kbw+PFj8vOltGjRisTEx4wePQw9vbL4+KzC29uT8PCb5ORk07y5I7/++hvB\nwVuL1Ltw4ZwiNtXAwJCpU2egoaHBqlXLOHMmBCUlJRo0aMiIEWNK3D8BgU+FYMwJCAgIfIYUJCl+\nV5ycfqR27TqEhoYwYcIYJk2aCkDbth347bcRH6KLH4UqVQwwM5O7MlpYWBIXF8uNG2G4uk5W1MnL\nkwBydcmwsMvExsbSt+9A9uzZSd26dlhZ1SrS7suunS8ei8VievXqz5w5MwgIWE+jRk0o2AHt3Lkr\nc+e607dvN6pXN8bSUt62np4e06bNZObMqeTm5gHQqNGPaGndIiPD4lmdy9jbv5shB7B06XmuXesP\niMjOLseGDUkMH55EuXKft0H+rqSmqhU6Tkl5867Ky99LTMxD0tPTFC6FP/7YHlfXKYr6TZo0BaBG\nDVNq1DBVPMuqVQ1ISIjn2rUrpb4AYmNTj8OHDzBgwGAuX76Inl5ZNDW1XmngvQ4jI2OSk59y9epV\nDAxMkUgkPHgQjYnJm7+7gvuFhJwkJORvrly5xMCBckM6KysbkJ8PDg4iJESekuHRowQePoymVi1r\nVFRUCu0UqqqqKnYR4+LiyM7Opn//nVy4UJlKlbwwNbVBQ0OzxGM7fz6UChX08fLyASAjI539+/ew\nbNkahdDL0KEj0NXVRSqVMnbs/7h37y7duvVk27YtinrJyckEBvoVim/944/N/PJLN0JCTrJly5+K\n9gUEvgQEY05AQEDgE1Oca5i3tyeNGzvQvLljiVaLNTW1yMzMUBzHxsZQtaoBXbv2JCEhgYiIu3z3\n3fdMmTKe7t17U7ZsWVJTU8jMzKJy5cofc7hvRWF3SCVSU5+gra2Dv/+WInVtbe3YuTOYpKREBg8e\nRlDQRq5cuVQkNqhKlaoEBGxVHL/obvbiuaCgHYryApc7NTU13N3nFttXOzt71q0LfKn0GH/+eQOx\nOJ/+/bWxtX335PN5eSq8qHCZk6NDTs6r5fs/Fi/HI02cOIaZM+e8Mg/c+vVr0NTUolevvq9tt2HD\nbC5efIJMVg5IpUGDN0+uX/5e0tNf7yasoiJXiyzYpSvgxTjJ0lsAESESiRg0aCienh44O/dCQ0OD\n6dNnKvrwcjjpi8dFFyTkIjKzZs3H29ubp09TkEol9OjRu0TGHIBMBqdOnSQ1NYW+fQfQqVPheMnL\nly9y6dI/rFnjj5qaGqNG/aZI0/DyTuGLu4hy1+UTnDw5EFAhMvInoqOjCA29QuPGJVOvNTU1Z8UK\nH1atWsYPPzhga1u3SJ3jxw+ze/cupFIpSUmJREZGUqOGWaE6r4pv1dLSRlVVDU9PD374wUGh8Ckg\n8LkjGHMCAgLfNC4uE3j0KIHc3By6devFTz/9/NH7UJxrmHwiJyIlJfm1q8UFEzozM3OUlJQYMKA3\n7dp1IDc3l0OH9qOsrEz58hXo338QOjo6DBkynHHjRpCfL0NZWZnx4ycXY8x9fEGSkqKlpUXVqgac\nOHGUFi1aIZPJuHv3DubmNalVqzazZrliYFANVVVVzMzM+euvHYqV/NIiPT0dL6+TpKaq0LJlOTp2\n/E5xbtgwR4a9OtzurejevTqHDx8nLq4lkEWrVleoXLnHh2n8HZFKpUXikd70vEsqeDN9egfKlTvK\nrVv5mJqKGDXqp7fun5aWNrq6uoSFXcXWti4HD+6jXr36JbpWJBJRv36DUlsACQ5+no+tIGXAiwwa\nNPS1xy8mLH/xnLa2NomJiZibW3L7djjnzp3FyelH7Ozs8faeS05ODtbWNkyaNA2AkSOHUrOmBVeu\nXOLx40ckJSWirKzMpUv/YG1tw5w5M58pZapw/34UERF3UVNT4/79KP7990aJx5uVJQKeG9tSaVme\nPr1Z4uurVTPCz28zZ8+eZt26ldSv/12h87GxMWzduhlf341oa2szd677K3MVvhzfWsC6dQFcvHiB\nkyePsWPHtkLxqgICnyuCMScgIPBN4+LiVij+o3nzlgqXnY9Fca6EBWhr67x2tbhgQqesrFxk4tG3\n74Ai93J0dCoiSw4QHLz7hd9/FTn/qSjOHdLNbRbe3vMICPBDIpHQqlVrzM1roqKiQqVKlaldW64G\naWtbj2PHjmBqalZc0x8EmUzGoEH7nu04KLF793Vksgv89NO7q0kW5PmzsLBkyhQ3JkwYQ2pqMv36\nDWLjRmP27QtGT0/EkCFdS10JtLjFDicnBzp16sLFixdo3rxlkXikF3MWHjiwl61bNyMSiTAzM2f6\ndPdC7cfEPCwiZmNkZAzI3/WIEW+XuqO472Xq1Jl4e3uSnZ2tiI8q7rriHqWxsUkJF0A+L6Kiopg8\n2ZXateswbNgIpkyZw++/D2HgwCEAzJrlxpkzITRu7IBIJEIikeDvvwV39+mcPXuG2rWtsbP7Dg+P\n6cTExDBx4ljmzvUiLi6WihX16du3G9WqVcfauo7insXtFL54rls3G3bs2ElExM9APg0abKdVq5Ib\n6ImJiejo6NC6dVu0tLTZu/cvNDW1yMjIQFe3DBkZGaira6ClpcWTJ0mcOxeqMNw1NTUV9WrVsi4S\n35qY+JgKFSqSnZ1Fo0aNqVPHlh49Or37CxAQ+IiIZO/ilF0KlKZimsCnpWJFHeH9fsV86e93/fo1\niviP+Pg4Fi5cpjAGPgYvC6AEBW0iKyuT+Pg4fvihCc2bO5KXl6dYLY6PjyuV1eLQ0KtERCTQunV9\nKlWqAHz57/Zj8OjRIxo0eExmHMSaCAAAIABJREFUZkNFWc+e21m6tOTCDi/Tp09XRTLpGzeu4+u7\niiVLVn6I7haiJO83NTX1JbGLtbT/P3vnGRDV0YXhZ5dd6tJEsGChWFBRhGCvUTEaNdEoAWzYWxJ7\nrLFHsKAGjYoSaSrYjd1YY8GosYFG8TN2moKKtKXsst+PlZUqFlCT3OfX3r0zc2fuXS5zZs55T5cO\nzJ3rzaefdgDA1fUL1q1br1kEyT1OTExk+vTvWbMmECMjY1JSUjA0NCQgYC36+vq4u/dlzJiRfP/9\nNI2Yzdq1K4XdkHckLi6WMWNG0LOnG8ePqzh40BYTk18xNi6HtXUkKpWS5ORkevVyo08fT777bjhD\nhozQuCN7ec3RvHsADh06yI0bf/Hdd+Pw8PgKf/8QjIzeTjH17t0YQkMj0dZWMWJEKwwNDV+77vnz\nZ1m50hexWO3COXHiVK5di2D79i2Ym1vg67saL685XL0agYVFRQwNZbRo0ZrOnbuyffvmfOUuXbrA\n6tXLNfGtw4aNws6uDlOmTHjhNqrCw6OfRun3Y0N4N/97MTd//b+JXISdOQEBgf8sRcV/ZGdnlfl1\n3yS5sVwuL/PVYm/v/axe7UhGRjNsbffyyy/W1Kv39kIdH4qnT5+xadNZ9PUl9OnTNl/C4rJCJpNh\nbHyNdI3AYQ6Ghq//G9q0aYNGLbNr1+48eHBPk+evY8fO7NnzK0lJzxg4sDc//rjojVQ5S4P8YheP\nefjwIWKxWDPRLw6VSsWlS3/Srp2LxsgrOHGXy+VcvRpZpJjNx8DduzEsWuTHw4eXMDWV0a1bdxQK\nBdraUnr1cmf58iXcvv03vr6ruXjxT/bt283MmfNwcWmFq6sHZ86cRkdHhwULlmBqWu61r6tQKJBI\nJMUevw4ikYjQ0A1cvLgELa0cVCoxmZnHsbQcwPz57holx1x0dfUK1c+lbdt2BAau5ZNPnLGzq1Oi\nIRcefoVbtx7RsaMjlStb5DtnbW3J9OmWbzSWXBo3bkrjxk3zfVe7th09e750NS5q1xWgZ0+3fOWK\njm9Vu1kKCPzTEIw5AQGB/yzp6WkYGhq+VfxHaVKcq5xIJCI9PS3favE334wt1WtnZGSwcaOMjIxa\nANy+3Z01azazfPk/y5h7/PgJbm6n+euvPkAGR46EEBzsVmIuu3dFX1+fCROk+PjsJSmpIp98coXJ\nkzu/Vt2oqBscOLAXf/9gcnJUDBvmycyZ8zh37g+N8l7duvb58geWBampqRw+fJAePXpx6dIFNm3a\nyKJFy4oRu8hEW1vntdw7RSLRKxUZVaocDA2LFrP50ERF3cPT8xQ5Obd58GAXn322kT17djJ58gw2\nb95Ir17uREXdQKFQoFAoiIi4TMOGaiGPjIwM7O0bMGzYKCZOHIOnpwflyplha1sDLS2tfLteLi6t\nOHxYncvtl1/8MDIy4v79e0yaNB1//9UYGRnx4MF9NmzYyurVK7hy5SJZWdl89ZUrX375FZcuXSAg\nYC0mJqbcvXub2rXrMHToSGJiYtDS0qJSpRloaaXz9Olg9PQuo6WlR3p6OsePH6Fdu5curHmfU65L\nYi7a2to0adIMH58FTJ0685X3bdGiA/z8syMZGc1ZtWo/a9c+p2HDmm/9HIpa+IqKusHBg/sYO3bi\nW7dbsP3PPx/N0aNp6OtnMmlSYywtS058LiDwsSD+0B0QEBAQ+FA0adIcpVJJ376u+Pn9nC/+o6zJ\nVbCcNGksZmblyczMJCYmmgsXzhMefoqYmGisrW0wMyuPlZU19vb10dHR5c6d26XaD6VSiVIpKfBd\n2RpAZUFQ0LkXhpwI0OPQoS84derie7l2//6tOHPmE86dM2T7dtfXdkGLjLxC69afoqOji56eHm3a\ntOPKlcv5yryPSIiUlGR27txa6Pu8ix337t0tdrGj4OQf1Iack1Mjjh8/QnLyc0DtspmLSqVWYK1c\nuTLHjx958Z1azOZjIDT0Bs+eGZCa2hGVypTDh9tRr15Drl+/xs2bN0hPT0NbWxt7+/pERd0gMvKK\nxk1RKpXSvHlL7ty5za1bN2nUqAlBQaGMGVOU8fHSKL516yZjx35PWNgOVCqV5jg0dDt79vyKTCbD\n3z8Ef/9g9uz5VRNb+/ff/2Ps2Ils2LCV2NgYbt68gY2NDVKpNjLZc+TyBjx/7o5EUo+//vqFCRO+\no27d/K7keY3z9u07Ehq6nkGD+hIbGwNAhw6dEIvFhXbG8pKVlcXGjTpkZNQEtLh3rxv+/qX7vgKw\ns6tTKoZcLsnJcqZMqc6uXT0JC/Ng8ODTZGdnl1r7AgJljbAzJyAg8J9DpVLx+PFjxGIxPj7LP0gf\nilKwzJsMOzh4B0OGTMLWdgAGBsloaalYsyaw1AUvDAwM6No1nvXrE8nJKU+lSsfp0+f9uvKVBoVv\niwKp9P0ZpTKZDJmsaCn+4ijqWZaxnkmR+PmtICYmmoEDeyORSNDV1eOHHyZz587fpKena8QubGxs\n8PX1ITMzg/Hjv2P69FmYmZWnatVqeHj0RCqV0Ly5WqBHLs8gLGw9CoWS7t07Y2ZWHkfHTzRucLnj\nnDnzx0JiNrliQB8SsVj54pPamJZIMpBIxIjFIipVsmT//j3Ur++ArW0NLl36k5iYaKpXtwJeSvRf\nuqRWg8zdHS7JyK9Tpx4VK1Yq8vjPP89y+/bf/P77UQDS0tKIjn6IRCKhTp16mgT3NWrU4vHjx0gk\nEkxNTfH3D2b//ks8f76Hr76aRoUKhXPkrVixJt9x/foObNiwJd93kZFX6NLli1e+f1QqVaGFoZyc\n0vtBx8REM2PGZDp06MSVK5dYtGgZ69at4dGjeOLiYnn0KJ6vv/agVy93AIKCfuHQoQOYmJhiYVGB\n2rXr4OHRl6ioG3h7z0UkEtG4cRPS0pSkp9dBJMrEwmI2T55cZMCAMCZMmIKTkzP79+/h1KnfycjI\nIDr6Ie7ufcjMzOLIkYNIpdosXuz71jGEAgKlgbAzJyAg8J9CpVIxZsw2mjRJoGnTGKZO/fW97H4U\n5FXJsN3cerJ69QaePROzfbsbZ86k4+TUBJFIRFxcLP37F5ajX7duDRcunH+rvixa1ANf37NMm7aV\n0NByNG9er1CZb78dRlSUWkb82LEj9O3rypgxI9/qemXBkCHNadgwCFAASXTrdoBmzRxLqPVhcXBo\nyMmTv5OZmYFcLufkyeOFcuLlZf/+PSxbtqjU+zFy5GgsLasQGBjKqFFjXuwITWTjxm1UrFiJSZOm\nM2/eAiQSKb6+qzl58jxdunRj7Vq1KMu1a1c5cuQUhw+fYtKkaWzduptff92Gs3Njtm7dxa5dvyGR\nSBg/Xh0bN2jQMNzd+5KU9Iw7d+KYNm0WQUGhbNiwhQEDhpTauLZsCSUzM+Ot6o4a1YwqVeKRyQ4j\nld7k668vEhl5GQcHJxwcGhIWtoGGDZ1wcHDk11+3U6tW7UJtqA2f/O8WLS0tcnLU3+Xk5KBQvNwB\nKhi3VvB4/PhJBAaGEhgYypYtu2jUqAkqlSpffjwtLTE5OUrNsVgspnfv9owc2blIQ+5VbNoUztCh\nh+natS/79+/B1dX9leV1dHT44ounaGk9AqBixd/p3fvt4uMK8uDBPWbMmMz06XOoU6duvnMPHz5g\n2bKV+PsHExjoj1Kp5MaNvzhx4hjBwZvw8VlOVNQNzQKCt/ccxo+fTFCQ2r1XIlEBmZiYbATEZGSM\nY9q0WcyfP1sTV3j37h28vHzw9w9h7dpVGBgYEBCwEXv7+hw8uK9Uxigg8LYIO3MCAgL/KTZv/p3N\nm7u/SEQMwcE2tG17js8+a1qsDPu7iBkUx6uSYfv4HOT4cVfN+ZQUS27dintle4MHD3/rvohEItzc\n2pRYJndVfu/eXUye/AP16zu89TVLG1NTE3bs6MT27buQybTp0cMNsfjjXq+sVcuOzz/vytChngB0\n69ajUILjvJL5ZZWGIO9ihkqlKrTTEx8fh0wm4+7d24wdOwpQGyJmZuoytrY1mT17Oq1bt6VVq7aA\nWnkwPPwkYWHrAcjOzubx43hN2oHw8OuMHfuY+/c/oXLlSLy99ejc+fWSR78OReW/exMsLMzYvbs/\nXl4J3Lw5goQEPbp160HNmrV4/jyJ9esDNa7POjo6GiP8++/HaNpwcmrE+vWBNGyolsdPTn5OxYqV\n2Lo1DCMjI9LT01EoXk/wpXHjZuzYsQ0QsXXrJr79diwWFkXHdRkbm7Bnzx4+/7yLRo7/Tdm58yxT\npliTnl4b6IGzcxD6+gYl1ps//0ucnU/z8GEaHTrUKhUhpWfPnjF16kS8vHyoXt2KS5cuaM6JRCKa\nN2+JRCLB2NgEU9NyPH36hKtXI2jVSi2CJJVKNSldUlJSSE1N1SQc/+yzLvzxRzjduq3n6tXf0NJq\nxJgxWtSrV5+KFSvx8OEDRCIRjo7O6Onpoaenh0xmSIsWrQGwsanB7dsfh2uwwH+XMjPmTp48iZeX\nFzk5OfTq1Ythw4aVXElAQECgjElIyNAYcgAKRUXi4s4CReecyytmsGrVcnbv3omn5+BS71feZNhV\nq+qhpfUYLa2nZGXZIZEkU7lydU3Z3Hi7a9ciMDe3wNt7CT4+3rRo0Yq2bdvTq1c3XFw6cfZsOGKx\nFpMmTcfPbwWxsTF4ePSje/eeJCYmMmvWVNLT01AqlUyYMBUHh4acP39Wo3RnY2PFhAnT0dNT7xCo\nVCoCA/25ejUCb++5tGzZmlGjxhQ3pPeOTCbD07NjmbQtl8uZOXMKCQkJ5OQo8fQcgqVlFX7+eRly\nuRxjYxOmT59FamoqP/44S6OKFxcXy5Qp4wkO3kRU1I1C5d3c+nDq1Alq1arNb7/tR6lUMHbs94wb\n9w2ZmZmYmZUvMrlxURTlViaTydi9ewfZ2QqqVKnCjBlz0dHRZf782ZiYGBIZeY3ExATEYjE//jiL\ny5cvanaOABITH7Nu3RqkUilaWhJWrVqHnp4eq1evIDz8FJ6eHjRq1ITmzVsSHn6KkJAA/PwCiY5+\noDEIPT2H4Oe3AhMTUwCioq4zY8ZM7t//DTOzFeTkPGDBgssEB4vo06c/3bp159KlC6xbtwYDAwOi\nox/i5OTMhAlTEIlEHD58kA0bglCpVDRr1pKRI78DKDH/3ZuiTjxdWB3R2bkxx4//oTnOjXFTqVT5\nEqZbW9swfPi3hIWtZ8CA3tSqVZuRI7/jzJnT/PzzTzRp0gw9PX1N+YJ52fIed+vWnbi4WBYv9iIp\n6RlLlizAy2txsfnxAL74ogcTJnynkeN/E06ffv7CkAMQERHhRGxsDNWqVX9lPZFIxFdftXplmTdF\nJpNRoUIlIiIua1xZ8yKR5F0YE6NUKoGC4jsqTf/yolKpEIlErFvnxpQp5+jV6xOcnQvniMy/+CbW\nHL+8noDAh6NMli2VSiXz5s3jl19+Yd++fezbt4/bt0s/CFZAQEDgTenatQFWVns1x7Vq/crnn6tX\nzrduDWPAgN4MHz5II8OeK2YAULt2HeLjX71D9roUlwx7797dHDjgR/36PahYcTVVquykbt1kbG1f\nxrE9fPiAnj2/Zv36Lchkhpw4cSzfzplIJKJChYoEBobSsKEjXl6z8fLyYc2aIAIC1gJw+PBBmjRp\nRmBgKEFBYdSsWYukpCRCQgLw9V1FQMAG6tWrx+bNG/P1ceDAodjZ1WHWrPkflSFX1pw7d4by5S0I\nCgolJGQzTZs2w9d3MfPnL2LduvUat8Pq1a1QKLI14hRHjx6iffuOKBQKfvqpcHlAk7T5l19CcHfv\ny7Vr6Zw7N5JjxxYSFVWOdevUz+xV7sDFuZW1afMp/v4hBAWFUr26NXv37tJcMyUlhTVrAhk2bBTx\n8XH07t2fadNmkZ6exq1b/yMpKYmoqBv06eNJUFAYAMuXLyU5+TknT/7OvHkLCAoKpXPnrjg5OTNy\n5HekpqZy+vQJKlWyxNm5seZeFRSUyMl5Of3Q1r6FltYI1qwJIDDQn8TExBdjus64cZPYsGErMTHR\nnDhxjMTEBPz8fmb5cj8CA0OJirrOqVO/A2oVyXr17AkKCmXAgCGUL2/OihVrSi1v3aZNG+jf343+\n/d3YsiWM+Pg4PDy+4scfZ9G/vxvz5m2mbdsOjBmzieTkZIKCfmH9+kBkMkOsrKyxtrbF1LQc1apV\nZ8CAwYwc+R1GRkasW7eGn3/+ifj4OB48uAeoXRafP3/OoEF9GDlyEA8fPmD48G+YMmUGDRt+gq/v\nagwMZDg6fsLChS+VTseNm0Tnzl0BtRx/aOj2txq/mZkCeJm6wNz8AeXKvbtHwtsglUrx8lrMwYP7\nOHz4YL5zRf9NiGjQwIHw8FNkZWWRnp7OmTOngdzYVkMiI68AcOjQAU0tR8dPOHLkNwAePLjPo0fx\nVK9uVYIi60eRqlngP06Z7MxFRkZSrVo1qlRRTz66dOnC0aNHsbW1LYvLCQgICLw21taWBARkEBy8\nBbFYxdCh9bGwMCtWhj1XzABALBaVyipspUqVCQ7epDn28Oir+bxkiVqQJS0tjYiIG9jYWFKxYocC\n9QvH2xWkZUu126SNTQ3kcrnGRUgqlZKWlkrduvXw9p6LQqGgVau21KxZi8uXL3Lv3h1GjBgEqKXj\n69QpOoH6f20SY2tbk5UrfVm9egXNm7fC0FDGnTtFux22a+fC0aOH6Nt3AMeOHWHevAU8eHCvWDdF\nUCsIgnoHcM2aRKTS/VhaJvDsWTYnTmgxsQTxvqLcylQquH37b/z9V5OWlkp6upwmTZpp6nz66acA\n2Ns3QE9Pj9mzp6Gjo4O+vj7x8bE8fvyI5ORkgoPXsXPnVmQyGeHhJ7l+/RqPHsWxePF8XF092LIl\njPT0NFQqFa6u7tSrV5/U1BQiIq7w9ddfoqOjQ0pKcr7+lisHOjr3UalEyOVN6NEjC2NjE5ycnLlx\n4xoymSF169ajUqXKAHTo8BmRkVeQSCQ4On6CsbEJAC4unbhy5TKtWrV9rfx3b0tRaSQcHZ1eiHLM\nZe/eh/j4uGBtHcbmzT2Ji1uNgcFZgoM3kZ2dzaBBfbGzqwNQaOHFxMSUgIAN7Ny5jbCwDUye/ANW\nVtasXOmPlpYWf/55jrVrV/LjjyXHS169eotz5/7ms88cqFq18luPd8KEDty6FcL581UwNExh3Dhj\nZLI3T2ZcGohEInR1dVm06CfGjRuFp+eQfK7HRe1M2tnVpWXL1nh6umvSQuQKFE2bNuuFAAo0atRU\n8yx69HDFx8cbT093tLS0mD59NhKJJN/zenHVfH0rK/dnAYHXpUyMuUePHlGp0ktFpgoVKhAZGVkW\nlxIQEBB4Y+ztbVm8OP/i0uvKsL8Pbt68z7Bh17hxowVmZreYPv02ffu21JwvGG+nVGYWaiOvG1De\n5Nm5bkEODo6sXOnPmTOn8fKajZtbHwwNjXB2bqJx6zM3NyQhIaXIPv7XJjBVq1YjIGAjf/xxGn//\nVTg5OWNtbYufX0Chsu3auTBjxhTatGmHSCTC0rIKt2//XWx5eCl2kZ6ejpbWfhITx5GW9il6eucp\nV+7Vub3UFJ3TzctrLgsWLMHWtgYHDuzl8uWX6RpyfxdisZiKFStpcnl5ec1BqVQiFmvRunXbIt08\ns7OzuXDhPL//fhRtbW1Wr16X73xgYCh//HGa3bt38sknjfjtt/0a983MzCwsLU3p2zeKnTv/wsxM\nwrRp37wciaiw01CuO1xhXn7/uvnv3oa8aSQA2rRpR0TEZSpUqETduvbMnx8LmOaOgHv3njJiROGY\nraJo06YdoI6hPHHiGKCO7Zo3bxYxMQ81O7clsW3bWWbMMOLJE1d8fC4xe3Y47u4t3mq8Ojo6BAa6\nIZfL0dHR+WDxp3kXvnJTMwC0bKmOWRs0KH8IT958dB4e/Rg0aBgZGRl8++0watdWG9O1a9tpxE8A\nRo0aDajz6RWVdLxz566a3U6ArVt3FXtOQOBDUCbG3Nu8TM3NP8yKj8D7QXi+/27+Dc+3S5eO7N+/\nC09PN6ytrXF0bIiJiT5isUgzPmNjfXR1pWU+3jFjorhxQ60c9+RJVfz8tjF2rAyRSERmpgESiZam\nDzKZDmKxEl1dKUZGepibGyIWizAzk2FiYohMpoOenramfO659PQUatashp1dP3R0xDx4cJfhw4fj\n67sYufwZ1apVIz09nbS0J1hZWSGVamFqqo+5uWG+z/8VHj9+jKWlGX36fE3lyuaEhYWRmppMTMxt\nGjZsSHZ2Nvfv36dGjRqYm9dBR0fKpk3BfPllN8zNDTE2rkdKyvMiy0ulWpiYqJ9d+fIyjIySiI9X\nKw+amQVgbq6Dubkhhoa6+Z5lXlq3bsasWbMYP3402dnZnDsXjpubGxkZ6dSqVR1DQ12OHz9ExYoV\nMTc3RFdXbciZmxsW+k3p6koxNtbH2dm50O/h8ePHWFhYIJdn8cUXnfj00xZ06NBBU1cdf7me69eN\nqFQJPDw8OHz4N6pXr0Zc3F1q1mzN+fOnkEq1GD78M7Ky/sfRo0cxMdElLS2NyMjL/PDDVO7cuUNU\n1HUyM59TuXJlTp8+jru7Ow0bNmTFiqVIJAqMjIw4efIY/fr1w9zcEJEo/7vI0FCGjk7pvJ8MDXVR\nKjM0benrayOT6WJoaIC5uSGWlgryKlcaGyvR13/5rPT0pMhkupp7n/dvtVIlU0xMDDEzkyEWq/u7\nZMl82rZtRd++fYmJidGM0cREHx0dSZFjCgtL48kTdSLwp08/YdOmnXz33buO/Z/7Nz5hwmxu375N\nZmYmPXr0oHlz53dqb9mygxw7loWRUSbz5jXHxqZ0lDrflv/S+1fg1ZSJMVehQgXi4l7GlcTHx1Oh\nQtGqS7kUt/or8M/nVav7Av98/inP99Sp36latTpWVtaAWmr/22/HaVyfALy8luark5qayi+/rCcu\n7hkSiQQnp+Y4OTUv8/EmJ+dfEEtNlfLo0XO0tLR4+jQNpTJH04fU1Ezk8kwyMrJJTpaTkJBCTo6K\nJ09Syc7WIjVVfS63fE4OPHmSSnj4KcLC1iORSNDXN+CHH+agVEqZMmUmo0ePISsrG4lEzKBBIzAw\nMCM7W8mzZ+kkJKTk+/xf4c8/I1i50hexWIREImXixKmIxWK8vReSmpqKUqnAza03xsbq/3WtW7dn\n9erl9Os3VHOfZs/2LrJ8draSpCS5pty0aWNZsGAYIEWlSuX5cz06dHDByMgYU9Ny9OrlyrNnScya\nNQ8AX98lZGVlkpSURMeOn2FhUQEdHT127PgVY2NTWrZsiYmJKZ9+2p70dPVzy8jIRiQSkZCQUug3\nlftbKvh7ABg2bBR2diqmTJnwQrZdxbffjtPUnT9/L/7+lpibr+DmTTEXLybh57eYjIwM5s6dq4nz\nUijU10tPz6J6dRs8PPqQlJRE//6DAF2SktKxs6vLjBmzXgigNKJhQ3XC6qFDR9GnT19UKhXNm7ei\nfv1GL64vyveb7NLlSwYOHPRWAiAFsbWtw/z5c/jqKw9yclQcPPgbM2bMRaFQkpCQwpQpzbh/P4iH\nD9Oxt9/G0KHNOHgwlK++6o1CoeDo0WN8+eVXmntf1N9qUlI62dnq9p48SUJXV/1uXb8+jJwcFQkJ\nKSQlpZOZqSjyby8rK78LeGZmzn/qb7QgU6bMznf8Lvdi/fqTTJ1an6ysagBERQWzb9+XmhyC75t/\nyv9dgTfnbYx0kaoMAh8UCgWdOnUiKCgICwsLXF1dWbp06Stj5oQf5b8X4aXz7+af8nznz5+tUXsE\n+O674Xzzzdh8xlxetm49h5eXnISEqjRocJmAgDZUrKiOcVIoFEgkZZfZZcuWM0yZUoXU1HpAMh4e\n2/H17VVm1yuOf8qz/bcSFxeLu3sPAgNDsba2YciQ/tSoUZOpU2dy+vQJ9u3b80KdUgctLS1Onz7J\nwYN7+eGHufTr9zUKRTYbN25DIpHSu3dPVq9eh7m5hab9sni+ffoc4vDhnppjS8tfuXSpXbEeOwEB\na9HT088XNwpw6dIFNm3ayKJFy4qs9yHYvHkj+/btBtRpJFq1asPkyePyxb+6un7BunXrMTIyJiBg\nLYcPH6RcOTNMTU1p2rQ5Xbt2x8trDi1atKJNm3b5ykdF3WDVKl+WL/fj2rWrzJ8/Cz09PZo1a8mh\nQwfZunUXly5dYPPmjflET3IJCTnJ3LnVSU62x9DwBtOm/c3gwW3f1+35VzNmzG+Ehb18B+vqXuDs\nWRmVK3+Y3Tnh3fzv5W2MuTKZjUgkEmbMmMHgwYM1qQkE8RMBAYG35U3yv8XFxeLtPZfnz59jYmLK\ntGkzefz4EeHhp7hy5TIhIQHMm7cQgOPHj7BkyQJSU1OYMmUmDg4NUSqVrF69grCw40gkMvT0+nDh\nwgCmTfNCVzcSIyMj7t+/R1jYjjIZq1wu588/N+PoeJ/U1GwcHdvh5TWuTK71JmzfHs7//pdCkyYV\nadeu4Yfuzr+e48cj8fW9ikplwq5dfzNunC3W1jYa2XRra1vi42NJTU1h3ryZxMQ8fPE3ksXgwWqx\nDZnMSJMbzMrKmri42HzG3Juye/cFli17TGqqDi1aPGPJkh6FdiYqVEgHcsgVy65UKbXE0IuiTr9K\ncv9V7N9/gXPnEqleXZuBAz8t1Rg6N7c+uLn1yfddXkMOYOvW3ZrPxcVs5Y3Lylvezq4Oy5f7AWBv\nXz/fO2bo0JEAODk54+RUtLtg//6tqVHjKhcvbqNtW1vq12/7FqN8e1JTUzl8+CA9evQiMTGRn35a\nzI8/LnyvfSgrKlVSABmAOmayYsUHlCtXuikYBATeljJbWm7Tpg1t2rw6Ca2AgIDA6/Am+d+WLVvM\n5593o1OnLuzbt5uffvLB29uHli1ba1bDc8nJycHfP5g//ggnMHAtP/20ir17d6Gnp0dS0iQSE9tR\ntaoHaWktyMjQ5uHDm6xfv4WKFSu9orfvRq4Efm6+qrS01NcSH1i3bg0ODo5F5kh6V7y99/Hzz63I\nzrZEJrvOnDkn6devdakXG+jbAAAgAElEQVRfJy9xcbFMnjwun6ABlO04PxaePXvKxInPiIvriqXl\nPpYsaUKVKuH5xGxyhWx++cUPZ+dGeHv7EB8fx3ffDWfjxm3s37+HmzdvaNoUi7XIycl56z4lJz9n\n1qw0YmLcALh/PxUbm4OMHv1ZvnJz5rTnyZNgbtwwxcIijXnz6r6y3YICFrk4On6Co+Mnb9THkJCT\nzJpVg7S0TxGJnvD337vw8ur+Rm2UJosWzefevTtkZWXRuXNXatasXXKlPMTHJzJ16iliYw2xtU1m\n0aKOGkXG4mjevD7Nm9f/IDs3KSnJ7Ny5lR49elG+fPl/jSEHMH68C/fuhXL+fDmMjTOYNKkSurpv\nnoxeQKAsKDs/IQEBAYFSYuvWME6dOgFQbP63CxfOAXD9+lW8vX0A+Oyzz1m9ermmnYJe5W3afPqi\nvp0mf9yff57l9u2/qVhxF3p6qxGL05DJztCwoQ7R0fXK1JCDwhL4Dg4vd8Fy+1/UbsPgwcPLrE8H\nDmiTna12J0pNrcvu3dfp16/MLvdKynKcHwvXr9/l4UMnJBK18ZWVVZWrV89ScO6oUqlIS0vVJOfO\ndQEsjneJqoiPf0xsbI0838iIiSlcztDQkODg9+8SDHDwYAZpaWqDSaUy49ixDysQMWvWj+9Uf+LE\nkxw61B8QcflyDlLpRnx9P5xxWhJ+fiuIiYlm4MDeVKlSjfv37xISspn9+/dw6tTvZGRkEB39EHf3\nPmRmZnHkyEGkUm0WL/bFyMiImJholi5dRFLSM3R1dZk8eTrVqllx7NgRgoL8EYu1kMlk/Pzz2vc+\nNm1tbfz8XF+hqiog8OEQjDkBAYGPmrfJ/1bcpLXgP2GpVPtFfa189cePn0SDBo4sXXqUxEQJLVoY\nYmVlzqZNpZNixc/vZywsKvDVV66AerdJX98AlSqH48ePoKury8OHD/D3X0Xt2nacOXOaevXqc/Pm\nDRYvXs66dX7cvHkDkUhEly5f8vXXHvliAi9cOM+qVb4olUrs7OoyceJUpFIpvXp1o3PnroSHn0Kp\nVDBv3gKqVbMqsb9SqbLA8dvv8LwJOTk5LFw4n2vXIjA3t8Dbewk+Pt6acfbq1Q0Xl06cPRuOWKzF\npEnT8fNbQWxsDB4e/ejevWfJF/kIqVPHiipVrhAf3wAAqTSGunUNuHMn/29YLBbj4dGf+fNnERy8\njmbNWpKbA6uo/FfvMgmtVq0q9eod4do1OwB0dO7i7Pxxqenp6ORPTK6rm1VMyX8G9+8b8zKnmZi7\ndw0+ZHdKZOTI0dy9e4fAwFDi4+OYNGms5lzu95mZmbi5fcmoUWMICNjIihVLOXhwH19/7cGiRfP5\n/vtpVKlSlb/+usaSJQvx9V1NcPAvLF26kvLly5OWlvoBR/jfS8ki8M/gwyQOERAQEHhN3jT/m719\nA44ePQTAoUMHcHBwBEBfX5+0tLQSr9e4cTN27NiGlpYWU6d+zpgxtfn8c8d3H0ge2rd34dixw5rj\n48ePYmJiQnT0Q7y9l7J2bTAKhYKmTZtz585tYmKi+eorV9av30JS0jMSExMICdlMcPAmunTpBryc\nvGdmZuLlNYe5cxcQHLwJpVLJzp3bNGVyExR3796LsLANr9XfoUONKFfuNJBK1aoHGDGiaqnej+J4\n+PABPXt+zfr1W5DJDDlx4lihhMsVKlQkMDCUhg0d8fKajZeXD2vWBBEQ8P5X70uLcuXMWLjQkEaN\nwjEzG8SYMadxd2/FtGmzNG7Cufm3cmOrAgI2MnToSE0OrM6duzJ27PeaNhctWkbDhk5v3SddXV1W\nrbLniy/C6NBhOzNnRuLq2vzdBlrKjB5dC1vbnUAs5csfZdQokw/dpXeiWrXneY5yqF79wxoyJZF3\nEa3ggpqjozN6enqYmJggkxnSooXaTdvGpgbx8bHI5XKuXo1kxozJDBzYGx8fL548eQJA/foOzJ8/\niz17fs236CYgIKBG2JkTEBD4qGnSpDm//rqdvn1dqVq1Ovb29YH8K6R5P48dOwlv7zmEhq7H1NRU\nIzbQvn1HFi6cz7Ztm5k3b0ERV1K30a1bd+LiYhk8WC19bmpaDi+vxW8tyFAUNWvWfmGUJfLs2VMM\nDQ25c+c2f/55josX/yQhIQGVKoe7d28zduz3REdHU7euPQCWllWIjY3hp58W06xZSxo3bqppV6VS\n8eDBfSpXtqRKFbXB1blzV3bs2MLXX3sARScoLgl39+Y0afKAq1dP0qSJHRUqmJfOjSiBSpUsqVGj\nJqB2hY2Liy1UpmVLdWy2jU0N5HI5enp66OnpIZVKSUtLxcDg1TFGHysuLg1xcXk7oZkdO8K5eTMF\nZ2cLXFze3oAriJ2dFb/8YlVq7ZU2jo41OXSoApGR/6NGjeolpkT62PHxacXUqeuJjTXExuY53t4d\nNede5XL9MaKtLdV8FovFmuPc2E+VKgdDQ0MCA0ML1Z04cSrXr1/jjz/CGTy4n0b9U0BAQI1gzAkI\nCHzUSKVSfHyWF/r+0KETms9t27bXpByoWLFikTml6td3YMOGLZrjFSvWaD6bmJhodjREIhHDh3/D\n8OHf5Kv/NoIMr+LTTzvw++9HePLkCe3buxAfH0/fvgP48suv8pWLi4tFT+9lsJQ6JmkT586d4ddf\nt3Ps2GGmTp2pOV9wclcwxiN3EqWlJX6jVW5r62pYW1d7ozG+K/kngFpkZ8uLLZNXHCT3+L+4ir9o\n0QGWL29OVlYVDAyimDXrBAMG/HfEyAwNjWjRovT+TovKR1malORyrVJl4+bWlsGDhxMXF8vQof01\nLtft2rmQkpLM6NETANi9eyf379/lu+/Gl0lfS0JfX5/09PQ3qpNrlOrrG1C5cmWOHz/Cp592QKVS\ncfv239SoUZOYGPViVt269pw9G87jx48FY05AIA+CMScgICBQDCqVipMnL/D4cQqdOzcuUUnuTWjX\nzoWFC3/k+fMkVq70JzR0FwEBIdSq1YA6dWqQkPAYiURaqN7z50lIJBLatGlH1arV+PHHlzLnIpGI\natWqExcXS0xMNJaWVfjtt/1FutclJiZw48ZfpTaeVxEXF8uECd9hb9+Aq1cjsLOrS+fOXQkMXKtJ\nfm1pWQVv77nExsaiq6vLwIFDAfXkNjY2moiIK+jrG2BjY0toaAgbNgSRmJjA9evXaNq0xTuJe3xM\nBAX9wqFDBzAxMcXCogK1a9dBJpOxe/cOsrMVVKlS5UVuOV3mz5+Njo4ut27d5Nmzp0yZMoM9e3ZQ\nqVIQGRkOPHrkze7df1G37lkCAtaSlZWFpWUVpk1T5y8TKJl32fl6nXyU7du74Ou7RGPMHT9+lD59\n+nP1agT+/iHk5OQwZcoEIiIuY2FRgZiYaGbMmEvduvbI5XIGDPDgm2/GoqWlxYEDe/j+++lv3d93\nxdjYhPr1Hejf343q1a3zuUPnv4/5vSpyz82c+SM+PgsIDg5AoVDQoUNHatSoyapVvkRHP0SlUuHs\n3FizWy8gIKBGMOYEBAQEimHSpJ1s3NgWhcICB4ethIa2xtzcrFTatra2QS5Px8KiAkuXniYgwBWZ\nzITBg8dhaSmhfHlTZsyYV2gilJCQgJfXHFQqtQjJiBHf5WtXW1ubadNmMWPGZJRKJXXq1KN791x1\nwaInVO+DmJhofvxxEVOnzmTIkP4cPXqI1asDOH36BCEhgVSooDZcvL2XcOnSBZYuXajJYXb//n26\nd+9JVlYWBw7spWvXL/H0HMxXX3XB13cJTZu2eOWE8Z/CjRt/ceLEMYKDN5Gdnc2gQep8cW3afEq3\nbmoVQ3//1ezdu4uePd0QiUSkpqawZk0gp0+fYMqUCejoDOLmzW+oVq0n2tpRiMXJhIRsw9d3FTo6\numzYEMTmzRsZMGDIBx7tu/M6iwRWVjYsW7aIu3fvoFQqGDRoGC1btnlthUWA337bz8KF81AqlUyd\nOpM6deohl8uLbffEiWNkZGSQk5PD7NnzmTlzKunpaSiVSiZMmJpPofZVLtcDB/YGQC5X99HCogIV\nKlTSuFzr6enh5NSI8PBTVK9uhUKhwMbmw+b0LUrBs3PnrnTu3FVznOsFUfBcpUqVWbKksBfG/PmL\ny6CnAgL/HgRjTkBAQKAI7t69y6ZNDVAoqgMQEdGPVas2M2tWl1K7RnDwJtLT03F2voRCUZmkJE+S\nkjxxctrCzz93zlculxo1ahIQUFi4JG8i4k8+aURAwMZCZfJOomxta1CxYqVCapEPHtxj8WJvMjMz\nsbGxYvz4aSgU2UycOIZ169Zz69b/GDSoD9u378XCogJff/0l69dvQUdH55VjrVTJUjPRzJv82sam\nBnFxsTx6FKeZtDk5OZOens6GDVvYtGkjLVu2pm/fAQDs2LGV338/yu+/H8XY2Jjnz5+TkZHxygnj\nP4WrVyNo1aotUqkUqVRKixatUKng9u2/8fdfTVpaKunpcpo0aaap06KFOnGxtbUt5cqZ0bNnbWbO\nPEVmphUVK+6hQwd99u69w4gRgwDIzlZQv36DDzK+sqCkRQIrK2ucnRszbdosUlJSGDbME2fnJsDr\nKSyqVCoyMzMIDAwlIuIy3t5zCQnZTEhIQLHt3rr1P4KDN2FoaEhY2AaaNGlG//6DUKlUyOWFXYXf\n1uUaoFu3LwkJCaB6dWu6dPmijO7yh+P8+WtERkbTunUdatWq/qG7IyDwUSIYcwICAgJFkJmpQKHI\n64omQqksfQFg9Y6SqsB3pe8yGBh4gl27MpFKlQwdWpH69Svw8OEDZs/2YvLk6cycOZUTJ46xcWMI\n48dPwsHBkbCwQAID1zJ69ASysjJJT08jMvIydnZ1uXLlMg0aOFCunFmJhhwUFkDIjW8TiUTk5CgR\ni6XFukrq6OSdwKpYuzZYUz8jIwMvr8PExOhQt24O48Z1fK0k6x8noiLvgZfXXBYsWIKtbQ0OHNjL\n5csXNefyJhHX1pbi6tqURo2iWbAggU6dHDA3Nyc+vgmzZ89/b6N4nxS3SGBtbUt8fCwJCY8JDz9J\nWNh6ALKzs3n0KB6RSKRRWNTT0yuksHj79i1A/fvs0EGdGN3BwZG0tDRSU1M5f/5sse06OzfG0FCd\ntqFu3Xp4e89FoVDQqlVbatasVWgMBV2ub9++hb+/Hx07dkZPT69Yl2t1+/Y8fvyY//3vJiEhm9/6\nPrq4tOLw4VNvXb8s8PM7xqJFtqSm9qJChZMsXfoUF5fSVRYWEPg38E/9jycgICBQptSqZUvHjicB\n9Uq6tfVu+vQpfREEPT09evVKQls7GlBRvfp+Bg2qUWK9N+Ho0cvMnVuDM2d6cuLE13z/fTZxcY8L\nqUXGxESTmpqiSefQo0cPrly5DIC9vQORkRFERFyhX7+BRERcIjLyCg0avJ3iYkEcHBw5dOgAoM4t\naGJi+kIIIr9x06hRU7ZufblTOXz4Ovz8XNmzpycLF7rg7b2/2GukpqZq0jRcunSBSZPGlUrfS4sG\nDRwIDz9FVlYW6enpnDmjnlzL5WmUK2eGQqHgt9+KH18uVlZVqFatAqamJtSrV5+rVyOIiYl+0Zac\nhw8flOk43ifFLRLkFcCZP38xgYGhBAaGsm3bHqpXtyqybkGFxeLI9eYtrt288YgODo6sXOmPubkF\nXl6zOXhwX6H28rpclytnRqNGTXFx6cSIEQPx9HRn5swpyOXpL65d2H24XbsONGjQ8B1jel/fLVml\nUr2XGNXQUAWpqfaAiEeP2hAY+KjMrykg8E9E2JkTEBAQKAKxWMy6dV8TFLSf5OQcevSoj7W1ZZlc\na86cbjRrdpb79//gs88aYGVVuVTbv3DhEWlprTXHcXHNuXx5UyG1yNTUlHz18k7YGjZ0JCLiMo8e\nxdOqVRs2bAhCJBLRvHmr1+rDqxJYi0QiBg4cirf3XFq1akS9evX54YfZmnN5q44dO5GlSxfi6emB\nUqnk7l0LIHccJly6VPwuYUpKMjt3bqVHj17FlvmQ2NnVpWXL1nh6ulOunBm2tjWQyWQMGTKCYcMG\nYGJiQr169vkUA4tL0ZGLiYkJ06fPZvbsaWRlqZNqDxs2iqpV368y6YeiceOmbNu2iXHjJgHwv/9F\nUauW3SuNkYL50o4dO4yTkzMREVeQyQwxMJC9drvx8fGYm5vTrVt3srKyuHXrJp06FXbVzutKDeDq\n6o6rq3uJ5QAiIyNwd+/zirvw+qSnpzN16kRSUpJRKhUMHTqSli3bEBcXy/jx32qUNBcvXs7Bg3sL\nifV4ePQlJiaapUsXkZT0DF1dXSZPnk61alZv3JecnILKvP+8OFgBgfeBYMwJCAgIFINEImHIkI4l\nFywFOnVqWnKht6RePVN0dO6RmWkFQPnyF7G3t+LEifzlDAxkGBkZERFxBQeHhuzatUuTjsHBwZE1\na1bi6PgJIpEIIyMj/vgjvJAAS1HkJrjOJW9836lTv7N2bRA6Orp4e/vQsqUzfn4BmvODBg3TfM7M\nzCQpKYkpU2Zqdj+6dduT71qmpoVjknLx81tBTEw0Awf2RiKRoKurxw8/TObu3dvUrl2HmTPnARAV\ndYOff16GXC7H2NiE6dNnYWZWnm+/HUbt2nZERFxBLk/nhx/mEBISyN27d2jf3oWhQ0eWeC9KwsOj\nH4MGDSMjI4Nvvx2GnV0datasnUfE5iV572Nx91ilUlGrlh1r1wb/Y3KSvQklLRIMGDAEX18fPD3d\nycnJoXJlSxYuXPbaCosikQhtbW0GDeqjEUABGDBgCMuXLymx3cuXLxAWth6JRIK+vgE//DCn1Mb+\n559XmDt3KnXq1MHJyblU2tTR0cHbezH6+gYkJSUxYsRATS7HvEqaxYn1ACxaNJ/vv59GlSpV+euv\nayxZsrDIdDEl0asXLF16h4wMG8zMzuPhYVoqYxQQ+LchGHMCAgL/KPbv38PNmzc0K+ICJdO1axNu\n3fqNPXsuIZUqGDLEhGrVqhc5EZ42bTY+Pt5kZGRgY2PFhAlqqfOKFSsBaNIcODg4kpiY+FquXa9K\ncLx16yY+++zzAnFxakJDQzh+/AhZWdnUrt2AQ4cacOuWNVZWQ6hcOR09PW2++KILcvkGnj37AwOD\ny6SnG7Jy5V2++WZMofZGjhytEb24fPkiU6dOYMOGrZiZlWfkyMFERl6hbl17fvppMQsXLsXY2ISj\nRw+xdu0qpk6diUgkQirV5pdfQti6dRNTpkwgMHAjhoZGuLl1x82tj0YB8W1ZtGg+9+7dISsri86d\nu1KzZu23buvy5Vt8//1fREdXwsYmmp9+akStWh92Ry4uLpbJk8dp4rtCQ9eTkSHH0NCIXbt2oKWl\nhZWVNXPmeBWrGJnLqxYJ8p77/vtphfrxugqLefNR5kVHR+e12i14XFqsXn2MxYurkpp6iMePj3Dp\n0v9wciocj/emqFQq/Px+JiLiCmKxiMTEBJ49ewqQT0mzKLEeULvxXr0ayYwZkzVtZmcr3qovY8e6\nUK/eBaKiLtCihQ1OTo3fcXQCAv9OBGNOQEDgH8W/cXfhfTBu3GeMKxAilnci7OHRV/N5zZpAAMzN\nDUlIeOl6uWPHy3iffv0G0q/fwGKvV9Atq06dety5c5vMzAzatm3P4MHD2bp1E4mJCYwePQITE1PN\n6v3atas4cuQ35PJ0QkI2Y2xsQseO7iQnP8DS8hFKZSqpqd3ZunUUfn4raNbsL8LDT9OmzafMmvUj\naWmpRfYp16h0cWnFwoXLqFOnHuXLmwNQo0Yt4uPjkMlk3L17m7FjRwGQk5ODmZm5po2WLXNFMmyx\nsVErSAJUrmzJo0fx72zMFSXt/rbMmxdFZGQ/AJ4+hR9/3EhIyMflXpn797xxYzDbtu1BIpFonl9x\nipG6uoUN/4+NR4+eEBR0DrEYhgxpjqmpSam1rVKpCAxUkJqqXli5e/cL/Pw2s3btuxtzhw4d4Pnz\nJAICNqClpYWr6xdkZmYBFFDSLCjWo3rRtxwMDQ0JDAx9574AuLg44+JSKk0JCPxrEYw5AQGB98pv\nv+1n27bNKBTZ1K1rz4QJU1i6dCFRUTfyTfRBnXdr+fIlyOUZaGtr89NPqwB1wusJE0YTExNN69Zt\nGTVq9Icc0n8CuVzO6NH7uHrVlHLl5MyYUYNmzexeWSevW1ZycjJGRkYolUrGjh3FnTt/4+rqzpYt\noaxYsQYjI2NNPXv7BmRlZbFnz68MGOBBuXJmZGREI5e7kJz8FVWq9CclZRMREc2RSrWJjY2latWq\naGtrc+LEcc0uQfGoDQipVFvzjZbWS9ELa2vbfK6eecmtk7tLp2lRJCInJ6eE675fnj7Nnxj82bOP\nN1G4rW1NZs+eTuvWbWnVqi1AkYqRjx/Hv1X81fvkyZOnuLuH89dfvQEVR44EsX1753cUKHlJTk4O\n2dla+b4rePy2pKWlYWpaDi0tLS5dukB8fFyR5Ro0cGDRIi/69RuIQqHgzJnTfPnlV+jrG1C5cmWO\nHz/Cp592QKVScfv230KibwGBMkQw5gQEBN4b9+7d5dixw/j5BaClpYWPzwIOHTrAsGHf5Jvo3779\nN9WqVWfWrGnMnbsAO7s6pKeno6Ojg0ql4tat/xEUFIpEIqV37564urpjbm5R5DXj4mKZOHE0DRo4\nFptPzdKyClOnztTIiQsUZv78I+za1ReQcucOTJ++kaNHa79ypzSvW9axY4fYvftXlEolT54kcvfu\nXWxsilbtbN68JZcuXaBduw4ATJ78A+3atUEmO4aBwUlycgyRSJ7j57cCqVRKq1Zt6NPHkwsXzvP7\n70fZsWNLkTE6+vr6+cRDVCoVK1f6cu7cGRITE8nJycHFpRPx8XEMHNgHS8sq3LnzN1WqVGXRop8A\niIy8wty5P7yYUCuYNGkcixYte9vbWqY0bJjM9esZgC6QjKNj8fGE7wstLS1ycl7u6GRmZgDg4+PL\n5csXCQ8/RUhIgGbXeP78xf84sZbNm8+9MOREgIjLl/uxY8du+vcvnfhbLS0tunRJZd26xyiVFpQr\nd55evcq9U5u5f8cdO3Zi8uTxeHq6U7t2HapXty5UBooX6wGYOfNHfHwWEBwcgEKhoEOHjoIxJyBQ\nhgjGnICAwHvj4sXz3LwZxZAhatevrKwszMzMCk307927A4CZWXlNUL2+vj6gnlB88klj9PUNALCy\nsiYuLrZYYw4gOvohc+Z4F5tPbd26NZp8agJFEx+vw0vVSIiLM0cul2ueS1HkumXFxsawadNGfvll\nPTKZDC+vOWRlZb7yek2aNGXJkoUaY1BXV4svv3Tj1q1satQwYPToTvzxRzgrV/pqlDibNWtB/foO\nuLl9WWSbxsYm1K/vwJEjv7F69XJyclQoFNkEB29iwYJ5HD16mAEDhjB48HAWL/YmOzsbsVjM/fv3\nuHo1gpycHNavD2Tt2iDi4mKZM+cHPmav38WLu2Fm9isPHkipXTuH8eNLP3brTSlXzoykpKckJz9H\nV1ePM2dO06RJMx49isfJyZkGDRpy9Ogh5HJ5sYqRHzv6+hIgE7URDZCKTFZyLsY3Yd68L7C3P8WD\nB+m0bl2Npk0bvVN7hw6p1ZCMjU2K3ZUuqKRZUKyndm31u7pSpcosWbL8nfojICDw+gjGnICAwHul\nc+euDB/+jeY4NjaG8eO/LTDRz3rlJLmgpH5J7m0l5VPr1KkLM2ZMeYdR/fuxt1exZ89TVCr1DkDt\n2rHo6zd7rbppaWno6uphYGDA06dPOHv2jEYlU19fn7S0tHxulqDOJ9egQUNOnfodT093RCIxOjrR\n9O/vzMqVvvTtuw4DAwMaNnQiOzuLSZPGkZWVhTp2R0Ry8vNCbYI6Ju306ZP4+4ewfPkSatSohUgk\nYurUmSgUM7lx4zoAtrY1CAzcCICPzwLi4mIZO3Yivr5LqFixEjk5Klxd+3LlynmgeKGMD4lUKmXG\njMIy+B+ShITHaGlJGDrUE3NzC6ysrFEqlcydO4O0tFRUKhWuru7IZDIGDBjCmDEj6dfva0Adl3jp\n0oWPLrl1Qfr0acuRI8EcOvQFoKBbtwN07+5WqtcQiUS4u7cuuWAZUlCsJzo6k8mT9yOXS2nfXsHE\niZ0/aP8EBP4rCMacgIDAe+OTTxozZcoEvv66N6ampiQnP+fRo/giJ/rVqlnx5EkiUVHXsbOrS3p6\nGjo6ukXmhyopgW1J+dQESmbMmI5kZh7g4kUp5cpl8MMPLUusk+uWVbNmLWrVqk3v3j2xsKhIgwYO\nmjJffNGDCRO+w9zcAl/f1ZodV1C7W4JapfD58ySWLl3IypXhKJVKnJwaMXHiFAIC1qKvr4+/f7Cm\nnqvrF6+V1FgkKijioI5Hio5+SEpKsua7l/F06vH4+PzG6tWVUalkVK8er4kHFHg9jI2NNWqWxZGa\nmkpiYgKJiQmsW7ceY2O1gIiLy4c1YF4HqVRKcLAbp05dRCrVolkzN8Ri8YfuVqmTV6wnKekZ7dtH\n8PCh2miNjIyhSpXTuLuX/J4QEBB4NwRjTkBA4L1hZWXN0KEjGT/+G3JyVEilUsaNm1TkRF8ikTB3\nrjfLli0mMzMTXV1dli1bWUR+qDdXuCyYT+3gwX2anSKBohGJREye/Plrl3+VbHxeevZ0o2fPl7sW\nue5eAG3btqdt2/aA2v1rzhzvQvWtrBrg77+cvXt3IxaL8PQcAsC2bZsJDz+FUqlg3rwFVKtmRXLy\nc7y955KRIWf48IG0a+fC0aOHiYuL5d69u4SHn3whrR5BSkoKAwf2pl+/QZprVatWnejohxw+LCYl\npTkVK27n2bNqLFt2klmzPrwL45vi6OjIoUMnC6ULKGtyd+L+978orKxsmDFjDlevRrJqlS9KpRID\ngwqcO/c5aWl/U778Y4YPH0yFChb51E7PnDmNjo4OCxYswdT03eLFygItLS3atv3vSOlHRd3j4UNH\nzXF2tiV//XXmA/ZIQOC/g2DMCQgIvFfat3ehffv8WtP16tkXWdbOrq5GJj+XgnmbXkd8oqR8apaW\nVYo1NgQ+PlQqFWtzuAAAACAASURBVPv3n2H9+rNcvFgBHR0HDA0b4e9fHWvrCvj5rcDExJSAgA3s\n3LmNsLANTJ78A+vWraF27TpcvHiB4cO/YcWKpTRq1IRff92OXJ7O1Kmz6NixE35+P3P06CGNvHpE\nxCVAnVusX7+BLFz4M4aGG8jIqA+IyMiQvqK3AgV58OA+U6fOxN6+Ad7ecwkL28Du3TtZvtyPKlWq\n0qrVEFJS0khKmoKx8SEMDNzw9VW7WmZkyLG3b8CwYaNYtWo5u3fvxNNz8AcekYCdnRVVq17h4cMq\nAEilsdSta1BCLQEBgdJAMOYEBAT+MRw5cpktWx4jkSgZMaImDRqUrJBWcIfI3b0PV69GkZiYxsqV\n/kgkwmvwn4RKpWLcuO1s2tSZnJwOSKVrKFfuFM+fm7B06U0CAkYC0KZNOwBq1bLjxIljgDrR8fz5\nixkwQL179/z5cwYMGIKurh5isZiOHTsB6h24XBdPIF+C+s8++5xNm5ScODEIC4v5SCQGdOtWtczH\nLZfLmTlzCgkJCeTkKPH0HMLq1ctxcenE2bPhiMVaTJo0HT+/FcTGxuDh0e//7J1nQBRXF4af3aU3\nqQpWigZUBLEX7L3Ghl0Ru35qbFHRWFGJXWygKFgRxa7BCPYSY0Ox90pTUEDqwrL7/diwiqAxStFk\nnl87s3PvnDtDmTPnnPfQqVNXUlNTcXefSFLSW7KyZAwZMiJH4+2ioHjxEtjbOwDK67lx43pKlixF\n6dLK6yiV1kRb+zIJCa4AJCe/awGhrq6uuje2thW5fPlCIVsvkBeGhkYsWmTEihU7SE9X1sz16iXU\nzAkIFAbCU4yAgMB3weXL9/jpJzViY7sBEBa2jwMHjCle3OSz51AoFPz88x62b69NZmZJGjUKYsuW\nzt9FE+KCpEWLBv9IVOLq1Suoq6urHsgLkydPnrBrlxNyuTkAmZkjefbMCF1dPSIjV+Pvr/y3ll0n\n+X7/OPh4faWm5rufgQ8juQqFgoMHz/HyZTJi8Qt0dI5TrdpmdHVL8tNPY6hXr1K+rjEvLlz4A1PT\n4ixa5AVASkoyPj4rKVHCHH//AFauXMr8+bPw8fFHKpXSv38POnXqiqamJp6ei9DR0SUhIYHhw92K\n3Jl7//oqFAr09PR5+zZRta9SpSSuXs3661gZ9eu/66Emkbx7bBGLRTnurUDR0rSpA02bFv7fBAGB\n/zr/vopcAQGBfyUnTjwhNraeavvx41acOhX+j+a4dOkGAQHOZGZWBEpz6pQb69adzF9Dv0v+Wc1h\nWNhlbty4XkC2fBqZLAu5/F1ao0QSi0Khjr6+Hj16dOH+/XsfHevg4ERIyGFAuQZDQyN0dHRzOXgf\n9qP7+ec9DB1ajWnTuuLnV45fflnA778fZvfuDTRs6EhhYGNTgcuXL+DtvZLw8Gvo6ip7emU7ZtbW\n5alcuQra2toYGhqirq6uUof08VmFq2svxo0bSVxcLPHxbwrF5o/x8mUMN2/eACA09Hfs7CoSHR1F\nZGQEADY2b3F21qJfv12UKCHGxSX/61nv3r3D8uWL831eAQEBgcJGiMwJCAh8F5QurYVYHIdcbgqA\nru4DfvihFHK5/LOV4uLjU5DJ3hdLUCet6PsoFzgBAZvR0NCgW7eerFixhEePHuLl5c2VK5c4dGg/\nkLeoxPHjx1m5cjUyWSYGBsWYOXMu6enpHDiwB7FYQkhIMGPHTsLRsWqhraVChfK0bbuDAwfKAXqY\nm3tTokQIRkZ6nD+vy4QJUz5oM/FOMGfgwKF4es7B1bUX2tra/PLLLOURIlGOVhhOTjXYunUjbm69\n6dixC7t22SGXlwDgwYOubNgQyK+/Fm4j6zJlyuLnt43z58/i67uG6tWVfcWyI5BisRh19fdVW8XI\nZDJOnTpMYmICfn5bkUgkuLh0RCrNKFTb30ckElG2bDn27t3Jr7/OwdLSmh49+lC5chWmT59MVlYW\nFStWxsvLHTU1NXbvTsihdvp+VO+fCh+9j51dRVUPy89BJpN9Vkp2TEw0N26E06JF6y+27XOZN28W\n9es3UIkECQgI/DcRnDkBAYFC5ciRYHbt2oFMlkmlSvbY2FQgJiaKkSN/AiA4+CD37t1h3LhJuY51\ndX3D4cMm6Ou7Y2tbm2XLXtK4cVPu3buLp6fyLfulS3+yd+9u5s9flOvcjRo5UavWXi5edAPEWFvv\nw8Ulb/GVfxOOjtUIDNxKt249uXv3DjKZDJlMxvXr16hatRpHjx7JU1SiRo0arFu3EYCDB/exbdtm\nRo0ay48/dkVHR4eePfsW+lpEIhFr17rQqNFREhIy6Ny5D6VLj89xTFDQftVnO7uKrFjhA4CBgYHq\n5+R9Bg4cmmPbwMAAX9/NgDKKBB9Gsgo/qSUuLg59fX1atmyDnp4+Bw/uy/H9x9JHU1JSMDIyRiKR\nEBZ2mZiY6MIw96OYm1uwbduuXPurV6+Jn9+2XPs/pXZqa1uRdevWMH/+bG7cCMfOrhJt2rTH338d\n8fEJzJzpAYCX1xIyMqRoamri7j6TsmXLERZ2mcDAbSxcuEylchoVFYWWlhaTJk3DxqY8GzasJSoq\ngqioKMzNLXJI8X+MqKhIQkOP/CNn7nMdxQ/JS9lXQEDgv4fgzAkICBQaT58+4fjxUHx8/JBIJCxZ\nsgBtbW1Onz6pcuaOHw/F1XVQrmMXL/6VJk008fCoS7NmmfTr144mTZoD0KdPNxITEyhWzJDffjtI\n+/Y/5nl+LS0ttm9vw5o1O8nMFNOzpz3W1qULbf1Fha2tHffu3SE1NQUNDQ3s7Cpy9+4dwsOvMnbs\nzx8VlYiOjsbDYx5v3rwmMzOTkiVLqeb8jDZuBYZEIqFfv/yNRhw+fIXff49DRyeDn392xtjYCFCK\ndXTqdJbt28ujUBhjbb0fN7fPj+jkF48fP2T1ai/EYhFqauq5IpC5H+yV2y1btmby5PG4uvbE1rYi\n5cpZ5RiT1+dvkVevXnPmzHUqVCiFg8MPqv2RkRHMnbsQd/cZDB7cn2PHQvD29uPs2VNs3uzP9Olz\nWL3aF4lEwqVLF1i3bjVz5y7MMXe2yqmn5xLCwi4zd+4MlZLps2fPWLNmPSdOHGXIEFfVi6W2bTuy\ncOE8fH03kZWVxdChrsye7YmPzyqeP3+Km1tv2rTpQLduPfD2Xsm1a1fIyMikSxcXfvyxC2Fhl1m/\n3gcDAwOePXvKpEnT2LBhLYaGRjx58ghb24rMmKF0RjduXM+5c6eRSqXY2zswadI0le2f009RQEDg\n343gzAkICBQaV65c5N69uwwe3A+AjIwMjIyMKFmyFLdu3aR06dI8e/aMKlUc2b17R45jpVIpJiYm\naGhoIBaLc6QWtWrVliNHgmnTpgO3bt1UPQTlhb6+PpMntyvYhX5jqKmpYWFRiuDgg1Sp4oiNTXnC\nwi4RGRmJpaXVR0Ul5s6dS7duvahfvwFXr17Bz29dUS2hQAkNvcZPPxmQkNAYUHDrlj979nRGTU0N\nkUjEsmVdcXY+TWxsKu3bO1GmjHmh21irVh1q1aqTY9/7EcgPW3a8/52Pj1+OcfHxb0hKektYWBix\nsUm5FF+/NcLDHzBs2AseP26Bnt49Jkw4xv/+p/z9t7AohbW1DQBWVtbUqFHrr882xMREkZychIfH\nDCIjXyASiZDJZLnmz1Y5BahWrQaJiYmkpqYgEolwdm5IVFRkrpdQL148w9m5Ib6+3kil6bRq1RZr\naxtGjBjN9u1bVS1T9u/fg56eHr6+m8nIyGDkyMGq+/jgwT22bNmJubkFYWGXefjwPlu3BmFiYsqI\nEYO4fv0aDg5V6dKlu0qB1cNjBufOnaF+/QYFe9EFBAS+GwRnTkBAoFBp06Y9w4b9L8e+3347wPHj\noZQrZ0mjRk0+eSyAhoZmjkhC27YdmTx5HBoaGjRt2vyza+j+Szg6VmX79q1MnToTa2sbVqxYSsWK\nn1ZhTE5OxtTUDIDDhw8ByjTYS5cuUKNGLTZsWIuOji69en1+uuU/Vc4sDI4efUlCQre/tkRculSb\n58+fqZwEkUhEt25FqwCZHygUCsaO3U1wsBUSSQZDhlxgwoQWfz+wiPH2fsDjx8pUy+RkJ/z9nzBi\nhBx4VzMIOesGxWKliun69T7UqFETT8/FxMREM3r0sDzP8SmV0w9fQkmlUoyNjXFzG8KgQf3Q1NRU\nta/4cJ5Ll/7k0aOHnDx5DFCmvUZEvEAikVCxYmXMzS1Ux1asWFn1+1a+/A/ExETj4FCVsLBLBARs\nQSpN5+3bt1hb2wjOnICAgArhiUdAQKDQqF69FidOHCM+Ph6At28TiYmJoWHDJpw5c5KjR4/QvHnL\nTx6bF6amppiamrJpkx/t2nUonMV8Zzg6OvHmzWvs7atgZGSMpqYmjo5OwMfT7UaNGsX06ZMZNKgf\nhoaGqlS+lJQUfv89mP379xAdHaU6PizsMpMmjfsbS769dL5ixWTAu4iNoWEUhoaGRWdQAbF9+0kC\nAzuRmNiYN29asny5I+fOXStqs/4WmUySYzszU4JcLv/bcQqFgpSUdy8kfvvtQJ7HfY7KqbIWLwB/\n/wACAnbj5jaEhIQE0tPTSEtLRSqVftSO8eMnqcbu3LmfmjVrA6ClpZ3jOHX1d/30sltqSKVSli5d\nyLx5C9m0KZAOHTqRkVF4AjbR0VH0798j1/4NG9Zy+fLFT47dsGEt27dvLSjTBAQE/kKIzAkICBQa\nlpZWDBkygvHj/4dcrkBNTY0JEyZjbm6OpaU1z549wc6u0t8em1d9T4sWrUlMTKRsWctCXtWXER0d\nxcSJY3BwcOLmzXDMzIrj6bmE58+fsmiRJ1KplFKlSuPuPgN9fX1GjRpK5cpVCAu7THJyElOmzPhH\nKpLVq9fkxInzqu3t2/eoPoeEnOLw4UMEBm5DJBJhY1Oec+fOEBCwET09PfT19enVqx+6unrs37+H\nqlWrMX78JPz81qGtrQMoa5e8vVfy/Pkz/ve/IUyePI2yZS2Jiopk9uxfSE9Po379hvl3AfORceOa\ncvOmH+fPV0Ff/zWjRyswNv78/oXfCy9fSlEojFTbUmkZnj4Np379IjTqM+jWzZRz5y7w+nVtxOJY\n2rRJVAmGfPi34P1tsVhMr179mTdvJps2baBuXWfef5mQfejfqZxWr16LKVMm0L17b4yMjHj7NpHU\n1FSWLVvIkCEjiIqKxNt7BePGTUJHR5fU1BTVOWrVqsuePbtwcqqBmpoaz58/o3jxEp+99mzHzcCg\nGKmpqZw4cZSmTYs+mjpoUN4Rzvf51uswBQT+LQjOnICAQKHSrFkLmjXL/TAikUjQ09OnX7/uuLj0\nomPHzvz66xxcXHrxxx9n/6r7KklqagrFihmqFOBiY2MZMWIgdevWp0OHTkWwoi8nIuIFs2d7Mnny\nNGbMcOfUqeNs27aZ8eMn4ejoxIYNa/H3X8eYMRMQiUTI5XJ8fTdx/vw5/P3XsXz5mnyx4/HjR2zc\nuJ6SJUsRHx/P3bt3qFatBo0aNSI09ChPnz7BzW0AERGjSU9/g4nJUZWs+/PnT+nTpxuxsa9o2LAJ\nRkbGuLoOYsmSBXh5eePltZguXVxo1aote/YE5Yu9+Y22tjbbtvUkLi4OHR0rdHV1i9qkAqFNGzu2\nbAkhIkIZ/a5Y8Tdatcr/Hm75TevW1TE2vsPJk0GUKaNFz57K3/MPa/2mTp2p+vz+d++/uBgyZASg\njPQXK6aMvn6OyumHL5YaNGiEuroGzZu3Qi6XM3z4QMLCLuPgUBWJRMKAAb1p27YDLi49iY6OYtCg\nvigUCoyMjJk/f1Gudhgfbmejr69Phw6d6N+/B8bGJlSqlFN9tzAcJrlczoIF83K8dFq82FPVFuH8\n+bOsWrUcLS1tqlRxICoqSlUz+PTpY0aPHsbLlzF0796Lbt16Fri9AgL/NUSKb0QKKTY2qahNECgg\nzMz0hfv7Lya/7u/bt28xMDBAKk1nyBBXVq1aR7t2zVmwYBn16jmzZs0KdHV1cXUdxPz5s3F2bsSR\nI4kEB99HW/s3TExM2Lt3xxdJfBcF0dFRjBs3isBA5YPmtm2byMjI4NCh/ezeraxPi4yMYPr0Kfj5\nbWX06GEMG/Y/7O0dePPmNSNHDiYwcG++2LJrVyDXroWhr1+MyZOVSnk3b17H338tcXGvycjI4Pnz\neKKiFiGRxGNk5IujY3Vq1dJnz54gVq/2ZcgQVzQ01FEoFJQsWYrMTBlbt+6kXbtmHDgQgkQiISUl\nmU6d2hIaejpf7Bb451y6dJeAgKeIxXKmTauDsbHx3w/6l3H27Cm8vVfi7j4Te/sqOb5bsSKU/ftB\nIpExaFAxevSoV0RWfh359Xc5OjqKnj07s2HDVsqXr8CMGe44Ozfk8uWL1K/fgDp16tOrVxfWrFmP\nubkFs2ZNIy0tlQULlv2VinmBlSvXkZKSTO/eXVV/CwS+DuG56t+LmZn+Px7zfTz1CAgI/OsJCtrO\nmTPKHlKvXr3ixYsXH5XM79ChE0uWLCMkZDUWFod4/nwHL16oc/LkVZo3r1lka/in5BRvkJCc/Ol/\nztk1NWKxRKU4mR+IRCIMDY24cOE83t4rqVevAb6+a6hVqwZnz/5BSkoKkIaGxkOyspTph2lp6iQm\nJmBgYICFhQX6+vr8/PNUDhzYq3orL/BpNm/2o3//gYV6zpo17ahZ0w747z4QOjs3wtk5t6BNcPBF\nFi92Ij1d2b5h5sw/cHJ6Snj4n+zfvxtbWzumT/+4Um5BolAoOHHiEi9fvqVt25oUK1as0M5tYVGK\n8uUrAMo2J9l1sgqFgufPn1KyZCmVkEvz5q04cED5kkkkElGvXgPU1NQoVswQIyNj4uPfqGoYBQQE\n8gdBAEVAQKDICQu7zJUrl1i71p+NGwOoUOEHMjKkH5XMr1LFkbi4ONTVnwFZZGSU/6v+53URrSB/\n0NXVw8DAgPBwpSjF77//hpNTwafBVatWkytXLuHl5Y2NTXl8fFby4sUzdu7cybx5C3Fyqo6amg4i\nUToAYnEGFStqqsbr6OhSsmRJrl9X2q1QKHj48AGgvFfHjoUAEBLye4Gv5Xtiy5aNRW3CN8vHhDcK\nklu33qgcOYA3b2pw5cpD9u3bxfLla4rMkQNwd99H374V+OmndnTqdJqoqFeFdu4PXzrlfJH0YZpn\nzmQvNbWcaqMyWf69hBIQEFAiROYEBASKnNTUFPT19dHU1OTp0yfcunXzb8e0bt2aN29GExs7HgBL\ny2Batfp8QZBvgbzEG6ZOncXixZ6kp6dTqlTpHHVAH4zONzusrKzp3NmFSZPGoqamjqGhISVKWHD3\n7m0mTRpH1apOqKtnUKPGTeTyGJKSMmnQoCL3798jKektkZERzJgxl+HDB5KWlka/fj1o3rwl5ctX\n4KefJjJ79i9s27YJZ+dG/1lRBHf3ibx69ZKMDCkuLr2IiookI0OKm1tvrK1titRR+KdER0cxYcJo\n7O0duHEjHDu7Sn+pPa4jPj6BmTOVa/HyWkJGhhRNTU3c3WdStmw5goMPcvRoCG/exJGeLqVhw8aM\nHDmGQ4f28/jxQ8aMmQDA0aNHeP06rlDXVb26OXp6t0lOVoowmZuf486dE0RFRTJhwmiaNWtJZGQE\njx8/IitLxsCBQ3F2bsTPP//E8OGjsbEpj5tbbxo1asqAAYNZv96HEiXMv7qWNyoqku3bbZHJygJw\n61YvvL134OGRf/0yv7RlSNmy5YiKiiQmJhpzcwv27dvN27dvAaGhuYBAYSE4cwICAkVO7dr12Ldv\nN337ulCmTDlVHcvHJPMBevXqye7dATRvnoGa2g4GD65QJM2cv5QPxRve79W2dq1/ruNXrPBRXQND\nQ8McTaHzg+zm4SKRshfWxInuXL58jgMHDnL37h2aNWuJubkFbm5DmD9fKcM+ZMgIHByqMmnSWDQ1\ntWjatAVRUREsWPAuzdLComSOptXZAhT/NdzdZ+SqCd29eyf+/gFFbdoXERkZwdy5C3F3n8Hgwf05\ndiwEb28/zp49xebN/kyfPofVq32RSCRcunSBdetWM3fuQgAePXpA+fIV8PRcQu/eXXFx6UmzZi3Z\nssWf//1vLBKJhJMnj6Gjo8ucOdO5f/8ulpbWTJ8+mydPnrBq1TLS0tIoVsyQadNmYmJiSkTECxYt\n8iQxMQGxWMzcuQswMjJmypQJJCW9JStLxpAhI3B2bkR0dBSTJ49j8+YdAAQEbCE9PY2BA4fStetc\nLl78A5FIxA8/lGXOHG+6deuAlZUNu3fvRF1dnbFjJ+LoWI2hQ12pUaM2jo5OhIdfxdzcHDU1NW7c\nuA7A9evX+PnnqV99rTMyMsnK0nxvj4isrPxOrPr4S5aPvYARiURoamoyYcIUJkwYjZaWNjo6Oqp0\n8Y+JuggICOQvgjMnICBQ5Kirq7N48Ypc+0NCTqk+N27cjMaNm6m2r1+/RrNmLfjll86FYmNRsXHj\nadavTyUjQ43WrVOZPbtDgUS3atWqQ61adXLsc3auSZ8+g3Idmx0tjIl5SVKSCC+vtZia5pTyj4h4\nyZQpfxARoY+19VuWLGmKkdG/r3fb55JXTej3woeRuHLlLDE2NmbRonnExydQpkwZKleugrv7BJ49\ne8arVzHcunWDPXuCePjwvirCNnBgXzp27ExWVha3bt1g2LABaGpqERMTTZUqxalWrSbnzp2hXDlL\nZDIZMTHRzJw5F3t7Bzw957B7907OnDmJp+dSDA0NOXYshHXr1uDuPoPZs3+hf383GjRoTGZmJnJ5\nFmpq6nh6LkJHR5eEhASGD3fLs1Yuu38iwIMH5zh27CBqamqkpCQDkJSURNWq1Xjx4jlSaTrTp0+h\nbFlLMjMzefUqBkdHJ3btCsTCoiR16zpz+fJFpNJ0oqOjKFOm7Fdf/3LlytGmzQ727y8P6GFpeZC+\nfW2/eL4Po8QdOyr/hq5cuZSLF//E2NiU2bPnY2hoSHJyEpqaWri69srVKqVECWWdnI1NeTIyMti0\nKZA2bZoA4ObWmz59Bqj6hgIq51lAQCB/EZw5AQGB74qQkDC8vPxITX3A2LGTi9qcAuX+/SfMm2dC\nYqIyncrX9yWVK5+hR4+i79e2f/9Fpk1T8OqVE2XKXGDpUiMaNXqnDDh58nlCQ/sDcPu2Ak3NLXh7\n/7sd74/xfk2opqYmo0cPIyPj402mv0Xej8S5uvYkPT1dFYlbtmwRCoUCe3sHxoyZwJgxw5kxw53B\ng4chl2cxatRYVq1azpo16zl69AgODo7IZFksXLiMSZPGqWqwOnT4kc2b/ShXzoqmTZuTnJyMvb0D\nAK1atWXTJj8eP37EuHEjAaVkvomJGampqbx+HUeDBo0B5cshUEcmk+Hjs4rw8GuIxSLi4mKJj3+T\n5/qyUwJtbCowa9Y0GjZsrJovI0NKUNB2VSqhiYkpHh6eqp6WMpmMu3fvULJkaWrWrE1iYgL79+/F\n1rZivlx7kUiEj48L9euHkpAg48cfq2BlVeqL5/swSty4cVPS09Ows6vE6NHj2bhxPf7+6xg3bhJz\n585k/PjJebZKyXaAjxwJJjb2FQMG9MbGpgImJuaEh9di/Hh1rKz2sHx57a+yV0BA4NMIAigCAgLf\nDdevP2DcOHUuXdrErVt/MHu2Nk+fRhW1WQXG7dsvSEx811cqK6sET56kFqFF7/D2juPVq+aAKS9e\ntGP16pyRpogIvfe2RB9sf3u0aNGgwOb+WE2ompoaMpmswM6bn1hYlMLa2gaRSETp0mVVzeKtrcuT\nmprKs2dPadWqLQBaWlpkZEjR1zegShVHli1bREpKMklJbxGLcz92ZDtSlSrZ8+rVK0JDf6d+/Zz1\nlQqFAl1dXaysbPD3D8DfP4BNmwJZunQlH4puZBMScpjExAT8/Lbi7x+AkZExUmkGEokEufzdGKk0\nXfV50aLldOniwr17dxkypL/K0Zw2bTbdu/emRo1a7Np1kLJlLbl//y6gvI9mZsU5ceIo9vYOODg4\nERi4lapVnb7iiudE2buuOWPHtv5qxygoaDsDBvRm2LCBqiixWCymWTNlFK1lyzZcv36NlJRkkpOT\ncXRUrqN163Zcu3Y113w//tgVM7PibN26k44dO3P5cjwXL/YjJqYj58+7MmvW5a+yV0BA4NMIzpyA\ngMB3w4kTj4iNfdf3KSKiOcePXy9CiwqW+vUrY2l5QrVtaHiVevW+jTfcUqlGju2MDPUc21ZWibx7\nyM7C2jq5cAz7YgquuKd27XpkZWXRt68La9euVtWEduzYmQEDeuHhMb3Azp1f5FQ0FKscLZFI9Jcz\nJlI5ZWKxGB0dHfz81nH8eCj16jVAoYARIwbx5s1rPrzW7zttTZs2x8GhKrq6urx8GcPNmzcACA39\nncqV7UlIiFftk8lkPHnyGB0dXczMinPmzEkAMjIykErTSUlJwcjIGIlEQljYZWJiogEwNjYhIeEN\nb98mkpGRwR9/nFWt4+XLGKpVq8GIEaNJTk4mLS0NTU1NDh7cw4ABg5HJZPTs2Zl+/bqzYcNald1V\nq1bDyMgYDQ0NHB2rEhcXq3KCYmKiCQ39tJJrXi8TgoMPsmyZss4wOTmZvXt3fXKOz+FjysHwzqlW\nKBR/m8otkUhQKOQAuaLMaWk5k75iY3W+2m4BAYGPI6RZCggIfDfY2BRDQyOCjIzSAOjo3KNixZJF\nbFXBYWZmwurV5nh77yAzU0Lnzvo0bPhtNDFu1SqD+/ejyMwsibb2I9q2zdkIeMmSpmhobCEqSg8r\nqyQ8PVsXmC1paWnMmDGF2NhY5PIsXF0H4+Ozkg0btmBgUIy7d2+zerUXK1euJTU1leXLF3Hv3h1A\nxMCBQ2nUSFnns27dGv744yyampr8+usSjIzyp6H2x2pCnZyqM2LE6Hw5R2Gio6PD6NHjVNvFixen\nevVahIQcZsCAwfz000RWrVqOn99WIiMjKFWqNJMmTeWXXyZjaWlFzZp1WLlyKUCunoTXr4fTs2cf\nRCIRZcuW1bCnbgAAIABJREFUY+/enfz66xwsLa3p1q0ntWrVxctrMcnJyWRlyejRozdWVtZMnz6H\nRYvms379WtTU1Jg7dwEtW7Zm8uTxuLr2xNa2IuXKKdsOqKmpMWDAYIYMccXMrDiWlsr9WVlZeHjM\nICUlGYVCgYtLT/T09Ni//wgrVixh6FBX5HI55cpZ5hD5ARg8eDiDBw8HwNTUjNOnL6q+i4qKJDT0\nCC1a5P4dkMlkqKmpkdfLhPcdqqSkt+zdG0Tnzt0++z5lO2fvz/OxKLFcLufkyWM0a9aS0NDfcXBw\nQldXD319ZasUR8eqOVqlWFiU5O7d29jZVeLkyWOq+XV1dTE0TAYyAXUgHXv7b/1FjoDA943gzAkI\nCHw3tG9fl+HDD7FvnxZisZw+fUTUrduiqM0qUN5v8vwtMWVKW6ysznD//jmcnIxp375pju9NTIxY\nt65wauQuXPgDU9PiLFrkBUBKSjI+PivzPHbjxvXo6+urlESTkpTKe+npadjbOzB06EjWrFnBgQN7\ncXXNLf7yNWzbdpZt21IA6NlTm/79i7728XPIysrKs43G+5/d3Ibg6TkHV9deaGtr88svswBlSl9Y\n2GVEIjHW1jbUqVMfyE4b7E2bNu24eVOfK1dEpKWtompVW6pVqwHAtm25I1EVKvzAqlXrcu0vXboM\nXl7eufa/r6T6Pt269aRbt5659q9Zsz7XvqNHQ7h58wYikRhbW1sGDx7OmDHDSUxMxNDQiKlTZxAb\nm8qYMXNJTdVHR+cpRkZyRo8eS+PGzfDxWcXz509xc+tNmzbt0dc34OTJY6SnpyOXy5k3bxFSqRRX\n115oaGggEomQyWTEx79RNev28VlJZGQEbm69qVmzDiNHjiEgYDMnThwlIyOThg0bM2jQMKKjoxg/\nfhTVq1cjPPw6ixevoESJdyq/H1MO1tLS5vbtW2zatAEjIxPmzJkPwLRpebdK6dWrL9Onu3PgwF7q\n1nUm2xl1cqqBmZk/1ao1R0enCY6Otkyd2j7PeyAgIJA/iBTfSCOQ2NikojZBoIAwM9MX7u+/mKK4\nv3m9cRbIf76X390XL54zfvwomjZtQb16DXB0rIqLS8c8I3ODBvVjzhxPSpUqnWOOpk3rcfz4HwAc\nOxbK5csXmDz5l3yz8fLlO/Tpk4lc/ozExN4YGFxn1qzLXL/+R67o1NcQHR3FxIljcHBw4ubNcMzM\niuPpuYS4uFiWLl1IQkI8WlpaTJ48jerVq7B3729s3uyHTJaJgUExZs6ci5GRMRs2rCUqKoKoqCjM\nzS2YOXNuvtn4PgsWBLNkSTtAWVNZqVJbDh1aj56efoGc75/w9u1bBg7cSlTUAbS1BzJzZmWqVi3D\n3Lkzadq0Oa1bt+O33w5w9uxp7txpwKNHNxGL04mOXkaHDstJSfmNwMC9XL16he3bt6ruc3DwQdav\n92HTpkD09fVZtmwh+/fv5eTJ81y6dIFVq5axaVMgu3btwNfXmyNHThITE82kSWNVipAXL/7JyZPH\nmDRpGnK5nClTJtCnT3+KFy9Bjx6d2LFjBxYWVp9aXr6hUCh4/Pgx6urqlC379eqdAn/P9/K3WeCf\nY2b2z//2CTVzAgIC3x3vK6kJCJQpUxY/v23Y2JTH13cN/v6+OUQupNKMHMfn9Q5TInmXqCIWi1TC\nF/nFlStPSUoqh6HhdgDevnXg/v3Yr5rzYzZGRLyga9fubNmyEz09fU6dOs7ChfMZN+5nNmzYwsiR\nP7FkyQIAHB2dWLduI35+22jWrCXbtm1WzfPs2TO8vLy/2pGLjX3N//63j+7dQ/DwOJTD7ocP1VA6\ncgpAQUzMWESib+PRZM6cE1y/bkF8vAs3bgxi1qzHGBgYcPv2DVXKZKtWbblx4xoxMXqAiOTk5oCI\nxMSyvHmjVM788OdNJBJRo0Yt9PWVD203boQjkSjTlJ2cqhMVFUm/fj3Yvn0z6elpxMe/yTXHxYt/\ncunSBdzcejNoUF+eP39GRIRShKhECQscHBwK8Mq8IysriyFDdtCggQRn5zR+/nmP0CxcQKCQEdIs\nBQQEBAS+a+Li4tDX16dlyzbo6upx6NB+VU1PnTr1OHXqXU1PzZq12bNnJ2PGTACUaZbZD9X5TWDg\nVoKDDwJQtWpdSpYMRl39OWXLdiIrqwJ2dpU5fz6cX36ZzJMnj7C1rciMGR4A3L17J8/m2KNGDeWH\nH2y5fj2c5s1bUry4ORs3+iIWS9DT02PatFlYWJRSpefZ2toRHR3FzZvhTJ/+rpVHZqZSRfPVq5fM\nmDGFN29ek5mZScmSSoEdkUiEs3NDNDRyCt38HT4+qyhevARdurgAsGHDWnbvvkd0dCYSyVuePJES\nF3cPL68JREdH8ezZEkqUOI+W1l0iI9dhZvYLMtnuXNevfftOdO/e65MNv4OCAtm/fw8SiQRLSytm\nz57/Rfctm7g4bSCNbCGf2Fh9lfrohw6Lre0bwsIUKBTqQBqVKkk5f/7jTo22tnae+0NCDiOXK1iz\nZj1nzpxk+fLFuV5GZNO37wB+/LELAIcPHyIwcBsBAVtISkokMjKSiRMn5UgFLVHCnHnzZqGpqcWD\nB/eIj3/DlCnTCQ4+yN27t6lUyV6VRtmiRQM6d+7G+fPnMDExZfDgEfj4rOTVq5eMGTMBZ+eGSKVS\nhg8fw82biZQsGUxs7BS2bWuKufkKXr+OQCqVEhkZQcOGjRk5csw/uPICAgL/BMGZExAQEBD4rnn8\n+CGrV3shFotQU1Nn4kR30tPT+fXXOaxfr4eTU3VVJNfVdRBLly6gf/8eiMUSBg4cSsOGjXPVgH0t\nd+/e4fDhQ/j6bkIuVzB0qCuurl0JCnqMsXFfevXSwc5Om82b77F1axAmJqaMGDGI69evUamSPcuX\nL2LBgqUUK5azOXZ2PdX69Zv/Wk9Pli5djampKSkpybx9+/YD5UkJb9++QU9PH3//gFx2Llu2kF69\n+lG/fgOuXr2Cn9+7ejRNTa1/vO5mzVrg5bVE5cydOHGUmJheREV1RaHQQyx+Q3h4e0DpTKenx1On\njgkPHw6iXr2TZGYqa8byun5OTtVypV++H6Xftm0Tu3blbPj9NTg5wbFjtlhYbCE+fgCVKsWSmpqC\nvb0Dx46F0KpVW0JCDuPo6MTkya3o1+8wCoU2Tk5vmD69DW3aLAJAR0eX1NQU1bwfOoIODk48fvwY\ngHv37qCtrY2+vj7Pnj1RjdPR0SE19V1bktq16+Dr60PLlm2Ijo7C39+XxYtXoK6uzsSJY/Dw8KBt\n2w6qVNDlyxfj6bkYgOTkJNau9efs2VNMmTIBHx8/rKysGTy4Pw8fPqB8+Qqkp6dTvXotRo78ialT\nf2bDBh+8vLx58uQx8+bNxNm5IXv2BJGZCc+e/Ya6+mNKlx7E06cHSExM4+HD+2zcGICamjq9e3fF\nxaUnZmbFv/qeCAgI5EZw5gQEBAQEvmtq1apDrVp1cu3fvn1Prn3a2tpMmzYr1/6QkFOqz40bN6Nx\n42ZfZdP169do2LCJyiFq1KgpxYopsLTUY/PmVoBSJr5ixcqYmpoBUL78D8TERKOnp8eTJ48YOzZn\nc+xssvuBAVSp4si8eTNp2rSFSpXzQ3R1dSlZshQnThylSZPmKBQKHj16iJlZNVJTU1TnP3z4kGrM\nl6bKVahgS0JCPHFxccTHv0Ff34DixUVkZCxFW/syCoUYufytqnl3iRIW+PqOUo13cfFFoVDkef3C\nw6/i7Nwo1zk/1fD7axgzpgUKRSinTtWgWLEOaGgYsGrVbcaOnYSn52wCArZgZGTE1KkzMTAwoHbt\nctSvX5VGjZRiQNlOZvnyFVSCL23bKgVQ3n9hMHDgUPbuDcLVtRfq6uqYmprh6tpTpSYJUKyYIVWq\nONK/fw/q1KnPyJFjePr0KcOHu5GYmIBIJP5LFVOp1nnt2jVmzfoVUKaCenuvUNlUv76yDYKVlQ3G\nxiZYW9v8tW1NTEwU5ctXQF1dndq16/51XcujoaGBRCLB2tqG6Ghli4cbN8Lp3bszDx4c4MmTjmRm\nlqRixXU4Olqjq5uFjo4uAJaWVkRHRwnOnIBAASE4cwICAgIC/1liY18zd+5Z3r7Vpm5dNYYObfr3\ngz6DvKJ7eQX81NXfpTFKJGJVPZmVlc1HlRi1tN6l6E2c6M7t2zc5f/4cgwb1Y/78RXkqT86Y4cHi\nxb+yaZMfMpmM5s1bUrduNQYOHMr06ZPR1zegevUaql5syojXP142AE2aNOfkyaO8fv2a5s1b8urV\na3buvEZKygAqVUokOXmjKnVQWzvv6N+Ha8juffZ3Db+vXQvj3LkzbN7sx6ZNgapatC9BJBIxdmxL\nxo5tCUzJ8V1eypnZKYrZZL8gUFNTy3V8mzbvFB4NDAw4derC39rzYe2ii0tPXFx6snv3Dl6/fq1K\nkd20KZAOHVp81CFXV1dGbsVica7+gdk/f+/XkIpEyoj3h8cAmJubsmmTKVu37uTatVimT6/Kmzev\nckWH5XL5365PQEDgy/g2qowFBAQEBAQKGYVCwZAhx9i+vQ+//daV2bOr4e9/6u8HfgaOjlU5ffok\nUmk6aWlpnD59gipVquZIlfsYZcta5tkcOy8iIyOoVMmeQYOGYWhoiEgkVrVdAKWEvJvbECwsSrJk\nyQo2bgxg69adDBgwGABn50bs3LlfJYyyYoUPoIwW9ezZ94vW3rRpC44eDeHkyWM0adIcU1M9fvzR\nnosXW/DTT5a8evXyk+NFIlGu63fmzEkcHJwwMjL+7Ibf6elpX2R/UbBo0WFatTpKx46HCQm5+o/G\nlitXnoCAfdSseZDOnfcRFnYLJycnjh0LAVClguY3jo5VCQk5jJ2dJUOHVkJLK4Pq1avl6UQKoigC\nAgWHEJkTEBAQEPhPkpAQz61b5cnukZWZWYZLly7h5vb1c//wgx1t27ZnyBBXADp06IytrV2OVLm6\ndevnGf1SU1PDw2NBns2xP2TNGi8iIl6gUCioUaOWSvjkSzh37jaHDr1ASyuT8eMbfbEwjJWVNWlp\nqRQvXgJjY5OPNu+GvCKYyu28rl+FCj8AfHbDb11dvS+yv7AJCjrH8uX1yMxUtst4/vww1au/xsTE\n5LPGr137ghcvJmFs7MeLF2ImT9YkOHg5EydOypEKms3n1Ifmju7m/q5zZxcWL/bE1bUnEomEadNm\noaamlqfasKA+LCBQcAh95gQKHKEfyr8b4f7+e/m331uZTEaDBkd59Mglew/DhgXh4fHfaHL8/v09\nf/4OgwdnEBvrDMipV8+PoKAuqpS8r6Vbtw74+W3FwKAYLVo0IDT0TL7M+29g1qzfWbPG5b09L9m1\n6xYNG9b8rPEdO4by559dVNt2dnu5c6fzv/p397/Ov/1v83+ZL+kzJ0TmBAQEBAT+k6ipqTFzZgnm\nzw8kPl4PJ6eXuLt/H45cbOxrAgMvoqkpxtW1MZqaml8136FDz4iNzXYoxJw/35CHDx9TsaLt1xuL\nMjKTlpaOh8cM0tPT6d+/B66ugylWrBhr1niRlZWFnV0lJk50R11dnW7dOtCiRWv+/PMcYrGESZOm\n4eOzkqioSHr16kenTl0BCAjYTGjoEaKiEjAwqMygQT1o3bp6vthcWDg4GKCp+RypVNlwu3TpK9jb\nV/rs8XZ2Kfz5ZwagAcixs3tbMIZ+BgqFgt9/P8+rV0l06FALY2OjIrNFQOC/guDMCQgICAj8Z2nd\n2olWraoik8nyLQpV0Lx69Zru3c9y+3YfIJPQUH8CAly+yn59/SxARvZjgZ7eS4yMSnzRXO7uE3n1\n6iUZGVJcXHrRsWNnAK5cuYipaXG0tLTZvHkHycnJ9O/fgxUrfChdugxz585k795ddO/eC5FIRIkS\n5vj7B7By5VLmz5+Fj48/UqmU/v170KlTVy5e/JMXL54TF9eJq1ddKVnyf0yYEIWamoTmzat+8bUo\nbLp0qcfz5yGEhl5BSyuT//2vJMbGn5diCTB3blvU1IJ4+FCLUqVS8fBo+feDCoiJE/cQENCKrCwz\n/P2D2LatJqVKfdnPkYCAwOchOHMCAgICAv9pRCLRd+PIAWzefPEvR04EaHDqVDeOHbtE69b1vnjO\nMWOacOWKP+fO1UVXN44RI15jbv5lDpG7+wwMDAyQStMZMsSVxo2VCqFWVtb4+/uSmZlBePg1dHR0\nKFmyFKVLlwGUCo979uyke/deAKo2BNbW5UlLS0NbWxttbW3U1dVJTk7m4sU/OX/+HDEx4ZQtewCx\nOI3k5BaEhr6kefMvvhRFglI188vGamhoMH9+x/w16At4/vw5QUH2ZGVZAHD7di98fALx8GhXxJYJ\nCPy7EZw5AQEBgSIkLS2NGTOmEBsbi1yehavrYEqVKs2qVctIS0ujWDFDpk2biYmJKZGRESxdupCE\nhHi0tLSYPHkaZctaFvUSBAoZZTsxOZAtuy9FQ+PLJfhB2ZQ6MNCFp0+fYmBQFjOzL09VDArazpkz\nSlXQV69e8eLFCwBKlSqNn982fvyxFb6+a6hePWdNWHb7gWyy5e3FYnEOZ1spjy8DoHv33nh4/MDr\n19neWybFiu36YtsFvpysrCyysnK+FJHLBeETAYGCRmhNICAgIFCEXLjwB6amxdm4MYDNm3dQp05d\nvLwWMW/eQjZs2EK7dh1Yt24NAAsXzmPcuJ9VMvJLliwoYusFioLBgxtQs+ZGIB14TYcOh2jc+PPE\nMj6FRCLBxsYGMzOzvz/4I4SFXebKlUusXevPxo0BVKjwAxkZUgBev37zV/NpNXr16sfNmzeIiYkm\nMjICgCNHgqlatVquOfPSaROJRNSuXYeTJ48xalQC5uaH0NcPpnHjVYwb93UN3wW+DEtLS9q3vwQo\na/ZsbPbRv3/lojVKQOA/gBCZExAQEChCbGwqsHq1F97eK6lXrwH6+no8fvyIsWNHAiCXyzExMSMt\nLY0bN64zffpk1djMTFlRmS1QhOjp6REU1J4DB35HT0+Ttm17IBZ//N1sXjVsLVo0oHfv3hw/fgIT\nE1MGDx6Bj89KXr16yZgxE3B2bohUKmXJkl+5d+8OEomEUaPGUa1aDYKDD3L27GmkUimRkRE0bNiY\nkSPHAHDq1HHu37/HqFFDKVHCnPDwdz3Tnj59zKxZU0lPT2PjxvVMnOhOcnIS06dPJisri4oVK9Op\nU7e/js4pn59T2l75uWbNOjx9+pRDh/xxdJSjqanF7Nnz0dbWJjk5mdDQ3+ncWTlfWNhlAgO3sXDh\nsvy5CQK5EIlEeHu70KDBceLjM+jUyYkyZcyL2iwBgX89gjMnICAgUISUKVMWP79tnD9/Fl/fNVSr\nVgMrKxt8fPxyHJeSkoy+vj7+/gFFZKnAt4SOjg49e346AhUUFMj+/buxtrZhw4YtOWrY0tPTqVu3\nLm5uI5g69Wc2bPDBy8ubJ08eM2/eTJydG7JnTxBisbIJ+fPnTxk3bhTbt+8B4OHD+2zcGICamjq9\ne3fFxaUnIpGIc+fOYG9fhdjYV4SFXcbExPQva0RUr16DJk2a0bJlI3x9N6ns9PPbloft+1Wf27Rp\nT5s27fP8zsWlJy4uPXONT0p6y969QSpn7mvJyspCIvm6VNb85syZk5QpU07Vay8/+Nq2EWKxmL59\nhciogEBhIjhzAgICAkVIXFwc+vr6tGzZBl1dPfbt20VCQgI3b97A3r4KMpmMFy+eY2VlTcmSJTlx\n4ihNmjRHoVDw6NHDr2oSLfDvZt++XXh5ebN//x4GDOgNvKthU1dXp0GDBsTGJmFjU/6v9EcJ1tY2\nREdHA3DjRjjduvUAoGxZS8zNLXjx4jkikYjq1Wuho6MLgKWlFdHRUSQkJODkVJ1p02YBsGtXIC9e\nPMfJqXoOBywk5NRXr00mk7F//1mkUhldujizb98ugoMPAtC+fSdu3bpBZGQEbm69qVmzNnXrOpOW\nlsovv0zmyZNH2NpWZMYMDwDu3r2TZ43qqFFD+eEHW65fD6dFi1b06NHnq+3OT06fPkn9+g3+kTMn\nk8lQU/vUo59Q4yYg8L0hOHMCAgICRcjjxw9ZvdoLsViEmpo6Eye6IxaL8fJaTHJyMllZMnr06I2V\nlTUzZsxl8eJf2bTJD5lMRvPmLQVnTgCAwMCtOZyZ58+fEhUVyciRgwARW7bsRFNTk9Gjh5GRIUUi\neffvXyRS/uxBtrhI1t+eL1ucRDlGQlZWFqIP/ACZLIuwsGdMmHCEOnUMcHGp+/ULRRklGzBgJyEh\nvQF1tm1bhLHxH6xfvxm5XMHQoa7MmOHBkyePVJHssLDLPHhwj61bgzAxMWXEiEFcv36NSpXsWb58\nEQsWLKVYMUOOHQth3bo1uLvPQCQSIZPJWL9+c77Y/XdER0cxceIYHBycuHkzHDOz4nh6LuHIkWAO\nHtxLZqaM0qVLM336HO7fv8e5c2e4du0qmzf74eGxAE/POYwaNQ47u4q8efMGF5euBAUdIDj4IKdO\nHSc9PR25XM7ChcuZMmUCSUlvycqSMWTICJVyqICAwPeH4MwJCAgIFCG1atWhVq06ufavWrUux3Zc\nXBxZWVksXuz1Qf2QQF6MGjWU0aPHY2trR7duHfDz24qBQbGiNqtAuHv3DocPH8LXd1MOZ+bChfMM\nHjyCY8dC0NTU5OnTJ9y6dfOz53V0rEpIyGGqVavB8+fPePkyhnLlLLl3706uY0UiERUrVmbFiqUk\nJSWhra2Nn18QkZENiI3tRlDQY5KTT+Hm9vVOw8GD5wgJ6QnoA/DgQWmaNi2HpqYWAI0aNeXatau5\nxlWsWBlTU6W4S/nyPxATE42enh5PnuSuUc2mWbPC7dkWEfGC2bM9mTx5GjNmuHPq1HEaN26q6tXn\n6+vNoUP76dq1B87ODalfvwGNGilbP+SuLXzHgwf32bQpEH19fbKysvD0XISOji4JCQkMH+4mOHMC\nAt8xgjMnICAg8I0zb95vbNxojlRqQNOmO/D17fpd9UUrCt5/qM0v51cul39SaKSouH79Gg0bNsnT\nmalWrQYhIYfp29eFMmXKYW9fBch9Td7fzP6uc2cXFi/2xNW1JxKJhGnTZqGmpvZRp8HU1Ix+/dwY\nMsQVAwMDEhNLIJcrHej0dGtOnLiKm9vXr1cmyyLn44sYuTyn4mVet1xdXUP1WSJ5F4HMq0Y1Gy0t\n7a819x9hYVFKFW23tbUjOjqKR48e4uvrTUpKMqmpadSu/S7CmZfSZ17UrFkbfX191Rgfn1WEh19D\nLBYRFxdLfPwbjIyM839BAgICBY7gzAkICAh8w9y8eZ+1ayuRnu4AQHBwJdatO8j//te6iC0rHAIC\nNqOhoUG3bj1ZsWIJjx49xMvLmytXLvHbbwdo06YdGzasIyMjg1KlSjN16ky0tXM/gO/atQMDA4N/\nPE+3bh1o1qwlly5doE+f/ujrG+Dn9/fnK0zycqyyd2loaLB48Ypc379ftzZw4NA8v9PQ0GDq1Jm5\nxn4oSPK+QmSLFq3p2LEzmZmZNGkygPT0Kqrv9PTSP3NFn6Zjx/oEBGzj7Fk3QIK5eRCJiWlIpenI\n5QpOnz7BtGmzCQzMLawCykjmtWtXsbOrxK1bN3ny5HGeNapFQe70VSnz58/h11+XYGNTnsOHD3H1\n6hXVMe/fe4lEgkIhByAjIyPHvFpaWqrPISGHSUxMwM9vKxKJhLZtmzJixCAqV7YH4KefRpKUlEif\nPgO4fPkCPXr0+Whd3tmzp3n69DF9+w746JqCgw9y794dxo2b9PkXQkBA4LP59l4xCggICAioiI5+\nQ3p6qff2aJGYWDDnGjFiYMFM/BFiYqIJDf39k8c4OlYjPPwaoHwIT0tLQyaTER5+FRub8ixa9CsL\nFizDz28rtrZ27NiR9wO8vb3DJ+fZtMmP5cvX5JpHJBJRrJghfn5bqV69Fps3++Hllfu4osTRsSqn\nT59EKk0nLS2N06dP4OjoVGjnT0tLY8KEfXTpEkrfvj/j6tqTAQN6Ua1aSYyMUlBTu07VqluYNKlG\nvpxPQ0ODgIDOzJ27n5kzd3HwoA9durgwZIgrw4YNoEOHztja2lGliiP9+/dgzZoVf0UTlePt7CpS\ntary+qipqVGnTj18fFYyYEBv3Nx6c+vW9Y+eWyYr/HYgaWmpGBubIJPJOHIkWLVfR0eHlJQU1baF\nRUnu3r0NwO+/f/z3KiUlBSMjYyQSCWFhl3n79i0zZ85l+nQP5HI5IpFSYbRZsxZMnvzLJwVWnJ0b\nftKRg/yLjAsICOSNEJkTEBAQ+IapV68Kjo6HCA/vD4iwsDhOu3Y2+Tb/+/23vL3zTjUrCGQyGVFR\nkYSGHqFFi49HGW1t7bh37w6pqSloaGhgZ1eRu3fvcP36NZydGxITE8Xo0UORSCRkZsqoUsUhz3nK\nl6/wyXmePn2scmY/nKdZsxYA3Lp1g6dPHzN8eN7HFRU//GBH27btGTLEFYAOHTpToYJtoZ1/8uTD\nBAb2QflI8SOdO29h7dquACQnJxMXF0upUu3yJTU4LS2NGTOmEBsbi1yehavrYKZN+5nRo8fTo0cf\nWrRoQGzsS/r1646JiSmTJv2Cj89KTp48xpgxEwDlz3x0dDTjxk0iOPgghoaGzJ49n7NnT7N5sx97\n9gRx9GgIc+Z4YmRkzIYNa4mKiiAqKgpzcwtmzpz71ev4GHk5PoMHD2Po0AEYGhpSubI9qampgLKe\nb8GCeezatYO5cxfQq1dfpk9358CBvTRr1pRsZcr302IDA7dy8OA+YmKiOXHiGLq6SkVSD48ZtGvX\nkYwMKXfv3mbgwD65RFX+/PMP1q1bg1wux9DQkOXL1+SIumVfP5ksEwODYsycOVdI3RQQKAQEZ05A\nQEDgG0ZXV5etWxuyYkUgmZnquLiUw9GxYBQss3tMhYVdxs9vHSYmRty5c5cmTZpjZWXN7t07yMjI\nYP78xZQqVZp582ahoaHBvXt3SUlJZvTo8dSr5/zJZtPZqnpZWVlkZmby7NkT3Nx606ZNBxo2bIyH\nxwwN72x0AAAgAElEQVTS0tIAGD9+Evb2Dujp6ePm1gd1dXWePXtCWNhlUlJSePz4EQqFApFIhIFB\nMby8vD+6NjU1NSwsShEcfJAqVRyxsSlPWNglIiMjsLAoRY0atZk1a16eY99Po/zUcUVJjx596NGj\nDzKZjPj4eORyOUFBBwrl3A8e6PPucULCgwfvhGb09PTQ09NTbW/YsBYdHV1SU1NwdHSiRo1ahIdf\nZdEiTzQ01PH29mP9eh/+/PMcdes6q5qRZ3Phwh+YmhZn0SIvQNl/cd++Xarv09PTqV69FiNH/vTR\n/nkAWVky9u7dhaampmqso6MT7u7zWL78KlFR4cyZs4BlyxYA8OzZM9asWY+GhgYFhYVFSTZtClRt\n9+rVV/X5XTP1d1Sp4sjWrTtz7Nu0aTsAZmb69OkzCHiXFpstlOPntzWHUM7UqT/j4+OHgUExKlWy\nZ/v2rarU2WxHMD4+noUL57FmzXrMzS1ISkpSfZ+No6MT69ZtBODgwX1s27aZUaPGfnZdX0GQ/fP2\n/rV8n4Lo1ScgUNgIzpyAgIBAEfO5kuQeHnPQ1NRi3rxZaGpq8eDBPeLj3zBlynSCgw9y9+5tKlWy\nV9U5Xbz4Z571XX/++QcrVy5FU1MLB4eq71ny7sHs4cMHrF79OxkZYlxcOtKhQ6f/s3eWAVFlbxx+\nhu6yQLBAKSXEVuze1V1XxVpFReVv69qFhaBgIq4oJuiCK3Z3d6CirphgEAoiHQIz/w8jIwgoKpj3\n+TQz99xzzo2B+877nt+PVav8CQraxNat/8qyHM+fR7N6tT/Pnj1l5MjBbNq0/b1m07lV9a5du5rn\nwTEjI53Fi/9GSUmJp0+fMGvWNFav9sfEpCoHDuxl1ix3bG3t6Ny5AzVqWOHsPIw9e3YxZcoMzMws\nSEtLIzY2hgoVKhZ4nm1sbAkM3MiUKTMwNjZh6dJFWFhYUr26FYsWeRAR8QxDQ6NC+7G0rFGkdl+L\n8+dDmTjxAc+eVcLE5Aze3jUxN69c4uMaGCQDEnLuH+n7gsl5+B8w4H+yzw4d2o+jY3/atGkPwO7d\n29m//3iBWSoTk2r8/bcXPj7eNGzYGBsb2zzBgqKiokwgpDD/PJBmhrdvD6JHj7cP+U+ehDN4sCvp\n6QqIRJmEhWlx4kQIIpEIe/sm+QK5qKhIJk78C3//f4t4pr4uuYVyrl69R1xcBUaODEQsTpO1KSjw\nkkgk3L59E1tbO/T1DQBkYiq5efHiOdOnTyIu7iWZmZmUL2+Yr82X5kMlnp/i1Scg8K0hBHMCAgIC\n3wAfI0kuEolITk5i5cp1nDlzkkmTxrJixVqqVDFm4EBH7t+/R5kyZWXru5SVVdi4cT3//vsPPXv2\nwdPTDW/vlRgaGjF9+uQClf8sLCwpXbo0MTFJGBlVkD0gGxubEBx8BZA+KLVoIS1BNDKqQPnyhjx+\nHP5es+natevmUdXLTWZmFosXe/DgwX3k5OR49uwpIH2AB2jUqDHKyiooKytTrlw5dHR00NHRwcNj\nDtnZUuEHZ+eh7wnmarJhwzpq1LCS9WNjUxMdHR2mTp3JzJlTeP06s9B+dHV1i9TuazF37gNCQ3sC\ncONGQ9zd/8Hfv3KJj+vu3pj09A2EhWlRsWIi7u55rTb8/NZw4MBedHX1KFu2HGZmFri7z6JhQ3uS\nk5M4fvwoly5d5MKFc6SmppCWloaT05/07t0fO7vaLFw4l+fPowEYOXIsa9f+w9y5s5k2bQKKiopk\nZmaSlJTEtGkTyMrKYtAgR0aOHItIJCI4+ApPnz4hKiqSlJRktmzZhLFxVR4/DiMpKYk1a1agra0D\ngIfHXJ49G0BKSldUVS9RqpQ3x49HUqkSMqXQ75mcwCY5OZmRI8OJi6tOdrYeenqX2bnzEn36tP7g\nvu9j8WJPevbsQ6NGjbl27Spr1/p+cJ+SoKD7bffuHezate2DXn1Xr17O5+n3I1x7gR8bIZgTEBAQ\n+Ab4WEnyRo0aA1JZdT29Uhgbm7x5b0x0dCQvXjwvcH3XkyePKV/eEENDIwDatGnPrl3b880nt4y7\nSCSSvReJRO81lf7QQ9/7lB///fcfSpUqjYuLK9nZ2bRo0RAAU1MzGjSwR0lJGYlEQrt2v2BubgmA\nsrIyS5Ysz+ch5+29UvY6p9ywVq06HD9+XvZ5TrYQpBL+q1blN4d+t1SxsHbfAvHxKu+8/zIqm/r6\npQkI+KPAbaGhdzh27DDr1weSnZ2Fk1NvzMwsAOm90qFDJ0JCbuTxS2vduonM7HvmzKl069YLa2tb\noqOjGT16CH5+mzAxqcqjRw+oVKkKqakpBAT406/fAC5evICrqyfjxo2Q/dDw9OkTvL1X0qqVPUuX\nLqJy5SpkZ4tRV9egQ4dObN8eRN++PYmOjkBV9RUpKaCjsw5l5dtcvfqE+/dVaNOmnex45s6djUgk\nom7deiV9aosVGxtb3NxmYW1dlwcPLKlYcT3R0Z5IJOsICUkqdD+RSET16lYsXDiPqKhIDAzKk5iY\ngJaWdp4fZFJTU2Q+fvv37ynx4ymIgu43c3MLmjZtTseOnYD3e/VpamoW+AOagMC3jBDMCQgI/NTk\nrBOLjY1hyZIFzJnjUaT2xc3HSpLniEnIycm9s6/UP0tOTr7A9V337997Z+RPX88ikUg4fvwI7dt3\nIDIygsjICCpVqpzHbNrHx5vbt28yc+YUTEyq8fTpY7ZtC6JzZwfU1TV49OgBgYEb6dmzN8HBl4mK\niuLixQsYGBggFouJiorE1XU6AI6O3fPJ7Oco+mlpaRMcfI9Fi+6TlqZEixYwbFjhmYZPOdbNm0/w\n8mU6v/1mh5FRuWLru7ioUyeR0NBUQA2RKI569TK+9pQICbn2prRPGVCmUaMmBbYrbF3VlSuXePw4\nTPY+KSmJQYMciY+PR15env79B/H330v4779bLF7sSUZGOpMnjyE1NZWsrCxEIhENG9pz//5dsrPF\nVKxYkV69+jJ/vhvq6hrs3r0DKytb3Nw8mTFjMqdOLUNHJxBIQE1NnZ07dzJq1BAuX75Iv34DmTt3\nFmPGTMLGxpbly71K4IyVHDlCOUuWuGFikk5s7AAyMiwAMZUrS/+G5Fb9zI2Ojg4TJkxl6tTxiMUS\n9PT0WLRoWR5xFScnZ1xcJqKpqUWtWrWJjo7K1eeXUbQs6H6TSCiyV1/+dvULGEVA4NtCCOYEBAR+\ncqQPGaVLl/lgIJe7/ZfgXUnysmWLFkDk/JJe0PquSpUqExUVKfv88OGDefZ7+7rwvnO2iUQiypXT\nZ9CgvqSkJDN+/GQUFRVlZtPdu/9BTMwLPD0XY2VlS8+enbG1rcmxY4fp3NkBE5OqxMe/Yu/eXURE\nPKVUqTIkJ6cgEkFY2COZOEVsbAxWVjYsX74633x+++0Pxo4dgZ5eKa5d68L9+z0AuHTpMWXLnsPB\noWGRztn7kEgkjBgRRFBQZyQSHTZs2Mn69emYmVX67L6LEw+P3yhXbg+PH8tjYSFi2LBfv/aU+Pzv\niwRfX798Sphr1/qiqqqGubkF3t4r6dChVaHtFBQUuXnzBv37D+TEiaPY2trRunU7zp49hUgkws3N\nEwBn52E8ffqUJUv+pl+/XmzbtheAyZOn4+IyieTkZJKTk7Gxka4zbdv2Vy5cOPeZx/dlyRHK2b8/\nmCVLokhL206TJgMZOlTqG1izZi1q1qwla587w12/fkPq18/7fcrtOWhv3xR7+6b5xnzXl7BkKfh+\nK6pXn7v7LObNW1RgOwGBbxXBZ05AQEAAqZiBo6O0nGbfvt1MmTKesWNH0qNHZ5Yvz2+6HB8fz+DB\nTpw/f5bY2FiGDRtE//69cHTsLvMz+xjeJ0k+ZMiAfAv08wZeeff181uLoqICU6fOZMqU8bRo0ZDB\ng51Ys2YFW7duZsKEqUyYMBonp97o6ZWSBWc5ZtF2drXx8HhrBO3tvRIzM3NA+rCXe1udOvVYvdqf\n2NgYGjSwB96aTXfp0o0//3Skbt0GqKqq0qHD71Svbk18/CtiY2MJC3tEtWpmbNy4GRUVVe7cuY2c\nnOhNwCgnMxnW1y+fJ5D7668JsofDLl26ExCwFWfnUdy/bydrk5FRiWvXEot49t9PZGQEu3bZIJHo\nAiIePuyEn9/tYum7OFFQUGDChPZ4eDTE0DBBtmZswoS/vtqcbG1rvvHAyyA1NYWzZ99mtYuiclin\nTn2Cgt4qPObPLBe1nSifUEpmZmaBfcnLy5OVlc0ff+yiUaMjTJ16ALFYnK/d11Rp/Fzat7fj4MFf\nOXWqFXPm/F5o5qwo3pM3blyjd+9uODn9SVzcS/76awfduh1i2rRd+czLi4tr165y69ZbP8AdO7Zy\n4MDeQu+3tLSUInn1FebpJyDwLSNk5gQEBAQK4MGDe6xfH4CCgiK9enXBwaEHZcqUBeDVqzgmThyD\ns/NQateuS2DgRurVa4CjoxMSiUQmrV9UPlaSPEetsqB9c2+zs6vNvHkLmTjxL/z8AmWCBPXqNeCf\nf97KuRfG+9bG5Sf/w+C7D4hSGwFo3rwVJ04c4eXLl7Rq1Ua2vXfvfvz+e+c8+0RFRaKqqiLbf/bs\nPZw9q4aGRhrjxpnQsKF0/VWlSoYYGt4gIsL4zdhxVKnyab5mmzZtZN++3QB06NAJMzNzDAxmkJJi\nj6rqNbKyyiEWN/ukvr8ESUmJbN8exB9/5L93vjSmpua0bNmafv16oqurh6Vlddm2wn6QyP169Ohx\nLFrkQd++PcnOzsbW1o5x4ya9aUeR21lb2+Dp6S77fl65cgkDA0MePw5j5sypzJzpxoEDe6lZsxbq\n6hrEx8sTHm5Genpt4uK8sLLSe2OzoElIyHWsraWlxJ9LUNAmdu7cipmZOS4urp/dX3FTFO/J3Gqk\nAwduZdcuR0COEycyyMoKYt683/O0z8rKQkHh8x4/g4OvoKamTo0aUp/HTp26yLa9e7+JRDBw4OAP\nevW5us4rtJ2AwLeMEMwJCAgIFECtWnVRU5Ma6lauXIXo6CjKlClLVlYmo0YNYezYSdjY1ATA0rI6\nc+fOJisri8aNm1GtmmmRxti/fw+bNv2DSCSiatVqDBw4GHf3WSQkJKCjo8uUKdMpV04fN7eZqKtr\ncPfuf7x8+ZKhQ0fSrFlLYmNjmTFjMqmpKWRnZzNu3GSsrW3p2rUja9duREtLm61bN/P06ROGDh2I\nRCLHvXv3uXjxLhDH/ft3SU1NRUdHBy+v5VSsWJlhwwYRFvaQjIwMTE1NmTbNlalTJ/DyZSwVK1bC\n2tqWo0cPsWTJcu7fv8exY4e5ezeU9PQ01qxZydmzp8nOzsLVdZ5McKF3776IxRJOnz6Bi4srCgoK\neHjMISEhnr//XgVAvXr1WbVqBW3atEdVVZWYmBcoKOQNxnx9j7F8eVskklIAPH++hSNHKqOqqoq2\ntg7u7posWbKJ1FRlmjRJZuDA39895R8kx4tr1So/mRdXzZquKClFExXVnhcvZmFq6oCVVcqHO/tK\nrFjhTUTEM/r374WCggIqKqpMmzaRsLCHmJlZMH26NGg4f/487u5zyc7OxtzcknHjpGWyPj7enD17\nGnl5eerWrc+wYaN49epVPlVJKyubIs3H0dEJR8fCMzy5f4CAtxliAG1tHWbNmptvHycn5zzvi9LO\n3r4Jhw8fYMECd0xMqlK/fkPMzCxZsGAuffv2lNl3iMVikpJ6UqbMfOTk0nj9uiKKim1kc5UKoEiz\ngZ+7FmzHji14efnIhEOgeIKd4uJd70kdHd0899Hu3TtkaqQXL54jNLQppUvPR139DADXr0tLNoOD\nr7B69Qq0tLR4/DicCROmsmbNSjQ1NXn48EGhXpYFGZGnp6eza9c25OTkOXRoH6NHT+DKlYsyP7kG\nDRpx5swpUlJSSE9P59dff0dTU5MjRw5RvboVwcFXSE5O4saN69jY2Mq8+pKSErGwsMbff9N7hZoE\nBL41vo2/FgICAgLfGPkFSaRZKgUFBczNLblw4ZwsmLOxqcnff6/i3LkzuLvPpHv3P2nX7v3rlR49\neoi//1pWrlyHlpY2iYmJzJkzg19+6Ui7dr+yd+8ulixZwNy5CwCIi3uJj89awsPDmDRpDM2ateTw\n4QOyjKBYLCY9PR14m9kIDb3DuXOnMTQ0olmzznh5zebVK0ceP66AgcEc1qzxo3JlY7p27cjcua64\nukqNvq2ta+LpuZhJk0YzZco4xo+fgpfXAoYOHcXEiX9hYFCe+fPdsbCwpH79hrIHUR0dXdau3cj2\n7VsIDNzIxInT+OWXDgwa1BeAjh3/kAW6aWmplC1bDj09aWBWp059wsPDGTy4PyAtf3Jxcc0jnnD/\nfrYskAMICzMnOjqKKlWk2bj27e1o3/6TLreM3F5cAE2btuDGjWsYGhoxcWIi0dFbyc6uR1ZW+ucN\nVIIMGTKSsLBHrFsXwLVrV5k8eSwbNwZRqlRphgwZwM2bNzA1NWfy5MksXrwcI6MKzJkzg+3bt9Cu\n3S+cPn2CgICtgNSUG8DLa0EeVclx40awcWPQ1zzMj+b33zsTGlqOiAh5wsN96d27P9WqmbJy5bp8\nbY2NVTl9ehPSjHMKDg5SVVMzM3PWrw+QtXvX1PxjmD/fncjICMaOHcHz59E0atSEyMgI9PUNGDVq\nHAsWuOcLntPS0li82JOwsEdv1BqdC1ynVnzk9p68l+c+Cgm5TseOnbh5860a6cWL80hJieLx413I\ny79EQ6M9L19Kv//3799lw4bN6OsbEBx8hQcP7hMQsAVNTa1CvSwLMyL//fcuqKmpyXwCr169JMvU\nzpkzgzFjJmJjU5M1a1aybp2vzKpCLBazapUf58+fZd06X5YsWQ7A/v3BTJ2awLNnplhYHOfvv82o\nUcOkBM+rgEDxIQRzAgICAh+FiMmTpzNt2gT++cePP//sS3R0NGXKlKFjx068fv2a+/fvfjCYCw6+\nTIsWrWWS+lpaWvz3301Z8Na27S/4+EjX6olEIho3lj6wVa5chbi4OOD9GUGJREJIyDXq1WvAkSOH\n8PX1JjGxI1lZZRGJ5BCLJbi6zkBBQZ709HRiY2O4c+c2pUqVpk2bdigoKNCmTRvc3NxYuHAejx+H\n4+npRlpaKq1bt2PVKh/KldPHxqYmVlbWLF7sKZP3NjU15+TJY8BbwYV3yV0amoODQw8cHHoU2tbM\nTAE5uVjE4tIAGBvfwcCg2XvP88dSWKZFSUmRDh0aARAYuJG0tG+3/Cr3Wi6JRIKFRXVZwF21qilR\nUZGoqKhiZGSEkVEFQCpSsW3bZrp06YaSkjJz586mYcPGMguMd1UlU1NTSU9PR0Xl+/Hg6t17DDEx\nYkSi1yQmdiYo6CEuLhYFtvX2bszMmf8QG6uOlVUakya1JzLyBfv2BVOhgi5t236+LcH48VO4dOkC\n3t4r2bLlX86dO8Py5atRUlLKZ8mQEzz7+6+ldu26TJkyg6SkJJyd+1K7dr0vch3evY+io6Oxts7b\npk6ddLKz9VBU3ImxcTwmJnW4c+c/1NXVsbCoLjMdl/ZnKfsxpzAvy/cZkRe0ZDElJUekRvpDW7t2\nv+LiMkm2vWnT5oA0KM9R2wRYvDiKZ8+kf3vu3DFnwYJA1q8XgjmB7wMhmBMQEPipKWitzvuktHO2\nzZzpzsSJY1BTU0dFRYXAwA0oKCigpqbOtGmzijRuQQIKhYkq5Fbpy2nz4YygCIkENDQ0EIuVUFB4\nTkaG2ZttCvj4rEZDQ5MJE/6iZ8/esixMzoOhWCxGUVGJdesCmDfPlapVqxEaegdra1uys7O4dSuE\nkSPHyOaTk82Ul5f7yPV2+fH03M/u3QrIy2fj5KSOo2NjBg5szvPnezlzRhlNzdeMG1e12B9i3y0N\nPXXqOC4uswv04vteyO0ZmHNtClrPKN0uz6pVfly5cokTJ46ybdtmvLx8KExV8nvi1au+PHnSSfY+\nJGRroW3Lly+Lr+/bMt07d8JwcnrEw4ddUFSMwslpF66uvxXLvHLOvb19E5SUpNeqoOA5LS2NS5cu\ncPbsKQIDNwCQmZnJixfRVKxYuVjm8j7y30dZ+dro6WkxfHhVfv21JQCurjdk95qKSt7SxaJ4WRa3\nEXnOGLmrLQCSk/P+HUlJUUJA4HtBCOYEBAR+anLW5+QWEnlXStvTc3G+9oqKiixa5C37/GOlt+3s\n6jBlyjh69PjzTZllAjVqWHP06CHatv2FQ4f2y35dLoy8GcGMPBlBkUiErW1Ndu7ciry8PG5u0xk+\n3InsbG0yM01QUVHi8uWLNG/eColEQmRkBPXrNyQu7qVsDd6xY8coV64cx48feVPutJyOHTthamqG\nvLw8GRkZqKmps337h8VUPoZdu87j7V2fjIyKALi6XqJ27QdYWlZl2rSSlTjP8eLKXRqqqamVL/j5\nUr5Zn4KamtoHhRsqVqxERESEzKLi4MF91KxZi7S0NNLT02jQoBFWVjZ07y4NaHLUInv16gPA0KED\nmT9/CRIJHD58QCa2Ehx8hU2b/snzncnBw2MO3bv/mU+Z9UtRunQKjx7lvJNQunTRs6urV4fy8GE3\nADIzDdm8WZ/x4xPymdV/DjmlvTnzKyx4dnObT4UKFYtt3OIgJyC1tq7Jzp3baN++AwkJCdy4cY3h\nw0cTFvboAz0UTGFG5O+qUErnAOrqGmhqasnWw+WI2nyIRo0SePAgAdBGWfkJzZsLYu8C3w9CMCcg\nICDwidy9G8a1aw9p2NCSihXLf9S+VaoY4+joxPDhzsjJyWNqasbo0ROYO3cWAQEb0NXVzSMMUVAG\n8dq1K+/NCJqamtOwoT1btvyLr+8iGjduxPXr52nXrgzJyc3Ys2cXfn5riYh4RqlSpfj1198wM7Ng\nzRpfNm36h1atWvLXX5NYsGAe0dGRxMS8IDk5GTk5OUxNzXj27Bl9+/YoYM3O55kE37uXIAvkABIS\nbLl+fQ+WllU/uc+PIXdpqEQi4fLlEAYNGicTpsitNvotoq2tg5WVDY6O3VFWVpaVsuVGSUkJd3d3\nXFwmkp2djYVFdTp16kp8fDyTJ499IykvYcSIMUDBapHq6hpERUUWWTlz4sRpxX2oH8Xs2RZMmbKR\nqChNTE1fMXNm0deavZswF4vlCrQrKC7eDZ7v379HtWqm1K1bny1bNslsO+7dC8XU1LzE5lEU78nc\n7Zo2bc7t2yH069cTkUjE0KGj0NXVIzw8LM/+hZmTv7utMCPyRo2aMG3aRM6ePcWoUePzzG/q1Jks\nWDCX9PR0mahNISPJXnl4dKJy5SM8fizBzk6DHj1aFX6wAgLfGCLJN2KUEhOT9LWnIFBClCmjKVzf\nH5if9foGBp5l1ixt4uLsKF/+DAsXKtGype3XnlaxUti1zcrKIj09DQ0NTeDtr/LFla06c+YW/fur\nkpAgPZ+GhofZtasSFSoYfGDP4kUikTB8eBBbtzZHLFahRYvd+Pt3lZXCfe+877sbEOCPkpISXbv2\nYOnShTx8+AAvLx+uXr3Mnj07uXUrhNWr/Vm0yIMzZ05RsWIl6tSpR4MG9qxd64u2tk4+9czhw50Z\nMWIMZmbmtG7dGAeHnpw7dwZlZWXmzVuIrq7eFznu7Oxs5OXlP2qf69fvM3BgFE+e/IqcXAy9e+9l\nwYIuH97xAzg4/M7q1X5s3bo5j6BHQkI8ixZ5EB4ensdqISMjg6VLF3LrVghisZjy5Q3z+D7m8LP+\nXf5ZEK7vj0uZMpofvY+QmRMQEBD4BNasSSIurh0AkZEt8fXd/MMFcwURGHiOhQuTSUrSoU6dhxgZ\nyXP0aCkUFTMZNEiV/v0/X1nP3r4Gc+acZevWLSgoiHF2NvzigRzAoUMX2LLlVyQSfQCOHevH+vW7\ncXZu+8Xn8qWxsbFj06aN3Lp1k5Mnr5CRocavv+6gQYNQbG3tuHUrBJFIlEc5E6Rllvfv382nnmll\nZZMn2E9PT6dGDWucnYeyfPlSdu3aTt++A77IsX1sIAdga1uNzZtV2b9/M/r66nTu3PnDOxWBoKCd\nQNGsFtLT03n27ClDhoyQ/ZAi8GHOn7/DiROPMTJSoXfvpt90ibSAwKcgBHMCAgICn0BWVt4HwszM\nj39A/N5ITk7CwyOTyEhpRuLQoSbAv4BUVMLd/QL29mFUq/b5a6K6d29E9+6f3c1nkZCQhkSSe02U\nEqmp30QxS4ljZmbO3bt3yMjQJTm5FKmpDXj2zIqkpH/o3bs7GzeuBwoW7MmvnhmVz5NOUVGRhg3t\n34xlwZUrF0v2gIoBY2Mjhg0z+ipj3779iOHD/+POHRsMDa/g6qrFL798eC3Yz87evZcZM0aDV68c\nEIlecvPmdjw9iycQFxD4VhBWeAoICAh8Ar/9JkZZ+TEAmpq36dz5+5Fo/1Ti4+OJjc39MKsIaMne\nJSRYEhr67IvPq6To0KE+tWoFAtK1Uaamm+nWze7rTuo9REVF0qtXF9zdZ9GzZ2dmzZrGpUsXGDzY\niR49OnPnzm3WrFlJYOBG2T59+nQjOlrqZbZ//x769u1Jv369mDfPFQMDQ5KS4hGLVVBTO0X58s5k\nZcV8UHyjKKqH8vJvf0uWkxN9tvrpj87Chbe5fbsnYrElT5/+xqJF0V97St8FO3a84tWrugBIJKU4\neFCXrKz896OAwPeMkJkTEBAQ+ATGjGlLtWoXCA29RJ06BjRr1uRrT6nEMTAoT82a27h40QYQoaJy\nCzm5RHKEE6tUOUGDBtbv7eN7Qk1NjX//bcvKlUFkZYno3duO8uXLfu1pvZeIiGfMmePJ5MnTGTjQ\nkaNHD7FixVrOnDmJv/+6PF6E8Had47sm9klJSQQFBXL9+jUkkrI8e/YPlSr9jpxcfJ4yxaIoZwp8\nPikpynnevyulL1AwCgp5AzclpUzk5IQ8hsCPhRDMCQgICHwiHTvWp2PHrz2LL4e8vDxr17bAwyOQ\nlBRlWrTQRF6+LDt2bEVRMYthw6pSunR+5cTvGS0tLcaP/+VrT6PIGBgYYmwsNTuuUsWY2rXrvvOR\nnUEAACAASURBVHltQnR0ZL5gTookn4m9pqYmNjY1EYtXU69eJV6+PEFsbHY+Vcfcypn16zeiQYNG\n71U9zKEgdVaBwmnWTI5z5568UXlNolGj+K89pe+CoUNNuX59Ow8ftkRT8x4DBigKwZzAD4cQzAkI\nCAgIFJkyZUqxYEHeCLaYtCAEioEc43YAOTk5mU+ZnJycTMVRInkrqS+1ICjYxL5WrTq0b/8rDRvW\np1mzlkAbWreWZqCDgnbJ2s2YMSfPfrl9vXIk9AG8vVfKXuf4NQI0a9byTf8ChTFkSCt0dc9w9eol\nKlYUMXRopw/vJICVVVX27SvFmTNnqFatPObmzb/2lAQEih3h5wkBAQEBAYH3MH78KFJSkklOTs5j\nkB4cfIUJE/76ijP7eAwMynP3bigAt2/fJioqEhBhZ1eH48ePkJiYAEBiYmKJjJ+QkMCkSbsYOvQQ\nmzadLZExflR69LBn/vy2jBjR5pMUOX9WdHV16dixMebmJl97KgICJYKQmRMQEBAQEHgP8+d7AVKB\nka1bNwHwxx9duX//Lnfu3P6icwkOvsKmTf/g6ZnfWwzylyy+W87YtGkLDhzYS58+3bCzq0mFCpWA\ngk3sc8yWi6skUiKR4OR0gNOnnQA59u69h5zcObp1a/jJfQoICAj87Aim4QIljmBu+WMjXN8fl5/l\n2n6MQfbp09LywK5du1O6dBnWr1+DnV3tfAbZuRGLxcW2TudDwdzH8KWvb2xsLHXrRpGc/DZ469Zt\nK8uWtflic/hZ+Fm+uz8rwvX9cfkU03ChzFJAQEBA4KfGxsaOGzeuAxAaeoe0tDSysrIICbmOra3U\niiDHIFtRUQmRSMTlyxfZsWMrKSnJvH6dAcDFi+cJCZH207VrR3x8vHFy6s3x40c4fPgAffv2wNGx\nOz4+3rKxW7duLHt9/PgR3N1nAVJVSmfnfvTt2wNf3+WytWoAaWmpTJs2kT//7Mrs2S4lck7S09MZ\nP34nf/xxmBEjthdL2aWmpia6us9zfZKNru7rz+5XQEBA4GdGCOYEBAQEBH5qcgyyU1NTUFJSokYN\nK0JD73DjxjVsbGrK2kkkEvT09DA0NGLdugCsrW0Ri8VMmDCVjRuDkJeX4/Jlqfm1SCRCW1uHtWs3\nYmNTkxUrlrF06QrWrQsgNPQ/Tp8+8abXgksYvbwW0L17L/z8NlG2bLk8871//y6jR49j48YgIiMj\nZAFkcTJ16n78/Lpz9mxn/v23N3/9dfiz+1RWVmbSJE0qVdqKtvYJmjdfy8SJzT5/sgICAgI/McKa\nOQEBAQGBnxoFBQUMDAzZt283VlY2mJhUJTj4MhEREVSuXKXQ/apUMUZLS5vSpcsAoKOjS1zcS9n2\nli1bA3Dnzm3s7Gqjra0DQOvW7bh+/RqNGzcrtO/bt28yb96iN+3b8vffXrJtFhbVZWNWrWpKdHQU\n1ta2n3bwhXDvngZSU3gAOe7f1y6Wfh0c6tGpUyYpKcloa9sJtgSfyKZNG9m3bzcAHTp0okmTZowZ\nMxxzc0vu3QvFzMyUCRNcUFZWITT0DsuWLSYtLQ1tbR2mTp1BqVKlGT7cmerVrQgOvkJychKTJk3H\nxqZ47yMBAYGSRwjmBAQEBAR+emxsbAkM3Mj//jecVat8SEtLw8LCkoCADSQlJbFz5zb2799DZGQE\nKiqqgDRIS09PA8DNbSYvX8Zy6tQJLl++SFpaGqqqqojFYnbu3MbNmzeIjY1BQUGBcuX0ZX3kDmYy\nMjKKNFdFRSXZa3l5qeVAcVO+fAogISdzaGiYXGx9KyoqoqOjW2z9/WyEht5h//49rFrlh1gswdm5\nLzVr2vH06ROmTJlBjRrWLF48l23btuDg0IMlS+bj4bEIbW0djh49hK/vciZPno5IJEIsFrNqlR/n\nz59l3TpflixZ/rUPT0BA4CMRyiwFBAQEvnOioiJxdOz+tafxXRMf/4rnz6M5evQg8vLyKCsrY2NT\nUxZsbdmyCX//f7G3b0p6ehrLly8lPDxMtn9qaiqJiUnY2zfB03MJSUnSNWYnTx4jMzMTTU0tRo0a\nx61bN7l584ZsLZ6enh6PH4cjFos5deq4rL/q1a04fvwoAEeOHPrg/IOCNtG7twOursWzhs7NrQlt\n2/pTteoOmjXbwNy5dYulX4HPJyTkOk2aNEdZWQVVVVWaNm3B9evXKFu2HDVqWAPw22+/ERJynSdP\nHhMW9pDRo4fSv38v/P3XEhMTI+uraVOp75qZmTnR0VFf5XgEBAQ+DyEzJyAgICDwQ9G6dWMOHz5N\nbGwMS5YsYM4cD/bt283du3fymFjn5urVy+zYsZ/MzEwmTvyLwMBtAAQGbqRbt57cvn2LmTOn0rRp\nc+Tl5Th//gzh4WHo6+sD0gybiooy1ta2VK5cBbFYaswdEnKDdu1+RVFRkRkzJpOdnY2hYQXs7aWC\nJoMHD2fChNFoa+tgYWFJWpo00zdy5Fhmz3Zhw4Z11K1bHw0NDdlcC6pM3LFjC15ePrLyS4CsrCwU\nFD7t33zp0nps2CC4wX+LFFSaKhLl/Vwikbx5L6FKFRNWrFhbYF85WV45OfkSyfAKCAiUPEIwJyAg\nIPADIBaL8fBw49atG5QpU5a5cxdy8OA+du/eTmZmFkZGRri4zEZZWYVjx46wfv0q5OTk0dDQYNky\n3689/WJG+lBbunQZ5szxkH7ynrVZ8+e7ExkZwdixI4iKikJZWVm2LSDAj9at2zN27ESGD3cmPPwR\nERHPsLdvRlhYGLGxCYwfPxYVFQU0NDQJCblBQIA/IpEIZWUVRCKIi3tJcPBVFBQUUVRUwM6uFiAt\nzVRSUkJbWwdra1uGDx8tG7dMmTL4+q4H4MiRgzx9+gQAO7va2NnVlrX7668Jeeb//Hk0jRo1ITIy\nAn19A/73v2G4u88iISEBHR1dpkyZTrly+ri5zURHR5OQkFu8ehXHpEku7Nu3m9DQ/7C0rCHzmBMo\neUJD73DgwF5Gjx5XpPY2Nra4uc2id+++iMUSTp06jovLbLy8FnLr1k1q1LBiz5492NjYUrFiZeLj\nX8k+z8rK4unTJ1SpYlzCRyUgIPClEMosBQQEBH4Anj59Qpcu3diwYTMaGpqcPHmMZs1asGqVP+vX\nB1CpUhX27NkJgJ/fahYt+pv16wPw8Fj0lWdecuQuP81tqXru3BkGD3YiISGeS5cu8PDhAyQSMDAw\npHNnB9LSUklMTOD169ekpqYikUiIjY0hNjaGiROnoaWlzblzVojFirx40ZnTp38hOTmVly9jZddA\nJBJx8uQxrKxsCAjwZ/Toccyfv4TMzCx27dohm0tsbAwrV67LE8gBhIaG0q9fL/r27cmOHVtl2x8/\njmTDhoPcuHFP1nb8+CmULl0Gb++VdOvWi/DwMLy8fJgxYw6LFnnyyy8d8fMLpE2bdixZskC2X1JS\nEitXrmPkyDFMmjSWXr0c2bBhMw8fPuD+/XsIfBnMzS2KHMgBmJqa88svHRg0qC//+18/Onb8A01N\nLSpWrMT27Zvp3duBpKQkOnXqioKCAq6uHqxY4U2/fr3o378Xt2+HFNLzlxGjGT7cmdDQO19kLAGB\nnwEhMycgICDwA2BgYEjVqtUA6fqXqKhIHj58wKpVPqSkJJOamka9eg0AsLKywc1tBi1atJatmflZ\nOHnyOJs3B7BgwVKysrLw91+Ll9dyevfuRtWqVQkJuUGdOvUYNKgvZcqURVFRiezsbJYuXYicnBzz\n57tjbl6Xdev6UrXqMkDEo0edqFTJD11dPdk1kJOTIyoqEgeHniQlJeHo2ANFRQUkEkhNTQGk2cLm\nzVsVmDW0sbFl/fqAd+Z+k9GjU4iI6ISW1k0mTTrJwIFNZdtzAtbGjZuipCQtn/vvv5vMnSsN4Nq2\n/QUfn6W5xm4GQJUqJujplcLY2OTNe2OioyOpVs20mM76j09UVCRjx46gRg1rbt68gbm5Je3bd2Dd\nOl9evYpnxgypmbyX10Jev85AWVmZyZNnULFipTxG8GvWrOT582iioiJ5/jyabt160rVrj3zjde/+\nJ927/5lnfHl5eVxcpOPkNpWuVs20wOy7t/dK2WsdHR2CgnYWy7nIuQ8Ly4aLRCJBxVRAoBgRgjkB\nAQGBHwAlJUXZa+n6lwzc3Wczb95CTEyqsn//Hq5duwrAuHGT+e+/W5w/f5YBA/qwZs0GtLSKR3r+\nW+bq1SuEht5h8eK/UVNT4+zZ04SHP2LwYCdiYl5w9OgR1NTUqF+/IXPnLgSgR48/6NXLEYlEzMSJ\nf+Hv/y8nTlzG3z8GUCAmZhqQRv36v3Lt2jbZWM7Ow94oXUrQ0dFl166DJCTE4+zcL8/6JRUVlSLP\nf/XqCCIiHABITKyJn99DBg7M305ZOW+fubOSuVFUlN4zcnJy79w/JaOQCTBkiBM+PgWv3/reiYh4\nxpw5nkyePJ2BAx05evQQPj5rOXPmJP7+63Bxmc3ff69CXl6ey5cv4uv7N3PmeObr5+nTJ3h7ryQl\nJZlevbrwxx8OyMvLf3D8DwVI69ev5tCh/WhpaRMZmU1mZkVMTKqgqHiVxMREVFRUmDhxKhUrVsbN\nbSbq6hrcvfsfL1++ZOjQkTRr1hKAgAB/jh8/wuvXmTRp0owBA/5HVFQkY8YMp3p1K+7evcP8+UvZ\nuHE9oaH/kZGRTrNmLRkw4H+fdmIFBATei1BmKSAgIPCDkpaWip5eKbKysjh4cJ/s84iIZ1ha1mDA\ngP+ho6PDixcvvuIsvwwikQhDQ0PS0lJ58uSx7PPateuxbl0AZcqUZcWKNXTv3ou7d0MBuHs3lKio\nyHx9NW1amz//PIpEIkJO7jbt22+ga9cGedqIxdlcunSfxYtPk5qaSteuHRk2zJm+fQfw8uXLfH0W\nhezsvA/rWVkffsCvUcOao0elapiHDu3PY4L+NfhRAzmQZseNjU0QiURUqWJM7dpSBdAqVUyIjo4k\nOTmJadMm4ujYnWXLFhMW9ihfHyKRiIYN7VFQUEBbWwddXT1evYorwtjl8fPbVOj2O3duc/LkMfz8\nNiGRtCY6OplHj6w5ezaYlJSarFmzgaFDR7FwoYdsn7i4l/j4rMXTcwkrViwD4NKlCzx79pRVq/xZ\nt+4f7t4N5caNa4D070rnzg5s2LAZfX19nJ2Hsnq1P+vXB3L9ejAPHz74qPMpICBQNITMnICAgMAP\nQEG/yg8c+D+cnfuho6ND9eo1SE1NBWD5ci+ePXuKRCKhdu26stLAHxmJRIK+vgHDho1iypQJuLrO\nw9KyBosWeRAR8QwQkZ6egYlJNQ4c2EufPt2wtKxBhQqVZH3knGORSMSCBV2YO/c/goOHY2Jig6Ji\nM9l2iURCUFAIoaGWxMU5YGAAlSptJjs7nYCADbRq1UZ2zj+m3MzBQZsrV64SH18LZeUndOr0OtfW\nt/3k7nL06AnMnTuLgIAN6Orq5hE2yT32u/MoqTK4HKXR4OArrF3ri46OLmFhDzEzs2D6dNcSGfNL\n8W52M3fmMzs7m9WrV1C7dh3mzl1AdHQUI0YUnKlSUMjbT1bW52dJb968QePGzVBUVOThwzIkJ7dA\nJMpAVfU6oaGP6d//GACZmVmA9Po3biwt4a1cuQpxcdKA8tKlC1y+fJH+/XsBkJaWzrNnTylbthzl\nyhlgaVlDNuaxY4fYtWsH2dnZvHwZS3h4GCYmVT/7WAQEBPIiBHMCAgICH8GnlonlXhdTVNasWYma\nmjo9e/Z+b7t3f5XP3b5Tp6752ru5zS/yHL5HCgpSctbpVKxYmRkzXHFxmYSn52KmTp3JzJlTUFNT\nY8KE0Tg7D2XRomUF9vtu5mPyZJcCt0dHRxEcPIj09DoAREU5oKsrYsGCtoDU0y409C5jx07Ko5z5\nIf74oz76+rc5fz6IatW06djxF9m2nPVOTk7OefbR19fHy8snX19TpsyQratKTX1N375/kZycjIaG\nRgkrWb69Ng8e3GPjxiBKlSrNkCEDCAm5jrW1bQmO/fWQSCSkpCTLrCP27t1VaLuSQSTr28AgmchI\nADFisSbGxgNYt65Tvj1ygtF359W7dz9+/z2vbUVUVCSqqm/LeyMjI9i06R9Wr96AhoYG7u6zeP06\no3gPSUBAABCCOQEBAYGPojjLxD7kfVbc2ZGnT6M5ePA6lSrp0br1j2sCfejQSSBvkNu+fQfat+8A\nQLVqZmzcuBmA8uUNWbXKv1jHV1FRQUXlGenpOZ9IUFTMBCAo6AKzZ2fz4kUVrKwO4utrh7GxUZH7\nbtCgOg0aVC+2uS5bdoRFiwxJTrbB0vII69fXpHJlw2Lr/32Ymprj4TGHmJgYXryI5ujRQwQHX+Hs\n2VNkZGRQo4Y1EyZMBaQKiGZm5ty4cZ20tFSmTZuFv/86wsIe0bJlawYNGgLAwYP72LLlX7KyMrG0\nrMHYsZOQk/syK0rel92Uk5OjZ09H3Nxm4Oe3hgYN7Ckomyr90aH452ZtbYOnpzt9+vTHxcUGZ+fl\nZGQ0QFVVmQ4dpJk/iUTCw4cP3pupr1evPqtWraBNm/aoqqoSE/MiTyYxh5SUFFRUVFFXVycu7iUX\nLpyjZs1axX9gAgICQjAnICAg8DEUpUzszp3bLF26kLS0dBQVFfNlRnIybjo6OgD06dON+fOXoq+v\nj5/fGg4c2Iuurh5ly5bDzMwCkK5HWbTIk/j4V3mECopKSMh9BgyI4PHjrigpPWXgwN3MnNmxeE7K\nd0ZmZiZz5hzg4UNlKlRIZ/r01qiqqhZb/7q6ejg5vWT58uukpxthbb2PUaPskUgkLF4cx/PnUruE\nkBAzFiwIYPnyogdzxUlGRgarVsmRnCwN7P/7rydeXptYvPjLBHMpKSkYGlZg/nwvFi/2pEoVY1q0\naEO/flJVF1fX6Zw9e5pGjRojEolQVFRi9Wp/goI2MWnSWNat+wdNTS26d+9E9+5/Ehf3kmPHDrNi\nxVrk5eVZsGAehw7tp127X0v8WN7NjufObubelmNGD8gC0Nzege9mVv39/y2W+ZmbW2Jv34S+fXug\np1cKe3tb6tevSa1a/2PBgnns2bOVrKysQkuAc17XqVOf8PBwBg/uD4CamhouLq75FCqrVTPF1NSM\nXr26ULasPtbWNsVyHAICAvkRgjkBAQGBjyJvmdjChctwc5vBpUsX6Nz5V6ysbLh27Sq6unpkZGQw\natRYHj16yKJFnsTEPGfIECdMTc1RU1N/26NIxNWrl9m8+R+ys7MZPnw0fn5rOHnyGOHhj+jUqQue\nnm6MHz8FI6MK3L59i4ULPQosnyuMNWse8PhxNwBev65IUJAuEyakoqamVnyn5jth6tS9rF/vAKgA\nmSQl/cOyZV2KdYxJk9rz++/3iYi4RoMGbVBXVyc7O5uUlLxKk6mpRS+zLG4yMzNJT1fP89nr1/mz\nLCWFmpo6V65cxMfHm9jYGMzNLQkOvkxAwAYyMtJJTEzE2NiERo0aA2Bv3wQAY2MTjI2ldgogza4+\nfx5NSMg17t4NZeDAPoA0WC1VqtQXO55PRSKR4OGxj1OnlNDQyGDcuKrUrWte7OP07NkHJydn0tPT\n32Q6LTAwKM/ChUvztX231DYn2w3g4NADB4f8dgnvliEXVq6b2xJBQEDg8xGCOQEBAYFPxMKiOnp6\nekREPKNp0xY0atSYDRvWI5FI8PML5MyZk2zeHIiLy2xGjx7H5s2BODj0wMtrAb/++rtsHUpKSjI7\ndmyhVau2JCYmEhi4EW/vlfj6+vDkSTgbN67n5s0QXFwmysbOESooKhKJ6J33ciW4PqdgPmW94enT\nJ6hQoRKVK1cptnncvq2BNJADUOT27ZKxZbCwqIaFxduSNXl5eeztXxIUlAqooaZ2l9atiy8j+LFo\naGjQokU4W7cmAxro6V2gU6cyJTpm7uyNmpoqa9f+w/nzZzh4cB8SiYRbt26yZs0GypQpy9q1vrx+\n/VbkRVFRSdZHzuuc9zlWCu3bd+B//xtWosdQ3KxdewIvrxZkZ5cFIDIyiMOHKxVrthjA09ON8PBH\nvH79mvbtO1Ctmlmx9l8QZ8/e5syZpxgbq9O1q73gLycgUAIIwZyAgMA3QXJyMocPH+CPP/ILduQQ\nFRUp8/r6Fsh5oDQwMERXVxexWIyhoRHZ2dJAK7ck+dq1K3nw4D7Pn0cRHx+PRCIGpN5nr169YsEC\nby5fvkhMzP1c3mcxyMmJ0NHRQVNTk3XrAgqdy4dwdKzC2bMHefq0LQoK0XTq9AJ1dfUP70jxnfdP\nWW946tQJGjVqXKzBXNmyKe+8Ty22vj+El9cfVKu2j+fPRdSvr83vvzf+YmMXxLJlXbGxOUhMjJhW\nrSrRoEHJWhfkZHjs7GpTsWJllJSUaNOmPRoamuzevQORCLS0tElNTeX48SO0aNG6SP2KRCJq1arL\npElj6datF7q6uiQmJpCamoa+vn5JHtJnc+fOa1kgB/DggSVRUZEyE/fiYsaMOcXa34fYseMCEybo\nER/vgIJCNDdv7mb27N++6BwEBH4GhGBOQEDgmyApKZHt24PeG8x9q+SWJNfU1CQ5OZnQ0P/Q1tYh\nMzMTX9/lmJqao6GhxZgxExg4sA9374ZSv35DtLW1CQ9/RGRkJLa2Ndm8OQA7uzpMmjQNJ6c+dOrU\nmR49ejNkiBPHjx+hefNWRRIqeJfatc3YtOkJhw5txshIk99++70kTsV7ad26MZ6eSwgM3ChT9Vy0\nyAMLi+q0b98BHx9vzp49jby8PHXr1qdp0+acPXua69ev4ee3hjlzPDE0/Pz1ZTNn1iUhwY9Hj7Sp\nWDGJ2bO/nPeagoICo0e3/WLjfQh5eXkGD27zxcZLSkoiIOAsCgpymJur4Ovrg5ycCAUFRcaNm8yp\nU8dxdOyOnl6pPDL3uSlIJGTHjq0yIZQxY4YhFktQUFBg7NiJ30QwFxS0iZ07t2JmZo6LS14LhmrV\n5BGJ4pBI9ACoUuUe+voNAdi8OYDff++czwj+e2DbtkTi46XBeFaWPvv3qzNrlkTIzgkIFDNCMCcg\nIPBNsGKFNxERz+jfvxd2drV58OABSUmJZGdnMWjQEOztm+ZpHxHxDBeXiUyYMA1NTU2ZOIiioiJ1\n6tRjwICCPZzeR1HsA/KKAuTfLicnR48ef7J48XySk5OJjo7EyKgihoZGREVFsnfvLlRUVElKSmTl\nyr9RV9fA0NAIb+9FzJ27gNat2xEQ4P/G2Ls6mZmZPH36hOnT57BgwTz8/NbmEyooKtWqVaRatYof\ntU8OYrEYDw83bt26QZkyZZk7dyEHD+5j9+7tZGZmYWRkhIvLbDIzs+jXrydbtuwGIC0tjT//7EpQ\n0C4kEgnLly/lyZPHDBs2iIkTp8rOZ2JiAqdPnyAgYCsgLT1VV9fA3r4JjRo1pmnTFp8074KoVMmA\nbds6I5EID5ZfksTERBwcDnLtWj8gi8aN1xEY6IeS0tuSSTMzc5kwSG5yr7OqWbNWHmXEd9dgtWxZ\ntGzel2THji14efnIrAly4+zcksjI3Zw9q4aGRjpjx1aRrWUNCtpE27a/fJfBnKJi9nvfCwgIFA9C\nMCcgIPBNMGTISMLCHrFuXQDZ2dlkZKSjpqZOfHw8gwf3zxPMPXkSzsyZU5k6dRYmJlUZNWqITBzk\n5MnjuLpO/6RgrijkLhOzs6tNVFQkIpFIZi9w7dpVjIwqsHLlOqKiIpk0aQy9e/fDzW0GqqqqVK1q\nikgkx6JFy9i/fw93795h9Ojx3L9/V+Z9VqdOPXx8lvLw4QMePnyAsXFVGjVqXKBQQVH53FLJ8PAw\nZs50Z+LEqUyfPpmTJ4/RrFkLfvvtDwBWrfJhz56ddOnSnWrVTAkOvoKdXW3OnTtNvXoNkZeX5/Xr\n1zg49ODIkUP07TuAhQs9ZOWT6uoaKCkpM3fubBo2bCwTvYCS894SArkvi7//2TeBnBygxOnTf7J7\n93G6dGn2Uf2sX7+aQ4f2o6OjK1N8ffDgHklJWmRlKZOdfQ8vL28g7w80ly5dkK3DMzQ0YsoU6Xey\na9eOtGrVlu3bg8jMzKRcOX0GDhyCoaERy5YtJi0tDW1tHaZOnUGpUqULVZZ1c5uJuroGd+/+x8uX\nLxk6dCTNmrVk/nx3IiMjGDt2BG3atOf06ZO8fp2BsrIykyfPoGLFSkyf/is+Pt5cunSe1avlePGi\nExKJhNjYGEaOHIyOju5HCR59CwweXIWQkD08ftwCLa3bODkpCd85AYESQAjmBAQEvglyP7BLJBJW\nrFjGjRvXkZMTERsbw6tXcQC8evWKyZPH4e6+gEqVKpOamsqtW2/FQaKiosjISKd//17UqVMPiQQu\nXjyHSCTC0XEALVu2lmWI3v08N3fu3Gb+fHfmzPGkfPnCpdo/R5K8IO+z8PDHZGTI4+3ti4qKCsHB\n99iy5REHD+5hxIgGlCnzddT5RCKRLBNoZmZOVFQkDx8+YNUqH1JSkklNTaNevQYAtGjRmmPHDmNn\nV5sjRw7RpUs3UlNTEYvFrF3rS1xcHDExz8nMzJKdW3l5eVat8uPKlUucOHGUbds2yx5ei/IA+LHB\n6v79e6hTpz6lS5f+lNMh8AnIyYmA3IF5NvLy7/eACw29w4EDexk9ehxr1qwkOTmJ69eD8fPbRGZm\nJk5OvdHXN+DQoaNERMwjObktVas24sqV29SuXZ1jxw7TqlVb4uPj8fdfi5fXcpSVVdi4cT3//vsP\n/foNRCQSER//ihYt2mBqasa9e6HUr9+AceNGMm/eIrS1dTh69BC+vsuZPHn6e5Vl4+Je4uOzlvDw\nMCZNGkOzZi0ZP34Kly5dwNt7JQoKCvTo0Rt5eXkuX76Ir+/fzJnjya5d23n+PJr16wORk5MjMTER\nLS0t/v03AG/vlWhplYxIT0lSp445e/aU5syZI1hYVMDSstnXnpKAwA+JEMwJCAh8cxw6tJ+EhHjW\nrt2IvLw8Dg6/kZEhVbXT0NCgXDkDbty4RqVKlZFIxGhovBUHiY6OYsKE0axbF8CJE0fZZKTsEgAA\nIABJREFUuXMbfn6biI9/xcCBjtja1uTmzRs8eHAv3+c53Lx5gyVLFjBv3iLKli33xY570aJDeHsb\nkZJiQs2ae5k6tRKjRmUSEeEASLhwYT07dvzyyXYCRS2VVFZWITIyguHDZ5CUlIyNjV2efuTk5MnO\nzsDdfTbz5i3ExKQq+/fv4dq1qwA0atQEX9/lJCYmcu9eKLVq1SE1NQUQsXTpCoYNG4Svrx/p6ek4\nOfXG2tqWtLQ00tPTaNCgEVZWNnTvLl3Tp6amRkpKyruH8tns27ebKlVMhGDuC9K3b2P27VvHpUuO\nQCatWgXSoUP39+5jbm6BubnUa1EkEhEVFUnjxs1QVFREUVGRRo0aExf3iqwsBaSPNPIkJrbB13cf\ntrZmnD9/lmHDRhMcfEUmLARSNVgrK2vZOL/88huuri68fp1BeHgYz59H8+jRQ0aPHgpIvzulSpUh\nLS2tUGVZkUhE48bSCoLKlasQFxeX73iSkpJwdZ1BRMTTPCqcV69eolOnrjKDcy0trY8/wd8g5cqV\npkuX5l97GgICPzRCMCcgIPBNoKamRmqqVFUwOTkZXV095OXlCQ6+QnR0lKydoqIi7u7zGTNmOKqq\nqrRu3Y7y5cvLxEHEYrFMzjwk5DqtW7dDJBKhq6uHra0dd+78x82bNwr8XF1dnfDwR8yf787ixX9T\nqtSXe9BPSIhn1SpNUlLqAXDtWl9cXecRETH5TQsR16//xrlz12jVqt4njfH06ZMil0p6eS2gV69e\nNGzYgvXrVxfYX1paKnp6pcjKyuLgwX2ywFdNTQ1zc0u8vObLDJ/V1TWQkxNx+/ZNmjdvRZ8+3dHR\n0cHMTCqPnpqawqRJY99cOwkjRowBoGXLNnh4uLFly7+4us57rwBKdnY2s2e7cO9eKJUrG+PiMouw\nsLB8pXIhIdcJDb3D7NnTUFZWZvToCWze/A9ubvM5ffoEM2dO5eDBk2RnZ9OnTzc2b95ZaGndq1ev\nWLhwLs+fRwMwcuRYrKxsWLNmJc+fRxMVFcnz59F069aTrl3ze3P9KERFRTJ27AjM/8/eWYdFlbZx\n+B6GlBIUMQETkEZsbF111bWwXQEDYy1s7Mbe1V0DXUEUY0WxVtfuTsDCVhqR7piZ749ZRhAwcY3v\n3Nfl5cw5b533zDDvc57n/T1mtQvM/+3bwaxZsxKJRIKZWW22bRvL/v1/c+3aEeLiXjBo0N/Ur9+A\nESPGcPLkcTZt2oCSkhgtLS3++GN9oX2sr1694sGDvRw9eph+/QYAoKKijNzjJwMkKCkl8fDhafr2\nPY+urq5C4t/BoT6zZy8ocvwmJiZ4e29l9+6/uHDhLKdPn6Rq1eqsW1dQgTUtLfWtyrIqKq/FkN4M\nD5bJZPz55zocHOri6bmMqKhIRo8eVmx5AQEBgfdBMOYEBAS+CnR1S2NlZcOAAb0wM6tNaOgLnJ17\nY2pqjrHxa1l6kUiEuro6S5b8hrv7CEqV0iwgDpKRkfGvF0hetrgF0pvH80L5ypY1ICcnm4cPQ2jY\n0PEzXW1h5OMunX9EiMXqQCZ5OdHU1aMwNCxdVPX3okKFSu8dKnnnTjAbNngRH59OkybN2bixcKLf\nwYOH4ubmQunSpbGwsFQY4yAXoZg500MhTpGUlEiZMmX5++/9xMW9QllZmQYNGuHiMlhRZ8MG30J9\nWFnZ4Oe3872uLzT0BR4eM7G0tMbTcy67d+/k3LnTeHquoHTpgqFyAQH+jBzpjqmpGbm5uTx69BCA\noKBAqlWrwf37d8nNzcXCwgqg2NC6lSuX0bNnX6ytbYmOjmbChFH4+fkDcuP599+9SEtLpW/f7nTt\n2gOxWPxe1/ItEhYWytSpsxTzv327H/v372HVqnVUrlyF+fNncfjwQX766UcOHVpXQOwGwNf3T1as\nWE3ZsmUVx/Ijk8lIS0tFV7c0S5euxM3NGRUVFVq1+gE1NSnKyuHo6m6ibNlUSpcuTc2apjx+/JCo\nqEhq17ZkxYrFRESEU6lSZTIyMnj1KpYqVeSCQPHxcVSoUIkGDRpx8uQx7t+/S2JiInfu3MbS0orc\n3FzCwkKpWrVagYdHH6osm5aWphBBOXTogOK4g0N99u0LwN7eAbFYrAizzPNMf4thlgICAv8NgjEn\nICDw1fA+eZDy9qBpaWmxYcNmxfE8cZCkpEQGDfoZAGtrW/bt20P79h1JSkoiKOgWI0eORSKRsG9f\nQKHjz549RUtLGw+PGYwd+wvq6hoFVPM+J4aG5Wne/DT//GMDqGFgcJ7Jkx3w9vbl5MmGqKkl4+IS\nhpVVx4/uI38KhXeFSuanfPnyqKu/TmDcp09/xesuXQqmkli8eD69evWjefNWnD17FYBXr2IZNWoo\n/fu70L17z7eOUSKRsHz5VqKjE3F2bo+NTU3Onz/L8+dP6d/fhY0bvShVSrPAGPIoV84QS0t56Fzb\ntj/i6+vN06dPcHcvGCqXR55Br6ysTKVKlXnx4jkhIffo3bsfgYG3kEol2NjYvjW07vr1q7x48Uxx\nPD09nYyMDEQiEY0aOaKsrIyubmn09PRJSIgvUs3we+HN+d+06U8qVqxE5cpVAPke0YCAnXTv3rNI\nsRsrKxsWLJhFy5ZtaNascGieSCSideu2iEQiRo8eSm5uLoaGhmhqaqKursK0aZmcP3+WlJQ4UlIy\nOXv2NOXLlyc8PIy6deszbdpsZs+eSnZ2DgBubiMUxtzz58+YNWsa2dnZxMW9Ytq0OSgpKbFy5TJS\nU1ORSHLp1asvVatWe6uybEG12/x7PUWIRCL69h3AggWz8PXd+O/DInmZTp26EBYWirNzH5SVlfnp\np65069aDn37qyvjxozAwKPfNCaAICAj8NwjGnICAwDfNzp0X2bUrBbFYypAhFWnZ0kbh4WvQoBE1\natTAxaUPIpGIESPGoKenT7NmLbh7N7jQ8efPnyESgZ6ePkuW/MqECaOZOnUW5uYWn/06RCIRGzZ0\nZ+3a/SQkQPv2xtSvb06zZtaEhoaioVEeQ0ObEu+3uFBJKysbDh48SMOGLTh69PB7tzd58vRCx3R0\ndLG1Hcy5c2Kys8/Tp0/RHk+ZTMYvv+zi+HE91NTiOX48mXXr7uHo2BRHx6bA28VQ8p+TyWRoamoW\nGSpXVHkbGzsuXTqPWKxMnTr1OHx4FlKpjF9+GYNUKnlLaJ2M9et9C4TX5aGsnN94ViI39/uWZn9z\n/rW0tElOTipwDIoXu5kwwYN79+5w6dIFBg36mY0btxTZT58+PzNwoBtz5kzn3r27VK9eg3LlyuHs\nPIBHj+7g5jaYunUbFKpnb+9Q4AEQyI3vKVPmU7myIb6+2wvV+eOP9YWOVahQsUhlWQ+PmQXmIE/5\nFsDffx8AlpZWRYohicViRo1yZ9Qod0D+4EEmk9G9ey+6d3/7vkIBAYH/bwRjTkBA4Jvl/Pk7TJtW\nnqQkeRLm+/dPsG9fZCEP34gRYwrVHTFiTKHj+fNXGRqWZ8uW9wvvKylUVVUZM6ZdgWNKSkqYmJiU\nSPtFGULFhUqOGTOBhQtnsW6dF46OzYqsm5GRwcyZU4iNjUUqleDsPJg9e/wZNWocpqZmtGnThB49\n+rBjxz4yM9N49uwku3encOGCB/Hxj4iNjUFNTZ3SpfWQSHJp2NCRmzcvYmgYjkwmJjv7Bl5e1iQm\nPuHBg/uK9A/FERMTrQiLO3bsMBYWlhw4sLfIUDl5+NrrUD4bGzvmzZvJjz92onTp0iQlJZGYmEC1\natUBig2tq1u3Af7+O+jbV+4NfvToITVr1vroe/Qt8+b8m5mZs29fgCK08ciRQ9jZ1SlW7EaeW9GS\n2rUtuXz5Ai9fvizQvkwm4/z5M4SGvuDZsye8ePGcfv0GYGJSTVGmXr2GBATsws7OAWVlZUJDX1Cu\nnCHq6oXztD19Gs6gQbe4e9cRff3HTJ36kAEDmhQq9y4OHbrB0qXRJCerU69ePKtWdSnSuC+O/AnF\np0+fy+TJezh+XBdV1RyGDtXA1bXZuxt5C5+alkRAQODrRjDmBAQEvlkuXw4nKamH4n1kZFPOnz+A\nsXHFj2rv2LFb7N37ElXVHMaOrYOxcYWSGuoX580UCm8Llcwrv2PHDmJjUwCKTOR85cpFypYtx9Kl\nKwH53qe9e3cpzmdmZmJhYUliogGqquvR1d1JfPxw7t27jZ1dNcqUKYOpqTmuroM5fvwoXl6rSUmZ\nQ05OJnp63iQkuFCuXCYi0buFIUQiEUZGxuzZs5NFi+ZiYlINJ6fe1KvXsMhQuR9/7MSyZZ6oq6uz\nbp0PtWtbkJiYgI2NXNW0Ro2ainQYQLGhdWPHTmDFisU4O/dBIpFga2vPhAlT/h3TO4f9XfHm/Pfq\n1Q8LCytmzJiMRCLB3NyCLl2cSExMxMOjsNjNmjUrCQ8PQyaT4eBQjxo1anLr1g3FPIpEIqpXr0l4\neBjZ2TlMnOhBx45dFLkeQR6uGBUVyaBB/ZHJZOjp6bNw4dIix/vrr4HcvdsXgPh4I1av3kX//lKF\nouT7kJGRwaxZibx4IRe3CQvLxMRkH5Mn//jebeRPKO7jcxJf307IZPoAeHpeoGXLMIyNq7x3ewIC\nAv9fiGRfiXxS3oJB4PvDwEBbuL/fMV/y/v7992WGD69FVpYxALq6V9m7VwULixof3NbFi/cYNAji\n4uRKkZaWWzlwoBWampolOuavHX//S5w7l4yeXg5Ll/5Eerq02LJhYaGMGzeSli3b0KhRE2xsbBk1\naqhCWKRly0acPHmRJk38yM7+i/R0R2Ji5mNqaomzszNBQbcYOvQXLC2t2bzZmz//9EJLqxzx8dmI\nRNmoqNTBz288d+/eICTkHu7uk/D2Xo+GRqki98wJfBgl+d39Fr0/Q4YcZd++7or3hoaHuHGjPqqq\nqu/dRkREOA0aZJKV9Tq1Sb9+u/j117bvVX/p0oUcOnQAIyNj2rfvyM6dRwgLkyKVahATM5fs7LIM\nGTIPS0tTxWf+5597snTpKmQyKRMmjMba2q5AuhE1NTViYl4wadIURCIR9erV5/Lli9/UvRF4O8K6\n6vvFwED7g+u8/+MnAQEBga+Mjh0bMGbMVczMArCw8GfGjNiPMuQAjh8PVRhyAHfutOLWrfslNdRv\ngh07LjBhggk7djixdm1Pevb0f2v5KlWM8PbeSvXqNdiwYQ0+PhsKnBeL5cEfw4YZIhanIxa/xN7e\nF1XV1z89efvKlJREaGhocOjQAVxdu1O3ri2HDs3CyOjb8o7GxSUwbNgefvrpGO7ue8nIyPiodiZO\nHENaWiqpqans2fPa23nz5nUmTXIvkbFevXqVO3eCS6QteL/k7p+TR49CWb36Hw4cuPBe5du310ZH\nJ+/602jaNOqDDDmQh2PXrv16DlVVX+Dg8P55ICdOnErZsgb8/rsXUVGRWFmZkpg4l1ev3ClffjI1\napylcuWCojn55zk8PIzu3XuyZctOtLS0OXPmJAAeHh6MGzeZTZuKTqEgICDw/SCEWQoICHzTTJjQ\njgkTPr0dAwMlIB2QL8S0tZ9TuXK5T2/4G+L06TQyMvL2e4m5fNmYlJRktLWLTmD86tUrtLW1+eGH\n9mhqavH33/sKnM/KygSgV68W+PrOw9FRyuzZ7XByWs39+3cBkEolpKXJE5Nv2LCOhIQEVFVFhIbe\nJzU1DS0t7QJpJIoLJsmvcrlxoxc2NnY4ONT7xBn5cMaNO8k//zgDIi5fzkUk2s6KFV0+uJ280NWo\nqEj27PGna1d5KGx8fByBgYUVRz+GK1euIJMpKxQoP4U3w3j/ay5fvsfw4clERPRERSWSa9f2M3fu\nT2+t061bQ7S1b3H2rD+GhiKGD+/+1vJFoayszLp19Vm8eBupqeo0bSqmX7+WH9yOTCbj9u0gFixY\nio3NC/bvT+H580iWLDHkzp2nxdYrKt1Iaqr8IYCNjS0Abdt24PLlix88JgEBgW8DwTMnICAgAAwZ\n0pKuXbehp3eCChX2MW5cNCYmRl96WP8pOjpZyBMvy9HTS6BUqeLDTJ8+fYybmwuurn3ZtOlPnJ0H\nFTifl85AWVmZFi1aExh4g0mTxlKvXgOioiK5f/8e8+bN5Pnz51SpYoyOjg7jxv3CwYP7iY+Px919\nBCdOHEMkEim8EfLXhceS31sxaNDQL2LIATx9qkue3Dwo8/hx0fO3bdtmdu2SGz+rVi1nzBj5nsQb\nN64xZ850evT4iaSkRNat+52IiHBcXfuyZs1KQIRUKmX69Mn06+fE3LkzFG1ev36VgQP74ezcG0/P\nueTkyCX4nZw6KVQlQ0LuMWrUUKKjo/jrr7/YuXMbrq59CQoKLHKc/v476N+/B/PmzSjy/KFDB/j1\n1yWA3KDevt3vQ6arEHv37ubw4YMfXG/z5lAiItoAkJNTkYAAXbKyst5Zr00bO+bNa8fIkW0/Ogdg\n1aqVWLeuE35+bXBz+3BDLj8ymYxu3RqyadMP6OurY2lZDbFYjEz2OtxZvtdQTuF0I4UVU7+S3TQC\nAgKfCcEzJyAgIIDc4PDy6kVKSjIqKqpFqt9970yZ4sjDh94EBlpQpkw0c+YYvnWBW69eA+rVKygB\nn5ckHFAsQG/evE5ERDj16jXk2bMnlCtnqEgYff/+XVauXE5qaiqGhhVYtWodISH32LFjK0uW/Mqq\nVctRU1NnzBi5+/XUqeMsXSqXhff13cjhwwfR09OnXDlDzMzMAViwYDaNGzehefNWODl1on37jly4\ncA6JJJd58xZhZGRCQkICc+ZMIy7uFZaW1ly7dgVvb79PTs5cqVIKDx4oZoBKlQonvwawsbFnxw4/\nnJx6ExJyn9zcXHJzcwkODsTW1p47d4IRiUQMHz6aZ8+eKtIiHD9+hKysLKRS+dxevnyR7dv9CAy8\nwaNHD1m1ah1RURF4es5nz55d9OzZp8jwx/LlK9C7d29kMjG9exe//zC/OEdRFJ9X7ePo0uXDvWPy\nvgu+V1KSffGwzw/F2tqOo0f/wcVlMDdvXqd0aT1KldKkQoWKXLhwDoAHD0KIiop8aztaWlpoa2sT\nHByItbUtR4/+818MX0BA4AsheOYEBAQE8qGtrfNVG3Il4f0oDn19PQICnLhypSwXLjSmX7/Gn9ji\n68X048cPGTt2An5+/kRGRnD7dhA5OTlMnTqJJ0/qcOHCTEJCunL16pN/a8iYPHkPGzaks3JlFr/8\nshOpVKpYoIeE3OfkyWNs2rSdZctWEhJy73Wvb3jySpfWw9vbjy5dnBRz5+OzHgeHemzZspPmzVsR\nExP9idcqZ/HiBrRqtQVz87106LAZT8+iPTWmpmY8eHCf9PQ0VFVVsbS0IiTkPkFBtxSKmlC0V0Um\nk9G3789s3bqL0qX1ePDgPk+fyo3kypWrcPDgAbp06UZQ0M13jvdtTpulSxcSGRnB+PGj2LHDDw+P\n8Tg792HoUFeePHn81nYfPXqAm5sLzs59mDp1IikpKSQkxDNo0OsUDk2a1OXlyxgAevXqQlZWZoHP\n98iRbqxd+ztDhjjTp083hfcwMzOTGTOm0L9/T6ZOnYibmwutW0OVKv8AMtTUXtCzZ9oH73/7csg/\nrwMHuvHgQQjOzn1Yv34N06fPBqBZs5akpCTz8889CQjYSZUqxq9rvmGw5r339PRkxYoluLr2LbKc\ngIDA94PgmRMQEBD4hvjcizIlJSUMDQ1LvF1zcwuFd6dGjVpERUVSqpQmKSmqBAfLpfwfPmzIkiXb\nmT+/PK9eJXL4cEt0dJKRyUqxa1d3Gjc+9W9rMoKDb9G0aQvU1NQANRo3blps382ayQ2qWrXMFAIR\nt28H4em5HID69RsWuy/wQzE2rsD27e/eI6esrEyFCpU4dOgAVlY2VK9eg5s3rxEREYGJSdW31lVV\nVVPsczMxMSE09AWNGzfh4sXzpKSkcPfuHTp06MTDhyGAPCG1VCq32rKysott900mTpzK1auX+f13\nLzZu9MLU1BxPz+XcvHmd+fNn4uOzrZCxmffxnD9/FuPGTcbGxo6NG73w8VnP6NHjyc7OIj09jeDg\nW5iZ1SYw8BbW1jbo6emjpqZeIIxWJJKHlG7Y4MulSxfw8VnPb7+tISDAH11dXfz8dvL06RNcXfsy\nfrwJu3frcOzYLkxM9GnTpsN7X+eXJi+hOICn57JC59XU1Fix4o8i6xaXbsTCwqKA+MmIEaNLYqgC\nAgJfIYJnTkBAQOArx9d3I336dGPEiMGEhr4AYNSooYSEyNU2ExMT6dFDLvYgkUhYvXolQ4YMwNm5\nD/v2BXyxcedHReW1l0QsVkIikSASgURS8GcoIUG+zy4zM4fc3PKAGJACusTF5eTbL/SmUVu8iylv\nX1Fev4oaX3gvkY2NLdu3+2Fra4+NjR179+6mVq2CCcdLlSqlSOSeR357XiaTGz29evXj5csYdu/e\nQcuWrTl69DC2tvaAPKQyz3N55swJRV1NTU3S09PeOc48cY62beW50+ztHUhKSiq2bp4KZ56HsV27\nDgQG3gLA0tKG4OAggoIC+flnV4KCbhIcHFjAG5mfZs1aAHJPZnR0FCA3xFu1+gGAatWqU726XADE\nxKQiQ4a0o02bL7Nf8mtAJpNx9ux1AgJOv9eeQQEBgW8fwZgTEBAQ+Ip5Vzjhm/z99z60tLTYsGEz\nGzb4cuDA3nfusflSGBmZoKKSjIbGWQBEojgcHOSJug0N9TA3DyAnpxJqavcwMTmAlVWpf69FhK2t\nHWfPyhes6elpXLhw/oP6trKy4eTJYwBcvXqZlJTkEr2298HGxo74+DgsLa3+9UypFTJqdHVLY2Vl\nw4ABvVizZhUgIisrizt3bgMQFvaCKlWMqFChIqam5mzatJGzZ08hFosVyeBdXd1YuXIZgwcPQCxW\nVnxuWrRowdmzp3F17UtwcNECKPkpbPx+uJfY1taOoKBbxMRE06RJMx49evhWYy7vIcCb4h5f2hD/\nGpHJZIwe7U/PntXp3t2WHj32kppa9J5NAQGB7wchzFJAQEDgK+ZDwgkBrl27zJMnjzl9Wu6BSUtL\nIzw8jAoVKv4Hoy1IQXGMwueVlZVZufI3PDxmkJqag7q6MgsW+PLkySNUVVXw9bVh3bqr3LnzgFKl\ngrl82U6xX6hWLTNatWqDi0sf9PT0qV3b4n1GpBiTq6sbs2dP48iRQ1hYWKOvX+atyp2fgzp16nLq\n1CXF++3bX3tR/f33K17PmjVf8To6OgpjYxP27NnJokVzMTGphofHTAB69OjNrl1/sW6dd4F+5B7A\nwh5aExMTfH23v9dYixbnKJhPTSaTIZOBpqYW2to6BAUFYmNjy+HDB7Gzq/PvWOzw8lqNnV0dRCIR\nOjo6XLp0gWHDRuVr5+1jkRvix7G3d+DZs6c8ffr2/XtfA6mpqRw7dliRYuJzcPVqMP7+LZBK5Sq8\nly+7sn79LsaN+/Gz9SkgIPDlEYw5AQEBga+aor0f8n1Qck9FdnbBcKpx4yZRt26Doqr9pxw9egaQ\nh+XZ2zsojru7T1K8Nje3YO/egoaGnV0dxeJ/0aIuQNF70AYMGMiAAQMLHZ86dZbidX6jyMzMnFWr\n1gFyxb8VK35HLBZz504wDx7cQ1n56/9JLF++Alu37ipwLCbmJbdvP+XKlct06vT2/Xo5OTns2XMO\niUTK0KHvs8h/Lc7h6TkXZ+c+aGhoKMQ5iksbMW3abJYt8yQyMgI9PT3WrNmoGD+gCAG1sbHj1atX\naGlpve6xWIefiI0bvVBVVSUxMYH+/XtibGxM1arVCtT/GKRSKUpK8mClkSPdGDnSXaGOWhKkpCQX\nyBf4OUhPz0Qqzf9AQkx2tiB8IiDwvSOSfWSswuLFizl9+jQqKioYGRnh6emJtrY2AF5eXuzevRsl\nJSWmT5+Oo6PjO9uLjU35mGEIfAMYGGgL9/c7Rri/n5eHD0NYsGAO69dvQiLJZeDAn+ncuRuhoc8x\nNTWjSxcndu7chr//Dvz997N//x4uXbrAvHmLUFZWJjT0BeXKGX6UQuf3eG/T0tJYuvQUL1+mEB29\nEx0dDVRUlBk/3qNEF+//FYcO3WDKlBxUVX9HRSWXuXMn0aZNnSLL5uTk0L+/P6dO9QfEtGixHV/f\njp9VvdXbez0aGqUKiHN8anvq6ho4OfVCVVWViIhwxo79he3bdxdrjEdFRTJ+/CjMzGrz8GEIJibV\nmDFjDv369aBVqx+4du0K/foNQFtbB2/v9Tx58hgLC0s8PZejoaHB2rW/c+HCOcRiMfXqNeCXX8aQ\nkJDA8uWeChXU0aPHY2Vlw8aNXsTERBMVFUlMTDQ9e/bByak3s2Z5cP78WYyMjKlbt8FnESTJycmh\nT59dnD3rCqhQs+Yutm+3xsioQon3JfBl+R7/NgvIMTDQ/uA6H/0Y0tHRkYkTJ6KkpMSyZcvw8vJi\nwoQJPH78mEOHDnHw4EFiYmJwdXXlyJEjiideAgICAv/PtGnThGPHzr13+XPnzmBgYFAgnFAkkivX\nzZjhwf79e2jY0JE8D16nTl2Iiopk0KD+yGQy9PT0Wbhw6We6mm8LmUzGwIEHOHVqICBGS6sRy5dH\n0bXrl/difixr1sQQHd0LkCfMXrfuL9q0Kbrs7t1nOXXqZ0AeHnnqVH/8/PYyeHC7Eh3Tm/n/TE3N\niYgIZ8WKJSQmJqCurs7kydPQ1y+Li0sfdu06AEBGRgb9+jnh77+f6OioQuWNjEzIzs4mKOgZ/v49\nUFMTExv7En19fWbO9MDDYyba2tqMHOlGzZqmBAbeQCKRMGTIcMLCQhk/fgrKyspcuHCOXr26IpFI\n0NUtzdq1fzJ79jSuXr2Cg0M9qlathrFxVf76ayvduvXg3LnTiryIaWnyPWgrVy6jZ8++WFvbEh0d\nzYQJo/Dz8wcgLCyUqVNnMWXKOHx8NtC1a49C+QJLkvyeRD+/rmzYsAdlZXU6drShSpXyJdZPVFQk\nkye7s3nzXyXWpoCAwKfz0cZc48av8w/Z2Nhw5MgRAE6cOEGHDh1QUVGhcuXKGBntZbufAAAgAElE\nQVQZERwcjK2t7aePVkBAQOCb58PCnkQiEXXq1GPZslWFzuXf7zRkyHBAvtjs3Lkbbm4jhNxSbxAX\nF8e1axbIFTIhNdWSkycf0LXrlx3Xp5CZqVLgfVaWSjElITdXSt61y1FCIilZIZH8gj1yT3J/TE3N\nWbJkIRMnelC5chXu3r3D8uWLWblyLTVr1uLmzevY2ztw8eI56tdvhFgsZsmSBUycOLVA+XnzFrNz\n5yPCwxuRmLgUC4vWLF/+G/b2DgXSH4hEIrKyMvHx2UZQ0C0WLZpHuXKGXL9+FQeHerRr14Ht27dw\n9eplHB2bsmfPLjIzM9HQUCcsLJTQ0OckJiZQp05dNDW1UFVVw9NzLo0aNaFx4yYAXL9+lRcvnimu\nOz09nYyMDEQiEY0aOaKsrIxYLEZPT5+EhPjPKtiSP9RVXV2dUaPaC54bAYH/I0pkg8Du3bvp0EGe\n0+Xly5fY2NgozpUvX56YmJiS6EZAQEDgu2Lbts2cOnWc7OwcmjZtzqBBQ4GiPRvvw9q1J/njD1VS\nU8vQqNEpvL27oqGh8Tkv4ZtCS0sLXd2XvBb4k6Kt/W3Jtw8fPpC1a18LnLRrJyEkJJzs7Mqoqz+j\nfXvYuXMbnTt3Q02tYPikk1MT/P03c+mSKyCiQYOt9OtXjBvvIylKsCc7O4s7d4KYMWOyolxOTi4A\nLVu24eTJY9jbO3D8+FG6d+9Jeno6t28HFyq/adNFIiPtADFKShLS05WJjMzE3l6e/mDGjCmK8q1b\ntwXke/IyMtJRUhJz9eplLlw4S1ZWFomJiYB8L1tQUCB2dnXQ1S3N7NkLGDiwP5MnT8fU1AyADRt8\nuX79KqdPnyAgYCcrV64FZKxf74uKSmHjWVlZfkwikRAX94qRI92oVKkKMpkMH58NXLx4jqysLCwt\nrZk0aRoA/v472LcvALFYjIlJVebMWUhGRga//rqEZ8+eIpHkYmtbh9u3g0hLSyUyMgIDg3IkJydh\nZGRCZmYmP//ck7lzF1G+fAVcXEYRF5eARJLLkCHDcXRspgg3tbS05vbtIMzMatO+fUd8fNaTkJDI\nrFnzMDe3YONGLyIjw4mIiCAxMZF+/QYU2ospkUhYt+4PAgNvkJ2dQ7duPejcudunfXgEBAQ+irca\nc66urrx69arQcXd3d1q2lCdhXbt2LSoqKnTq1KnYdoSnwwICAgIFuXr1MuHhYWzYsBmpVMqUKeMJ\nCrqFmpp6Ic/G++zlio2N5bfftElIkP9tPnHCjpUrdzNlSuHkyYcOHeDBg/u4u0+id++utG37I66u\nQ0r8Gr821NXVGT9enWXLDhAfX4E6dQKZPLlkQww/N/kNOYAJE9phYnKB+/cvYW1dms6d29Cjx0+0\nbftjIWNOXV2dHTs6s3nzHqRSGePGdSMjo6Q9RoV/72UyGVpa2kWGGDZu3JT169eQnJzMw4ch1KlT\nl/T0NLS1C5dfterwR48qNvYl6uoaLF68gq1bfTExqcru3TupUkWu/GhsXJV9+wKIiAgHICsrk7Cw\nUMqWNSAzMwMTk6rcvRtMQkICAHXrNsDffwd9+/4MwKNHD6lZ83WOwJ07t/HixXMqVqzEb7+txcvr\nD+7du42jYzNOnTrO5s1/MW/eTC5cOEfjxk3YutWXXbsOoKysrAjl3LzZGweHekydOou7d+8wZsxw\n9u07zNatm9i+3Y9Bg4YSHBzIgQN72bVrB23b/kjVqtWQSCT88ccfZGTISExMZNgwVxwdmwEQHh7G\n/PlL8PCYyeDBAzhx4ihr13pz/vwZNm/2USQtf/r0CV5em8jISMfVtR+NGhXUPsifAiU7O5sRIwZT\nr16DL6KaKyDw/85bjTkfH5+3Vg4ICODMmTP4+voqjhkaGhIdHa14Hx0djaGh4TsH8jEb/gS+HYT7\n+30j3N/3RySSz9edOze5ceMqQ4bIF4MZGRkkJr4kLS2N9u3bUblyWQDatGmNpqbaO+c4NjaSpKRK\n+Y6okJ1dCgMD7QJKfQDa2upoaKhiYKBNxYoV6NChbbHtl9S9bdmyJQEBcs/DgQMH6Nu3LwBXrlzB\nx8eHdevWlUg/RREeHs7w4cM5cOAA7u7tcHNLIzExkQoV7L+5/dx2dnbcunWLK1eu8Mcff6Cnp8ej\nR4+wsLBg8OBlbN68mVevYnF3H4G+vj6+vr78/fffeHl5AdCsWTOmT5+gaO8TRSAL0aKFI1OmTMHd\nfRQ5OTlcuXKBXr16YWRUhRs3LtCuXTtkMhkPHjzAzMwM0MbGxpp1636jdetWlCunA+gUWX7ChLbs\n3z+OsLAGSKXKaGpKqV1bHwMDbXbsOE7jxg0xMNBGRUXMxYunadu2BdevX0dHRwcdHR3EYjHDhrnS\noEEDhgxxZefObZQpo4WjY0MCA6+yZMlipk+fyKNHj1i8eB4eHh5UqVKO8eMnkJqaSmRkJPPmzcPA\nQJt582Yzd+5cBg3qh0QioW7dujRqNBtNTTU0NdVJTVVDR0cHLS1NypTRpH//Pty+HcjkyWOJi4tj\n4MC+JCUlYWVVGwMDbczNzfD0nEXr1q1p3bo1pUqV4ubNq1y5cgF//23Ex8eTnZ3F8OGuREdHI5VK\n8fffRk5ODiKRiNDQZwwY0A83twHk5OQglUoRi8WIxWIiIsJZt+43rly5QpkyZfDwGEfXrl2Jjo4k\nOTmRlJRYHBxs8PX9EwMDbbS01Gnb9gcqVSoDlKFRo4aEhz/BzMwMZWUxBgbaBAff4MGDB5w/fxrI\nSxQfh4GBacl+oASKRfjdFcjjo8Msz549y8aNG9myZcu/4RRyWrZsyfjx43FxcSEmJoYXL15gbW39\nzvaE2O7vFyF2//tGuL8fhkwm/3uXnp5N377OXL58kZcvYxCJlEhKSiczM4sHDx7TqVNnpFIpKSlJ\nODn14cWLGBYunMPFi+eoUsWYgQPdiIgI5+7d29y5E0xychI1ayqTlNSC6OhfqVHDmsDAslhbz6Bc\nOQPq12/ElSuX0NTUJDk5mZSUFEJDI3j69Bnbt/szZowRI0e6YWFhxc2b10lNTWHRIk+MjU3JzMxk\nwYLZPHv2FCMjY169imXcuMkfpP4olcqIi0slLS2NLVv8aNNGHs2RmJhOVlbuZ/0MxcenkZsrKdCH\nqqoOcXFpn63P9+FjJPDzPj+Jiencu3cPPz9/ypQpy/Dhgzh58jzt23fF29uH335bi46OLvfvP2XJ\nkqV4e/uhpaXNuHEjCQg4QJMmzT/Ld9fAoArNmrWiQ4eO6OnpU6uWOWlpWUydOodlyxbx+++ryc3N\npXXrHyhTRv7wwdGxBTNnevD7716K8RRV3sVlME5O1Xnw4A729gdxcFjG4sVLC6Q/iI1NISdHglQq\nol279kREhDN3rie///4r9eo1RCqVcOdOMF26dKVmTVNycsS0bt2RI0fGMGzYMOrVa4Cqqjrjxk1W\nhFmuWeNNVFQkEyeO4fz5y6xb54WBQTk8PZfz6lUsK1Ys4cqVa9jY2ODt7YeRkQmrVi1HJpPh7b2N\nkJD7zJw5lZSUVCSSXCpVqoy39za8vdcTH59MbGwKCxYsJzDwJhcunGP16jX4+u4gN1fKnDmLqFLF\niN27/+LVq1cMHfoL7u6/cP36VdzdJ1O+fEW6dm3Py5cvmTRpMr//7kVwcCC+vn/SrVtPevXqR7Nm\n9RGJVFm4cDmTJ7uTkZGBikopGjduilgsZs0aLwYMGEhWVjaxsSmkpWUhk8kU9yIzM4eUlKwC36Os\nrBzGjJlQKAWK8Fvw3yD87n6//KdqlvPnzycnJ4eBA+U5fmxtbZk9ezY1atSgffv2dOjQAbFYzKxZ\ns4QwSwEBAYE3qF+/ARs2rGP+/CWUK1eO8PAwJk92x919ImvWrGTz5r8oW7YsLi79EIlg06Y/0dTU\nonLlKvj6biclJYVHjx5w/fpV1NTUOHz4NO7uI8nOVkdHZxdXr2bRtKkjY8dO5MWL5wwY0IudO/dz\n/PhhduzYStu27enUqSsuLn0K5AmTSqVs2ODLpUsXWL16NUuWrCIgwB9dXV38/Hby9OkTXF37vvXv\nuofHBF6+jCE7O4sePfrw009yhRGZTMa6db8TERGOq2tf6tatT8OGjmRkpDN9+mSePXuCqak5M2fO\nA+QiE2vWrEQikWBmVpsJEzxQUVHByakT3t5+6OjoEhJyj9WrV/L7714kJCQwZ8404uJeYWlpzbVr\nV/D29gPkecQWL17AnTtBioV4/geRxfGmV7MkyS9c8TGYm1tQtqwBADVq1CIqKgorK5sCZe7fv4u9\nvQO6uqUBaNOmHYGBt2jSpPlH9/suisv/t3x5YREfgObNW3H27NUCxypUqFhk+WHDRhZ47+Xlo0h/\nkD/XXNu2HejRow+TJ7tTvXrNf0NsJ7/ZHABqamq4uAxmx46tLFhQvPJrWFgos2cvZPLkacyc6cGZ\nMyc5ePAAEyd6IBaLGTNmuELYRSaDlJQUxo3bwPPnf1OjRlXs7R348891iMVi0tPTOXXqOC1btkEm\nkxETE429vQPW1racOHGUjIwM6tVrwK5dO3B3n0SdOvUYN24UPXv2pXZtC27fDqJsWQNmz54KyENo\nZTIZlStX4dKlC5ibmxMcHEjNmqZIJBKFcEsezZq15MGD+1SsWIkbN64VOCeTyTh//gw//+xKRkY6\nt27dYPjwUWRnZyvK1KvXkICAXdjZOXxyChQBAYFP46ONuaNHjxZ7btiwYQwbNuxjmxYQEBD4bslb\nvNet24Dnz58zaFA/0tLSUFJSQklJzJ07tzExqcbkye7o6eljaWkFwI0b1xg5ciz3798BQFtbm5iY\nGCpUqEiZMmWZN28mxsbGqKqq4O7eFkfHady4cQ1X176kpqaioqJKZmYGd+7cViwgq1evgb5+mQLj\na9asBQCmpmZEREQAcPt2ED179gGgWrXqVK9e863X6OExEx0dHbKyMhkyxJnmzVsqrv1NifabN6/z\n6NGDAh6m27eDqFXLjIUL57Bq1ToqV67C/Pmz2LNnFz179inWAPLxWY+DQz3693fhypVL/P33PsW5\nohbiP/zQvkjDs02bJnTu3J3r168ybtwk7t27w6FDcvn8jh270LNnn0Iy7du2bSEzM4OBA90KeTin\nTJmJjY0tWVmZLFw4hydPHmNkZEJWVtYnqRyqqKgqXovFSkgkuYXKiESiN/r4fKqKJUVReeGmT59D\n//49ijTiAR4/fsiwYQNJTExESang56NChYqMGTOBSZPcWbLkV27duvGv5wzi4lKwsBiMiUlasQ8V\nQkLus3z5IpSUxKxZs4pp02ZhampGcHAQN29eY8CA3mhqliItLQ1VVfkDgkuXnpCbq8fx46Foa0ej\npVWWrl2dCA19waFDBxg/fhS1a1sCcjGRefNmkpaWikwmo0eP3mhpaeHiMphVq5bj7NwbqVSKnp4e\n48b9QkZGJllZWQwePABlZWWMjEzQ19fnwYP73Lx5nR9+aMfBg3uJiopCU1MLZWVlxf7JvO+Oqqpc\npEVJSQmJRFLgnEgkonr1mowePYzExERcXQdTpkxZoqIiFWWEFCgCAl8PJaJmKSAgICDwfhw9ekbx\nunr1GlSpYsyvv65GTU2NUaOGUrOmKaGhLxQLyTyOHZPn65RKXy/Gc3NzABnLlq3k1q0bbNniw4MH\n9xk9ehwikRILFy6jShUjzp07zZkzpzA2Nvm3ZvEL+jwDQUlJTG7ua+PgQ4wOf//tnDsnv86XL18S\nFhb21nYKe5giUVfXoGLFSlSuXAWA9u07EhCwU2FUFsXt20F4ei4HoH79hmhr6yjOVahQiRo15Eao\nqakZUVGRQNGGZ2ZmJhYWlowcOZaQkPv888/fbNjgi1Qqw83NGTs7e7S0CobC5Peyvenh9PFZz2+/\nrWHPnl1oaJTCz8+fJ08eM3Bgv88SuVKqlNyw0NHRxczMgt9+W0ZSUiJaWtocP34UJ6feJd5nSZOX\nq83S0hpPz7kEBPgXO1cymYwnTx6zfv1rwY6yZcsW8CTlZ8cOP8aPn4KX10P++acTV67ooa+/i4oV\n77FzZ4DioUJwcCC1a1vy229LmTjRg/nzZ9GhQyfWr1+DiUk1Tp06jo6ODgcPnmDNmpVcvnxRYdy/\neKFDfPxQkpOd0NAIIienF2pq6nTr1pM7d4JZu3ZjgTGtWfNnoXGqqakxceLUQsejoiLp2bMzixat\nwNLSikWL5lGxYiUiIyMwNCyPrm5prKys6NixC05Ovbl16waGhuXQ0dHF13cHPXr8BMDUqbMICbnH\n5csXqVChIr6+OxR9VK9ek+nT5xToN38ZqVSKm9sIhg79pbhbKCAg8B/xbe38FhAQEPiOyFPtU1NT\n4/nzZ9y+HcyxY1e5deuGwthITk4CoG7d+pw6dYLExHiSk5OIj4/jxYtnREdH8fjxQ2xs7JBKpchk\ncjEVsViJXbvkCy9zc0uuXbtCcnISVlbWnDp1ApFIxNOnj4mPj3vnOK2sbDh58jgAz5495enTx8WW\nvXnzOjduXMPLy4dNm7ZRs2YtsrPfLv9f2MMkKbRwl8lkimNisVhh1GZlZRcqVxR5ngiQG6p53gh/\n/+24uPRl6NCBCsNTSUmJ5s1bARAcHPiv1L46GhoaNGvWkqCgW0UaFvn7zu/hjI6OAiAoKJAffmgP\nyA35d3k4iyJ/v8XZgT/91JXx40cxZsxwypYty7BhIxk9ehiurn0xM6uNo2PTD+73v6ZcOUMsLeX7\n7du2/ZHbtwOLLSsSiWjSpBmqqqro6pbG3t6Be/fuFFveysqGlSuXc+nSfcRiCSAmI8MEZeVKlC1r\ngEgkokaNWkRHRxEa+pxnz54wd+4MwsPD2LzZm9jYWLKzs8jNzcXIyIRTp47Ttm0HZDIZjx8/AkBZ\nWYJIJEMq1f733xMAjh7955Pm5dGjF+zZc5by5SuyZ89O+vfvQWpqKr169WPq1FnMmDEZZ+feiMVi\nunRxypuhN2eswOuiPsvFfbYyMjJwdd2Jnd05mjc/xOHDtz7pegQEBD4dwTMnICAg8IWoX78Re/fu\npl+/HiQkKJOcbIWPTzuqVoVJk9wRi8Xo6+uzYsUfODsPYsWKxYjFynTu3I5KlapQu7YFhoYVGD58\nEFKplFKlStG/vzNaWlqoqqqSm5ubL0RLn6FDXdHU1EJDQ4MjR/4hNvalwiNWFHmLvG7dejB//iz6\n9++JsbExVatWK7A/KT9vGqh37xZcVJcqVYr09PR3zo2RkTFRUZFERIRTqVJljhw5hK2tPQDly1cg\nJOQeM2ZMLpD/Sm50HqNfP2euXr1MSkryW/vIb3jmeUazs7NQVVUr4GXLT55Rmd+gBLmUff6y+T2c\neYZjSZDn2bW3d8De3kFx3N19kuJ19+696N69l+J969ZtFXnXvhXyz6V8zpXeasQXrl/8s+r+/V1o\n1MiRfv18qFKlD+Hhcq+YsvLrOnkPFQCqVq3OrFnzmTJlnMIztWmT3LM2c+Y8li1bRGRkBNHRkZw/\nf4YaNWpSt646p08/ISHhJWJxW2Syvbi6nqNu3QYf7Y3dv/8qHh6qxMa6UqaMBb17pzJjxmsPfp06\ndfH23goUFMjw938dbpybm4uXl7fCa21mZs6qVQWVZAcOdCt2DIsWneDgQWdAmehomDPHn9atc1FW\nFpaTAgJfCuHbJyAgIPCFUFFRYdmyVdy//5BWrTTIza0NwL179WnV6i9mzHidI05DQ4Np02a/d9tH\nj5794PHk7T8CKF26NCdOnCA2NgWRSMT06XNQV1cnIiKcsWN/wdCwfJFt5Bmo/fv3oEoVY8Wevzxv\ngDwEzIYBA3rRoEFjGjZsXKQXQFVVVeFpkEgkmJtbKDwNrq5uLFo0l8zMLMRiZcXi2NXVjdmzp3Hk\nyCEsLKzR1y9DqVKapKWlFWmUvcvwBLCxsWXBgjn07++MVCrj3LnTzJgxDz09fYWXVF1dg4sXz9Ow\nYeO3zq+trR3Hjh3G3t6Bp08f8+TJo7eW/1SysrLw8TlFVhb07l0XQ8My7670lRATE82dO7extLTi\n2LHDWFvbkJ6eRkjIPRo0aMSZMycUZd9HsCM/ERHhVKtWg19+ac+qVS9RVb2CkdFzqlbVKVTWyMiE\nxMQE4uLi/lWYzCUsLBQXl0GcOnWc2NiXLF++ijVrVnH58gVcXAYDsGLFPCIjo3jwIBh7+5/Q1R2g\naHPEiNEfNScbN8YRG9sTgLi4Rnh776R79/evf/jwLebMiSE21pDatU+wYUNLDA3LftAYXr1SJf/S\n8eXL8iQlJVGmzLfz2RIQ+N4QjDkBAQGBL0xurgSpNP+fYxFSacnupfL3v8SmTUlIJCK6d1dlyJAW\n76wjkUgYPXoXp07poK29mrJlZejpaTJhwpRin8TnGaiF+3/tHZg1a36Bc3Z2dRSv83uYHjy4z48/\ndsLJqTerVi1n/PhRrFy5ltzcHMzMavPq1StUVFRITk5m6FBX5s1bxIoVv5OcnMzMmVNITU1l+PCB\njB49Hl/fHWzc6EVkZDiRkZGUL1+Bn37qxpIlC2nZshGqqmqYmFQFCnqFatUy48cfOzJkiDMAnTp1\nVSSHdnEZTIcOrbGxsVPULRp5e126OLFwoVzIw9jYBDOz2m+p82nk5OTQv38AZ864ACoEBGxn586G\nH7x4/1IYGRmzZ89OFi2ai4lJNbp27YG5uSWLFs3lzz+1sLOr80GCHfJy8v/9/bdz8+Z1RCIlWreu\nRLdulcjN1WfPnieFxqGsrMy8eYtZuXIZqany1AK9evWlatVqTJ06C0/PuYhEFOlxe/z4FTduJJCV\n9Yh27ep+8pxIJOIC73NzxcWULIxMJsPTM4InT+R7Ti9fbsKCBVtZtarzB42hbl019u4NJyenMiDD\nwuIR+vo276wnICDw+RDJPkVKqwQR8mV8vwj5UL5vhPv76UilUgYP/ou//+4HlKJWLX/8/GwwMalY\nIu3fu/eEbt0yiI9vCICm5gO8vV/SooXtW+v5+Z1j3LgmgFzso3Tps5w+bUjFiiUzrndx9+4dduzw\nY968RYwYMZjc3FzWrPmTLVt80Ncvw7Jlnixe/CuNGjmyZs0qcnNzCQy8QWRkJGXKlGHSpOn8+WcQ\nt2/vwMFhKDVrRnDt2hXWrPkTVVVVZs+eRrduPbC2tiU6OpoJE0bh5+f/QWNs06Ypx459uBf0c3P0\n6CX697cH8ow3GRMn+jNxYntFma/1u/umUui3yNat55g1y4jkZEvU1Z8yfvwtxoz54ZPa9PE5w9y5\nNUhLM6NUqYdMmXKPYcNaFVn2zXsrkUiwsztHdHQnxbH27Xfj6/vhY/LyOsHFixJ0dTOZNq3RN/OA\n4Hvia/3uCnw6/2meOQEBAQGBkkFJSYkNG3qybdsxkpNz6NbNgQoVit/L9qFcu/aI+PjX8VhpaaYE\nBd2mxTuccxERueQZcgCJiTV4/vzRf2bMmZqa8eDBfdLT01BVVcXMzJyQkPsEBd1i7NiJqKio0KiR\n479lzbl+/Qre3lvp2LENqqqqTJgwjYQEPcRiMVu2dKZJk3F07NgUVVX5frbr16/y4sUzRX/p6elk\nZmYWyJW1bdtmVFVVFd7BJ08es3LlWm7cuKZIfbB+/RouXjyPmpoaixYtR09Pn4SEBJYv9yQmJhoA\nS8sfiI8vS2rqecqUUSEqKpKYmGh69uzzWdQl1dSUEYkyef24Voqy8lfx7Pa9+Jrz0z56FMbs2bd4\n9UqT2rWTWLy4o+Izlcfu3RkkJ8tTD2RmVmPfvkDGjPm0fl1dm2FsHMitW7extS1Hq1ZFG3JFIRaL\nsbd/yaFDuYAyKirhNG78cUvAoUNbMXToR1UVEBD4DAjGnICAgMBXgFgs5uef339x9iE0aGBK2bKX\nePVKvqdLS+s+dnZF73nLT5s2lfnzz0CSkuQePHPzc1hb/3dKiMrKylSoUIlDhw5gZWVD9eo1uHnz\nGhEREZiYVEUsfv0TpqQkyic0ImP9el86dDhDaGhXRZm4ODVFvq385VRUVCgOGxt7duzww8mpNyEh\n98nNzSU3N5fg4EBsbe05fvwIlpbWuLmNYM2aVezfvwdn50GsXLmMnj37Ym1ty/z5f7F16188f36M\ncuUeUr36GXbv/ou0tFT69u1O1649EIvfP2TufWja1IHOnf9i797OgBb16m1nyJAfS7SPz8WbMvlf\nG+PHX+fyZfkeuFu3stDW3s3cuZ0KlJGrZL5GWblkRHBatrSlZcuPq7t2bScWLfInNlaVevXUcHH5\nyIYEBAS+KgRjTkBAQOA7x9S0KgsWXMbHxx+JRISTkzrNmjV7Z722be1ZuvQ4Bw/uRlU1m7FjrYtV\nsfxc2NjYsn27H1OnzqJateqsWrUCc/O37zWrW7cB/v47KF9e7lVUVQ0hO9sMLa3sIsv17fszAI8e\nPaBmTdMCZT7GOwgFvX5PnqQgEskQidLJzdUlJcUMZWVldHVL/+vFi3+rqujHIBKJWLeuJ926XSY1\nNYsOHTqhoaFRon38PyKVSnnxIr9QihrPnqkVKjd4sCEhIaeJiWmMnt4NXFw+PHSqpNHQ0GDOnI5f\nehgCAgIljGDMCQgICPwf0LVrA7p2fXe5N+nSpT5dury73OfCxsaOLVt8sLS0Qk1NHTU1NWxs7IA3\nc669fj127ARWrFhMbu4jatdeR1ZWDapUaUXDhpULKGfmlXN27oNEIsHW1p4JE6YU6P9TvYMqKip0\n6XKIixd75WuTfHWUyM0tudQF+VFSUqJdu0afpe3/V5SUlDA2TiYqKu9IFlWrFs6j2LatPaam4Vy4\ncAB7+2qYm79d6VRAQEDgYxGMOQEBAQGBr5Y6depy6tQlxfvt2wMUr/NyrgE0b95KkehbV7c0c+Z4\nvrPt9y33Kd7Bvn1/ZtSoSoSFrScsrBM6Og9xdCwsgS/w7bB8uQOzZ28lNrYUlpYpTJ/eochyJiaV\nMTGp/B+PTkBA4P8NwZgTEBAQEPi/4+nTcDZtCkYkkuHm5kClSobFlv0U7/xS3VsAACAASURBVGCe\n169bt9o0b16LwMByQk6ub5yaNauwdWuVLz0MAQEBAUBITSDwHyBI6H7fCPf3++VrubcfKlX/4sVz\nZs2aipKSEvPmLaJSpYLekcjIl/ToEcijR90BGbVrbycgwBF9fb3PMPqvl6/l/gqUPMK9/b4R7u/3\ny8ekJlD6DOMQEBAQEBD4Ypw9e5oWLVrh7e1XyJAD2LPnxr+GHICIe/d6sn//1c8+rri4eHbtOsWt\nW/ffu87IkW6EhLx/+fdh4sQxpKWlkpKSwp49uxTHb968zqRJ7iXal4CAgIDA50UIsxQQEBAQ+OqR\nSCTMnTuDhw9DMDGpxowZc3j27Bl//PErGRkZ6OqWZtq0WTx8GMKuXdtRUhJz8+Z1Vq5cy44dfhw6\ndACAjh27ULp0OZSVQ6hceQwZGbaoqwehojKAbds2c+rUcbKzc2jatDmDBpVcMq17954xePATHj9u\nj4bGY8aMOcq4ce9O2CwSiT4o55pUKkVJ6e3PaZcuXQlAUlISe/b407Wr03u3/zYkEkmJp1h4kzZt\nmnDs2LnP2oeAgIDAt4RgzAkICAgIfPWEhr7Aw2MmlpbWeHrOZffunZw7dxpPzxWULl2aEyeOsn79\nGjw8ZtK5c3dKlSpF7979CQm5zz///M2GDb5IpTLc3JyZPn0ubdse5OHDUGJj3WjZ0pQaNcpy5kww\nGzZsRiqVMmXKeIKCbin2xn0seSGiOjoDePy4N3p6GxGJMti58yCqqvcICrpFamoKU6bMxMbGlqys\nTBYunMOTJ48xMjIhK+u1UuLVq5fx9l5PdnY2lSpVZurUWWhoaODk1IlWrX7g2rUr9OvnTKtWbRR1\njhw5xK5df5Gbm0Pt2paMGzeZXr26sHHjFlavXkFERDiurn2pW7c+DRs6kpGRzvTpk3n27AmmpubM\nnDkPgJCQ+4UM5zJlyjJypBu1apkSHBxEmzZt6dWr3yfN17v5epOJCwgICHwJBGNOQEBAQOCz4+TU\nCW9vP3R0dD+qfrlyhlhaWgPQtu2P+Pp68/TpE9zdRwByj1SZMvJcbTKZjLzd4MHBgTRt2kKRLLxZ\ns5bcvh3IwoUdGT58L1u21KBq1aqsXr2Sa9eu4OraF4CMjEzCw8Pe25g7f/4sz58/pX9/lyLPSyR5\nP7eif8eohESSy4YNvsyfPwsfn/X89tsa9uzZhYZGKf7H3n0GNHW1ARz/BwhhJYg4UARFRBxMte5t\naaWOalUcxYWr1FG34sCtddVVd0VxK65XrVqte9Sq4N4DZYsDgQgEEvJ+SEmhYB1FcZzfp+Tm3nvO\nvWHkyTnnedauDeHu3Tv4+emCo2fPnrF6dRDz5i1CJjNh7dpVbNq0jm7deiKRSLC0LERQ0Nocbd6/\nH86hQwdYsiQIQ0NDZs+ezv79e/WjfUOHDuXGjZusXLke0E2zvH37JmvXhmBtXQR//x5cunSBSpVc\nmDt3JtOn/4SlZc7AWSKRoFar+eWX1a90nwACAoYSH/+Q9HQV7dp1pGXL1nh51aNdu46cOnUCmUzG\njz/OxsqqMDEx0UyYMIa0tFTq1Hl3BesFQRA+FCKYEwRB+Mj988Nz8+ZfM23aRG7evI5EIqFZs5b4\n+HRCqVRy4MA+WrduS1jYObZv38SkSTNfuZ29e3fz2Wc1KVKkSK7XXmeqYF6yH6/VajE3N8fBwZEl\nS4L+dd9/tqvVavXBjEIhp2zZsvrXfH278fXX37xR/+rWrU/dui8ONtq3L8Hx4yfIyACJJJXChdNp\n0kQ3zfLo0UNYW+vu2cWLF2jXrgMAjo7lcHR0AuDq1cvcv3+P777zAyAjQ42rq5v+/NlH47KEhp7h\n5s0b9OypK4qenp6OldXfSV7yyn9WsWJlfQHzcuXKExcXi4WFBeHhdxk4MHfgrGv75dNFswsICESh\nUKBSpdGrV1caNmxMWloaLi5u9O79PYsWzWfnzu107dqDefNm8c037fjyy6/Yti3ktdoRBEH4FIhg\nThAE4SP3zw/Pzs4Vefz4kT47pFKpBCA5Oek/raHas2cXDg6OzJ79Y66RlyxeXvXo0aNPjjVsPj4d\nCQ5ewbZtIdSuXY/Dh3/HxsaGpUtXIZPJuHPnNnFxsXTs+A116zZg9+4d+Pp2Y9euHVy5chkXF1fU\najWRkRE4OJTN0Sd3dw+mTJmAr29XMjO1HD9+hLFjJ+UIZAIChhIefpdHj+JRqzNo06Y9GzasYceO\nrSgUlpQr54SxsTGDBg3nxIljrF4dhFqdgUJhybhxk7GyKsyePbu4efM6gwYNZ8qU8ZibW3Dz5jXi\n4+PJzMykYUM3Fi48w+TJSwENGRkZhIff4/jxo6hUKuLiYpk0aWye9zWrr9Wq1WD8+Cl57mNqaprn\ndm/v5vTp0zfHtr17d7/wPZRKjfWPDQ0N9EXQXxQ4A5iY5N32i4SEbOD4cV2NwPj4eCIjI5FKpdSu\nXRcAZ+eKnDv3JwBXrlxi6tRZAHz5pTeLFy94rbYEQRA+diKYEwRB+Mj988NzRkYGMTHRzJ07k1q1\n6lK9ek0AlixZoF9DZWRkhFxukef6qVWrfuHkyWOoVCpcXNwYPnw0hw//zo0b15k4cQxSqZRly4IB\nrX7kJUtmpjbXGjZPzyp88YU3QUHLaNPGB41GTWTkA44ePcQXX3izaNE8bGxKUKlSZfbs2Ulmppa2\nbTtQvXot5s2bhVKpRKNR0759J30wlzUgV758Bb76qjm9enUFoEWL1jg5lSc2NkY/apcV7G7YsIaF\nC+exbVsIMTHRLFu2CgcHR374wR8np/KArubcsmWrANi1awfr1q2mX7+BuUYAnz59wuLFQdy9e5vu\n3b8lKSmRyMhryOUymjf/mrCwc9jZlaZFi1Zs27aZQoWsGDt2Eps2rePAgX1UqVKNe/fucPfubSQS\nCZUru/LTT9OJjo7C1rYUqampPH78CDs7+xe+71WrVmfkyCH4+HTCysqKpKREUlJS9K+bm5vneP4i\n9vZlePYs4aWB86sICztHaOhZli5diUwmo3//PqSnqzA0/PvjiIGBRB9ECoIgCP9OBHOCIAgfsbw+\nPKvVGQQHb+TPP0+xY8dWDh06QEBAIP7+AwgPv8fKles5fz6UUaOGsmbN5hzrp9zcPPjmGx+6desJ\nwKRJgZw8eZxGjT5n27YQypVzIiLiAX36dOfx43iSk5OJjIxEpVIxffoUMjM1mJtb0KePHzKZjOrV\na3Hx4nmio6OwsJBTrpxuWmHJkrbExsYQFhZKXFwcZcs6kpDwjIkTf2TevFnIZDKcnMrz88/Lcl2z\nn1/vHM/bt/82V2KOEiVKEhy8EcgKdo8AEoyNjfH2bk5ExAOcnJwBaNSoCZGREQDExz8kMHAkT58+\nISMjg5IlbYGcUxYlEgn16jUAwNHRCSMjI3r16oqpqRlKpZLz50NJS0v7x2iaLhhs1aotU6dOwNe3\nHaVLl6FChUoAFCpUiNGjxzN+/CjS0zMA6N37+38N5sqUcaBXL38GD+5LZqYWqVTKoEHD9W1ZWVnh\n6upOly7tqVmzDrVq1SGv2bBGRkZMmjT9hYHz60hJeY5cLkcmk3H/fjhXr1751/1dXd05eHA/X3zh\nzf79+167PUEQhI+dCOYEQRA+Ytk/PD94cJ+rV6/w7FkCGo2aBg0aY2dnz6RJgUDOgESr1eLm5pZr\n/ZSbmwdhYWdZv34NKlUaSUlJlC3rSJ069QAwNpZx48Z1tm37lUGD+nLnzm1SU1NIT0/H1dWNo0cP\nUaxYccaPn8KiRfO5fv0qJUuWRCKR5Ehrb2BgQEZGBosXz8fKyooVK9Zw8OB+tmzZmK/358cfV7Jr\n137S0nrx+eepyOX7KF26DA8e3M92L/7ef86cGXTs2Jk6depx/nwoQUG5g0kAqVSqf2xoaMSmTTsA\nePLkMadOnWDbts1/jXhWACSEhPwPAJlMxoQJU/M8Z5Uq1Vi+PHeikZCQnS+8viZNvHKtp8tqC2Dc\nuMk5XvP0rKp/rAv8dF4UOC9YsPSFbeelRo3a7NixFV/fdtjZlcbFxRV48TrHH34YyoQJY1i3Lpi6\ndRv857WXgiAIHxsRzAmCIHzE8vrw/OjRI/r3/w6tNhOA777rn+exxsa510+pVCp++mkGK1asoWjR\nYvpU+VksLQuRlpaGRqP+a/80IiIekJ6um5JpZGREePg9VKo0HBwc2bVrBwMGDCEqKipH21otJCY+\nIyLiPhkZGXTs2BpjYxkpKamYmprky72JjIxm7VoJRkZliYlpx7p1YTg6TqdFi9ZcuBBGcnIypqam\nHD16SD9imJLyXB/g/tvas7zExcVRtGhRWrRoRXq6itu3b9K0aTOMjIxQq9UYGb36v+RLl25z8eI9\n6tVzoUwZ29fqx3+lUqmYM+cgjx4ZUq9eIVq1qvHKx0qlUmbNmp9r+/79R/WPGzZsQsOGTQDdCGr2\ntXq9evn/h54LgiB8fEQwJwiC8BF70YfnrIyJ2ZmZmb10DVVW4KZQWJKSksLhw7/TuLGX/vhy5ZyQ\nyWR06NAaCws59vZluHXrBhqNBnv70kilxvo1bEqlEjs7O/16tH+OukgkEhwcHBkwYDDTp0/BwEBC\n3br1uXHj2hvdi3+6dSuK+Pi22NpeonTpr8jIcMDS0p5ixYrRuXN3evXqikKhoHTpMpibWwC6KZxj\nx45ALldQtWo14uJi9X190ehS1uPz58+xYcMajIyMMDMzZ8yYCQC0bNmabt064uxcgbFjJ7203ytX\nHmXq1BIkJraiZMkjzJnzmEaN3PPlnryK77/fwa5dXQBjtm69SVraSTp0qJOvbSQlJbFlyx/I5ca0\nadPgpYXQBUEQPlUimBMEQfhEbN9+mjVrEtFqoVMnOe3a1c7xuqVlIf0aKplMho1N8VznkMvltGjR\nii5d2lO4sDWVKrnoX/vqqxbMnTsTqdQIQ0MjhgwZSdmyjvTo0Zm6devra8xlrWE7fPh3/vjjJAAW\nFhZ06OCrP1e9eg2oU6c+vr7tSE1NIzh4A2q1mkWL5lOxYqV8uR+ffVYBR8fT3L27HACF4jIDBybi\n4eGOs3NFWrZsjVqtZvToYdSv3xCAunUbULdug1zn8vZujrd3cwBGjRqX47WsUafs+2Tn798ff/+8\nR0fzsmpVKomJuumQMTGf88svm99ZMKdSqTh92hbQjdqmpDhz8OAVOuT+buCNPXnylPbtj3Dpki+g\nZN++TSxf3v6FAV3W9GAxBVMQhE+RCOYEQRDekL+/H4sXB/H48SPmzp3F5MnTC7pLL3Tp0m1GjbLk\nyRPdKNrVq6E4OFynWrWKOfbLvoaqaFE5jx4lAznXT/Xq5Z/ndLcGDRrToEFjQkPPMnToAFxcXJHJ\nTJDJZPri2/82evXPz+KGhoa0adONiRPHkZycgFarxd6+DPPnL37Du5CTQmHJ0qVlmD9/I+npUlq0\nsKBxY12AGxS0jHPn/iQ9PZ3q1WtRr17DfGkzy5495zh58jG2tgZ8993nrzXypFYb5niu0by7USup\nVIpcruTRo6wtWszN0/K1jRUr/uTSpS7oErVYsmvXl8yYMZNr18IAXTmL+vUbMmhQXypXduXmzevM\nmjWf4sVt8rUfgiAIHwKJNq+qoQUg6wOD8PHJ/oFQ+PiI9/fDsHTpXsaO9cmxbdy4zfTt6/3CY17l\nvX306AlLlpxGozHg228r4+T04uyKr0Or1TJgwBZCQpqQmSmnVq2trF/fAnNz83w5f0Fat+44Y8aU\n5fnzCkASnTptZe7cV6/tN2PGXhYsqIFKVZpChcKYNu0RbdrUfvmB//Cmv7ubN//B1Kkq4uNL4+ER\nxi+/1KNkyWKvfZ4XmT59L7NntyMr66ZMdpAaNaawbt0mfTmLwMBJ9OjRmSVLgnKMDgs64u/yx028\nvx+vokXlr32MmIQuCILwhry8dBkcY2Nj6NKl/Ttt+3Xb9PCwQ6G4pH9uYXENd/eS/6kPSqWSTp2O\nsGBBexYt8qFz59uEh0f/p3Nm2bBhL5s2NSQzszRQmD/+6M7y5cfy5dwF7bffUv8K5AAUHDtmRWZm\n5isfP3y4N0uW3CIgYAvBwelvFMj9Fz4+tThxoip//CFh586v8zWQA+jWrTqVK68HtEAKVapspmlT\nb2QyE0xNTWnQoDEXL56nePESIpATBOGTJ6ZZCoIgvLEPZ41OjRoujBlzlHXrbqHVSujQQUrduo3+\n0zn37j3DxYvtyboP9+61Yvv2EAYP/m/ZFR8/fsKPP0YATbJtNSI9/cO53//G1DQjx3Mzs/TXTvDR\nrFlNmjXLz169HgsLORYWr/8N8qsoXtyarVvrsWlTCBYWRhgbe6JUKnPtl19ZTQVBED5kYmROEATh\nA6XRaJg4cSy+vu0YM2YEKlUaN25cp1+/3vTo0ZnBg/vz5MljAK5fv8rhw4spVSqY1q2vc+zYEkA3\nwte3by/8/Hzx8/PlyhXd6F1Y2Dk6d+7MmDEj+PbbtkycODZX+0WLyjE0fJRtSypy+X//t3L06CXi\n4noDuwA1AIULr6RDh3eXsfFtGjy4MpUqbQLuU6zYAfr3L1TQXXrvFC5shb+/N507e+HpWZVjx46g\nUqWRmprKsWOH9WswBUEQPnViZE4QBOEDFRHxgICAQFxc3Jg2bSJbt27m+PEjTJv2E4UKFeLgwf0s\nW7aIgIBApk6dwMiRgVSu7MKSJT/rk48ULlyYOXMWYmxsTGRkBBMmjOGXX3SFqa9fv86aNZuxti6C\nv38PLl26gJubh779Bg2q4eu7nQ0bPFCrTfjiiyN07+6TV1dfi5OTLebm4Tx/3gH4FXhO376G2NuX\n+M/nfh84O5dhz55i3LhxF3v7chQpUqSgu/ReK1++gr6cBUCLFq2RyxUie6UgCAIimBMEQfhgFStW\nHBcXNwC+/PIrgoODuHfvLoMGfQ9AZmYm1tZFUSqVpKamUrmybn2Rl1dTTp06DkBGhpo5c6Zz585t\nDAwMiIqK1J/fzc1NXyC7XLnyxMXF5gjmJBIJM2d+Q58+d1GpkqhYsUO+1ANzcyvPoEEHWLUqnIwM\nKd7eGfTr1/o/n/d9YmZmRpUqrgXdjQ9GVjmL7IKDNxZQbwRBEN4fIpgTBEF4Qy9Ks18Q7Wu1WszN\nzXFwcGTJkqAc+yUn58x6lj2J8aZN67C2LsLYsZPQaDT61PwAxsbG+seGhgZoNJo8+1GunON/uo68\nDBjgRd++GjQaTY5+CJ+uGzfuM2PGFZRKYxo0kNC3r1dBd0kQBKHAiTVzgiAIb8jRURfElChRskBG\nCR4+jOPKlcsAHDiwj8qVXXj2LEG/Ta1WEx5+D7lcjpmZGdeuXQHg4MH9+kAwJeU5hQtbA7Bv36+v\nlVXxbTM0NBSBnABAeno6ffteZvfujhw50oZp0z5j3brjBd0tQRCEAieCOUEQhNdw4sRVOnTYQ6tW\n+/Hw+PblB7wlEokEe/vSbN++GV/fdiiVStq27cCkSdNZsmQB3bp1onv3Tly9qktoMnLkWKZPn0L3\n7p1IS0vDzExXr61163bs3fsr3bp1IiLiAaamZgV2Te+T9etXs2WLLkCfP382P/ygK5IeGnqWiRPH\ncvbsab77zg8/P1/Gjh1JampqQXb3vfcqXxIolUq2b98C6BLwDB8+SP9adHQU16//PS01Pd2OsLCU\n/O+oIAjCB0ZMsxQEQXhFCQlPGTToEQ8e6Oq7xce7U6KEBS1b1njnfbGxKcG6dVtybXdyKs/PPy/L\ntd3BwZHg4A0ArFmziooVKwFQqpSdfjuAv39/AKpUqcaXXzbSF6YdNGh4vl/D+8zdvQobN66lbdsO\n3LhxnQcP7nPw4H4ePLiPo2M5goODmDt3ESYmJqxdu4pNm9bRrVvPgu52gQkIGEp8/EPS01W0a9eR\nli1b4+VVj6+/bsO5c2cYPHg4sbExbNmyCbU6g0qVXBgyZGSONZbJyUls3x5C69a5C6gXK1YcW9vT\nPHiQFdA9p1Qpba79BEEQPjUimBMEQXhFFy/e4cGD6tm2GBAWlkDLlgXWpVd26tQJ1q5diUajwcam\nJKNHj8tzv4iIOMaN+5OHD82pUkVFYKDXJznV0dm5AjdvXicl5TnGxsZYWVkRExPNpUsXqFu3Pvfv\n38Pf3w/QJZFxdXUr4B4XrICAQBQKBSpVGr16daVhw8akpaVRubIL/foN5P79cNatC2bJkiAMDQ2Z\nNetH9u/fS9OmfxfLW7JkAdHRUXTv3gkjIyNMTEwZM2YE4eF3cXauyMSJrfnpp40olSeQy68QFmbG\njBmhDB8+GoB+/XpTubIrYWHnUCqTGTkyEHd3jxd1WRAE4aMggjlBeAdiY2MYMWIQq1dveqX9z58P\nRSqV6jMVCu+HihXLUKzYZeLji/+1RUv58h/GtMQmTbxo0uTlCSMGDTrF8eO6FPDnzqWj1W5hypQW\nb7t7BWLjxrXs2bMLgObNW1G/fkOGDOmPm5snV65cRKlMZufO7bi6unPhQhh3797h3r27pKSkUK1a\nDcaPn8LZs6fZvn0rI0aMKeCrKVghIRs4fvwoAPHx8URGRmJgYEDDhrrC76GhZ7h58wY9e3YGQKVS\nYW1tneMc/v4DCA+/x8qV6zl/PpSAgCGsXRuiL41ha2vAgQPNSEqqh0KhAGDSpEBOnjxOnTr1kEgk\nZGZmsnx5MH/8cZKVK5cxd+6id3gXBEEQ3j0RzAnCeygs7BxmZuYimHvPFC9ejKlTH7Bw4SZUKmO0\nWg0dO9Yr6G7lG61WS3i4ZbYtxty7Jyuw/rxNN25cZ+/e3SxfHkxmppbevbvi6VmFqKhIJkyYxogR\no+nc2Yc1a1YyceKPREQ84OzZP/Hw8OTu3Ts8ehRPdHQUv/66iy++aEpkZAR2dvYFfVkFIizsHKGh\nZ1m6dCUymYz+/fuQnq7C2FiWI+Oqt3dz+vTp+8LzZM+yqtVqqVixcp6lMcLCzrJ+/RpUqjSSkpIo\nW9aROnV0v4cNGjQCdCOrcXGxb+NyBUEQ3isimBOEd0Sj0TBx4lhu3bpBmTJlGTNmAr6+7QgKWotC\nYcmNG9dYuHAeo0ePZ+fObRgYGLJ//x4GDhwupgq9R1q2/Ew/rdLLa+JHVbhYl1QliaiorC1q7Ow+\nzsQely5doH79RshkJgA0aNCYixfPU6KELeXKOQHg4uLGr7/uxMXFld9+24NUaoS7uyfOzhV59Cie\nsWNHcu/eHcLD79K7d98PMpjbu3c3GzeuQyKR4OhYjsaNvQgOXoFanYFCYcm4cZOxsirMihVLefgw\njtjYGB4+jMPHpyNt23YAdBlR5XI5MpmM+/fDuXr1Sq52qlatzsiRQ/Dx6YSVlRVJSYmkpKRiY2Pz\nwr5JpblLY6hUKn76aQYrVqyhaNFiBAUtIz09PdcxBgaGLyylIQiC8DERwZwgvCMREQ8ICAjExcWN\nadMmsm1bSJ6BgI1NCb7+ug1mZmZ06OBbAD0VXtXHFMhlmTmzGoGB63j40AxPz1QmTPiioLv0Vrzo\nvTM2luof29uXoVu3nvqAb+DAYTRs2ITY2BiGDx9IixatefLksT5pzIfm9u3brF4dxNKlK1EoLElK\nSkIikbBs2SoAdu3awbp1q+nXbyAAkZERLFiwlOfPlXTq1IbWrdthaGhIjRq12bFjK76+7bCzK42L\niy5JSfZ7XKaMA716+TN4cF8yM7UYGRkxZMiIHMGcmZkZKSn/nqEyK3BTKCxJSUnh8OHfadxY1JsT\nBOHTJYI5QXhHihUrrp82+eWXXxESsuFf99eKRG3vvf37jxZ0F/Kdk5MdGzbYAVC0qFyfzfJj4+7u\nwZQpE/D17UpmppZjxw4zduxEdu7c/q/HXb16j/79r5GQYMW9e8sZMGDEO+px/jt9+jSNG3uhUOim\n1ioUCu7evUNg4EiePn1CRkYGJUvaArrArHbtuhgZGWFpWQgrq8IkJDylSJGiSKVSZs2an+v8//z9\neNm6TUvLQri6utOlS3tkMpm+/mF2crmcFi1a0aVLewoXtqZSJZd/ucK392XL666DfpEVK5bi7u5J\ntWrVX76zIAhCHkQwJwjvSPZvqbVaLRKJAYaGhmRm6qI2lSr9RYcKBUypVDJ//lFSUw35+msHqlVz\nfittHDiwL8+07EL+K1++Al991ZxevXTJXlq0aI1crsg1Ypf9uUQiYebMq1y50gm5XIGBwRpWrsyg\nfft32vV8I5FIcqxTA5gzZwYdO3amTp16nD8fSlDQ32UujIz+HrU0MDBArX61aYz79oUxb14cqanG\nNGyYyrhxzV84Mjpu3OQ8t2cvjdGrlz+9evnn2mfMmAlkBXCFChUiJOR/r9S/gtSjR5+C7oIgCB84\nUTRcEN6Rhw/juHLlMgAHDuzDzc0dG5sS3LhxDYCjRw/q99VNN3peIP0UcsrIyMDXdzdz57Zj6dJ2\n+Pklce7czXxvJ6vG1vvg34o3vw2xsTF06fLuI6L27b9l9epNrF69iXbtOmBjU4Lg4I361zt29KV7\n914AjBo1jgYNGpOcrJtyaWoaSmJiO/3zD1HNmjU5fPh3kpISAf5ax/Zcn3Rk797d+n3/GfS9qmfP\nEhg1SkloaHuuXWvNkiVerFp15D/3PTutVsvAgVuoUeMxNWvGM2zYtjfu7+vIzMxk+vQpdO7sw+DB\n/VCpVOzcuZ1evbrQrVsnxowZjkqVhlKppG3bvzPCpqam8s03zVCr1UyZMp4jR3R/+9u2bcGKFUvx\n8/Ola9cORETcByAhIYGBA7+nc2cfpk+fTNu2LfTvmSAIggjmBOEd0CWWKM327Zvx9W2HUqmkdet2\ndO/em3nzZtGzZxcMDY3031bXqVOfY8eO0L17Jy5dulDAvf+0Xb16i1OnGgOGAMTFNWbnzvB8byd7\nja1Fi3JPWXuX3qfA8m04dOh3fH3b8cMP/pw/H8qVK5de6bgDBy4QHn4de/vmmJkdx8pqGUWLrn3L\nvX17ypUrR5cufvTr15tu3Trx889z8fPrzdixI+jRozOFChXS/02ShAqJvAAAIABJREFUSCS8yRLR\nu3cjiYr6eypkZmZR7txR5dclALBt23E2bmxJSkotnj+vzdq1Tdm9+1S+tpGXyMgI2rTxYc2azVhY\nyDl69BANGzZm+fLVrFq1ntKlHdi9+39YWFjg5FSesLBzAJw6dZwaNWpjZGT01339+x4XKmRFUNBa\nWrVqy4YNup+tlSuXUa1addas2UzDhk14+DDurV+bIAgfDjHNUhDeARubEqxbtyXXdnd3DzZs2AZA\nQsJT7tyJJDk5CTs7e4KD/31NnfBuWFnJMTN7QkqK419bNJiZ5X+WvOw1tgpaVmDZqlUrQJKreHNg\n4CQAzp07w6JF89BoNFSoUImhQwOQSqW0bdsiV5bWBQuWkpCQwIQJo3ny5DEuLm6cPfsnQUG6D6xZ\noxxXrlykaNFiTJs2G5ns7ZRF2L37f4wYMQZXV3dWrFj6SmVAEhOfMXJkIlFRo4H9lC49gXLlPmft\n2pePWqrVaoyM3s9/t97ezfH2bp5jW926DXI812g0tGnjo19bB7zyWrHy5cvg6HiWu3dLAyCTReDu\nLv+Pvc4pPv45mZmFs/W3GHFxb3etZ3z8QwwMDPSZT52dKxAbG8Pdu3dYvnwxz58rSUlJpUaNWoBu\nWurGjeuoUqUav/++nzZtfPI8b4MGjQHdNOCjRw8BcPnyRaZNmw1AjRq1kMsVb/XaBEH4sLyf/10E\n4ROzZ08oo0alEBPjgqPjWebNs6V69QoF3S0BKF3anj599rJ0aSapqdbUrXuE/v3zv4j2u5gW9qqy\nAssdO3awf/+RXMWbL1++SPnyFZg6dQLz5y+hVCk7Jk8ex/btW/Dx6fjC9VBZIwy+vt34888/2L37\n7zVNkZERjB8/lREjRhMYGMDRo4f44gvv/3wtAQFDiY9/SHq6inbtOvL06ZO/PhxPxNHRiUuXzuvL\ngAwaNBw7u9LMnj1NP/oxYMAQXF3d+fnnBWRkKLGzW4eh4WOMjBJ5+vQwISE2XLx4npiYGExMTBg+\nfDSOjuVYsWIpMTFRxMTEYGNT4oVrwd53e/eGMWlSHI8eFcPF5R7Ll39OkSKFX37gX+RyBXPnlmTe\nvE2kpEhp0kSLj0/+Zkht0aIKwcH/4969VgCUK7edFi2q5msbefv751xXCkHF1KkT+fHH2Tg6lmPv\n3t2cPx8KwOjRE+jatQNJSUncunWDqlU/y/OMWdlUs0oxZHmf/j4IgvB+EcGcILwH5s+PIyZGV7Pp\n7l175s7dyPr1Iph7XwQEeNOlSzTPnj3D2bntezvKkl9eVrw5NjYGExNTSpa0pVQpXeZLb+/mbNu2\nGR+fji8877+NMGSv75Y1ypEfAgICUSgUqFRp9OrVlZ9/XkZo6Fn69RvEiRNHSUl5zmef1aBDB1+W\nLl3I3LmzsLcvjUqlQq3WEBg4ku3b95KRkYZcfpI7d86i1Rrj6OhJ1ap1iY2Nwdm5ItOmzSYs7ByT\nJwfqR1cfPHjAokW/YGxs/JJevp+0Wi3TpsVy547ub9PJkw2ZMmU9c+a0fK3z1KhRkfXrK76NLgJQ\nqlRxgoNTCQrajESSSY8ertjYFH1r7f1Nq68damhoSN269VEqk5g5cwrp6RnExcXqs1TOmTMDa2tr\n5s2bSXJyEkFByzh58jixsdGUL69LqKTRZDJq1DASE59RqpQdV69eJikpEVdXdw4dOsC333blzJnT\nJCcnvYNrEwThQyHWzAnCeyA11fhfnwsFz9bWlsqVK7y1QO5VamwVlLyKN/9z9E2XoVXy1z4vztL6\nohGG7PXd8rPgc0jIBrp160SfPn7Ex8cTGRmpf61Zs5bcuXMbrVY3zfPQoQNERUVy6tRxDAwMMDQ0\n4MmTJ0RHRyGVSilatBANG26nZs1tyGQaqlZ15PLli3z55VcAVKlSjcREXRIRiURC3br1P9hADnTJ\nf54+zT4lUkJiommB9effODuXYfp0b378sRlOTu+meHtGRgbffNOOtWtDMDY25tq1q8jlCh49eoSh\noSEVK1bi1q0bgG49nKurBwcO/Iapqal+bZy9fRlOnDgGgFKZhIdHFdas2UzVqtX1NfW6d+/NmTN/\n0qVLew4fPkjhwtaYmZm/k2sUBOH9J4I5QXgPNGyYioHBYwBksvt4eX18xaiFf5e9xlZBJ0B5lcDS\n3r40sbExREdHAfDbb3vw8KgC8MIsrVkjDMA7GWEICztHaOhZli5dyapV63FyKk96+t/JN2xsSiCT\nyXj0KJ4zZ07j5OSMRqOmf//BrFq1gTVrNuPl1ZTw8HsAWFiYsmnTV+zc6YWx8d9B/YsC1Kxi4x8q\nY2NjqlSJA3SBtVQaRa1aH/eo9KsqVqw4xYvb6Nda+vsPIDNTS2LiMxQKBWp1Bo8fP6JkyVL6Y1xc\nXDl27AzGxjL92rgBA4boX7e1LUXz5l8D0LZte/0aRQsLC376aQGrV2+iWbMWWFtbf/SzAwRBeHXi\nr4EgvAfGj29BmTJHuHtXhaengjZtPi/oLgkF4H1ZV5UVWLZo0QJDQ6M8izcbGxszatQ4xo4dgUaj\noWLFyrRqpauR1717b378cSK//GKBp2dV/Yhd9+69GT9+NL/9tofKld30IwzPnz//1/pubyol5Tly\nuRyZTMaDB/e5evVKrn1cXd25fPkiT548olmzlty7d4czZ07TooVu/VVychISiQQDA4Nc008B3Nw8\n2b9/L9269SQs7ByFCllhZmb+0axxWry4GVOnbuLJExnVqxvj59eooLtUoPz9/Vi8OAjIXTvU3Nwc\nBwdHliwJeul5XmVtXHq6mhYtDpCWpqFQodWUKKFAKpUyfPiY/LocQRA+AiKYE4T3gEQioXv3T/tD\n0qdoxYojnDiRjkKRyujRdSlWLHfQVFDGjZtM0aJyHj3KmRUwe/HmqlU/IyhoXa5js2dpzS5rhMHQ\n0JArVy5x8+Y1jIyMKFGiZK76bvmhRo3a7NixFV/fdtjZlcbFxTXXPr6+3fDz+5Y7d27xzTc+dO7c\nncWLF9ClSwcyMnSjKwEBgYSGnuXp06dkZGSQlpZGeroKAwMJfn69mTZtIl27dsTU1JQxY8YDb57K\n/31jbm7OlCn5n/DnQ5UVyMHftUNdXFw5cGAflSu7sGvXDv02tVpNZGQEDg5lX+nc2dfGHTy4n9TU\nFO7ebU1mZiGgHa1aHcTf3+stXZkgCB8qEcwJgiAUgNWrjzJ+vBsqVWlAy/37QezY0S5fRqTeVw8f\nxhEYOJLMTC1SqRHDh49h4cIDHDmixcwsnSFDKuDmVi7f2pNKpcyalXvK6oIFS/WPHRzK0qxZS+Ry\nBe7unri7exIefpfTp09hbCwlICAQK6vCDBgwGCMjIzp3bk/JkiWpV68BJiamKBQKpk2blasNP7/e\n+XYdwvvDy6seBw4cJyEhAWNjY4YNG0BaWhouLm4MGjSc6tVrMW/eLJRKJRqNmvbtO70kmJPkOXJd\nokQpNBorMjOz1sZZEhWV/yVRBEH48Em078lckH9++yt8PPL6dl/4eIj3983067efzZvb6J/L5Sc5\nc8YWa+v3Z3Qu672NjY1hxIhBr1xb7FVt3HiCoUMrk56uS1hRocImfvutEaam7y7JRmZmJj16+DJ5\n8gxsbUvleO3WrQjmz79MWpoRDRtqqVu3Avb29hgY5L3cPCkpifHjD/PokSmurmqGDm36wn3fhdTU\nVAIDR/Lo0SMyMzV07doTS0tLfW1ADw93+vUbilQqffnJBAC8vOpz4MAxNmxYS0ZGOl26+KHVaklN\nTcXMzOyNzxsdHUto6C2qVStPyZIlOHv2TwYNmsytW0cAMDG5w/z592nVqsYrnU/8Xf64iff341W0\n6OvX4RQjc4IgCAXA2jodUJP1Z7hIkVgUireXvv1VZBXQTkl5jru7J97eTXK8HhZ2jo0b1zFjxpx8\nae/8+ef6QA7g5k0PIiOjKF/e6bXP9SaFucPD7zFixCAaNGicK5BTKpX07HmFGzc6AP9j5045RkYa\nGjXaSFBQmzwLmn///W/s398NMOC33xLQavcxYsRXr30t+eXPP09RpEgxZs6cB+iuqUuX9vragLNm\nTdbXBhReT6VKlZk2bSJqtZp69Rri5FT+jc/1v/+dYfRoCQkJpbG398fWVoKVlZyAgAFs3bqBtDRj\nvLyMadWqYf5dgCAIHw2RzVIQBKEAjBzZBG/vYIoV+xVn5w0EBhYp8BGSrOlePXr00dfHypKZmcmG\nDWs5fz6UwYP7oVKpuH37Jr17d6Nr146MGjWM5ORkEhKe0qNHZwBu375FvXqfER//EAAfn69RqVQk\nJCQwZsxwrl9fjL19a0xMwoBMHB27olD8nXK9Q4fWJCQk6Pfv1asLvXp14fLli4Au+Jw0aSz+/j2Y\nMmX8a1+vg0NZNm/+H337/pDrtbCw69y40QAIB2yBxqjVHhw40J2FCw/l2l+r1XLtWmH+/rdqxaVL\nBft+Ojo6ce7cnyxevICLFy8QGxuTozZgq1atuHgxrED7+KFyd/dk4cLlFC1ajKlTx7Nv369vfK6l\nS58QH9+YjAxX7t49iETSm+XLV9OsmRdBQc1Zv/4LundvmH+dFwThoyJG5gRBEAqAqakpwcE+pKen\nI5VKC2ytXHDwCvbt+xUrq8IUK1YcZ+eKTJ06gdq169KuXStOnz7FnDkziI6OwsnJGU/PqpiYmHD0\n6CHWrVvN4MHDcXf3ZMWKpaxcuYwBA4aQnq4iJeU5ly6dp0KFSly4cB43N3cKF7ZGJpMxbdpEfHw6\nMXGiG4MGrebcuR8wN+9L5cpVCAsL5auvSnL16hVKlCiJlZUV48ePxsenE25uHsTFxTF0aH/Wrg0B\n3l5hbgeHElha3vmrrlqJbK8Yk5yc+72SSCQUK/acqKisLVqKFHmer316XXZ29gQFreOPP06wfPki\nqlb9rED78zGJi4ujaNGitGjRivT0dG7fvknTps3e6Fzp6TmDfpVKfDQTBOHVib8YgiAIBaggi0rf\nuHGdQ4cOsGrVBjQaNX5+viQmPiM5OZk6deqhUqmYMWMKY8dOZPr0KX8VCwdn5wpER0ehVCbj7u4J\nQNOmzRg7diQALi7uXLp0kYsXL9C5c3f+/PMUoNXve+7cGR48CNf3o3hxCevXN+HOHTtWrvyFr75q\nwcGDv9GkiVee+6ekpJCamvpWC3Pb2ZVixIi7LFkSRWzsCTIyBgASihc/SrNmDnkeM2GCM2PHruPh\nQ3MqVkxg3Lgmee73rjx+/Bi5XM4XX3hjbm7Btm0hxMXFEh0dha1tKf73v//h6Vm1QPv4ocn60uX8\n+XNs2LAGIyMjzMzMGTNmwhuf09tbzc2bEahU9pia3qF5c8P86q4gCJ8AEcwJgiB8oi5dOk/9+o3+\nWv8lo06d+ty7dxfQTRu8d+8eJUvaYmNTAmNjKV984c3OndsxMDBEqXzx4nsPD08uXjzPw4dx1KvX\ngLVrVyGRSKhdu95fe2hZtiw417TS3bv/x/3793j27BnHjx+jW7deufbv1683I0cGYmpqyubN62nf\nPn/KGOSlZ88G+PllEh//mMWLN5KWJqVVK3uqVXPOc/8aNZzZv9+ZzMzMAk18kuXevTssXDgPAwMJ\nRkZShg4NQKlM1tcG9PT00NcGFF7N/v1HAfD2bo63d/N8OeeQIU1xcDjF9et/4ulpzVdfNc6X8wqC\n8GkQwZwgCMInSzfKkDXVMjU1FSurwhgaGhIbG8Pq1SuIiIhk5sypfxU2/jv5sbm5BQqFgosXL+Du\n7sG+fb/qR3nc3T1ZunShvmC4QqHgjz9O8t13/QH47LOahIRspFOnrLV1N3FycmbkyLEsWjSPBQtm\n4+DggEKhyLW/RCIhIuIBzs4V9P3PT1lJYLJq3RkYGGBjU4wJE/L+4P748SPmzp3F5MnT9dveh0AO\noHr1mlSvXjPX9qzagCIj3uvJzMwkMHAX586ZUahQGqNGVcLNzTFfzv3NN7Xz5TyCIHx63o//OIIg\nCMI75+HhyYED+/j9999YtOgXZDIZ8fFxAGzZspmGDRuiVqu5fv0asbEx7N+/j9u3b7Jhwxq2b99C\ntWo1WLRoHp9/Xo/9+/dy7tyfdOnSnoSEpwBUquTC1KkTuHfvDs+eJXDhQigA/fsPYvfuHTRuXJtG\njWozZ85MAPr1642jY3n279+HSqWiZ88udO7sQ9GiRbl58xpdu3bk+vWrHD2aPQGJlhUrlrJ58wb9\nlqVLFxISspE38TprF9VqNUWKFM0RyL2vjh27Qo8eO2jXbgJ//HEdgIcPHzJmzIgC7tn7Yf361WzZ\novuZmT9/Nj/84A9AaOhZJk4cy6xZP9KyZWt++20dDx5Ec+hQJ4YMucKiRfPx9fWha9eOLFw4ryAv\nQRCET5QYmRMEQfhElS9fATs7e65evcLo0cOpXNmVhw8fkpKi5PlzJbdv32batFnMmTOT58+VxMXF\nkpGRzu7dvwPw/LkSc3ML+vfvg52dPcOHj+bixfNMmzaRbdt+ZenShVSrVp1Ro8aRnJxM795dqVat\nBkePHsbR0Ym1a0MwMDAgKSkJ0AVSZco4cPz4WZKSklAoFGg0GgYO/J6BA4fh6FiO/v374OZWk6NH\nz2JhYUGbNj6kpKQwatQwfHw6kpmZyaFDB1i+fPUr34eskUmFwhKNRkOTJl/QrVsnzMzMWLToF549\ne0avXl0ICdnJnj27OHr0EGlpaWRmZjJ69HiGDfuBNWs2s2fPLk6cOIZKpSI6Oor69Rvy/fcDANi9\newfr1q3GwkJOuXJOGBsbM2jQ8Px/U9GVIDhwYB+tW7clLOwcv/yynJMne/HoUSNsbTfTt+8ztmyJ\nokaNih9EIPouuLtXYePGtbRt24EbN66jVqtRq9VcvHgeD48qNGzYhHv3qnDmTCtKleqGsfFN7t+3\n5ujRlWzatAPQ/T4IgiC8ayKYEwRB+IR99llNKlSoRI8efQBYsGAOFhYWbN68nqtXrxIVFY2xsRQj\nIyMqV3YlMfEZc+fOpFatujmm8H3++ZeAborl8+fPUSqVnDlzmpMnj7FhwxoAMjIyePgwjtDQM7Rq\n1VY/HTFrOmV2hw7tZ+fOHWg0Gp48ecz9++GUKePAjRvx7NhRCpWqIpUqPUetVmNjUwJLS0tu377J\nkydPKF++Qp7nzEv2JDDR0ZH4+XWmSZMv/no171G627dvERy8EblcTmxsTI7RvDt3brFq1XokEgM6\nd/ahXbsOSCQSgoODCApah6mpKT/84J+jLtnLintXqFCJoUMDkEqltG3bAi+vppw+fRIDA0OGDx/N\nkiULiImJpmPHzrRq1Ybk5CRWrlzOnj07SUxMJDk5jdjYRtjYDEIqjUCrXcSMGUWYP38CPXv2YvXq\nTezZs4vjx4+QlpZGVFQkHTp8i0qVzu+/70MqNWbmzHkoFAqio6P46acZPHuWgImJCSNGjMbevgyH\nDv3OqlXLMTAwxMLCgp9/XvZK9/994excgZs3r5OS8hxjY2MqVKjIjRvXuXTpAgMHDuPQof08eLCa\n0qVXYmj4BGPju9jZPcHU1JRp0yZSu3Y96tSp9/KGBEEQ8pkI5gRBED5hHh6eTJkyAV/fbmg0ak6e\nPM7XX3+DTGaCoWEJYmM7YGCwlwYNKvPDD0Po06cvf/55ih07tnLo0AECAgLzPG9WfDNlykzs7Oxz\nva7VanNtyxITE83Gjev45Zc1WFhYMHXqBNLTVWzbdownT4oBxYESpKZaEBJygj59vqZ581b8+usu\nEhKe0KxZy1e+/uxJYIKDV6DVZrJp01pSUlKwsyvNmDEjuHPnFgkJCfpjypd3JiBgCKmpqZiYmPy1\nnhDWrFmFiYkJAwb44+X1JUWKFGXYsIGkpKSQkZFBeroKuVxOo0ZNiIyM0J/vZcW9J08epy/uLZFI\nKF7chpUr17NgwU9MnTqeJUtWolKp6NKlPa1atWHKlPEkJj7D2toahcKShIRn2Nn5YGiYgFYrJT7+\nJ9q3j6Bjx46YmJgCEBsbw5kzp9m9+3fOnTvD6NHDKFKkKIUKFcLZuQL79v2Kj09HZsyYwrBhoyhV\nyo6rV68we/Z05s1bTHDwL/z000KKFCnyQY5QGRkZUaKELXv27MLV1R1Hx3KEhZ0lOjoKmUzGxo3r\nWL9+DdOmHeaPP/ZSseIRpkzpQOXKqzl37gxHjhxk27bNzJu3uKAvRRCET4xYMycIgvAJK1++Ak2a\neNGtW0eGDv2BSpUqI5FAmTJNiI6+zpMnvxAdLePkSTvi4mLRaNQ0aNCYXr2+4/btm4AuMDt06AAA\nFy9ewMJCjrm5BdWr19SvQwK4desGANWq1eB//9umD4Kypllmef78OSYmppibm/P06RNOnz711/YM\ncv7bkpCaqgagQYNG/PnnKW7cuE6NGrVe4w78Parm7z8ACwsL2rf3xc6uNBER9xk4cCjz5i1Go1Fz\n6dIFNBoN165dZcqUGaxYsYZGjT7n6dMnujNJdOf75ZfVtGnTngcPwunZsw/9+w+kVCk7li1b9Nf9\nytmDlxX39vZunqO4d926DQAoW7YclSu7YmpqSqFChZBKpSiVSuzs7PWjhcnJSaSlpeDhURy1uiMG\nBml07LiNRo2q5lofaGEhx9TUlN27d2BpWYhly4JZtGgFTk7OxMXFkJqayuXLlxg7dgTdu3di1qyp\nPHmiu3ZXV3emTBnHrl079O/rh8bd3YMNG9bi4VEFd3dPduzYSvnyzvqfR4VCwfDh9bC0vE+/fp44\nO5dCqUymVq069O8/mDt3bhX0JQiC8AkSI3OCIAgfqX9mZnyRLl386NLFL8e2gwf3ExdXg8KFl2Fs\nHEFi4k3u36/IsmWL0GozAfTZKSUSCcbGxvj5fYtGo9GP1nXr1pP582fTtWsHMjMzKVnSlunT59Ci\nRSsiIyPo2rUjRkZGtGzZmm++aadv28mpPOXLO9OpUxuKFbPBzc0dgDZtarFixWwMDIYDUqTSR1hY\nPGbRonl8//0PVK36GfHxD5k7dyaDBg3nt9/2sGXLJtTqDCpVcmHIkJEYGBjg5VWPdu06curUCbTa\nTNRqDb6+3UhJeU5KSgoAhQsXJi0tlSJFirJ583qkUilxcbE8ffqYpKREBg78HgCVSoVardb33c5O\nF4BFRNwnJSWFn3+eg1RqTGRkBAYGhqjVao4ePUS5ck7Zjvn34t5arTZH4GVsrCvpYGBgkKO8g4GB\nARqNGq0WChWyYuXK9YSFnWPNmpXMmTOVqKhIevUypUmT0nn+HBgY6NpwdXXnzJnT7Nu3my+//Aoj\nIyM0Gg1abSZyuZyVK9fnOnbo0ACuXbvCH3+cpEePzqxYsQaFwjLPdt5X7u6erFmzEhcXV2QyE2Qy\nGe7unpQr55Tnz2NKynNGjhxCeno6oKV//8EFewGCIHySRDAnCILwkXqdzIxZTp++xoYNEdy5cxOl\ncghK5VcAeHqupkaNWtSsmXcK9S+/bMaAAUNybJPJZAwbNirXvoaGhvTvP4j+/Qfl2L5gwVL941Gj\nxuU67v79cD77zAkbm6aAIenpZ7C1tSU4eAXffdefq1cvY25uweeff8n9++EcOnSAJUuCMDQ0ZNas\nH9m/fy9NmzYjLS0NFxc3evf+nkWL5nPr1g26deuIubkFMpkMiQQaN/ZizpyZ+Pl9S61adQHJXyNO\nEhQKS31AExsbw8iRWR/idfXcQDf6ZmZmxsiRgXh4VGHnzu2sX7+G77/vSenSZTAzM9df18uKe//2\n2x48PKrkuh95TVWVSCR4enpy4MBeUlNT9fslJCQgl8vRaNRoNGr9+5Ale0Dq69uNLVs2oVKp8Pfv\nwddffwOAmZk5JUuW5PDh32nU6HO0Wi13796hXDknoqOjqFTJhUqVXDh9+iTx8fEfXDBXtepnHD78\nh/75hg3b9I//+fOYnJxEYmKi/udLEAShoIhgTsg3/v5+LF4cBMDChfM4ffoktWrVZdy40QXcM0H4\ndGRlZrSyKkyxYsVxdq7I7ds3mTlzGiqVClvbUgQEBCKXy3Mls2jbtiuDBklJSrLA2vo0Dg6NMTZW\nULJkV8aOdX+j4DA/hYae4d69uyQk6AKp9PR0Hj1K59EjCY0bN6F+/Tpcv34ZV1d3tm7dxM2bN+jZ\nU1fLTqVSYW1tDYBUKqV27boAODtXJDk5iblzF5GY+IwePTrToYMvYWHn8PCowowZcwD0RdK//bYr\ne/fu5sqVy7i4uFK0aDHGj58KgLW1NR076tqzty+NpWUhjIykaLVaGjRojKurO3Z29owePYz69Rvq\nr+tlxb0rVqycrbj33++BRCL5x3uie1yzZh2MjWV89113UlNTSE5OJjU1hZIlbbG2LsKyZYsID7+H\njY0NMTExANy8eV1/fHR0FFKpMe3adSA8/B5Pnz7RtxMYOJlZs34kODgItVrN559/QblyTixaNI+o\nqEi0Wi3VqlXPMfL4sQkKOsqcOYY8e2bDZ59tYdUq71dOuCMIgpDfRDAn5JusQA5g167t7N17uMA/\n/AnCpyR7ZkaNRo2fny/OzhWZPHk8gwcPx93dkxUrlrJy5TIGDBiSK5nFmDETiYnZS+nSLYiKCkKj\nseLHH0Pw82vxr+1mH1F727y9m9OnT18Adu48w4ABpTAyuoKx8W2OHn1M69b18tw3O0PDv//1GRhI\n9Gu8LC0L4erqTpcu7ZHJZBQubK3fLyMjg9DQs3h7N+fbb7syfPgPFCtmg0ajpn37Tjg4lAX+Hg2V\nSqVMmjSdsWMDiYpSkpmZhExmSIkShalRozb16jXUn/tlxb2zCwn5X47r8/ZunudrNWvW5u7d21ha\nFsLBwZGSJW31bVWoUAlv7+Y8eHCTkSMD6NmzC56eVfWjcyEhGzA1NaF//+8oW9aRvn0HYmSku2cl\nSpRk9uz5ufo1ZcrMXNs+RkqlkjlzJDx86A3AiRPuzJy5iUmT8i4qLwiC8LaJYE7IN15e9Thw4Dgj\nRgwiNTUVP79v8fXtTocO3xR01wThk5A9MyPIqFOnPmlpqSjHQyKVAAAgAElEQVSVybi7ewLQtGkz\nxo4dmSOZRRa1+jkSyVNSU6tgYzOStLSq2NuXLaCrya1q1eqMHDkEH59OWFlZcfx4FOnpFUlL88Le\nfjHJyVaUK/dNnvsmJSWSkpKKjY3Nv7YxbtzkPLd37tydESN000JtbUvh4uKuH7XL8s+g1sbGhhs3\nviMmJisYTqV589388EPTN7j61/Oi68he265atWo5phJmGThw2Cu3o9VqOX48lMTEVLy8PsPExOT1\nO/sBUSqTSUwslm2LAUql9IX7C4IgvG0imBPyke4b6enT5+DlVT/PRfKCILxNrz4SnlcyC61Wy5Ah\nW9m9uz4SyR3q1LnI0qVbqF7d9b1Y/1SmjAO9evkzeHBfMjO1PH2agpGRM2lpNUlPL4ep6WVq166V\n575GRkYMGTICGxubHDMGXnX2wJIlC4iOjqJ7904YGRlhYmLKmDEjCA+/i7NzRQIDJwG60dGff57D\n06fPSExU8/BhIFJpBCVKDCQiYhtxcRIiIyMYN24UQUFr8/8m/Qdbt/7B8eNJWFllMHx4E0xNTf91\nf61Wy8CBW9m0qQmZmYWoXj2EDRu8kcvl76jH716xYsWpWfMYR45UAQxRKC7g5VWkoLslCMInTARz\ngiAIH4kX1YyTyxVcvHgBd3cP9u37FU/Pqi9MZvHTT23p0+c6pUp9TZkyfWjVqvV7lcyiSRMvmjTx\nAkCj0TB48HaOH3+IuXljBgxok2NqZPZ9s9u//6j+ccOGTWjYsMlL2/X3H0B4+D1WrlzP+fOhBAQM\nYe3aEKyti+Dv34NLly5QqZILc+fOpFu3AfTtqyQhIYMiRX7m4cNNZGZaIJcfoGZNBXv27HqtWnjv\nwqZNpxg+vAypqc6Amtu3V7J2bYd/PSYs7CqbN9clM1NXR/DMme4sWRLCsGFfvYMeFwwDAwOCgpox\ne/ZmkpKkeHkVpWnTqgXdLUEQPmEimBMEQfhIZK8ZZ2VVWF8zbvTo8cyaNY20tDRsbUvpM/P9n737\nDIji6ho4/l+WooA0ARHsiqCiYDeW2KKxPyZ2LIAtajRqSGLvsWM3KhZQsPfXxB5iN5ZY0BixYqHY\nkN7Z3fcDYZWIHUTw/L64M3tn7p0dBA537jkvS2bh5+dDSMh9lEodXFyqf7TJLJRKJQsWdEStVqOj\n8/qyqXfuhPPjj6e5d68QpUvHMHduPWxtrV97HGTOHKnRaKhQoRKWllYAlCtXngcPwjE2NiY4+BYT\nJ45DoTCjcGEVaWmmgC/W1kWoVWsTX301h27dZrJihd87XXNOOXw4/t9ADkCXs2fLEBcXh7Gx8UuP\nSUxMQqVKz8ppZuaHqelGzp414tgxQ4oXL0mpUqXfe1zh4WGMGDEcP79N732u7GJsbMyECbJGTgjx\ncZBgTggh8pGsasYBeHv7vrDvdcksrKwK8fhxbPYPMpu9SSAHMGbMGY4cSc82GRwMY8b44+vb/p36\n1NPT175WKnW0SVRKly5LyZIdmDevMxkFzgsUOM/8+ZWZNGkUJ08ew9GxwkeX/dDYOAnQkPGorqlp\n5Gsfs6xTx4WGDbdw5Ig7pqYb0NPrzKxZn7Fu3Qrq1WuQLcGcEEKIV5NgTmSbd1mHIoT4OERGRjFs\nWAA3b5pRtGgc06dXw8qqYm4PK1s9eGD0yu1XMTQ01BYUf5kSJUoRFRVJ796W/PmnD6dOfYmR0WV6\n9ozC0bEttWt/hpfXDG1R9Y/JiBH1uH7dhwsXqmBpGYanp8lL66dt3LiWPXt+BeCrr1pjZNSH27fv\nYme3kaNHYzhx4hgXL15gzZpVTJ06G41Gk6kExogRYyhRohRTp07EyMiYa9f+ISIigkGDvsvykVeV\nSsXkyeO4fj2IUqXKMG7cJIKDg1m8eB6JiYmYmpoxZswEChe2JCTkPrNnTyc6OgodHR1+/nkm5uYW\njBzpSWxsDCpVGv36DaR+/YaEh4fh6TkEJ6cqXL4cqM3y6eu7nMjIKCZMmEKFCpVITExk3rxZBAff\n/jdLbH/q12+Yo/dDCCHelARzIlukpaXh7e3L06cRWFgUzrQmRQjx8Rs79hB797oBCm7cgJEj/Tl6\nNH8Fc+XLR3P5sgpQAmmUL//ms46vKluQQVdXlylTZrJggRfm5jE0aLCOL79sTf/+3wDwxRctOHr0\ncJZlCHKbpaUFO3Z05OHDB5ialsDQ0DDLdkFBV9m79zdWrFiDWq2hf383xo+fwujRP+LtvQoTE1NC\nQu5Tr14DGjZsAsDQoQMzlcCYM2cmCxYsBeDp0wiWLvXhzp1gRo78Pstg7t69u4waNR4npypMnz6Z\nbds2c+zYYaZPn4uZmRkBAQdYvnwJo0aNZ9KksfTq5UGDBo1ITU1FrVahq6vH9OmzMTQ0IioqigED\nPLTBWGhoCD//PItRo8bTt28vAgIOsHSpD8ePH8HPz5fp073w8/OhRo1ajB49gdjYWPr3d6NGjdr5\nPnOnECJvkGBOvLeYmBh69drLmTN1MDW9wdChlxgwoHFuD0sI8RbCw415PhtmWFj+y0jo5dWCggXX\nc/++IaVLJzBpUsu3Ov5N0v3b25dn8eLlmd6PjY3hzJmrBAWdpnXrdh/tkws6OjoULWr7yjaXLl38\nt/xFeiDTsGETLl688EK7jDWGCQkJ/P135hIYqanp9ewUCgUNGqQHVaVKlebp06dZ9mltXQQnpyoA\nfPllK9as8eH27VsMHz4IALVaTeHCViQkJBAR8URbw09PTw/QIy0tjWXLFhMYeBEdHQVPnjwmMjK9\nr6JF7ShTpiwApUuXoUaNWv++LsuDB+kF1c+cOcWJE0fZsMH/3/Gn8ujRA0qUKPXKz0oIIT4ECebE\ne/PyOsrJk70BHSIinFi0aB+urtEfTfY7IcTr2dsncPx4CqAPaLC3j3rnc/3441AmTpyKkZGxtv7k\nx5DIwsjIiLlz322N3Lu6du0uffv+Q2zsAQwM7tCzZ78P2n92yyoQzSo2zWin0agxNi700lI16QEX\n/7bVZNnm+T41Gg1GRkaULl2WZct8MrVLSIjP8vgDB/YSHR2Fj89alEolnTq1Izk5BQB9/Wf96+jo\naMejo/NsHSSkryMtXrxElucXQojc9GarxoV4hYQEfZ7/UoqNtSIuLi73BiSEeGtTprSkd+8t1Ku3\nnY4d/Zk/v8k7n2v27AUYGWVkQfw4Z6E+lIULL3PtWmfCwlYSHPw7q1frolarc3tY78zZ2YWjRw+T\nnJxEYmIiR48e0hakz2BoaEh8fHpgZWRkrC2BAenB2M2bN96qz4cPH/D335cBOHhwH5UqOREVFand\nl5aWRnDwbQwNjbCysubYscMApKSkkJycRHx8PObmFiiVSs6f/4sHD8Lfqv9ateqwdetG7fb160Fv\ndbwQQuQkCebEe/vySyvMzM7+u5VGnTrnsbEpmqtjEkK8HX19fWbMaMeOHc1YsuQrLCzMX9p2/Xo/\n7S+3CxfOYejQgQCcO3eWSZPG0qlTO2Jioj/IuD92KSn6mbaTkwuQlpaWS6N5f+XLO9KqVRv69XPj\nm2/cadv2K+ztHTK1adq0OevX+9O7dw/CwkIZP/5nfvttF+7urvTs2YXjx5+tqX5d4iyFQkGJEiXZ\nsWMzPXp0Ii4ujo4duzJlykyWLVuEu7srHh6uXLlyCYBx4yazdesm3Ny6MXBgH54+fUrz5i0ICrqK\nm1tX9u3bTcmSpV/aZ1bjcXfvS1paGm5uXenZszOrVnm/xycohBDZS6F52XMNH1heSH8tXi4g4CIH\nDjzE2DgVT88mmRbP55X05uLdyP3Nv152b69c+ZuNG9cyZcoMBg1K/0V3yZKV+Pv7YmFRmLVrV7Nq\nlT8mJqY0a/Y5Bw8e/Sges8wNv/56Bk9PM6KiqgPRuLpuZ/78jrk9LCD//9/9VL/mIP/f20+d3N/8\ny8rq7dery5o5kS2aNnWh6YtJyIQQ+ZCDgyPXrl0lISEefX19HB0rEBR0lcDACwwb9iNr167O7SF+\nNNq2rYWp6WWOHNlC0aK69O79dW4P6aPwf/93mv37oylYMJkff6yDjY1Vbg/pBcnJyXh6/sqlS+YU\nLpzAuHGOVKtmT3h4GN9/PwQ9Pd1PMlAUQnxcJJgTQgjxVnR1dSla1I49e36lcmVnypYtx/nzZwkN\nDZVC0Vn4/PPKfP555dwexkdj//7zeHpaExPzBaDhypXV7NrVDn19/dce+7bep0adpWVzNm/uh6Xl\nPBITjzN0aBQTJw6jYkUnkpKSePw4mlGjPLl16yaNG39B6dJl2LZtEykpKUyb5oWdXTEiIyOZM2c6\nDx8+AOC77zypXNk5269TCPHpkjVzQggh3pqzswsbNqzFxaUazs5V2blzG+XLl8/tYYk84NChx8TE\nVPl3S8GFC3W5fftOjvR1795dvv66E2vXbsHIyIht2zazYMFsfv55FqtW+dO6dVuWL18CwKRJY+nY\nsTOrV6/H29uXx48LY2x8CAODa9y9u4unT7/jl18WEBkZiUajIikpiXPnzhIZ+ZQtWzZw4cJfqFRq\n7t27S/fuHRk8+Btmz55K48bNMDExIzk5hWHDvuXevfRrnTp1IvPnezFwYG86d/4fhw8H5MhnIITI\n3ySYE0II8dacnavy9GkETk6VMTe3wMDA4IWshvD6BBfi02NpqQaStdsWFvewtn6xCHt2+G+NutOn\nT2lr1Hl4uOLn58Pjx4+zrFFXoYIOBQueIja2DaCgTJkEqlatzq1bN3jy5AkAc+cupkmTZiiVuvz5\n50mUSh0mTpxGuXLlUSjg1KmTzJgxhYcPw1EqdTA0NGT27Gna8WUUTZ81az7Lli3Okc9ACJG/yWOW\nQggh3lr16jU5dOhP7faGDdu1r7ds2UViYiIpKSkcOJCeubBoUVvWrNn4wnnEp2Hw4P4MGfI9Dg6O\n/PnnL7Ro8ZDTpytibBzDkCH6WFjkTDD3PjXqPD2bc/Hibp4+TcbWNpHx4+vg738RhUKBqakpiYlJ\nODlVISUlhT/++J3IyEiioiKZOHE0aWlpFChQELVajUaTpq1fZ2lpSWRklHZsb1I0XQghXkVm5oQQ\nQmQbjUaDp+dWatQ4T82ax5k790BuD0l8ABqN5qVFvyFzUKWjo8PixV9x7lwFTp1qiLv75zk2rvep\nUZeWlso333SgYsUwVq5sg6lpQQIDL1CunD2g0BZL12g06OjoYGhYkIoVnZgzZxGffVafgweP0qBB\nI/T0dPH1XY+v73pGj57A2rWbteN7k6LpQgjxKjIzJ4QQItusXXuYtWv/h0ZjAcCCBZdo0iQIFxfH\nXB7Zp6lRozrY2tphZmaOtXURHBwq8PnnjZg7dxZxcdHo6urj7FyVo0cPkZKSQqlSpXn8+DHx8XEM\nGvQdjRqlpylev96PQ4d+JyUllc8/b0SfPt/8m9VxMJUqVebatavMnr2QtWtXExT0D8nJSTRq1JQ+\nfb7JclwajYZNm9ZTqJAJnTt3A8Db+xcsLArTqVPXbLn252vUzZgxmVKlytCxY1dq1fqMBQu8iIuL\nQ6VKo0sXV0qXLsO4cZOZPXsaK1d6o6ury88/z6Rhw8ZcuXIJd/duKBQKBg0aiqmpGdHR6bNrf/99\nmYMH96HRqNHR0eHhwwfcuRMMpBdH79SpG+fPn6VDhzYULGiIi0tV2rfv+G9AKIQQ70+COSGEENkm\nPDxZG8gBJCaW49at3yWYywVXr15BpVKxZs1GUlNT6d27Bw4OFZg1axo//jiKqlUrcvjwnwwdOoCN\nG3fg7f0LFy6cY/DgYZQqVYaRI7+nUaOmnDlzipCQ+6xY4YdarWbkSE8CAy9gbV2E0NAQxo2bTMWK\nTgD07z8IExMTVCoVw4YN4tatm5QtW+6FsSkUClq3bsfo0T/SuXM31Go1f/xxkBUr/LLt+m1sirJu\n3dYX9tvbl2fx4uUv7C9WrDgLFix9Yf+gQUMZNGiodvvBg3Ds7IoRFRWJp+dgNBoN1avXomdPd+bM\nmcGSJQtRq1Vcvx5E374DWLnSHy+vGUREPOHixQtYWlppgzlZUyqEeF8SzAkhhMg2zZqVxc/vOI8e\n1QfA3n4vjRrVyOVRfZouXw5EqdRFT08PPT09ChcuzObN63jy5AmDBvWlSBFrwsLCSEpKwtNzCEql\nLtHRUfzyy0KMjY2IiEhP8nHmzCnOnj2Nh4crAImJSYSE3MfaughFihTVBnIAf/xxgF27dqJSqYiI\neMKdO8FZBnOQHmyZmppy48Y1IiIiKF/eERMTk5z/YN6TjU1RNm3a+cL+tLQ0Vq70R6FQsHfveRYu\nfICXlz6NGp3Dy2vBC8Ha6NETMm1nrC8VQoi3IcGcEEKIbFO1qj2LF19i8+Zt6OqmMXBgBQoXtnj9\nge8oLi6Ogwf38dVXHTl//i82blzHrFnzcqy/vEUBpK/DOnPmFLGxsfzvfx3YsWMrDg6OfPvtQEqW\ndKBTp3YsWuTN4sXzMTIyomPHLjRs2IRmzZ6tZevRw53//S9zwfPw8DAKFiyg3Q4LC2XjxnWsXOmP\nsbEx06ZNIiUlmVdp06Y9u3f/SmRkBK1bt8u+S/+A0tLS+O67HZw4YYmRUSJ9+ypZuNCQsLAuAAQF\nPaZkySN4eDQCID4+nsmTAwgPL0ClSmn8+GMLdHQkhYEQ4t3Idw8hhMiHwsPD6NWrS5bvDR7cn6Cg\nqznWd6NGVViypDkLF7aiQoWcLSIeGxvDjh1bcrSPvKpKFWdUKhUpKSmcOHGMu3eD2blzK/HxcQQF\nBXH37l00Gg2pqamZjvtvIo7ateuwe3d6hlKAx48fERkZ+UJ/8fHxFChQECMjI54+jeDUqZOvHWPD\nho05ffokQUFXqV37s/e42tyzeHEAW7d2Izy8HTdvdmHmzEeEhT2brVSrrbh1K0m7PWTIXnx9u7Jv\nXwfmzGnB9Ol7c2PYQoh8QmbmhBDiE6NQKPLN+pxlyxYRGhqCh4crurq6FChQkLFjRxAcfAsHhwqM\nHz8FgKCgqyxePI/ExERMTc0YM2YChQtbMnhwfypVqsz5838RFxfLyJHjcXZ2yeWryh6OjhVRKnVx\nc+tKUlISZcuW4+uvO1G9ei28vGbg5+fH8uUrSUp6Fmg8/7WR8W/NmnW4c+cOAwZ4AGBoaMi4cVNe\n+Dqyty9P+fIOuLp2wNrahipVnF87Rl1dXapXr0mhQiZ59mvywQOAgtrtyMjaFCv2JyEhJQAwMLiL\ns3Mh7ftXrpgDyn+3TAkMfJbRUggh3pYEc0II8RHau/c3Nm5ch0KhoFw5e/r2HcC0aZOIjo7GzMyc\n0aPHU6SIDVOnTqRevQbarIPNmjXg4MFjmc6VnJzEtGmTuHXrJiVKlCI5OTnfpEEfOPA7goNv4+u7\nngsXzjFqlCdr126hcGFLBg7sw6VLF6lY0Yn582czc+ZcTE3NCAg4wPLlSxg1ajwKhQK1Ws2KFWv4\n888T+PouZ/78Jbl9WdlGV1eXDRu2c+LEUSZMGEPJkmUoWtSWkSPHYmNjjkqlR6dO6Y83jh49gfnz\nZxMfn15z7fk1XJ06dc0yy+R/awf+dx1YhkWLvLWvt2zZpX2tVqu5cuUyP/88690vMpfVrWvOxo3X\nSEhwAKBKlSAmTizFkiWbSEzUo0kT6NSpmba9lVU8wcEZWxoKF0748IMWQuQbEswJIcRH5vbtW/j5\n+eDt7YuJiSkxMTH8/PMEWrVqS4sWrdm9exfz53sxfbpXFrMZL85u7NixlYIFDVm7dgu3bt2kd+/u\nH80syKpV3hgaGtGtW49M+8PDwxgxYjh+fpteefzzQalGo6FChUpYWloBUK5ceR48CMfY2Jjg4FsM\nGzYISA8gChe20h7XsGFjABwcHHnwIDxbrutjkZqagoeHKykpKVSvXgMvr2kAFCxoyPz5cylQwIzn\nv2aaNm3OzJlT2bp1E1OmzMDOrliOjGv16iNs336P6Gg/Pvusdo718yG0a1eLuLjjHDz4N4aGyXh6\nVqNMmWLUr18ly/YTJzoyZsxawsNNcHB4ysSJDT/wiIUQ+YkEc0II8ZE5f/4sTZo0w8TEFAATExP+\n+ecy06d7AfDll61YunThG58vMPCidlalbNlylC378dS4yu6gUk9PX/taqdRBpVIBULp0WZYt83nl\nMTo6Sm37DyWrmdTsdOTI6Ze+Z2VViEePYli6dJX2PlSu7JypqHVOOHDgPJMmlSM+vg0wiLi4vQwf\n/pgiRaxee+zHytW1Pq6ub9a2Ro3y7N9fHpVKhVKpfP0BQgjxCpIARQghPjIKhSLLxyCz2qdUKlGr\n0/er1WrS0lJfaJOd1q/3Y+vW9EfrFi6cw9ChAwE4d+4skyeP4+DBfbi5daVXry4sXbpIe1yzZg20\nrw8d+p1p0ya9cO6goKu4uXXD3d31jZOaGBoakpDw6sfUSpQoRVRUJH//fRlIzz4YHHz7jc6f83Jv\nhlSlUjFgwCZq1w6lVq2/mTVr3wfp9+zZR8THP6s7eP9+Xc6evf5B+v6YSCAnhMgOMjMnhBAfmWrV\najJ69A907dr938cso3FyqkJAwAG+/LIVBw7sxdm5KpBe8+ratas0afIFx48fJS0t7YXzubhU5eDB\nfVSrVoPbt29y69aNF9qEh4fh6TkEJ6cqXL4ciKNjRbp27cT8+QuIjIxiwoT0RCL79u3h0aOHBAQc\nICUlFaVSybff9qNUqTIUL16CZcsWY2FRmJ9+GsPixfM4duwwDRo04vmg5b+zcRmb06dP4vvvR+Ls\n7MKSJQve6LMyNTWjcmVnevXqgoGBARYWhV9oo6ury5QpM1mwwIu4uDhUqjS6dHGldOkyWZwxe4Or\n9ev90NfXp2PHrixcOIdbt26yYMFSzp07y2+//R8Ay5cv4eTJ4xgYGDBjxhzMzS0IDw9j+vTJL6yR\nzE6LF+9jxw5XwAiAX365SOvWN6hUKWdnbh0cCqGvH0pKih0AlpYXqVKlVI72KYQQ+ZXMzAkhxEem\ndOky9OrVm8GD++Pu7srixfMZNuwn9uz5FTe3bhw4sJehQ38AoF27r7h48Tzu7q5cuXKZggUNtefJ\nCJrat+9IQkICPXp0YtUqbxwdKwLQsWNbYmKite1DQ0Po2rUH69dv4969u+zZs4elS30YPHgofn6+\nlCxZmhUr1mBiYoKrqxuPHj3AyakyVatWY9eu7RgbF8LBwRGNRoO9fXmaNWuBt/cSDh8OeO01x8XF\nERcXp80k+eWXrd/485ow4Wf8/DaxYoUfM2c+qzE3fPhPtGzZBkjPtLh48XJWr16Pv/9m2rRpD6Qn\n5nBwSJ8lMjMzY8uW/3vjft+Es3M1AgMvAukzj4mJiaSlpXHp0kVcXKqRlJSIk1MVVq9ej7NzVXbt\n2gHAvHmzadWqLWvWbKB58xbMn+/10j727v2NJ0+evPXYHj9WkRHIASQmluT+/cdvfZ7nhYeH0b17\nR2bOnErPnp35/vvBJCcnc+PGNfr3d8fNrRvnz+/km28O4Ojoh4NDYyZNSiE5OZ4GDWry6NFDADp3\n/h/Jya+uUSeEEEJm5oQQ4qPUsmUbbSCSYcGCpS+0Mze3wNvbV7s9cOAQAIoWtdVmGjQwMGDSpGkv\nHPvfxzmLFrWjTJmyQHpAWbdu3X9fl+XBgzDi4mKZN282kZFPmTNnOmq1mipVXLh9+xYajQZra2vu\n37/PV191/PeMGhSKF0shvMkv6R8i2+bOnae4eDGKChWM6dKlfo704eDgyLVrV0lIiEdfXx9HxwoE\nBV0lMPACw4b9iJ6eHnXr1v+3bQX++it9jdvbrJHcs+dXSpcui6Wl5VuN7X//c2DFiqM8epReHNzJ\naS/16zd+l8vMJCTkPpMmTWfEiDGMHz+KI0f+YN06P77//iecnauyapU38fF3OXrUk549N9C6dWX2\n7v0NR8eKXLx4gSpVnLGwKIyBgcFL++jYsS0+PmsxMTHN8XWHQgjxMZNgTggh8qm4uHh++mk/N2+a\nYmMTganpIWJjo1GrVbi59QVg69ZNnDhxjKSkRCA9gIqJiebChb+4dOkC5uar8fDoh0ql4qefhmNr\na0u3bj3ZtWsHcXFxFC1qx8KFc1EoFERHR3P3bjBXrlxm69aNREZGYmtrh0ajwcLCgrt371C8eAmO\nHj2EkZExkB60aTRgbGyMsXEhLl26SJUqLhw4kLOFlH/55XdmzHAhObk0enphBAfvZuTIN58NfFO6\nuroULWrHnj2/UrmyM2XLluP8+bOEhoZSqlRplMpnP4Z1dBSoVCrCw8OIiYlh1qxp/PPPZQoXtkSj\ngRs3rjF79nSSk5OxsyvGqFHj+euv0wQFXWXy5LEUKFCApUt9XhkEPa9mTQe8vSPZsmUL+voqhgyp\nibGx8Xtfc9GidpQrl/6opoODI6GhIcTFxWofDW7RojXjxo0EwMnJmUuXAgkMvEjPnh6cPn0S0FCl\nyqtr/WV+VPfjyMwqhBC5QR6zFEKIfGrMmANs3dqDixfbc/x4Ma5fT2X16vX4+W2iTp3PADAzM8fH\nZy3Nm7ckOjoKSC8XYGJixsiRI/nmm29ZvHgeGo2G1NQUjIyMcHauytOnESgUCkxNzTAwMECpVLJq\nlTd2dsU4evQQSqWSZs1aEBoagkKhYMCAwfz00zAGDuyjLR0AGbN26a9Hj57A3Lmz8PBw1b6XU/bt\nU5OcXBqA1FRbDh58swDoXTg7u7Bhw1pcXKrh7FyVnTu3Ub58+Vceo1arsbOzw99/M/Hx8RQtasvP\nP0/k22+HsmbNBsqWLYev73IaN/4CR8cKTJgwFR+fdW8cyGWoV68S8+e3YNas1hQvnj1r8vT19QgP\nD6NXry7o6CiJi4slPj4eH5/lbNmyEU/PIdy5E8zEiWNwcamKn58PV65cpkGDhty4cZ1582ZTsmT6\nvRk16gf69OlJz56dtY+gvsyUKeM5duywdnvSpLEcP37k5QcIIUQ+IDNzQgiRT927ZwykZ8xLTnYg\nLu4uS5cuom7dBly79g8ajYaGDZsAUKZMWW3ylMuXA/EeK58AACAASURBVLGzK4ZCoaBq1RrExsZi\nYmJC5crOHDt2hFu3btKzpwfr1q0BYMOG7TRr9jnGxsaUKFGKnj09aNWqLQAREelrsBo1aqotbP68\n3r37a187ODiyevV67fagQd9l/4fyLwODzIliChRIybG+nJ2r4u/vi5NTZQwMCmBgYKCdpXo+YH3+\ntY2NLefOnSUg4CDJyUnUr/85hw4FZDm7BR/msdR3ZWRkTIECBjx48IBdu3bQunU7kpKS6N27H7Gx\nscydO5NixYqjUCgwMTEhMTGBChXS13WOGjUeExMTkpOT6NfPjUaNmmJiYpJlP23btmfTpvU0aNCI\nuLg4/v77MuPGTf6QlyqEEB+cBHNCCJFPlSwZz4kTKkBJamopihXrTdmyZqxYsYSbN29gZGSEvr4e\nANbWRbSJUSA9kHJ2duTx41iUSiXe3r5s2bKR7t174eraC4CAgAPa9hqNBrVaTdGiRd86sEhMTGTj\nxmPo6kKXLo3Q19d//UHvaciQ4gQH/8b9+zWxsQlk0CDrHOurevWaHDr0p3Z7w4bt2tcHDjybOcoI\neENDQyhQwEC7RnLDhrU8efLolX18LEXgIatspQqaNv2SP/44SHx8PLt376J37/7o6CixsSkKgK1t\netFwZ+eqnD//F4aG6YlZtmzZwLFj6Z/Ro0cPCQm5R8WKTln26+JSjTlzZhAVFcXhw7/TuHETdHTk\nASQhRP4m3+WEEOIjFx4ehqtrB6ZNm0S3bl8zadJYzpw5xYABvena9WuuXr3CqlXebNiwVntMz56d\nGTq0Ch06+FKhQjsqVaqHQrEVpVKXkiVLER8fR0TEE0aN+uGF/qpUqapds3b+/F+YmZljaGhE0aK2\nXLsWBMC1a0GEhYUyePBeatWaRVJSIq1adcLZuRoBAQdRq9U8efKE8+fPvfLaEhIS6Nx5FyNGtMPT\nsw3du28jJSXnZskyNGxYmd9/r8yWLVf4/fdytG5dI8f7fBP791+gc+fD3LyZTMeOm3n6NBJIn90y\nMTHRZsbct283VatWB9Jr7cXHx+XamJ+XkXgno/5ht2498PDoR6FChWjbtj0HDhxh/Pgp3L17h379\neqFSqXB17aWdievZ0wNr6yJA+tfeuXNn8fb2ZfXq9djbO7z2a6NFi9bs37+bPXt+o3Xr/+X49Qoh\nRG6TYE4IIfKA/5YNCAg4wLJlz8oGZDUbUrBgQbp0saRVq4rMnDkRAwN9/PxWcf36NQoXLkzhwlba\njInwLONk7979uXYtiHbt2rF8+RLGjp0IQMOGTYiNjaFnz85s374ZPT0LTp7swJ07U1CpjNi504iG\nDRtTvHhxevToxNSpE6hcucorr8vf/yinT7sDeoABR470YNu2o9n62b2MubkFDRvWxNra6vWNPwCN\nRsPPP4cSHNwWlcqYo0d7M3VqepZGhULB6NETWbJkAW5u3bh16yYeHv0AaNWqLV5e0+ndu/tHk87f\nwqIwUVFPiYmJJiUlhZMnj6PRaHj48AHVqtVg4MAhxMXFERMTQ0hINIcOHUOlUnHtWhDh4WEAJCTE\nU6hQIQwMDLh79w5Xrvz92n5btWrL5s0bUCgUlCxZKoevUgghcp88ZimEEHnAf8sG1KhR69/X6WUD\n7O2zSqihoGxZe375ZQEmJiZ8//0IbR23Tp3asWqVPyYmpgA4OlZg4cJlAJiYmDB9uhdWVoV4/DhW\nezYDAwPmzl2s3T5z5iBpaemFn2/dOo+Ozg4iIiLo0cOD4cN/eourk8yEACkpKTx9akpaWjHu3v0V\ngKioAnTr1k7b5vkyFBkaNmyiXfv4sdDV1cXdvS/9+rlhZWVNqVKlUalUTJ48jvj4ODQaDV991ZE+\nffZz4sRgbG2H88UXrWjWrC7Fi5cEoHbtuuzcuY0ePTpRvHhJnJwqZ9nX83/IMDe3oFSpMnz+eaMP\ncZlCCJHrJJgTQog8IGNtG4COjg56enra1yqVCqVSiUaj1rbJeBytePES+Pis488/j7NixRJq1KiF\nu3vfbBlTxYoJnDiRCBQEVKSmXqR2bXPUaj3atTvCvHkdXruWq0ePBuzatZqzZ90ANZ9/7k+HDh2y\nZXx5jYGBAS4uYRw8mL7OUU8vlNq1X/wxvX79cQICEjAySmLEiNrY2RV56742b15Pnz5u2u0ffxzK\nxIlTMTIy1tZtCw8PY8SI4fj5bXqn6+nYsSsdO3Z96fve3vs4frw9oEdoqB+hoVEMHXqc0aMnaNt4\neWVdX2/Lll3a18+vO0xKSiIk5B7Nmn35TmMWQoi8RoI5IYTIB4oWteXEifRH8p5/VO3JkycUKlSI\n5s1bYmRkzO7d6b8Ep6+zitfOzL2LiRNboau7k2vX9FGp/uHEiX6kpaUnstiwoQJ16x6hc+dGrzyH\nkZERW7a0Yf36Hejq6tCt29cfJAHKx8rbuzVTp24iIsKA2rX16d07cxHvHTtOMWpUGRITHQANN26s\nYdeudtrg/k1t2bIRV9fOZPwaMHv2AgDi4uK0WU3f1NSpE6lXr0GW2UpfJTVVQ+ZfQwxISnq7vjNc\nuHCD5cv3c+PGDnr27K5NoCKEEPmdBHNCCJEHZLUm7vnXDRs2Yd++3fTs2ZmKFZ20j6rdvn2TX35Z\ngI6OAl1dXX74YTQA7dp9hafnEKysrLVZE9+Wnp4ekya1AcDHR8ORI7ba9zQaCx4+THyj8xgaGtK3\nb4t3GkN+Y2xszPTpbV/6/okTMf8GcgAKAgOrERoaQqlSpV96TGJiIuPHj+Tx48eo1SoaN/6CJ08e\n06tXLwoVMmXBgqV07NgWH5+1xMfHv3Uwl14r8O0fj+3e/TN27vTj0qVegIrPPltL+/bt3/o8ly/f\nonfvJ4SGjgJGsnGjL126JFGgQIG3PpcQQuQ1EswJIcRHLiNDYIbnH0N7/r3n17NlsLGxoVatOi/s\n79ChCx06dMm2MbZuXZ1Vq3Zw40b6I5IlS/5GmzavTn4i3p6VVRqQDKQXB7e2vkfhwlVfeczp0yex\ntLTWzr7Fx8exZ8+v+Pv7k5qaXocwIxhbtmwRGo0GDw9XKlSoRETEE3r16oJCoaBXrz40bdoMjUbD\nvHmz+OuvM1hbF8k0K+jru4KTJ4+RnJyMk1MVfvppDKGhIYwbNxIfn/Rsq/fv32PChNH4+Kxl8+bG\n+PtvQVcXPDzavVMAtmvXDUJDO/27peDcuTacOnWJRo1qvfW5hBAir5FslkII8QlITk5m7NhduLoe\nYNSoXSQlJWXr+YsUsWT1akfc3TfRq9dmfHzsKF3aLlv7EDB8+Be0beuPtfUeypTZzJgxBhQqlHUR\n7Qxly9rz11+nWbp0EYGBFzEyMn5p24EDv0OhUODr+6wUwJo1G5k/fwlLliwgIuIJR48e4v79e6xb\nt5WxYydz+fIl7fEdOnRhxQo//Pw2kZyczIkTx7CzK4axsTE3blwHYM+eX2ndOj2pi4WFOUOHtuTb\nb1tiaGj4Tp+JsTHAs5IFBQo8wMrK7J3OJYQQeY3MzAkhxCdg9Og9+Pt3BfSBVOLi1rNo0dfZ2oe9\nfQlmzSqRrecUmenr67NqVReSk5PR19d/o8cb/5sEp3r1mi9t+3zB96CgfzA2NkahUGBuboGLSzWu\nXv2HwMALNGvWAoVCgaWlJdWrP6vRd/78Wdav9yc5OYmYmBjKlClLvXoNaNOmPXv2/MqQIcP544+D\nrFjh934fxHMGDGjMmTO+/PFHAwwMound+w6VKrXJtvMLIcTHTII5IYT4BFy5Ykx6IAegxz//vHo2\nR3zcDAwM3rjtf5Pg/Pbb/2FoaERcXBwGBq9KgPPyQPH5oC9DcnIyc+fOYtUqf6ysrPHxWa6te9ew\nYWN8fZdTvXoNHB0rYGKSfV9/BgYG+Pt35dat2xgZmWNr65Rt5xZCiI+dPGYphBCfgCJFEjJtW1sn\nvKSlyG9u375J//7ueHi4snr1Stzd+9KuXXv69u3L0KEDM7V9/lHHChUqEBcXj1qtJjIyksDAC1Sq\n5ISzczUCAg6iVqt58uQJ58+fA56VwzAxMSUhIYFDh37XzhwaGBhQu/ZneHnNoFWrdmQ3HR0d7O3L\nYWsrj/YKIT4tMjMnhBCfgEmTahIb60dwsAklS8YyeXL13B6S+EBq1arzQhIcBwdHBgzoqy0Kv2XL\nLu1s2xdffEmvXl2oU6cuX33VAXf3bigUCgYNGoq5uQUNGzbm/Pmz9OjRiSJFbKhcOT3RTaFChWjb\ntj29enXBwqIwFStmniH74osWHD16OMuEPEIIId6NQpPVsxK5IOMHish/rKwKyf3Nx+T+5i0ajeaN\n08jLvc3fnr+/06fvYft2fZRKNd276zBkyBfZ2ldsbAxr165GV1ePfv0Gvv4A8V7k/27+Jvc3/7Ky\nKvTWx8jMnBBCfELepR6YyN927z7FkiWfkZycnrxmzpyr1Kx5mTp1KmfL+VevPsrSpb5oNDHY2LSj\nU6dozMzevVi9EEKIZ2TNnBBCCPEJu3kzShvIASQkOPDPP6HZcu6EhATmz1cRHLyVO3cOcOrUIGbN\nOpYt5xZCCCHBnBBCCPFJa9SoLFZWJ7XbdnZ/0KRJ9szKxcfHEx1t9dweHeLi9F7aXgghxNuRYE4I\nIYT4hDk72zNvXiotW26hdevNLFxoRKlS2ZMV0tLSklq1/gZUAJiYXOKLL8yz5dxCCCFkzZwQQog8\nKjw8jBEjhuPntym3h5LnNW9ejebNs/+8CoUCH5+2eHltJiZGj6ZNC9OqVa3s70gIIT5REswJIYQQ\nIscYGRkxYUKb3B6GEELkS/KYpRBCiDxLrVYzc+ZUevbszPffDyY5OZnQ0BA8Pb+jT5+efPttP+7d\nu5PpmIEDewPw4EE4Bw/uy4VRCyGEENlDgjkhhBDZIi4ujh07tn7QPu/fv0eHDp3x99+MsXEhjhz5\ng1mzpjF8+I+sWuXPoEFDmTNnZqZjli71ASAsLJSDB/fn6PiaNWuQ5f6dO7exb9/ulx53/vxf/PTT\n8JwalhBCiHxCgjkhhBDZIjY2hh07tnzQPosWtaNcOXsAHBwcCQ8P4++/Axk3bgQeHq54eU0jIiIi\n0zEZAdayZYu5dOkCHh6ubN68IYdGmHVdv/btO9CiResc6vPVOnZsS0xMdK70LYQQInvJmjkhhBDZ\nYtmyRYSGhuDh4UrNmrXRaOD06ZMoFAp69epD06bNsr1Pff1nae51dJTExDzF2LgQvr7rX3FUeoA1\ncOAQNmxYy6xZ8965//Xr/dDX16djx64sXDiHW7dusmDBUs6dO8tvv/0fAMuXL+HkyeMYGBgwY8Yc\nzM0tWLXKG0NDI7p160FIyH1mz55OdHQUOjo6TJkyA4VCQWJiAmPHjiA4+BYODhUYP37KO48z09VL\n4XghhMg3ZGZOCCFEthg48Dvs7Irh67ueihWduHnzOmvWbGT+/CUsWbKAiIgnOT4GIyMjbG3tOHTo\ndwA0Gg03b97Isq1Go3nv/pydqxEYeBGAoKCrJCYmkpaWxqVLF3FxqUZSUiJOTlVYvXo9zs5V2bVr\nB5AeUGXEVJMmjaVjx86sXr0eb29fLC0t0Wg03LhxjWHDfmDt2i2EhYVy6dLFtx7fqFE/0KdPT3r2\n7KztO0NCQgI//jgUd3dXevXqQkDAQQD++usMvXt3x82tK9OnTyY1NfU9PiEhhBA5SYI5IYQQ2eL5\n4OjSpYs0a9YChUKBubkFLi7VuHr1n2zv87+zTAqFgvHjp/Dbb7twd3elZ88uHD9+JNv7zeDg4Mi1\na1dJSIhHX18fJ6fKBAVdJTDwAs7OVdHT06Nu3fr/tq3AgwfhmY5PSEggIuIJDRo0AkBPTw8DgwKo\n1WoqVKiEpaUVCoWCcuXKv3Dsmxg1ajyrVvmzcqUfW7du1D5eqdFoOHbsGJaW1qxevR4/v03UqfMZ\nycnJTJs2icmTZ7BmzUZUKtUHXwcphBDizcljlkIIIbKdQqF4YeYrux/vK1rUljVrNmq3u3XroX09\nZ87C1x5vaGhEQkL8G/cXHh7GDz98R5UqVfn770CsrKyZPn0OFhaF6dfPjbi4OB4/fgzA/fv3+eGH\n71Aq03/MJiYmMnfuDOrWbUBoaAj79+8lJSWZw4f/IC0tDYCpUyeir6/PjRvXsbGxQU9PX9u3UqmD\nSqV647Fm2LJlA8eOpQezjx494v79+0D6vXBwcGD69BksXbqIunUb4Ozswo0b17G1taNYseIAtGzZ\nhu3bN9O5c7e37lsIIUTOk5k5IYQQ2cLQ0JCEhAQAqlRxISDgIGq1msjISAIDL1CxYqUc7T8tLY2d\nO4+ybdthUlJSXtouI6gsV84epVKJu/ubJ0AJCbn/QvbMiIgI4uLiGD9+CkOGDGPHjm04Ojpib19e\nG4CdPHkMe3sHFAoFs2ZNpU6dz+jc2ZUhQ74nOTmJY8cOA+kB18KFS2nfvuP7fRikZ8Q8d+4s3t6+\nrF69Hnv78qSkJGvfL1WqFD4+6yhbthwrVixh9eqVLwTc2fEoqhBCiJzz3jNzPj4+zJo1i1OnTmFm\nZgaAt7c327ZtQ0dHh7Fjx1K/fv33HqgQQoiPm6mpGZUrO9OrVxfq1KlLuXLlcHfvhkKhYNCgoZib\nW+RY32lpabi5bebgwa6Akg0bNrBu3VcYGBi80PbAgfSZKl1dXRYsWPpW/WSVPfPJk0ekpqayaNFc\n7Yyks3NVzM0t+PPPEwD8/vsBKld2JjQ0hMuXLxEcfBsdHR0OHNiDubkFW7du4vr1IIyNC/H06dNM\na+reVUJCPIUKFcLAwIA7d4K5cuXvTO8/evQIfX19mjdviZGRMbt378LVtRfh4WGEhoZgZ1eM/fv3\nULVq9fcbiBBCiBzzXsFceHg4J06cwNbWVrvv5s2b7Nmzh927d/Pw4UM8PDzYv38/OjoyCSiEEPnd\nhAk/A+nFvNPS0hg0aOgH6Xf79qMcPNgdMAbg6FE3/P130bfvl9o2cXFxzJp1mOhoPRo3NqN9+9pv\n3U9W2TNNTEz5v/97sfh4QkICVlbWxMTEcP16ENOmzSYhIZ5z585m2X7atEnUrVsfW1s7LCwKM27c\ns+yVw4f/9NZjrV27Ljt3bqNHj04UL14SJ6fK/76THiVev36dadNmoKOjQFdXlx9+GI2+vj6jR09g\n3LgRqFQqKlSolC2zhEIIIXLGewVz06dP58cff2TQoEHafQEBAbRu3Ro9PT2KFStGiRIluHTpEi4u\nLu89WCGEEB+/detOsGhRLHFxRtSrF8Yvv3RAVzdnl2inpKgAvef26JKaqtZuaTQaevfezeHDHoCS\nXbv+QaM5xVdf1Xmvfp/Pntm48Rfa7Jn29uUxNDTE0bEiCxbMpl69BigUCoyMjLG1tc3U/tatm9rZ\nPgAvr/2sWVOA1FQDvvwyhHnzvn6nP4jq6enh5fXi2sEtW9JLJpQtW581a549XhoTE83hw2ewty+G\nj8+6d/g0hBBCfGjvPF32+++/Y2Njg6OjY6b9jx49wsbGRrttY2PDw4cP332EQggh8oynTyOYPl2H\n27c78ehRK3bs6M6iRb/neL8dOtSnVi1/QAWocXFZQ/fu9bTvN2vWgL/+qggoAYiPr8gff7x94ew3\nyZ554sRR7ftNmzbj4MH9NG3aXLtv/PifX5pt886dMBYtcuDhwzY8fdqMDRu+Yu3anMvGmeHSpZu0\nbHmazp0r07TpQ9auPZ7jfQohhHh/r/xTqYeHB0+evFgXaNiwYSxfvhwfHx/tvlctkn6TDGZWVoVe\n20bkXXJ/8ze5v/nX297b8PD7PHpU+rk9BYmNNfgAXyOF+OOPbixbtgeVSsM333TA1NRE+66Ojg4W\nFhHExWXsUVOkyMuvLzY2ll9//RVXV1dOnz6Nr68vy5YtY8+e3do23303kLFjx2JkpIufn2+W5+nU\nqT2dOrXPtM/KyiHL9vPmebFxYwCJiWWe22tGbGzO/R/LOK+3921u3OgAwNOn1qxYsY3hw+X/dV4m\n35fzN7m/IsMrgzlf36x/OF2/fp2QkBDatWsHwMOHD+nQoQObN2+mSJEiPHjwQNv2wYMHFClS5LUD\nefw49m3GLfIQK6tCcn/zMbm/+de73FsLC2ucnfcRGJj+2KCR0T/UqPHhvkZ69WoEQEpK5p8rGg0M\nH66Hl9dmlMoNGBtHEBRkxI4dBahfv+ELZQdMTEyJjo6iWbO2BAb+w+nTp2nTpi01atTm9OmT+Plt\nYs+eX1GrFZiYWPP4cSw//TSMbt16UrVqdby8ZhAU9A/JyUk0atSUPn2+AeDPP4+zePF8ChQoiJNT\nFS5c+JsaNbrx+ecl2bNnMzdv3qB8+SmEho4jPr4pRYoco169Yjny+T1/f2NiMv9BNi5OyaNHMdle\nTkJ8GPJ9OX+T+5t/vUuQ/k6LGMqXL8/Jkye1202aNGH79u2YmZnRpEkTPD09cXd35+HDh9y9e5cq\nVaq8SzdCCCHyGAMDA1aurMWcORtISNDnyy+NadWqbm4PC4Du3evRrl0sERGOlChRkpiYGAYM8KB+\n/YZAetmBSZOmM2LEGL7+ujVPn0bg4eHKvXt3KVmyNLa2duzevQu1+tlavCNHDtGqVTvs7ctz48Z1\npk2bhKGhIU2bNueHH0aiUqkYNmwQt27dpFix4syePZ0lS1ZiY1OUr792IzjYlH37OlGq1FB69SqF\nj88ELlz4hx9+GE758g/p1q0ULi72L7ukbNOmjTEnT/5NbKwTCsVTmjaNlkBOCCHygGxZkf78N/xy\n5crRsmVLWrdujVKpZMKECfIDQQghPiElSxZl4cI2uT2MLBUsWJDt2zcTGHgRHR0FT548JjLyKZC5\n7EDz5i3ZvXsXixYtx9W1A2FhIcyaNY+oqCi++caDy5cDM533+vVrpKSkMGHCz7i4VGPTpnX07t0D\nlUpFRMQT7ty5jVqtwtbWDhuboiQnJ3P7dh3gNgBq9X127LjAuXN/AGBurs+oUZUpUaLUB/lcunSp\nR+HCFzh5cgvFiunj4fHVB+lXCCHE+8mWYC4gICDT9oABAxgwYEB2nFoIIYTINgcO7CU6Ogofn7Uo\nlUo6dWpHcnJ6gfHMZQcUQMajhxoqVKiEpaUVUVFRGBjoEx4ejlKp1La3sytGUlIiW7ZsICwslB07\ntrJypT/GxsZMmzbp3yLmz/6wqVAo0NFR89wkH6VLd2Plyh45ePWv9sUXVfnii1zrXgghxDuQ4m9C\nCCE+GfHx8ZibW6BUKjl//i8ePAh/ZXtjY2MMDAqQlJQMQEDAAUCBSpWGjY0tiYkJaDQaEhLiUSp1\nsbd3YN++3cTERGNkZMTTpxGcOpW+LKFEiZKEhYXy4EE4+vr6lCt3Dh2dBECNnp4N1tb/aPu9fj0o\npz4CIYQQ+UjOFv4RQgghPgIZj/s3b96CESO+x82tKw4OFShZsvQLbQD09PRJTU0FwNW1J0uXLsbD\nwxUXl+ro6aXP4Dk7u6Cvb8DYsSMoXboM9vblcXGpxuefN+Lbb/vj6toBa2sbqlRxBtLXE3p6jsTT\ncwgFChSkVq2KWFndp0aN7TRqNJitW/1xc+uKWq3G1taOmTPnfaiPRwghRB6l0LyqpsAHJFl58i/J\nupS/yf3Nvz71eztp0lhu3bqBnp4elpZWzJw5D3//1QQE7KdLl+60bNmGIUO+YfDg4SiVSqZNm4RG\nk/7c5IABQ6hd+7MXzpmYmEjBggUBmDNnJsWLl+DzzxsTFHSPqlXLY2pq9sGu71O/v/mZ3Nv8Te5v\n/vUu2SwlmBM5Tr7p5G9yf/MvubfpAgIOsnatLyqVChsbW8aMmZAp6Lp3L4Rr10KoUcMBc3PzV55r\n8+b17N37G6mpaTg4OFCuXHOmTCnAkyeVKFPmTxYvLkaNGg45fUmA3N/8TO5t/ib3N/+SYE58lOSb\nTv4m9zf/ys/3tmPHtvj4rMXExPS9zrNu3XEmTzYiMtKJMmWOvnUw1rjxPq5c6aTdbtlyE2vWtHqv\nMb2p/Hx/P3Vyb/M3ub/517sEc5IARQghxCdHoVCQHX/L9PaOJTLyc8CC27fb88svN9/q+KQkvUzb\nycmylF0IIcSbk58aQggh8rXExETGjx/J48ePUatVuLn1BWDr1k2cOHEMlSqNKVNmUKJEKRITE5k3\nbxbBwbdRqdLo3bu/tqh4VpKTMwdjKSl6L2mZtaZN4wgOfoJabYmh4TVatDB4+wsUQgjxyZJgTggh\nRL52+vRJLC2tmT17AQDx8XEsW7YIMzNzfHzWsmPHVjZsWMuIEWPx8/OhRo1ajB49gdjYWPr3d6NG\njdoUKFAgy3M3axbPypWPUautKFToCm3bGr7V2KZMaYe9/RHu3EmiZk1LWrV6eeAohBBC/JcEc0II\nIfK1smXt+eWXBSxduoi6dRvg7OwCQMOGTQAoX96RI0f+AODMmVOcOHGUDRv8AUhNTeXRoweUKFEq\ny3NPmdIOR8ejBAcnUq+eDU2a1H+rsSkUCtzcGr3bhQkhhPjkSTAnhBAiXytevAQ+Puv488/jrFix\nhOrVawKgr5/+SKRSqYNKpdK2nzp1NsWLl3ijcysUCnr0kNk0IYQQuUMSoAghhMjXnjx5gr6+Ps2b\nt8TVtRfXr197adtateqwdetG7fb160EfYohCCCHEO5FgTgghRL52+/ZN+vd3x8PDFV/fFbi59QEU\nz7VQoFCkb7u79yUtLQ03t6707NmZVau8c2XMQgghxJuQOnMix0k9lPxN7m/+Jfc2f5P7m3/Jvc3f\n5P7mX1JnTgghhHgHarWaESO2U69eAM2a7WH37nO5PSQhhBDitSQBihBCiE+et3cAvr7/A8wAGDv2\nN+rXj8LU1Cx3ByaEEEK8gszMCSGE+OTdu6cmI5ADCA2tQEhIeO4NSAghhHgDEswJIYT45FWrVggD\ngzvabUfH85QuXTLXxiOEEEK8CXnMUgghxCevU6e6REQEEBBwDkPDFDw9HTA0NMztYQkhhBCvJMGc\nEEIIAQwY0JQBA3J7FEIIIcSbk8cshRBCCCGE/MFDnAAADGJJREFUECIPkmBOCCGEEEIIIfIgCeaE\nEEIIIYQQIg+SYE4IIYQQQggh8iAJ5oQQQgghhBAiD5JgTgghhBBCCCHyIAnmhBBCCCGEECIPkmBO\nCCGEEEIIIfIgCeaEEEIIIYQQIg+SYE4IIYQQQggh8iAJ5oQQQgghhBAiD5JgTgghhBBCCCHyIAnm\nhBBCCCGEECIPkmBOCCGEEEIIIfIgCeaEEEIIIYQQIg+SYE4IIYQQQggh8iAJ5oQQQgghhBAiD5Jg\nTgghhBBCCCHyIAnmhBBCCCGEECIPkmBOCCGEEEIIIfIgCeaEEEIIIYQQIg+SYE4IIYQQQggh8iAJ\n5oQQQgghhBAiD5JgTgghhBBCCCHyIAnmhBBCCCGEECIPkmBOCCGEEEIIIfIgCeaEEEIIIYQQIg+S\nYE4IIYQQQggh8iAJ5oQQQgghhBAiD5JgTgghhBBCCCHyIAnmhBBCCCGEECIPkmBOCCGEEEIIIfIg\nCeaEEEIIIYQQIg+SYE4IIYQQQggh8iAJ5oQQQgghhBAiD5JgTgghhBBCCCHyIAnmhBBCCCGEECIP\nkmBOCCGEEEIIIfIgCeaEEEIIIYQQIg+SYE4IIYQQQggh8iAJ5oQQQgghhBAiD5JgTgghhBBCCCHy\nIAnmhBBCCCGEECIPkmBOCCGEEEIIIfIgCeaEEEIIIYQQIg+SYE6I/2/v7kKzrB8/jn98uPkF1cl0\nbJJYoJRFrA6DDkpbc2s6FM0jBTWwDkKWppAPGPYgaxAdFQpp5YFgaCFoBLpSpFYY0QSDEmQo6UzN\npzrYXNf/IBr/KP3lw4953bxeZ7vu2/GVD0Pe933NGwAASkjMAQAAlJCYAwAAKCExBwAAUEJiDgAA\noITEHAAAQAmJOQAAgBIScwAAACUk5gAAAEpIzAEAAJSQmAMAACghMQcAAFBCYg4AAKCExBwAAEAJ\niTkAAIASEnMAAAAlJOYAAABKSMwBAACUkJgDAAAoITEHAABQQmIOAACghMQcAABACYk5AACAEhJz\nAAAAJSTmAAAASkjMAQAAlJCYAwAAKCExBwAAUEJiDgAAoITEHAAAQAmJOQAAgBIScwAAACUk5gAA\nAEpIzAEAAJSQmAMAACghMQcAAFBCYg4AAKCExBwAAEAJiTkAAIASEnMAAAAlJOYAAABKSMwBAACU\nkJgDAAAoITEHAABQQmIOAACghMQcAABACYk5AACAEhJzAAAAJSTmAAAASkjMAQAAlJCYAwAAKCEx\nBwAAUEJiDgAAoITEHAAAQAmJOQAAgBIScwAAACUk5gAAAEpIzAEAAJSQmAMAACghMQcAAFBCYg4A\nAKCExBwAAEAJiTkAAIASEnMAAAAlJOYAAABKSMwBAACU0A3F3JYtW9LS0pLp06ens7Nz6PqGDRvS\n1NSU5ubmHDhw4IYPCQAAwF+Nvt4/2N3dna6uruzcuTOVSiVnz55Nkhw5ciS7d+/Orl270tfXl4UL\nF+bTTz/NyJHeBAQAALhZrruwtm7dmsWLF6dSqSRJampqkiR79+5Na2trKpVKxo8fnwkTJqSnp+fm\nnBYAAIAkNxBzvb29OXjwYObOnZv58+fn0KFDSZJTp06lvr5+6Hn19fXp6+u78ZMCAAAw5Kq3WS5c\nuDCnT5/+2/X29vYMDg7m/Pnz2bZtW3p6etLe3p69e/f+4/cZMWLEzTktAAAASf5LzG3evPmKj23d\nujVNTU1JkoaGhowcOTJnz55NXV1dTp48OfS8kydPpq6u7r8epLb2zn97ZkrIvtXNvtXLttXNvtXL\nttXNvvzpum+zbGxsTHd3d5Lk6NGjGRgYSE1NTaZOnZpdu3alv78/x44dS29vbxoaGm7agQEAALiB\n/81y9uzZWblyZWbMmJFKpZKOjo4kyaRJk9LS0pLW1taMGjUqa9eudZslAADATTaiKIpiuA8BAADA\ntfHhbwAAACUk5gAAAEpIzAEAAJTQsMZcT09P5syZk5kzZ2b27Nnp6ekZemzDhg1pampKc3NzDhw4\nMIyn5Hpt2bIlLS0tmT59ejo7O4eu27Z6bNq0KZMnT865c+eGrtm3/Do6OtLS0pK2trY8//zzuXjx\n4tBj9i2//fv3p7m5OU1NTdm4ceNwH4cbdOLEicyfPz+tra2ZPn16PvjggyTJuXPnsnDhwkybNi2L\nFi3KhQsXhvmkXK/BwcHMnDkzzz33XBLbVpMLFy5kyZIlaWlpyVNPPZXvvvvu2vcthtG8efOK/fv3\nF0VRFJ9//nkxb968oiiK4scffyza2tqK/v7+4tixY0VjY2MxODg4nEflGn355ZfFggULiv7+/qIo\niuLMmTNFUdi2mvz000/FokWLiilTphS//PJLURT2rRYHDhwY2q2zs7Po7OwsisK+1eDy5ctFY2Nj\ncezYsaK/v79oa2srjhw5MtzH4gacOnWqOHz4cFEURXHp0qWiqampOHLkSNHR0VFs3LixKIqi2LBh\nw9DPMeWzadOmYunSpcWzzz5bFEVh2yqyYsWK4sMPPyyKoigGBgaKCxcuXPO+w/rOXG1t7dArvhcv\nXhz6cPG9e/emtbU1lUol48ePz4QJE/7yrh23vq1bt2bx4sWpVCpJkpqamiS2rSbr16/P8uXL/3LN\nvtXh0UcfzciRf/zz8NBDD+XkyZNJ7FsNenp6MmHChIwfPz6VSiWtra3Zu3fvcB+LG1BbW5v7778/\nSXL77bdn4sSJ6evrS1dXV2bNmpUkmTVrVvbs2TOcx+Q6nTx5Mvv27cvTTz89dM221eHixYs5ePBg\n5syZkyQZPXp07rzzzmved1hjbtmyZeno6Mjjjz+eN954I8uWLUuSnDp1KvX19UPPq6+vT19f33Ad\nk+vQ29ubgwcPZu7cuZk/f34OHTqUxLbVYs+ePamvr8/kyZP/ct2+1Wf79u157LHHkti3GvT19WXc\nuHFDX9fV1dmwihw/fjzff/99GhoacubMmYwdOzZJMnbs2Jw5c2aYT8f1eP3117NixYqhF9iS2LZK\nHD9+PDU1NXnppZcya9asrF69Or/99ts173vdHxr+by1cuDCnT5/+2/X29vZs2bIlq1evzpNPPplP\nPvkkK1euzObNm//x+/jg8VvP1bYdHBzM+fPns23btvT09KS9vf2Kr/7a9tZ0tX03btyYTZs2DV0r\nrvJxlfa9NV1p3xdeeCFTp05NkrzzzjupVCqZMWPGFb+PfcvFXtXr119/zZIlS7Jq1arccccdf3ls\nxIgRti+hzz77LGPGjMkDDzyQr7766h+fY9vyunz5cg4fPpw1a9akoaEhr7322t9+j/nf7Ps/j7kr\nxVmSLF++PO+9916SpLm5OatXr07yxyuFf97Wk/zxFvOft2By67jatlu3bk1TU1OSpKGhISNHjszZ\ns2dtWyJX2veHH37I8ePH09bWluSPV/pnz56dbdu22bdErvbzmyQ7duzIvn378v777w9ds2/51dXV\n5cSJE0Nf27A6DAwMZMmSJWlra0tjY2OSZMyYMfn5559TW1ubU6dODf26A+Xx7bffpqurK/v27Ut/\nf38uXbqU5cuX27ZK1NfXp66uLg0NDUmSadOmZePGjRk7duw17Tust1nefffd+frrr5Mk3d3dueee\ne5IkU6dOza5du9Lf359jx46lt7d36C9KOTQ2Nqa7uztJcvTo0QwMDKSmpsa2VeDee+/NF198ka6u\nrnR1daWuri47duzI2LFj7Vsl9u/fn3fffTdvv/12/vOf/wxdt2/5Pfjgg+nt7c3x48fT39+f3bt3\n54knnhjuY3EDiqLIqlWrMnHixCxYsGDo+tSpU/PRRx8lST7++OOhyKM8li5dmn379qWrqytvvvlm\nHnnkkXR2dtq2StTW1mbcuHE5evRokuTLL7/MpEmTMmXKlGva93/+ztzVrFu3LuvWrUt/f39uu+22\nvPLKK0mSSZMmpaWlJa2trRk1alTWrl3rLeSSmT17dlauXJkZM2akUqmko6MjiW2r0f/fz77V4dVX\nX83AwEAWLVqUJHn44Yfz8ssv27cKjB49OmvWrMkzzzyT33//PXPmzMnEiROH+1jcgG+++SY7d+7M\nfffdl5kzZyb5IwIWL16c9vb2bN++PXfddVfeeuutYT4pN4ttq8eaNWvy4osvZmBgIBMmTMj69esz\nODh4TfuOKK72yy4AAADckob1NksAAACuj5gDAAAoITEHAABQQmIOAACghMQcAABACYk5AACAEhJz\nAAAAJSTmAAAASuj/AKSSWUR2kw4CAAAAAElFTkSuQmCC\n", + "text/plain": [ + "\u003cmatplotlib.figure.Figure at 0x2ee65e10\u003e" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "def plot(embeddings, labels):\n", - " assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'\n", + " assert embeddings.shape[0] \u003e= len(labels), 'More labels than embeddings'\n", " pylab.figure(figsize=(15,15)) # in inches\n", " for i, label in enumerate(labels):\n", " x, y = embeddings[i,:]\n", @@ -861,26 +655,12 @@ "\n", "words = [reverse_dictionary[i] for i in range(1, num_points+1)]\n", "plot(two_d_embeddings, words)" - ], - "outputs": [ - { - "output_type": "display_data", - "metadata": {}, - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3MAAANpCAYAAAChBGCHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdAldUfx/H3BdlbQEVzoyDukZaae5aZ5tbcIzUz9x5Z\njhwNNXMVztTExFHqT9Ny50hFc+ZKEVBwAbLh/v4gSXILChc/r3+69/Lc53yfewL8cM5zjsFoNBoR\nERERERERk2KW0QWIiIiIiIjI01OYExERERERMUEKcyIiIiIiIiZIYU5ERERERMQEKcyJiIiIiIiY\nIIU5ERERERERE5TmMBceHk7fvn1p2LAhb775JgEBAdy6dYvOnTtTv359unTpQnh4eHrUKiIiIiIi\nIv8wpHWfuaFDh/Lqq6/SvHlzEhISiI6OZvbs2bi4uNC9e3fmzZtHeHg4gwYNSq+aRUREREREXnpp\nGpmLiIjg4MGDNG/eHIBs2bLh4ODAtm3baNq0KQBNmzbll19+SXulIiIiIiIikiJbWt4cGBhI9uzZ\nGT58OKdOnaJ48eKMGDGC69ev4+bmBoCbmxvXr19Pl2JFREREREQkWZpG5hISEjhx4gRt2rTB398f\nGxsb5s2bl+oYg8GAwWBIU5EiIiIiIiKSWprCXK5cuciZMyelSpUCoH79+pw4cQI3NzdCQ0MBuHbt\nGtmzZ3/kedJ4256IiIiIiMhLJ03TLN3d3fHw8ODChQsULFiQvXv34unpiaenJ/7+/vTo0YM1a9ZQ\np06dR57HYDAQGhqRllIkE3N3d1D/ZmHq36xLfZu1qX+zLvVt1qb+zbrc3R2e+j1pCnMAo0ePZtCg\nQcTHx5MvXz4mTZpEYmIi/fr148cffyRPnjx89dVXaW1GRERERERE7pHmMOft7c2PP/543+sLFy5M\n66lFRERERETkIdK8abiIiIiIiIi8eApzIiIiIiIiJkhhTkRERERExAQpzImIiIiIiJgghTkRERER\nERETpDAnIiIiIiJighTmRERERERETJDCnIiIiIiIiAlSmBMRERERETFBCnMiIiIiIiImSGFORERE\nRETEBCnMiYiIiIiImCCFOREREREREROkMCciIiIiImKCFOZERERERERMkMKciIiIiIiICVKYExER\nERERMUEKcyIiIiIiIiZIYU5ERERERMQEKcyJiIiIiIiYIIU5ERERERERE6QwJyIiIiIiYoIU5kRE\nREREREyQwpyIiIiIiIgJUpgTERERERExQQpzIiIiIiIiJkhhTkRERERExAQpzImIiIiIiJgghTkR\nERERERETpDAnIiIiIiJighTmRERERERETJDCnIiIiIiIiAlSmBMRERERETFBCnMiIiIiIiImSGFO\nRERERETEBCnMiYiIiIiImCCFOREREREREROkMCciIiIiImKCFOZERERERERMkMKciIiIiIiICVKY\nExERERERMUEKcyIiIiIiIiZIYU5ERERERMQEKcyJiIiIiIiYIIU5ERERERERE6QwJyIiIiIiYoIU\n5kREREREREyQwpyIiIiIiIgJUpgTERERERExQQpzIiIiIiIiJkhhTkRERERExAQpzImIiIiIiJgg\nhTkRERERERETpDAnIiIiIiJighTmRERERERETJDCnIiIiIiIiAlSmBMRERERETFBCnMiIiIiIiIm\nSGFORERERETEBCnMiYiIiIiImCCFOREREREREROkMCciIiIiImKCFOZERERERERMkMKciIiIiIiI\nCVKYExERERERMUEKcyIiIiIiIiZIYU5ERERERMQEKcyJiIiIiIiYIIU5ERERERERE6QwJyIiIiIi\nYoIU5kREREREREyQwpyIiIiIiIgJUpgTERERERExQQpzIiIiIiIiJkhhTkRERERExAQpzImIiIiI\niJgghTkRERERERETpDAnIiIiIiJighTmRERERERETJDCnIiIiIiIiAlSmBMRERERETFBCnMiIiIi\nIiImSGFORERERETEBCnMiYiIiIiImCCFOREREREREROULaMLEBERkcxnxYqlbNiwHoBGjZpQrVoN\nBg78kFKlyvLnnwG4u+dg0qTPsbKy4sqVQL74Ygq3bt3E2tqaoUNHki9fgYy9ABGRl4BG5kRERCSV\nU6dOsnHjT8yfv4i5cxeyfr0/ERHhBAZeplmzlixZshJ7ewe2b98GwJQpE+jffzDffbeE3r0/4vPP\nJ2fwFYiIvBw0MiciIiKpHD16hGrVamJlZQ1A9eq1CAg4jIdHHjw9iwDg5eVNcHAQ0dHRHDt2lNGj\nh6a8Pz4+IUPqFhF52SjMiYiISCoGg+GBr1taWqQ8NjMzJykpDqMxCQcHBxYsWPaiyhMRkX9omqWI\niIikUrp0GXbs+I3Y2Biio6PZseNXSpcue99xRqMRW1s7cufOza+//pLy2tmzf73okkVEXkoamRMR\nEZFUihb15s03G9G9e0cA3n67KQ4OjveN2N19PmbMeKZN+4xFi3xJSEigTp16KdMxRUTk+TEYjUZj\nRhcBEBoakdElyHPi7u6g/s3C1L9Zl/o2a1P/Zl3q26xN/Zt1ubs7PPV7NM1SREREntnx4+eYP38j\nf/xxMqNLERF56SjMiYiIyDNZt24/LVpEM3JkC1q1smLhwu0ZXZKIyEtFYU5ERESeyeLFNwgLex0w\nEB5emqVLYzK6JBGRl4rCnIiIiDwTo9HwyOciIvJ8KcyJiIjIM2nd2gEXl0MA2NmdpkULLZItIvIi\n6aeuiIiIPJMWLSpToMAJ9u3zo2TJXFSvXiujSxIReakozImIiMgze/VVH1591SejyxAReSlpmqWI\niIiIiIgJUpgTERERERExQQpzIiIiIiIiJkhhTkRERERExAQpzImIiGSAyMhI/P1XZXQZIiJiwhTm\nREREMkBERDj+/n4ZXYaIiJgwbU0gIiKSAebMmcmVK4F07tyWIkW8qFatJlWrVmP48EE4OjoyfPgY\nfvppLUFBV+jRozcrVixlw4b1ADRq1ISWLdtk8BWIiEhG08iciIhIBujVqy958rzCggXLqFTpdY4e\nPQxAWNg1/v77IgBHjx6hbNlynDp1ko0bf2L+/EXMnbuQ9ev9+euv0xlYvYiIZAYKcyIiIhnAaDSm\nPC5VqgwBAUe4ePECBQsWxsUlO9evh3H8+DFKlCjN0aNHqFatJlZW1tjY2FC9ei0CAg5nYPUiIpIZ\naJqliIhIBnN3z0FkZAT79u2hdOmyhIeHs3XrFmxtbbGxscFgMKQ63mg03veaiIi8fDQyJyIikgFs\nbW2JiopKeV68eElWrlxOmTLlKF26DCtWLKVUqbIAlC5dhh07fiM2Nobo6Gh27vwt5WsiIvLy0sic\niIhIBnBycqZkydJ06NCK116rTKlSZThwYB958rxCzpy5iIgIp3Tp5MBWtKg3b77ZiO7dOwLw9ttN\nKVKkaEaWLyIimYDBeO+k/QwUGhqR0SXIc+Lu7qD+zcLUv1mX+jbzuHr1KsHBoXh7e2JtbZ0u51T/\nZl3q26xN/Zt1ubs7PPV7NM1SREQkE/P13U61apepV8+DRo02cflySEaXJCIimYTCnIiISCYVHx/P\nrFnx3LxZEyjA0aPt+eKLgxldloiIZBIKcyIiIplUXFwcUVH2qV6LibHMoGpERCSzUZgTERHJpOzs\n7Kha9W8gGgBHx8M0bOiUsUWJiEimodUsRUREMrHZs5tRvPhPhIVBzZq5qF27UkaXJCIimYTCnIiI\nSCaWLVs2+vVrkNFliIhIJqRpliIiIiIiIiZIYU5ERERERMQEKcyJiIjIA02ePJ6LFy9kdBkiIvIQ\numdOREREHmjo0FEZXYKIiDyCwpyIiMhLIDo6mjFjhhEaGkpSUiIfftgHBwc3vv76S6Kjo3FwcMBo\nNBIaGsrVq8GMGPEx/v5+tG79Ht98M4OkpCQGDRrGwoXfcvr0SfLnL8DkyV/i6upGnz49KF68JIcO\nHSQyMoJhw8ZQunSZjL5kEZEsT9MsRUREXgL79u3BzS0HCxcuY/HiH6hWrRrTp09lwoQpfPfdEgoX\n9uTatWssW7aKfPnyU6BAAQwGAwcO7KNBgzdp2/Y9xowZTrly5alf/03atGnPvHnfAGAwGEhKSmL+\n/EX07TuQBQvmZfDVioi8HBTmRETkpRcZGYm//yoADh06yJAh/TO4ovRXuHARDh7cx+zZMwkIOEJQ\nUBDnz5+jX7/edO7clj17dnPtWgizZ8+kWLES7N27G4CDB/dRu3Y9SpQoxZ07kSxZspBjx46yeLEv\noaGhKeevXr0mAF5e3oSEBGfINYqIvGw0zVJERF56ERHh+Pv70bRp84wuBUgOl1u2bKJp0+YcOnSQ\nFSu+Z8qUL9N0zrx58+Hr+z179+5i/vxveOONKhQsWJg5c3xTjomIiGDv3l34+a1g9+4d5MiREzCQ\nJ88rnDhxnGzZsuHunoMvvpiJq6tbqvNbWFgCYGZmTmJiYppqFRGRJ6OROREReenNmTOTK1cC6dy5\nLbNnzyA6OopRo4bSrl1zPvlk9Auv5264fBpJSUmP/HpYWBiWlpbUq9eQNm3ac/ToUW7dusWffx4D\nICQkhKCgK9Sr15BOnboRGxtLSEgwFSu+BsDGjeuwsrKmXr03mTx5AgkJCVy4cP7ZLlBERNKFRuZE\nROSl16tXXy5cOM+CBcs4fPgPhg8fyNKlfri6utGrV1eOHj1CqVIvbkGPe8NltmzZsLa2YdSooVy4\ncA4vr2KMGfMpAM2bv03t2vU4cGAf7dp1wMHBEV/fecTFxZEnzyuMGDEWGxsbTp06ycSJ47hy5TLm\n5ubkyZOXyZMncft2DNOnTyMyMpLIyAgSExNxdnYmWzYLGjZshJ/fcl59tRKHD//BX3/9xfTp3zB9\n+uf89dcZWrR4m65d36dgwUIPuALDC/usREReZgpzIiLy0jMajakeFytWHDc3dwA8PYsSEhL8QsPc\n48LlsWMBlCxZGoPBgJOTM76+S7l16xajRg1h+vRvsLKyZunShYwePYzg4CvcunWLZctW4eTkzNat\nm9m//3eKFy9OaGgEX3/98MVKPvpoIJA86jdt2nTs7R0eePzMmXNTHjs7O+Pntzb9PxQREbmPwpyI\niMh/3L3/C8Dc3OyF3wP2uHAZHBxMyZKlAahduy4Ax48f4+LF8/Ts2QWA+PgEwsKuMWHCVEaMGES/\nfr2B5GDm6ur+xLVs3nyETz4JJCzMHR+fv5k3rw5ubtn/aSOedet2YzQaady4CpaWlo85m4iIpCeF\nOREReaiFC79l8+aNODu7kCNHTry8itGmzXsZXVa6s7W1JSoqKqPLeKj7w2VCynMbG5uUxxUqVOLj\njycAMHXqRDZsWM/UqZNwcHAkVy4PgoKCuHPnDtHR0VSsWJEiRbyoVKlySp+2b9+SqVNnYDQmMWBA\nH4oXL8mmTfs5f96PhAQPdu0yMn7893z11TvEx8fToYMfW7e2BQysWLGM779/FysrqxfzoYiISPos\ngJKYmEiTJk3o2bMnALdu3aJz587Ur1+fLl26EB4enh7NiIgIEBwcRLt2zZk8eQLt27dkwIA+xMbG\npns7R48eZfv2bSxatIJp02Zw6tRJDFn0VignJ2dKlixNhw6tmD17RoZf57OESx+fEhw7FsCVK4EA\n9OnTH2dnF775Zj4RERE4O2dn0aLlJCUlYWZmxv79+++bOmq458KvXAnknXfe5fbtYSQkeNw9gtu3\nbQHw89vO1q0dAAfAnh07OrFs2fZnvWQREXkG6TIyt3jxYgoXLsydO3cAmDdvHpUrV6Z79+7MmzeP\nefPmMWjQoPRoSkREgMDAy4wbN4mhQ0cyZsxwtm/fRr16DdO1jUOHDvHGGzWwsLDAwsKCKlXe4J7Z\nf1nO2LHjH/h6//5DXnAlqcOllZUV2bO7PvY9Li4ujBz5MR9/PIK4uHgAEhISMDc3x9XVjbNnz/Dm\nm7UJD7+NmZkZc+fOZe/e3VStWo3mzd9m1ar1AMTGxtC3b09y5sxF9uyu5Mo1HisrX5KSbLh+/UMq\nVkwOfPHxRlL/M8Kc+PhHr6gpIiLpK81hLiQkhO3bt9OzZ08WLlwIwLZt21i6dCkATZs2pX379gpz\nIiLpyMMjD56eRYDkTZqDg4PSvQ2DwZDq3i3IwknuH7Nnb+P77+NJTDTn3XcTGDy4QYbV8iTh0s9v\nXaqvlStXgfnzF6c8b9GiMVFRUZiZGRgz5lPy5s1HixaNSUhIwMnJCTMzAxYWFhQpUpRDhw4SFxfH\nwYP7KVOmHBcunGPKlAnMmjWeRYv+4tKlq0RHf0rPnsv/OXcV/PwWs39/J8BAuXILadv2zXT/HERE\n5OHSPM1y4sSJDBkyBDOzf091/fp13NySNxN1c3Pj+vXraW1GRETuYWlpkfL4eW3SXK5cOXbv3klc\nXBxRUVHs2bMrw6cfPk8HDhxn6tTCnDnTnHPnmjJjxqts3Lgvo8t6qMGDP+LOnchHHnPt2jUaNVrP\n0aNedOz4FZcvhxAbG4u1tTUXLlzA1taO06dPUatWXVavXklwcBC7du2gcuU3SEpK4tixo0yaNI6g\noGVky7YVa+uklKmYtra2/PDDW3z88Y+MHbsKP7+G2Nvbv4hLFxGRf6RpZO7XX3/F1dUVHx8f9u17\n8C88g8GQag7+w7i7O6SlFMnk1L9Zm/r3xYqNtSNbNvOUz93e3gozs8R07wd395LUr1+XLl3a4ubm\nho9PMXLlcsuy/X3hQiiRkZVSnsfGFiAo6Gimvd6FC30f+XWj0UhiIoSFVSE21gczsxF07dqNhIQI\nmjdvxrFjx/D0LMTly5dZunQBwcHB5MuXj7//Pk/16q+zfPkinJwc+emn9Q9tw93dgbFjW6b3pUk6\nyKz/30r6UP/KXWkKc4cPH2bbtm1s376duLg4IiMjGTx4MK6uroSGhuLu7s61a9fInj37Y88VGhqR\nllIkE3N3d1D/ZmHq3xfvxo07JCYmpXzukZGxxMTEpXs/uLs70LhxS1q16khMTAx9+vSgdeuCWba/\ny5cvjIfHbwQH1wTA1XU/ZcrkzhTX+7//bWDVqh9ISIjHx6cEAwYMpVWrJvj6LsXR0emBq462aNGa\nhIT82Nntxs3tC8zNw8mevTEJCetZvdqf6OgoTpw4ycCBw6hVqw6jRw/D0tICOzt7rK2dWbhwBb16\ndWHlSn9q1qyD0Wjk3LmzKdN7JfPSz+WsTf2bdT1LSE9TmBswYAADBgwAYP/+/fj6+jJ16lSmTJmC\nv78/PXr0YM2aNdSpUyctzYiICBAXF8fhwydwdXVk0aIVKa+n91YBcXFx/PzzXlxd7dm2bTV//32B\nuLg4GjZsRJEiXunaVmZSuHBepk+/yXff+WE0GmjdOjvly7+a0WVx8eIFtm3bwpw5vpibm/P555PZ\nvHljyqyXkyePp6w6Gh8fT5cu7+HtXYxs2bLh6BhHeHgcly/74ez8A0lJSzAYzOjQoTO//76L3Lnz\nUqtW8u/omjVrM2bMCF55pRtjxqxn5Mh6jBkznmnTPmPRIl8SEhKoU6eewpyISCbyXPaZ69GjB/36\n9ePHH38kT548fPXVV8+jGRGRl0ZERAStWn1HaOgerl79mM6d/Tl/fjmffPIZBQsWSrd2YmJiaNvW\nn1272gLxNGhwmgULPsHc3Dzd2sjMatQoRY0apTK6jFT++GM/p0+folu39kDyfXDR0cnbFhiNRo4d\nC7hv1dG7ihZ1p2xZC+LjV1GqlBmbNsWwYsVaNmxYT6FChejZs1/Ksb/9FsOZM39w5owd27bFcePG\nMr7+uhmffz7jxV6wiIg8sXQLcxUrVqRixYoAODs7p6xsKSIiaTdjxg4OHhyJq+sM7O1/Y+3aS3Tv\nXjVdgxzAokW/sWtXZyB5gZVNm1qxfv0umjSpnq7tyNNp2LAR77//QarXWrRo/M+jh686ajAY6NKl\nBl5e3ty6dYuff/7moW0cOWIN2P3zzJJDh+wYMuQn4uKy8e67r1CtWon0uBQREUlH6bJpuIiIPF8x\nMeaAGdevf4Cd3W6yZbtMzZr10r2d+/cOsyImJiHd25HHu7s5/OHDh1i+fCkffvg+sbGxjB07An//\nVQB07tyOCxfOsWzZYjp0aMWZMyfZs2cX8fHxTJw4jtOnTzJu3Eh27Uq9mbednV3K3rB3ubqm3qQ8\nOPgKCxe2YdmyFvTuncDBg6ef7wWLiMhTU5gTETEB775bmNy5t2BufhODIQp7+zDy5Xsl3dtp1+51\nSpVaTPLoTgKvv76UJk2qpHs7mcXKlcuIjY3J6DIeKjDwMp06dWP06E/4668ztG37LgcP7vtnS4Lk\n1aI9PYvSrl1Hbt68yaBB/Shc2JOAgCNUqFARL69iDB48glmzpv9zncn32ZUtW4GzZ8/SuXNbtm37\nBYCxY1/l9dcX4e6+gcKF53DnzuspdVy79gb/+9+FDPgERETkUZ7LPXMiIpK+ypYtwqJF8PHH3cmf\n/zVKlnRm/vxvUm0gnR5cXJzx86vFkiWrcHKyokWLxlhbW6drG5mJn98K6td/EyurzHmNdzeH9/Qs\nQkhIEAkJCVy5EkjevPnw81tLixaNqV69FnZ2dlSqVJk5c2YSEhJCdHQ0S5cuxNzcnBkzPic+Pp7Y\n2Bj8/NYC4OjoyKpVq1KtiFegQG7Wrn2XuLg4LlzITf36iUSlDNZF4eqqv/+KiGQ2CnMiIiYiKOg0\nxYvnYfz4oSQlJdGzZxcOHTpIuXIV0rUdFxdn+vZtkOWWv46OjmbMmGGEhoaSlJRIzZp1CAsLpW/f\nnjg7uzB9+uyMLvE+928OH/vAY6ZMmcCpUye4du0anTt349dft/LxxxPImzcfAElJSQwe7M/Oneew\ns4ulf393unat9ZA2LfHyKkyfPv9jwYJQYmIcqFnzBN26NX8+FykiIs9MYU5ExEQ0bNiIhg0bAWBm\nZsa8eQsztiATs2/fHtzccjB16nQA7tyJZMOG9cycORdHR6cMri5txo4dz6lTJ5g1azrvvdeJO3fu\nsGrVipSR2wkTFrNkSUfAEYAxY36mWbNbwMNXKR00qD49e0YQGxtH9uwlU7ZCEBGRzENzJkREMrmp\nUzdRpcoWqlX7H99++1tGl2OyChcuwsGD+5g9eyYBAUews7PP6JIe6+kClCHl+E6dupGQkEDHjq1p\n374lBw78wt0gBxAUVIRLl4Iee0Z7ewdcXV0V5EREMimDMfV6xhkmK03lkdSy2lQtSU39+3z9/PM+\nevb0JDa2AAAODkdYtSqesmW9n3vbaenbjRt/YsWK7zEYDBQu7Mno0Z88cx11677Bli07n/n994qI\niGDv3l2sW+dP+fKvsmHDer77bonJj8w9zurVe+nXz5OYmOStLHx8fuDgwcZERmql0qxIP5ezNvVv\n1uXu7vDU79E0SxGRTOzMmZspQQ4gIqIkR4+ufiFh7lmdP3+OxYt9mTt3AY6OToSHh6fxjOkzKhQW\nFoaDgwP16jXEzs6en35ai61t8hL9WSXMHT78FzNmnCEmxoIGDazo2DF5f8B3332d69e3sm3bYWxt\n4xg4sDg2NjZERuofhCIipkxhTkQkE6tcOR8uLge5eTN5kZPcuX/L9Js3Hzp0gFq16qYEJEdHx8e8\n48U4f/4ss2ZNx8zMQLZsFgwaNJw//wxg4MAPcXfPkSkXQHmQNWt+ZO3aHwGIjIzEwyM37dt3Yt68\nbzhx4haRkaUICZnE3r2XWbmyHo0avc2BA/to164DBQoksXTpUj77zMiBA7Xo2PH9DL4aERFJC4U5\nEZFMrFIlHz777Hf8/FZhZmaka1cPChZM//3l0pPBYCCTzOBPpWLF16hY8TWMRmPKKJ2XlzfNmrXK\n6NKeSpMmzWjSpBkJCQl89FEv3nqrMYsW+dK2bS9atSqBi8tPuLgs4MaND4iNTcLJyRlf36WEhYXy\n/vud8fVdir29A0OHfsTOnb/xxhs1MvqSRETkGWkBFBGRTK5p09dYtqw+S5c2oGbN0mk6V3BwEB06\nPN/wUq7cq/z66y+Eh98GSPlvZhAREUHLlj9QqVIIlSvv5vvvd2d0Sc/sq6+mUb78qzg4OHLx4nl8\nfb+kUKH2ODquxcIiGIPhOtmyGahduy4AJ08ep1y5Cjg5OWNubs7bb7/NkSOHM/gqREQkLRTmREQk\nXRUsWIgOHbrQp08POnVqy9dff5XRJaWYMmU727d3JTKyMoGBTZg2LYbo6OiMLuupbdiwnmvXrtKl\nSw+MRiMVKlRiyZKVDBw4DHv7jtjbV6Br1w04ONhgY2MD3D9imhlHT0VE5OlomqWIyEvqypVARo8e\nypAho/D2Lpau5753TzyAFSuWsmHDegAaNWpCy5Zt0rW9J3X7tgX3/h3z5s1cREREpAQeU3Dq1ElW\nrFjKrFnfAuDjU4IvvpjMlSuBtGjxGo0aRRMWFkrevPlo0cI35X3e3sX56qtp3L59C3t7BzZs2EDj\nxtoIXETElCnMiYi8hC5dusjHH49k5MhxFC7smebzrVq1h3XrIrGwSKBPnyKULVsk5WunTp1k48af\nmD9/EUlJRnr06EjZsuUoUsTric6dnnuc1azpxLp1J4iK8gGSKF/+GO7upnXP3OrVK4mIiKBv3+TF\nS7y9fRg58mM+/ngEcXHxAPTo0Zu8efOlep+bmxs9e/ahb9+eGI1G6tSpTdWq1V54/SIikn60z5w8\nd9oPJWtT/5oGP78VrF37I/ny5ePYsWM4OjoyceI08ucv8ND3PGnf/vbbUbp1syM8vAwAhQqtYePG\ncri4uACwcuVyIiLC6do1OXx8++0cnJ2dad68ddov7Bn4+//Otm23cXSMY+jQ6plmtc0XTd+7WZf6\nNmtT/2Zd2mdOROQldvdvcw8ayVqzZhXTp88mPj6eAQP6kDOnBwEBhx8Z5p7U7t1BhIe3SHl+/nx1\nfv99Hw0bVnlgPUaj8YE1nj79N7NnHyc+PhvNmuWkVq20LfbyME2bvkbTps/l1JnW5s2HmTs3hPh4\ncxo3tqBbt5oZXZKIiKQDLYAiImLCgoODaNPmXcaPH0uHDq24du3qfcdMnTqRoKArDBz4IT//vBYL\nCwsmTpzXjaYmAAAgAElEQVTKpk0/s2XLpjTXkC+fNWZmoSnPnZ1PUKxY3pTnpUuXYceO34iNTV5s\nZOfO3yhVqmyqc9y6dYuuXU+ybFkr/Pya8eGHBg4ePJ3m2gQCA4MZPDiOnTtb8vvvzZgwwZv//e+P\njC5LRETSgUbmRERMXPJCJp/g4/PgzcQHDx7B/v2/M3PmXO7cucPOnduxtrZmypSv6N+/N7a2dlSp\n8sYzt//ee9U5eXINmzc7YmWVQI8eNhQoUCrl60WLevPmm43o3r0jAG+/3ZQiRYqmOseOHcc4c6ZB\nyvPQ0Cps3epHhQpPdl+dJNu1awcXL57nvfc68d13c7G1tcPK6hWSkrZjb59IZGR97O0Xs3OnB++9\nVyOjyxURkTRSmBMRMXE5c3o8NMjd6/btW5iZmbNgwTIA7O3tmT9/cZrbNxgMTJzYlAkTHjx9EqBV\nq3a0atXuoecoVCgXtrbniIoq8885b5Ejh0Waa3vZVK1aLWVRE4PBgMEA5cp5Ym29mjt3kvvm9u1u\nvPba2YwsU0RE0onCnIiIibOxsX7sMeHh0dSvf5bIyLxUqfIDCxY0xdr68e97Gg+6N27t2l1cu3aH\nd96pQM6cbg99b4kSRejXbwsLFvxNfLwN9epdoWPHd9O1vsfp1asLs2f7PvTrdeu+wZYtO19gRakF\nBwcxcOCHlChRimPHAvD29qFhw0YsWDCPmzdvMXbsp1y4cJ7Tp0/Sv/8QAIxGKFDgFcqVS+L8+d0Y\njZE4OMzD0/MTALZs2cTSpQsxGo28/npVevX6MOVaW7Row549u7CysuKzzz7HxSV7hl27iIg8mO6Z\nExHJ4kJCgrl924wbN2oQE1OerVs7M336tufaptFopF+/H+nZsyKjRjWnWbODnD8f+Mj39OtXlwMH\nqnLgQCm++qo5ZmYv9lfUo4JcsvTbIuFZXbkSSOvW77Fs2Y9cuvQ3W7duZvZsX/r0+YjFixc8dGQ0\nf353Ro0qxy+/1OWVV7JjMBi4evUqc+Z8zYwZc1iwYBmnTp1g587fAIiJiaFEiVIsXLiM0qXLsm6d\n/wu8ShEReVIKcyIiJu5x+7CFhd0iKeneiRgWREQ83x//gYGB+PuXIinJDTBw5kwLvvsu4LHvs7S0\nxM7O7rnW9jB16ybfNxgWFsYHH3Snc+e2dOjQiqNHj6QcM3PmF7Rv35KPPurNrVu3AOjTpwezZ8+k\ne/eOtGnzLgEBRx54/vTg4ZGHQoUKYzAYKFiwEBUqVASgYMHChIQEPfF5jEYjx44do2zZ8jg5OWNu\nbk7dug04cuQwABYWFlSuXBUAL69ihIQEp//FiIhIminMiYiYmIiIcE6dOk1UVBQeHrlZtGjFA4+7\ndu0aoaGhFC1amBw5OpKU5ASAq+teGjTI+8D3pJcHbWFqNGb8yNajJde3ZcsmKlV6nQULlrFw4XI8\nPZMXa4mJicbb24clS1ZStmw5FiyYl/wug4GkpCTmz19E374DU15/Hiwt/72P0MzMDAsLi5THiYmJ\n91/RIz7y+/8I8O89j+bm/4Z/MzPDA88tIiIZT2FORMSEbN58hJo1/6BaNUfq19/B4cN/3XeM0Wik\nf/9VVKp0lddeC2LUqJ9ZtKgO77+/gg4dVjF7dhJVqxZ/rnXmzZuXd94JwGC4ARjx9PyRrl1LPtc2\n04uPT3E2bFiPr+88zp07i62tLZAcmGrXrgdAvXoNU43YVa+evG+bl5d3phnFMhqNPCBTA8lBrlSp\nUhw5cojbt2+RmJjIL79spkyZci+2SBERSRMtgCIiYkK+/PIKly61BuD06aJMm7aC778vkuqY1at3\nsHx5Y5KSXAFYssSTGjUC+PTTRg88Z3BwEEOH9mfx4h/SrU6DwcCMGc2pXn0H169H8/bb5cidO0e6\nnf95Kl26LLNmzWfPnl1MnPgxrVq1o0GDt1Id89+Nzy0sLAEwMzN/rqNY/x1Ne9AU27uv3V3N8mHc\n3d3p2bMPffv2xGg0UrnyG6lWwnxUGyIikjkozImImJA7d6xSPY+KsrzvmKtXo1KCHEBiYg6CgyOe\ne23/ZTAYaN68+gtvN61CQkJwd3fn7bebEBcXy19/naZBg7dISkri119/oXbtemzZsum+jc+ft/9O\nqR0xYmyqr90N4w0bJof2Ll16PPDYmTPnpjyuU6c+derUT9XO7du3+PbbxSQmJmJubk6NGrWpUaN2\n+l6MiIikC02zFBExIVWrRmIw3ATA0jKQGjXun0fXqFEZChZcl/Lc03Mtb7316OlzSUlJTJ48gfbt\nWzJgQB9iY2PTt3ATcHcE6vDhg3Tu3JYuXdrx669badGiDQDW1jacOHGcDh1acfjwITp37vawMz1V\nu8HBQXTo0CotpaebefN+o3LlE1SunEiLFquIiHjxfwQQEZEnZzA+6C71DBAaql8YWZW7u4P6NwtT\n/75YRqORefO2cvFiEqVK2dKmTdUHHnfixAUWLjwFGOnWrQRFi+Z76DmDg4No3bop3323FE/PIowZ\nM5yqVavRrl1L9e0L8DymuT6J/37vhoff5vXX/yQ0tME/ryTRq9cPjBv34Om5knnp53LWpv7Nutzd\nHZ76PZpmKSJiQgwGA++/X+exx/n4FGTKlIJPfF4Pjzx4eibfe+fl5U1w8JMvc/8y+vvvYEaO3E9Q\nkB1Fitzm88/rY29vn+bzXrkSyOjRQ6lTpwHHjh0hJiaGwMDLtG7djtjYOH75ZRMWFpZMnTodR0fH\ndLiSf0VERBAefu99jWZERlo89HgREcl4mmYpIiL/WfL++S7ikRUMGbKPzZvf488/m+Lv34FRo35J\n8zkvXbrI6NFDGTlyHM7Ozly4cJ6JE6cxf/5i5s37Bjs7O3x9v6dEiZJs2vRzOlxFah4eualU6Q8g\nue+dnf+gfn33dG9HXi6DB3/EnTuRjzxm8WLfF1SNSNajMCciIvKULl26dyqMGZcvp21U7ubNmwwf\nPoixYydQuLAnAGXLVsDGxgZnZ2fs7R2oUiV5pclChTyfaoPwJ2VmZsbChY3o08ePjh1/ZNasKOrV\n01YFkjZTp07Hzu7R3x9Llix8McWIZEGaZikiIk+05L38q0CBcM6dM5K82EkCBQs+euThcezt7cmZ\n04OAgMPkz18Ag8Fw3wbhd58/bIPw9GBvb8+YMW89/kB5KURHRzNmzDBCQ0NJSkqkY8duODk58c03\n00lMTMTb24dBg4bzxx8H+PnndXz66WcAHDp0kBUrvmfKlC9p3vxtfH2X4ujoxP/+t4FVq34gISEe\nH58SDBw4jLlzZxEXF0vnzm0pVKgwo0d/msFXLWJaFOZERF5y/13yvk2b915Y2w/6x52ZWeafNPLF\nF1UZOXIpwcH2FCkSzqefNkzT+SwsLJg4cSoDBvTBxsbmkcdmknXL5CWwb98e3NxyMHXqdBYu/Jb5\n87/h6tUQXn21EmXLVuDYsQA6dWqDlZU1Fy6c4+zZ03h6ejF16iRy5MhBjx6diIgI54svpmA0JrF/\n/+/Y2zswfPgYpk6dyLvvvknFiq9jaWnFggXLmDbtM7p160BsbAw1atSma9f3AWje/G0aNmzE7t07\nSUxM4NNPPyNfvgIZ++GIZBKZ/zemiIg8F3fu3GH9+p0cOHAsQ9q/ePEC27ZtYc4cXxYsWIbBYMbm\nzRszpJan5eHhjq9vEzZurMOMGe8+NoA9jsFgwNramilTvmLlymXcuRP5n9HR1Jt4a+RUXoTChYtw\n8OA+xo8fy6ZNPzN27AS8vX24dOkSAMHBweTMmQtf36W89loVxo0bTUJCAqGh17CwsGDu3AU4OjoB\nEBh4GSsrawA++qg3CQkJNG78LufOncVoTAKgR4/efPvtYhYuXM6RI4c4f/4skPz/vLOzC76+S2nS\npDnLly/NgE9DJHPSyJyIyEvo2rXrtGu3nYCAd7G0DKFTp3WMH9/4hdbwxx/7OX36FN26tQcgNjYW\nV1fXx7wr67l3ZNTe3p758xffd4yf39qUxw0bNkrZGFzkecqbNx++vt/z5ZdTSEhI4Pffd2Nubk6V\nKm8QFxfLxYvnCAqyonPntkRFRXHz5g0OHz6Ik5MTderUT/VHh0KFPKlY8XUaNXqHgQP7smLFagCC\ngq5w4cJ5ALZt28y6dWtITEzk+vUwLly4QKFCyfeQVq9eC4CiRb3Zvn3bC/4kRDIvhTkRkZfQrFl7\nCQjoABiIi3NgyZLr9O59hdy587zQOho2bMT773/wQts0Fdu2HWXSpEvcvGlD+fI3mTHjbaysrDK6\nLHmJhIWF4eDggLe3D0lJifz55zFCQoLJk+cVHBwcMDMzo3v3njRv3prExERat27KunVryJ07D9bW\n1qnOVaRIUVavXkX16rWwtLQgPPw2UVHRmJmZYW5uxuXLl1ix4nu+/XYJ9vb2TJw4jri42JT3371n\n1Nz8+d0zKmKKNM1SRMTEzJnzNatX+6U8/+67uU897Sg+3px7p+7Fx9sRHR2TXiU+kfLlK/Lrr1u5\nefMmkLxpdUhIyAutIbNKSEhg1KhAAgLacOlSE/z92zFlypaMLuup1K37RkaXIGl0/vxZevTohL+/\nH7t27aBz5+707z+EzZs34u+/CltbW5ydXYDkhXl8fEqwb99ecuTIec9Zkn/O5MiRk+7dezF+/BgC\nAy/Tv38fbtwIA6BChUoMHPght2/fws7Ojhs3rvP773te9OWKmCSFORERE1O7dl22bfv3H/a//rqV\nOnXqPdU52rQpQt68d+9Pi6Zu3T0ULPjkm4ynhwIFCtK9ey8GDPiAjh3bpPrH3cvu9u3bXL36yj2v\nWBISYplh9Twb3ddn6ipWfI1Fi5azfPlq2rbtwIQJY/nss08pWtSL7t17Mm/eIjZu/JlOndrSvn0r\nChYsxObN2zE3N0+ZYunntxZLS0sMBgO1a9dl6tTp5M2bj+++W4KPTwkAGjR4k5Ur1/LGGzVo27YZ\n48aNplSp0g+pSveMitzLYMwky2KFhkZkdAnynLi7O6h/szD1b8Z4770WfPXVbG7evMEXX0xm9uzv\nnvocp0//zdq1J3F2NqNLl1pky5Z65n16922vXl2YPfvBmwPfu5S5JK9Y2ajRjxw40BkAc/MQPvlk\nH92710q3Np73927dutXYsmUHUVFRDB8+iIiIcBITE+jevRdVq1YnODiIQYP6UqpUWf78MwB39xxM\nmvQ5VlZWnDx5nM8++xQzMzMqVKjEvn17WLz4BzZsWM/p0yfp338IAEOG9KNNm/aULVueadM+49Sp\nE/ethLh37y6+/vorrK1tKFmyFEFBQUyZ8iXR0dF8+eUULlw4T2JiAl269KBq1eqcP3+OSZM+ISEh\nnqQkIxMmTOGVV/I+t8/peXjSvk1MTMTc3PyJzhkdHY2NjQ2ffjqGY8eOMmHCZIoU8Xqm+vbsOcGm\nTZdwdjbywQe1NH34Ken3btbl7u7w+IP+Q/fMiYiYoJo16/Dbb79w/fr1px6Vu8vLKz9DhuRP58oe\n7m6QMxqNLFmyg2PHYihUyIyePeu8sBpMhcFgYPbsKkyc+D3h4da89hp061Y3o8t6JlZWVkyaNBVb\nWztu3bpFz56dqVq1OpC8wuG4cZMYOnQkY8YMZ/v2bdSr15CJE8cxbNgYihcvwZw5Xz9iJObfUZoe\nPXrj6OhIYmIi/fr15ty5s7zySl6mTp3EN998S65cHnz88UjunmrxYl8qVKjIiBFjiYiIoEePjlSo\nUIl161bTokUb6tVrQEJCQqa8P+vu3+EfN0K1cOG3bN68EWdnF3LkyImXVzH27NlJkSJFOXo0gLp1\n61O6dDm+/jo53Do5OTNy5FhcXd24ciWQL76Ywq1bN7G2tsbOzo7Q0GsEBQVRpcobFCnixfz5swkN\nvcawYaOfeEuR3347Su/eBsLCWgBxHDq0gCVL2jzwWuLi4pgyZTOBgZYUL26gT586GpUT+Q+FORER\nE1SrVl0mTx7P7du3mDVrfkaX80Tq1n2DLVt20rlzf06cuILRaMHq1R0IDFxLs2avEB0dxahRQ7lw\n4RxeXsUYMyZ58+CXdY+pfPk8mDPnxa4w+jwYjUbmzPmagIAjmJkZCAsL5ebNGwB4eOTB07MIAF5e\n3gQHBxEZGUl0dDTFiydPwatbtwF79ux8bDv/XQnx4sXzJCUlkjt3HnLl8gCgTp36rFvnD8D+/b+z\ne/cOli9fAkB8fDxXr4ZQvHhJFi/2JTT0KtWr18o0o3LBwUEMGNCH4sVLcvr0SYoVK86pUycwGAx0\n6NCV2rXrcujQQXx95+Hq6kJAwFESExPp2fMDVq/2Y/v2bSmfw+XLlzAzM2PTpp/x9Z3PvHkLyZ+/\nACNHDuGDD7rj7p6D48f/pG3b9+jWrRfHj//JvHmzWLBgGRMnjqNy5arMmjWd6OhoRowY+1TXsX59\nMGFhzf95ZsnOnWW5ejUkpbZ7DRiwjpUr2wDW+Ptf586djQwb9mYaP0mRrEVhTkTEBBUsWIjo6Chy\n5MhJ9uymspy/ge3bt3HxYggXL27E3PwG+fI1Z9euzjRrBn/9dZqlS/1wdXWjV6+uHDsWQMmSpVPt\nMeXvv4rly5cydOiojL4YeUKbN2/k9u1b+PouxdzcnBYtGhMbGwf8u0IhgJmZOYmJsfe9/967QczN\nzUlK+vf53dUOg4KuPGAlxDjuv28v9Z0lEyZMJW/efKley5+/AMWLl2TPnp0MGvQRQ4aMoFy5Cs9y\n6enuypVARo/+hNDQa6xZ8yOLFq3g1q2bdOvWgTJlygJw9uxfzJq1iWXLVrJgwXxCQkL47rulfPjh\n+xw7dgQzM3Pefbclr79ehfPnz9KtW8d/Apw7YWFhxMfHM3/+Yt55pz6LFy9g166dGAwQH58AJPfH\nwoXf4eNTnCFDRj71NVhaxpPcD8l9Y2d3E1vb3A889vBhZ8D6n3ZdOXDA1O4bFXn+tACKiIiJWrRo\nBdOnz87oMh4rODiIDh1aAXD06BGcnEoABhITXYmOfhVr6wsYDAaKFSuOm5s7BoMBT8+iBAcHp5zj\n3j2mgoODMuIy5BnduXMHF5fsmJubc+jQQUJCgh95vL29Pba2tpw48ScAW7duTvlarly5OXv2NEaj\nkatXQzh58jgAUVFRWFvb3LcSYr58+QkKupLS5tatW1KmWVas+BqrVq1IOfeZM6eA5GCYO3cemjdv\nzRtvVOfcubPp80Gkg5w5PfDxKUFAwGHq1m2AwWDAxSU7ZcqU4+TJE/98H/ng5uaGuXk2HBwcqVTp\ndQCcnJwJD0++zyoqKor+/T9gxIjBAHh7F2PBgmU0bdqcdu06YGZmwMHBkXz58jNt2nQWLFjG0qUr\nAVLaOH36FOHh4U99DQMGvE758guBSzg47OH99++kbCz+Xy4uqVfYdXKKfur2RLI6jcyJiJgIo9HI\n6tU7CQmJon794nh6Zo7pX0/HQP36Obl504/Tp0tgb3+ZJk2qAmBh8e9f3ZP3kkpIea49pkzP3Xub\n6tVrwNChA+jYsTVeXsXIn7/gfcf89/mwYaOZPHkCZmYGypQpj52dPQClS5fBwyMP773Xgvz5C+Ll\nVQwAT88iFC3qRdu2zciRI1fKSohWVlYMHDiMgQM/xNrahmLFfFLa6NSpGzNmfE7Hjq1JSkoid+48\nTJ78Jdu2beF//9tAtmzZcHV1o0OHLs/3g3oKNjbJo1QGg4H/rl9397rufh+VKlWa+fNnAwaioqI4\nceJPbGxsAfj++0V07fo+FSu+RsuW73DjxnUAkpKSCA8Px87Onty5c3P16lUSEhIxGo2cO3c2ZUps\npUqvU7HiawwZ0o8vvvgaW1vbJ74Gd3dX1qx5m+PHz5AzZ3by5Cn50GNHjCjM8OHLCArKQ5EiFxk5\nsuITtyPyslCYExExEYMHr2bp0rdISnLH13cj8+dHU65c0Ywu64kkJiYSFxfLtm1bSEhIYM2aFVy8\neIEJE4Jo3boRFy6cz+gSJZ1t3rwdSB4RGjt2PAMHfghAYmICc+d+TcOGjbC1taV163cZO/ZTmjRp\nxpdfTqF7947Ex8fRvXtPqlatzqhRQ7lx4zoDB/blypVAqlWrkXI/5b0edu9WuXIV+P77VQB8/vlk\nvL19gOSgN3jwiJTjbt68we7df/DWW415771O6flRpLtSpcqydu1qGjZsxO3btwkIOEyfPv1SfR95\ne/vg5OTE2LHDyZXLAw+P3ERGRmIwGIiJicbNzR0LCwu8vLw5cuQQnTq1JSwslLJlywMwZsx4OnRo\nxaBBHwIG6tSplxLmDAYDNWrUJioqimHDBjBt2gwsLZ98CqSVlRXlyj08xN1VuXIxfv3Vi/Dw2zg5\nldXiJyIPoDAnImICwsNvs25dXpKS3AG4fLkhixevxMPDnoEDP8Tb24czZ05RoEAhRo8eh5WVdQZX\nnNqlS39jZWWFv/8GOnRoRadObXBxceGDD/rh4pKdixcv8GT/TtMeU8/Kz28Fa9f+iJeXN6NH3x+G\nnrcrVwIZP34Kw4ePoVu3DmzdupnZs33ZtWs7ixcvoECBgimrS/700zpGjx5GnjyvkC2bBYmJiXz6\n6SSyZbPgnXca0Lhx04cuTDJ58nhatWpHgQLJI4Dr1/uzceNPxMcn4OXlxTvvvHvfe7ZtC2DQoNsE\nBpYlb97DTJ3qRK1aD9vnLOPc/X+/evWaHD9+lE6dkleB7N37owd+H+XIkZOPPhpE/vwF6NKlHS4u\n2ZkxYw67dm1n9OihODg4Ur58BaKiopgxYw6+vvNSRtk8PHLj4ZGbKVOmkytXrpRz3hua33qrMW+9\n9eSL9AQHBzF0aH8WL/6BU6dOsGnTBvr1G/TAY+/druTuxuQicj+FORERE2AwGDAzS0r12t2VwC9f\nvsSIEWMpUaIUkyZ9wurVq2jT5r0MqPLh3NzcU/az6tdvMH5+K5g0aVrK18uWLZ8yIgCk7CMG4Oe3\nLuWxt3cxZsyY8wIqznrWrFnF9OmzcXNzT3ktISHhvv0FnxcPjzwUKlQYSF7Ap0KFiv88LkxISBCh\noddSrS7p6urGhAlTOXHiT44eDcDW1g5IXvTk8uW/HxjmkpKS7lscp2XLtrRs2faRtc2YcYXAwOT7\nOi9fzs3MmT9kujDn4ZGbRYv+vcevd++P6N37o1TH/Pf7KGfOXHz22SfExcXx5ptvp4w4Vq1aPWV7\niHt16dIj1fPFi39IeZyYmMjnn2/mr7+ykS9fLMOG1cfCwuK/p3hi3t4+KaOkIvLsFOZEREyAg4Mj\nLVtew9f3EnFxr1Co0Dq6dfMGkv/6XqJEKQDq138TP78VmSrM3bhxnRs3rtO370Ag+d6/Jxld+/HH\nPaxZE4GlZSK9exemfPln26BYYOrUiQQFXWHgwA+5ejWEKlWqERoagqtrDt5//wM+/XQM0dHJi0sM\nGDCEEiVKpSxz7+zsct92ESdPHmfGjM+Jjo7BwsKCGTPmYGlpyZw5X3PkyB9cv34do9GIk5Mznp5F\naNy4KWFhoXTs2AZnZxccHR2xsLBgwoSP8fEp/s/m1dm4ciWQrVt3p7Q9f/5sjh37N8j5+a0gLi6O\nL7+cyooV3zN9+mzq1n2Dd95pxsGD+xkwYAjz5n1Dnz798fYuxv79v+PrO4+4uDjy5HmFESPGYmNj\nw+zZM9m9eyfm5uZUrPgaMTGpQ0VMzLOHlMxk7NjxT3zsnj0n+PXXS3h4WNCpU8379o3r1WsSf/zx\nFwZDEnv3Fuf69RiOH59OixZt2LNnF1ZWVnz22ee4uGTnypVAxo0bRWxsDFWqVMPPbwVbtuxIdb57\nR94OH/6DGTM+B5L/cPX118nbrTxsuxIR+ZfCnIiIifjkk8ZUq7afS5f28+ab5ciVy53g4KBUwehJ\ng9Kz6tWrS8rm308qe3ZXkpKSUhar2LJlE6VLl3nke3bsOMawYTm4fbs+AH/+uZYNG9xwdTWVbRgy\nl8GDR7B//+/MnDmXVat+YM+eXfj5/cDt27HExsbw5ZezsLS05PLlS4wbN4pvv10MwNmzZ+7bLsLb\n24exY0fwySef4e1djKioKCwtLfnpp7XY29szfPhYRowYhI2NLRMnTsXOzp5Ro4bi4ODAokXL+fnn\ndfj6zqN27bqp/l+tWPE1/vrrTMrz06dPsnz5avbt28vcubM4diyAFi1aM2fOTD76aCBVqlQDICYm\nhuLFS9CnTz8gOQwYDAZu3brF4sX/Z+8+A5o6uwCO/zNI2MsFooKigoLgrnsWt7Yqjrq1asW6xf1q\nnbgHWndFcSuu2rp3XXWhOHHjYIlMIRAgyfshEkGw1bo6nt8ncnPHc29Sm3Ofc88JwN9/CUqlMevX\nr2HLlg20adOOkyePs3HjdgBSUpJJTT3F9evhpKc7oFA85csv/1tFdvbvv8SQIabExbUDErh6dQcL\nFngb3g8Le8idO7d58mQ7IKNgwUlcvnwfrTYNd3cP+vbtz5IlC9m9eyfdu3+Lv/8cOnToRMOGjdi1\na/ufHn/z5vUMHz4ad3cP0tLSDDN+r7cruXr1Ch4ef/xvhyD814hgThAE4R/kyy9zV3OLjo7i+vVr\nuLuXe6tA6X28ayAH+h/XxYo5snPnVmbMmIyTUwm+/tr7D7c5dSqcxMR2htcPH9bj7NkztGhR652P\nL7ySVQGxVq06LwtWqMnIyGT+/Jncu3cXqVTK06dPDOtntYsAXraLiMDU1Ix8+fLj6qoPzrOesbpw\n4Xfu37/Hrl3b0Wgy0Wq1PH36hCpVvuDu3VAKFCgE6GeP586dkSOQk0gk9OjRmw0b1tK9e0dUKhVK\npZL8+QsglUqxtrYhMjKScuWyUh9fbSuVSqlXr2Gu87xx4xphYQ/o109fjTIjI5Ny5TwwMzNHoVAy\nffpkatSoTc2atfH1bULRoqe4ceMM7u4WtG/f5MNd9H+AnTtjiYur9/KVNYcP26FWq1EqlQBcunQe\nne4pxYq1BUAiUWNsXJSMDCNq1ND/N+niUoaLF88BcOPGNWbMmAeAl1djFi/2/8PjlyvnycKF82jU\nqKibZbUAACAASURBVAl16zagQIGCQO7vX1RUpAjmBOE1IpgTBEH4h3vXQOl9eHnV5tChk++0jZ2d\nvaGa4NtydDRBKo0xFHyxsrpJmTJF3mkfwptlL5CzZcsG8uXLz/jxU9BoNDRoUMPwXu52EZo/LFQz\nbNhIHj9+RGxsLH379s+2rYyAgPWG16amptSt24Dffz+DlZUNgYGb0Wq1SKUSAgM3G1LwALy8mhAa\netPQqsLWNh/lynkY9qVQKN84G1258hdMnDgt1/KVKwO5ePE8x48fYceOrfj7L6VDh9w3CqZNm0jN\nmrVzBYvva9Wq5Ziamv1t0qGNjDJyvFYq03I9S9mkiRcnT5bhwYPCFC0aycyZbowYccHwvlQq+ctt\nQ7p06UGNGrU5e/YUPj7fMm/eopfjyv39EwQhJ9E0XBAE4R9OJpMxfvwU1q8PYurUmYa76R/H26dw\nqtVqZs3ay6hRB9m79+I7HaVTpzr07r2fYsV2UapUEOPGxeHs7PSOY/37yN44HWDjxnUEBKz4jCN6\n5dixw8TFxQGwf/8etFp9oZ3ExARu374F6J9vOn1aH8QXK+ZEbOxzQkNvAtC2bQvi4+OoWrU6O3Zs\nw9OzIseOHebmzeukpaWRlJSIu7uHofn3wYP78PSsAOgD/axjnDr1G5mZr3oLJieraN58J+XLn+bX\nXx8QHa0fo6mpKSkpKX94ThKJBDe3cly7FkJ4+FMAUlNTefLkMampqSQnv6B69ZoMHDiMe/fu/OF+\n3tW0aRM5fvwIgOFavmm/Pj5/3MNu7dqcM+F/tv5fNWCAG6VLBwHxWFhcoHdvqaFgEUClSlUJCbnI\n+vV1uXjRjW3b6mFnZ/7G/bm5lePYMf01OHz44BvXyxIe/pQSJZzp3Lk7rq5lefz4kahaKwhvSczM\nCYIg/AMdP36V48cjMDdP5F0CrE/pu+92sHdvD0BBUNB15sw5S5s21d9qW4lEwtSpXzNlysd9BvBz\n+TznlD2t8dVSR8fiXL58iR49OvHFF9UNjaWtrKwNqZTZyeVyJk+ezvz5s1Gr1cTFxZKRkUnLll8T\nGRnBlCnjSU1NZeDAfjg4OODqWpYhQ0YyffokNm5ch42NjaG8fatWrRk9eniuYwPcufOCq1e7AaDT\nXWbnzkf06KHfZvjwgRQoUBB//6VvvJbW1taMGzeRiRPHkp6un3nq27c/pqamjB49nPT0dEDHwIHD\nDNvs2/crmzdvQCKR4OxcEplMxpUrl9myZQOxsbH07z+IevUa5ijeATBv3kzKlHGjadMWHD9+hOTk\nZNauXU3nzt0wMzNnxYolaLVarK2tWbBA/3dY2APkciPat/+K9u2/wdu7Y65zWLduTY6m5X8lzflt\nuLo6sXevDWfOnMfZ2Z5SpRrkeN/JqTh9+vjw7bedSUhIxMTEhNmz/XOlymYZNGg4kyePZ9261VSt\nWg1zc/M818v6MyhoE8HBF4mJeUbx4s5Uq1aTa9dC3rJdiSD8t0l0WQn0n1lMzIvPPQThIylQwEJ8\nvv9i4vP99H7++Ry+vvlITKwAJNGhwzYWLWr3p9u9q7w+Wy+vOrmq0uUlOTmZypWvExfnZVjWtu12\nli5t9MHH+U+Qvb8WwKZN60lNVeUqBf8pZAUsRkYyHB1LIJPJMDU14/btmzkCluxjzh68JCYmMHHi\nOJ4/j8Hd3YMLF84RELCe6OgoRo8eTrlynty/f5fZsxdy9OhBjh07THp6BnXq1OPbb78jMjICX99B\neHhU4Pr1EAoUKMj06XNzzSh7eR0mJKS14XXFijvYv9/r9dP5YB48uM+4cSNYvnw1lpZWJCUl8eOP\n80lLS2Py5OmEhT1k9OhhbN68M8f12LfvV378cT5KpTEVKlTit9+OUbKkC6AlJiYGlUpFQMB6IiLC\nWb58MTY2Nly7FkKxYo7cvXuX7dt/oWPH1hQv7kxqqgqNRsPw4WM4c+Ykmzevp0QJZ0qUcGb8+CmG\nNGeVSsWYMb68eJGERpNJnz4+1KpV13Btv/iiKhcuXHzjtf2rOnf2fqv2Fmp1miGV9/DhAxw5cihH\nK5I38fObRI0atT54Wuu/jfj/7r9XgQIW77yNmJkTBEH4h/nllwQSE798+cqS48cLkZ6e/rKgxd+D\nsbEx5uYveJm9B+gwNVV/ziF9VjKZDK321b1TtTrts4zjwYP7rF0bwPLlq3F2LsL9++H8+ON84uJi\nWbo0wBCw/NGP6dWrV+LpWYEePXpz9uwpfv31Z44evcbUqc9QKp8RFVUcf/9uPH4cxtOnT2jduh2h\noTe5fTuUkJDLFCxYiKdPnzBp0nRGjRrHhAljOHHiKI0aNc1xHHf3JEJC1IASSMPD449TK9/GihVH\n2b1bg1yuoU+f/DRvXtnwXnDwBRo08MLS0goAS0tLAGrX1vdjc3IqbkhHff161qlTDw+PCtSsWYff\nfjuGhYUFs2bNZ8eOIJYtW4SdnT0REeE8eHCPdeu2snfvLxgZGXHv3j2srKyRy40oV84TH5+BaLVa\n0tLS8PQsz44dQaxevTHbEfVTVUqlkunTZ2NqakZCQgL9+vU09I17+vQJCxf6M2jQyDde278ir/YW\nERHh2NnZM3iwL3Pm+BEdHQVAs2at+PnnHcTGPkcikWBnZ59rBjL7LGjJkqX43/8mAXDlSjBz5/5I\nYmIKtrZfMnlyGzw8Sr73+AXh30oEc4IgCP8wSmXOYgXGxrmLFXwsb5seKJfLGTzYhBkzDhAbW5SK\nFS8wYkTtjzy6vy9b23wkJMSRlJSIsbEJZ86colq1Gn++4Qf2VwKW14WEXMbPTz/LUr16LSwsLFm6\nNJKIiEYUKbKWsLChzJ+/merV73LhwjnOnTtLWloaFhaWPH36hIIFC2Fv70DJkqUAcHFxJTIyItdx\nZs5sgaXlDsLCFDg7pzNmTPP3OvcDBy7i51cWlUp/3Hv3juHuHo6jowOg/27nlayUvTF21vsymRyd\nTmu4nrGxz4FX17NWLX3bhEKF9FUhs5Qp44adnT0Acvmr/RobG3PkyEGUSiW1a9ejVKnSf3guOp2O\nZct+JCTkClKphOfPY4iP139u9vYOuLq6EhPz4o3X9q/Iq73FkiU/oVAomDhxHO3bd8LDozxRUVH4\n+g5k/fogVq1azsWL51m0aDkpKcl06tSW1q3b8ehRmOGmgqWlFS9evDCc1/nztzh/fgtGRgmkpfkw\nZEgZDh50+mT/xgnCP434L0MQBOEfZsgQD65f38KtW7WxsrpHv37KXA1+35dOp0OlUuVYlpiYYPix\n+ja6dq1FixZxPH8ei6Nji7/VzOGnJpfL6dGjN336dKdAgYI4ORX/LM/N5RWwqFQqFi9ewNmzp7lz\nJxS1Og21Oo379+8RERHOt992RSKRYGGhT/9Rq9WMGeOLTqfDwaHIy++KEnv7YchkyRQr9jVPn8YR\nF1eBLl16oFAoCA29ydChI4mPj2fq1AnExETTp083Bg0ajlQqQ6PJPWurUCiYNKnFBzv3K1eeo1LV\nN7x+9qwa588fNARzFStWYexYXzp27PwyzTLxjfuys7MjLOwhVap8gVqt5tKli4aiLoAh8Chb1h2t\nVmsIqN4UkJiYmDBmzETu3buNn99EOnToTJMmbw5eDx7cR2JiAgEB65HJZLRr1wq1Oh0AheJVkPim\na/s+cre3gIsXz/Po0UPDOiqVitTUVCQSCTVq1EIul2NlZY2NjS1xcbG5bipkfbckEglSqSs6XT7S\n0/Mhkz3n3r1SPH8eYwiCBUHISQRzgiAI/zClShVjzx5bQkJu4+hoR5EiFf58o3cQHHyXUaNuEhFh\nR/Hi4fj7V8XKSsnAgd/xzTdd32lfNja22NjYftDx/VN5e3fMs8jFp5Q9YClQwMIQsDx//pw2bdrh\n7u5B3bpfsH37Vo4cOUihQnasWrWOn35axt69vwD6oL5OnfqMGvU/Jk36Hy9eJFGrlopDhzIBHVFR\ni+jVaytXr/7C06dPadasJQAxMc+YP382LVp8RUzMM6ZMmYWv70CaN//qk5y7h0c+jI3vk5bmDEDB\nguepUuXVDFjx4iXo1q0XAwb0RSqVUbq0C/B6wQ7934UK2VG//pds2bKJxMR4KlWqApArALSxsUGh\nUDBu3AiSk1NQqZKz7evVepmZGVhaWtKy5dekp6u5e/c2TZo0Ry6X5/lMWkpKCjY2tshkMoKDLxIV\nFfkBrtC7yd7eAnSsWBGYYxYzS/YZSKk0q71F3rOgAHZ2MuAFYIFEosPR8QH58n28ZyUF4Z9OBHOC\nIAj/QObm5tSsWemj7HvKlFBCQvT9r2JiYMqUDaxZ04pNm3Z8lOP9W92794S5c0NQqRR4eRnTpUud\nzz2kHAGLQmFEiRKlkEj0lSvd3fW92+RyI86d+53Hjx+h0Wjo2bMTKSnJpKenk5KSjEKhJDo6iq5d\n21OihDNyuRFjxjQhNHQLyclS5sy5TseOfWnbdjd16tQnMHAVarWaO3dCCQsL4/HjMCIiwhkzZhgq\nlYrMzIxPMkvZtGkVRo06xC+/hGBkpKF3b1ucnIq8tk4LmjZ982zgwYMnDH/37z+I/v0HsW/fr2za\ntI4tWzZy+fIl6tf/EjMzM8N6MpmcgIANBAdfZMsWfe+86tXrk5qaZgjounbtxZgxw5DL5Ziamhme\nH2vVqjU9enyDi4sr48dPMVynRo2aMGrUMLp374iLSxkcHYsbjvf6tfwU17ZKlWoEBW2mUyf9zZ67\nd+/8QaqoJI9Z0CTDrH+zZp7IZDs5f96CjIxMZs4snmeQKAiCngjmBEEQhBxiY01yvI6LM3nDmsKb\npKWl8d13l7l2rTMAx4/fwcLiHF999cVnHtmrgCWrIl5kZAQDB35neH/WrPls374VZ+dSLFuWsxR+\ncnIyUqmUefN+BPT9wZ48eYKVlTVFixakZ89xVKz4qqhImzbe2Nracvv2LYYOHUnz5l8yfPgEbGws\ncXJy/DQnnM3333vx/fcfdp9vGwBWrFiZChUq4eu7nY0bK5OZaU3Dhv1IT09/4z58fAbi4zMw176s\nrKxzfTZZAgM3G/7+8E3J825vMWSIL/PmzaR792/QaDSUL18RX9/RudbLktcsaFa7CplMysyZ+iqm\njRpNoUaN3O0xBEF4RQRzgiAIQg6enomEhmZVEUyiQoXPU3nxn+zhw0dcu/YqqElNLc3Zs1f56tNk\nFL6z6Ogorl+/hrt7OQ4d2o+bmzu//LLLsCwzM5MnTx5TvHgJLCwsCQm5gqdnefbv30OFCvoZYp1O\nx9Gjh6hYsTIhIVcwN7fA1PTVDFVaWhrp6fZ07HiS1NSG9Oz5K126lKJUKZfPddqf3Jkzl9m4sS6Z\nmfqZtCNHerBq1W58fJq8975TU1NZvvw46eng41MTC4u3f771bQUF/QyQq6WGlZU1kyZNz7X+6+tl\nteaAvIPg778fTGamxvA6+0yoIAh5E8GcIAiCkMPcuS3Jn38Hz56Z4+SUyrBhzT73kP5x7O0LUqjQ\nTaKjswIVFfZ/4/oNxYo5snPnVmbMmIyTUwm8vTtStWp1/P3nkJycjEaTSYcOnShevATjxk1kzpzp\npKWl4eBQxDCjIpFIUCgU9OrVGY1Gw5gxEwzLJRIJS5Yc49q1lRQs6Iel5WT27UtBo3Fl6tQZn/PU\nP6m4uBQyM/NnW6JEpXr/NMiMjAw6d/6ZU6d6AnJ27/6ZdetcKF7c4b33/alMnvwrGzYUIDNTQbNm\nR/H3b/vBCzsJwr+RaBoufHSiueW/m/h8/51WrVpOwYK2tGz54ZuR/1cEBf2Ov38cycnG1KwZy8KF\nbZDJZJ97WAbZ0yyzNzT/qwYO/I4BA4bi4uKa5/tTpux/rbl9JDt33v5oz37+HalUKtq23cOlSz0A\nKSVK7GLTJtf3DrqOHz9P+/buQCHDsqFDtzJmzPv1l/Px6cXSpXmnc35IZ85coX17O9LTS71cksDc\nuSfo2rXBRz/2P5H4/+6/l2gaLgiCIHwQn6Ns/r9Nu3bV8PbWodVq/1ZBXF4+9uedmJiIVhuDtfXP\nJCR8BWipWnUvlSt/uLzTXbu2Y2xs/Icl/T83U1NTNm1qxJIlW8nMlPLNN27vHMidPHmcokUdcXJ6\nVfTEzMwYmewFGk1WMKdBofjr9+qzKmh+ikAO4NGj56SnV822xJqYmPRPcmxB+KcTwZwgCIIAQGDg\nKvbv34ONjS0FCxaiQAGbzz2kfzyJRPK3D+Ts7QvnKJrxVy1atDzP5bGxcXTocIyrV/sBV3F0nEKr\nViUYPLgJSqXyvY8LoNFoOHBgzycLPt6HtbUVY8f+9YDzt9+OU7NmbZYvX8yzZ9Gkp6vx9u5Ihw53\nOH++LQkJbSlY8ABhYY5cv16UZcsWER0dxeDBvtSqVQeNRsOyZT9y5col0tMzaNOmHV991Ybg4Iv8\n9NMyLC0tefz4ERs3bsfLqzaHDp0EYP36NRw6tB+JREr16jX57rvv2b17J7/8spOMjEyKFCnC+PGT\nUSqNmTZtImZm5ty+fZPY2Fj69x9EvXoN33hOjRtXwsXlZ27fbg9AkSKHaNYs7xleQRByEsGcIAiC\nQGjoLY4ePcSaNZvQaDLp1asLlSt/2P51wn9TQMDvXL3aHX0lxPI8elSI2rVv5tmAPjU1lQkTRhMT\nE4NWq6F79944OBThxx/nk5qaipWVNePG/UC+fPkZMKAvpUu7EBJyBS+vxlSpUo1Nm9bzzTddCA9/\nyrx5s0hIiMfY2JhRo8ZRrJgTR48eZs2alUilMszNzfnxxxWf5Bps3LgWhUKBt3dHFi6cy/379/D3\nX8qlSxfYs2c3TZs2Z9WqFaSnpxueQzQxMWHp0kWcPn0SmUxG1arVqFu3PqdPn+TKlcuYmJgwY8Zc\n1Oo0+vbtgYNDUaTSNLp31zJt2lG8vBoxfvwoChQogIdHeaZNm0jjxk05c+Y0L14kMWrUOGrUqE3/\n/r2pWrUaAHfv3mbduq3ZGnTrZ2zPnj3N6dO/sWJFIEqlkqSkJADq1WtAq1b6ypMrVy7l119/pm3b\nDgDExcWydGkAYWEPGT162B8Gc7a2NgQGlmPp0s1oNDI6dXLC1dXp43wYgvAvI4I5QRAEgatXL1On\nTv2XMyVKatas88amvoLwrgoXHoBcHolEkk5CQkugJF5etWnd2puzZ0+TL19+evf2YcaMyTx79owJ\nE6ZQq1YdkpIS6datA7a2+dBotBQqVIgVK5bQuHEz7t69Q3R0FEZGRnTs2IV69arRr98AAIYNG4BM\nJkOhUGJv78DcuTNp2LAR/v5zsLd3oFixIgwbNuqTnb+nZ0U2b16Pt3dHQkNvkZmZSWZmJiEhl3F2\nLklgYAALFizB2NiY9evXsGXLBtq0acfJk8fZuHE7ACkpyZiZmVOrVh1q1qzNvXt3GTt2BOHhT5BI\npIwYMZbvv+9NRMQ9lEolFhYWZGRksHz5GnQ6HQ0a1CAuLo7SpUsTGnqLSZP+h5NTcVJSUnj69Aky\nmYwyZdyyBXKvXLx4nubNWxlmUrMC8fv377Fy5VJSUpJRqVL54ovqgH5GunbtugA4ORUnLi7uT69R\niRJFmD27yJ+uJwhCTqJMkCAIgkD2/lF6IpATPoxvv61OvnzuPH68jcePAyladC3ly5ciLS2NSpWq\nsm7dVkxNzVi1ahnTps3C1NSUmTOnEhJyhaCgTSQmJr68saDj4MF9PH36BIDUVBU+PoMMwU7Wd/jE\niWNERIRjZGSERAJ37twiNjaWevUavOyvVwC1Op19+379ZNfAxcWV27dvoVKloFAocHcvR2joLa5e\nvYJSqSQs7AE+Pr3o2bMT+/fvJTo6CjMzcxQKJdOnT+bEiWMolcaG/V25cplNm9axYMFitFotOp2W\nKVPGo9FoiI2N1V8NiQSpVEpw8EWkUikajYbq1WsAMGrUOLRaLT/+uIKtW3+mShV9/0Nj41c9Jb29\nWxpu6EgkEvK6t+PnN4nhw0cTGLiZXr36kJ6uNryXvdG3uDEkCB+PmJkTBEEQKF++AtOmTaJLlx5o\nNJmcPn2K4sU7fe5hCf8CtrY2tG0bh6lpfaRSCWq1mvBwfbCVNZPj7FwShUKBo2NxAgM307Ztc1au\nXEJCQryhOItUKiVfvvz06NEbAFNTMxwccs/kBAdfwNTULNdzgJcvX+LBg/vExj4nMTGRkJBgWrb8\nGktLq498BUAul2Nv78Devb9Qrpwnzs4lCQ6+QHj4U+ztHahc+QsmTpyWa7uVKwO5ePE8x48fYceO\nrfj7LwUgIyMdqVSKkZERJiamqFQqRo36HyNHDmX9+q0A6HTg4lKGSpWqvHytQ6fTUbVqdXbs2IZC\nocTMzJzHjx9RsGChXMfOXhSnSpUvWLNmJY0aNUGpNCYpKQlLS0tSU1XY2uYjMzOTAwf25rkfQRA+\nLhHMCYIgCJQu7UrDhl706PENNja2lC3r9rmH9LcTGRnB8OEDcXf34Nq1EFxdy9K0aQtWr15BfHwC\nP/wwhTJlxHV7XXDwRa5fv8q2bdtRKpUMHPgd6elqZLJXP0EkEglyuRHPnz/HwsICiUTKN990ZebM\nqVhaWjF8+Jgczcvj4+Py7EGm04GRkQJrayuOHTtM/fpfotPpuH//Hn5+kxg2bCTVq9di375f+fHH\n+Tx79uyTBHMAnp7l2bRpPWPH/kCJEs4sXDiPMmXK4uZWjnnzZhIe/hQHhyKkpqby/HkM+fMXIC0t\nlerVa1KunCcdOugrf5qampI/fwG0Wh1t2jQnNTUVY2MT0tPTSU1V4ec3iUePHpCc/IKrV0M4fvwI\nz5/HALBq1QocHIrg5laOkyeP07mzNzY2tigUCsLDnxIfH8fRo4dp0OBLQF/VslevLmg0mVSp8gXf\nftsNIyM51avXom/f/vTu3Y++fXtgbW2Nm5s7KpXKcL7Zg0FRHVcQPh4RzAmCIAgAdOvWi27dehle\ni15GuYWHP2Xq1FmMGTOB3r27ceTIQZYuDeDUqROsXbua6dPnfO4h/u2oVClYWFi8TCd8yI0b19+4\n7oMH91i82J+0tFTWrPmJFi2+5vr1EJYuXUhKSgppaSo6dOiMo2PxPLeXSPSzSJcvX2T37p0EBgag\nVqtp3LgpqakqduwIYunSRURGRlCokB0lS5bKcz8fg6dnBdatW427ezmUSmOUSiWenhWwtrZm3LiJ\nTJw4lvT0DAD69u2Pqakpo0cPJz09HdAxcOAwABo2bMS0aRNJS0tl6tSZuLiUoX//3vj5TUIul/P8\n+XN27NjB0KG+REVFIpFI8PbuyPLli+ndux9Nm7YA9NUply5dRXDwRc6d+515834E9M/mZRk4cCht\n27Zn585t3LkTapj1y/L11958/bV3rnPNaiSf5eDBEx/sOgqCkJMI5gRBEP7Drl9/wPjx14mONqNs\n2Xj8/ZtiZmb2uYf1t2Vv70CJEs4AFC9egsqVq77825moqIjPObS/rS++qMGuXdvp0qUdRYs64u5e\nDsg9WyORQNWq1ahatRqNGtVl5cpAdDodK1Ys4cyZk+h0OgoVsqdRo6bcuXObcuU8cjQoVygUdOzY\nBdBXZdy/fy9GRnLq129Ijx69sba2ZsOGdVhbW9O8eascs0ifQqVKVTh27Kzh9aZNOwx/V6xYmZUr\n1+baZuXKwFzLypXzZP78xQwY0NdQIXL8+MkEBW3i3r27jBo1DtAHVH5+kwzbWVvbULNmbcPrrEIn\nzs6lWLzYn6VLF1GjRm08Pcsb1qlbV9+0u3RpV06cOPqn5xgWFs66dVeRy7X061cTGxvrP91GEIT3\nI4I5QRCE/7DRo69x/rz+B/C9exqsrTcxZ86Ha+T8b6NQvCrqkPXMUtbfGo3mcw3rb83IyIg5cxbm\nWp59tqZXr755vieRSPjuu+/57rvvc7xfoUIlKlSo9Mb9denSgy5degDw/HkcPj47iYqywtW1F5Mm\nNUWhULzXOf0dZA+GdTodEok+7dTExCTXujduPCAhQUVg4DF8fFogl7/6+Ve0aDECAjZw9uwpVq5c\nQuXKVQ3PJWZ932WyP/9+P3kSRefON7h7tz2g48SJNWzfLm4OCcLHJoI5QRCE/yidTkd4uHm2JTIi\nInL/EBT+fsaM8TU0jG7X7htatWrNr7/uYsOGtZibW1CyZCkUCgVDh44kPj6euXOnEx0dBcCgQcMp\nV87zM5/Bp9O6dSC3b3sC6Zw+XQ2p9ADTprX83MN6b9HRUVy/fg1393IcOrQfDw9P7t69nWu9+/cj\nGDLEFLm8INOnV+fy5SBWrepoeD/rOcVGjZpiZmbOnj27/9J4tm27wt277V6+khAc3JF9+w7h7V3/\nL+1PEIS3I4I5QRCE/yiJREKpUgmEh+vQl3VX4eKS/rmH9beWOzXw8xR5GDNmApaWlqjVafTp050a\nNWoRGBhAQMAGTExMGDzYh1KlSgPg7z+H9u074eFRnqioKHx9B7J+fdAnG+vrIiMjGDVqKGvXbnnv\nfQUHX2Tz5g3MmjU/z/c3bz7N7dudAeeXSzYRGip77+N+bhKJhGLFHNm5cyszZkzGyakErVt7s337\n1lzrnj4dTXi4D9bW0RQpMoCrV02JiHiVbpn1nKJUKkEul+PrOzavI/7p99vMTAKkAfoWClJpHDY2\npu9xloIgvA0RzAmCIPyHLVpUlwkTNhATY4qbWyrjxjX73EP627K3L5yj3H32Ig+vv/exBQVt4uRJ\nfVrhs2fR7N+/hwoVKmFhYQFA/foNefLkMaBv+Pzo0UPDtiqVirS0NMDik433c7lwIZlXgRxAWayt\nj3yu4Xwwdnb2rF27BZksZ2AaFJRzVm3s2B8YN+5XQEdCQhcSErpgaXkChUJpWDfrOcXXZd+Xq2sZ\nFi5c9odj6tmzASdOBHLoUCPk8jS8vc/SoEHu4iiCIHxYIpgTBEH4DytUKD/Ll4tn5N6WTqdjzZrj\nPH6cTrVq+WncuNKfb/SBBQdf5NKlCyxfvtpQ6t/R0YlHj8KyjTP7TKGOFSsCczRx/qsOHNjL1Vgz\nsQAAIABJREFUtm1byMzMoGxZd4YNG0WTJvVo1+4bzpw5hVKpZMaMudjY2BIe/pRJk/6HWp1GzZp1\nCArazKFDv+XYX2RkBFOn/kBqaioAw4aNxN3dg+DgiwQErMDa2oaHD+/j4lKGCROmAPD772dYtGge\nSqUxHh7lc40xO3t7LZAK6NOHTUxuMHVqi/e+Dh/Sm67poUMnATh27DBnz55m7NgfmDZtIgqFgrt3\n7+DhUZ7GjZsye/Z01Go1Dg5FGDNmAhYWFnTt2hVHR2euXLmEWp2Ou/sTrl//DmPj+1SsuISxYzPQ\naDLp1asvtWrVzfE5xMa+4MWLlsjlxahX7wkREefy/BxeZ2RkxNq1Hbh8+QbGxgrc3LxFSwJB+ARy\nN2kRBEEQBCFPY8bsYvToWixe7E2/foVYv/63P98om8jICLp16/BeY8he6v/RozBu3LhOamoaV64E\n8+LFCzIzM3NUHqxSpRpBQa9mDfN6rupthIU95OjRQyxbFsDq1RuRSmUcPLiPtLQ03N09WLNmI56e\nFdi9eyegT+/s0KETgYGb39hM2tbWlvnzFxMQsJ5Jk/xYsOBVa4d79+4wZIgv69cHERERzrVrIajV\nambNmsasWQsICFhPXFwsfxQvDB78Jd7emyhadBdly27mxx/tsbe3/0vn/2d8fHr96Tpbt25ErU4z\nvH7TNdWnPeu9HhA9fx7D8uWrGTBgCFOn/sD33w8mMHATzs4lWb16BaCffX38+BGrV29k1KhxWFv/\nSt++k/n224307t2WlSsD8fdf9rINRJrhc+jVawQ3b44lKekUV660Zf36QoSGhub4HK5evWIYi5dX\n7Rxjk8lkVK7sgbu7qwjkBOETETNzgiAIgvCWjh61QKezBSAlpQz79t2kS5e32zYzM/ODjCGvUv8F\nCxaka9ee9OnTHUtLSxwdnTA11VcRHDLEl3nzZtK9+zdoNBrKl6+Ir+/odz7upUvnuX07lN69uwKQ\nnp6OjY0NRkZG1KhRCwAXlzJcvHgOgBs3rjFjxjwAvLwas3ixf659ZmRkMn/+TO7du4tUKuXp0yeG\n98qUcSN//gIAlCxZmsjICIyNjSlc2AEHhyIANGrU1BA85sXIyIglS9q9rPb4cYOLpUsD/nSdoKDN\nNG7cDKVS/1zZm65pdlqtzvC3RCKhfv0vkUgkJCcnk5ycjKdnBQCaNGnO+PH6z1WlUmFrmx/Q97eT\nSCSMHu3L4ME+3L9/k02b1gGQkZHBs2dR2NrmZ/78mfz+ezBWVrYoFI8ASEkpgY2NfY7PISoqMtuM\nqAjYBOFzE8GcIAiCILwlE5MM8uVbiEZjRUJCd5TKDJYvX4ytbT6ePYvm3LkzSCQSunX7loYNvQgO\nvshPPy3D0tKSx48fGRozg74B+fjxoxg58n+4upZ56zG8qdS/i0sZWrVqTWZmJuPGjaBOnXoAWFlZ\nM2nS9Pc+d4CmTVvkahOwadN6w99SqeSdWjRs2bKBfPnyM378FDQaDQ0a1DC8Z2T0qn3Aq9L4rwcP\nOt7Gp5gl8vKqzaFDJ9+YIhoUtJnnz2MYNKgf1tY2+PsvJSws7OX4pDg4FGHs2B8wMTFh9eqVLF26\niAsXzuHuXo5jxw5TqJAdp079xqVLFyhb1g1b2/xkZGTQr18v0tPVAKSnZ5CRkcHTp0+Jjn5Gz56d\n6NKlJ6mpqSxZog+mhwwZwZo1P5GYmIiDQ1GUSmO2bNnAnTu38fT05PDhh0gkKszND2BmFoWNjTmD\nB/fnxYskoqIiMTKS06hR049+PQVBeDsizVIQBEEQ3pKPjxUyWWEsLbfh7LyTAQNKcvToIQoWLMi9\ne3cIDNzMggVLWLLEn9jY54A+rXHIkBFs3LgdnU4ffDx+HMb48aMYN27SOwVyfyQgYAU9e3aie/eO\nFC5cBDc3T+bN28f8+ftITEx87/1XqlSVY8eOEB8fD0BSUiJRUZFvXN/NrRzHjumLjRw+fDDPdVSq\nFGxt8wGwf/8etFrtH47B0dGJyMgIwsOfAnDo0IF3Po+P51XAmFeKaLt2HcmfvwCLFi3H338pCQkJ\n3Lp1HaVSydy5i3BxcSUwcBVRUZFIpVK0Wi0//bTW8D2ytrahVq06VK1ajU2b1mNubo61tQ3fffc9\nAQEbKF7cmczMDIyMjHBwcKBQoUKsXr2R/PkLYGxsjJGREVWrVsPPbxLNmrUkMHATHh6eLFgwB5Uq\nBaXSGLlcR7NmVZBIoGjRSfTunYyVlQXTp88mIGA9derUe+NnKQjC5yFm5gRBEAThLXXsWIN69aIY\nPVrG4ME2qNWxlCrlwtWrV/DyaoJEIsHGxpby5Sty69ZNzMzMKFPGDTu7V89pxcfHM2aML35+c3B0\ndPpgY/v++8GGvxMTE2nb9jBXr3YHdBw4sJpt25phbm7+5h38CSen4vTp48OwYd+j1eowMjJi6NCR\nb2zPMGjQcCZPHs+6daupWrVajmNnrde6dTvGjRvJ/v17+eKL6piYmGZbJ/cYFAoFI0eOY+TIISiV\nxnh6ViAi4mme49VoNLmqPX4quVNEI3P19rtx4xpRUZEYG5vg7d0CrVaHqakptWvXw8LCkmPHDnP1\n6hVDsF+3bgNu375F4cJFuHTpPADffz+IsWNHoFanYWRkRL58+tRKiUSCVCqlV6/OaDQamjdvRVJS\nIj169GbLlg1s3LiODRsCsbcvzM2b1/n++8Hs3fsr8fFxfPll45cpumnUrl2WzZuDWbbsR0JCrvD8\neQwqVQrx8XHY2Nh+ugsqCMIbiWBOEARBEN6BnZ0dXbt248SJY8THx9K8eSsuXjxnmHXLkhWwGBvn\nbMRubm5OoUL2hIRc/qDBXHabN5/h6tVu6GeLJAQHdyco6Gd69mz0Xvtt2NCLhg29ciw7ePCE4e96\n9RpSr15DAAoUKMCKFWsAOHz4gKFVQvY2DkWKFCUwcJNhex+fgQBUrFiZihUrA/pqjzdv3uDq1Stc\nv36VYcNG8exZdI5qj35+k96p2uOAAX0pVcqFK1cuodFoGDNmAmXKuJGamsr8+bN4+PBBjmqP7yor\nRTQoaDNHjhzk3r07NGrUJNd6lSt/wcSJ03ItNzExYdWqdVhaWgFw5swpFAojxo79gdDQm5w/f/bl\ndT1I797f0bZtB6KiIhk48DvDPooVc2LyZH167b59v5KUlIhSqcTU1JSAgPXI5XIyMzP5+usmFClS\nlNq161KjRi3q1WuIj89AvLzqULFiZaKiIjl37gwBAeuRyWS0a9cKtVr0oxSEvwuRZikIgiAI76hu\n3fqcO3eG0NBbVKtWAw+PChw5cgitVkt8fDwhIZcpW9YtV4AH+mfe/Pxms3//Hg4d2v9RxmdsLAey\n/+BOw8Tk085ShYaG0qNHJ7p3/4Zdu7YzYMCQd95H9mqPP/20jjt3IvD1nZXjuv6Vao8SiQS1Oo3V\nqzcyfPhopk+fDMDatQFUrlw1V7XHv2rXrm3Url2Xr75qA4CpqSkpKSkAlC3rzrVrIYaU0eTkF4aA\n922lpKQYZgD37HnVF04mk+UYd/br5e7uwZEj+lTJgwf3GQqovC4jI5PmzQ+ycOEFXrzQz3IGB1/8\nw9RaQRA+PTEzJwiCIPyrZRWmeF/BwRfZvHkDs2bNRy6XU6lSFSwsLJFIJNStW58bN67So8c3SCQS\n+vcfjI2NLWFhD3OlC0okEoyNjZk1awFDh/bH1NSMmjVr53nMrVs38tVXbQzVD99Wp071OHAgkMOH\nvQEtTZrsoF2792uJ8K48PcuzZs3G99pH9mqPT54kkJhoyosXVciXT8eNGw9wcyuRY/23rfYI8OWX\njV+OswIpKSkkJydz/vzvnD79W65qj8WKOf3pWHOmm8Ls2X5ERIQTHx9Perqa3347RmJiIp07e1Oy\nZClWrAikQoVK9OnTnfR0NXK5EUOHjmDJkoXExDxjwIC+jBz5P9zdy6FSpTJkyPfodFoKFy5iOE6n\nTt2YNu0HAgNXUb16LbKe29uwYQPdu/cwFECRSCSG8Q0ZMpLp0yexceM6bGxsGDv2h1znsGvXWdLT\n5dy82RaptAGJiR3p3NkbN7dyODoWz/OcBUH4PEQwJwiCIOQQGnqL/fv3MG3aJFatWo6pqRnffPOW\n9fffko9PL5YuDSAqKpJr10Lw8sqdgvbhfPgfnFqtlhs3rjF16izDsv79B9O//+Ac61WoUIkKFV41\nFs+eYmhubs7KlWv/8Divl7J/fQxSad4JNvoGzu05fPg8UqmEhg07fLbnx95X06YtaNq0JTVrpqNW\n6wMzG5sANmy4jZ9fCdRqdY71jY3fLfDNkhWXTJs2m6JFixmWBwVtZuzYEbi4uDJ+fN4Ns+FVumn2\nFNHz539n1ap1rFq1HBsbW6ZPn0tw8EUWLdK3bLC3L0zhwg4sWfITCoWCCRPGULFiZaZPn4NOp0Ol\nSiEs7CHu7u74+c1BJpMxZ84MatfWp366u5dj06YdhjH06eMDgJWVVa7vVtOm+mbpdnZ2+PsvzTX+\n7EHdtWuJ3Lt3GQCt1ob79zcyadIlGjWqnuc5C4Lw+YhgThAEQcjB1bWMoejC+9x5z8zMRC7P+38z\nWT25IiLCOXTowEcO5vR0Oh1LlizMs31AXqXkAX7//QyLFs1DqTQ29NZ6+PABI0YMRiaTMXbsCNLS\nUpFIpBgbG6PT6ShWzJELF86RlpaGvb09CxYsoVAhO/r2/Z6wsOJIpR589ZWMHTsmvnMpey+v2nz1\nVVsuXjxPvXoNuH07lOnT9Y22L1z4nZ07t+PnNxsAuVxOkyY18r4Y/xCVKlVl9Ojh1KvXEJlMg1Sa\ngFSagkaTn9TUaLRaLb/9dgwzs9yFXczNzbGwsCQk5AqenuXZv3+PIbDW6XQcPXqIihUrExJyBXNz\nC8zMzKlatRrbtm1m6NCRANy5E8quXdvw919qSGf8I3l953U6HdeuhTBtmv5zqVixMomJiahUKUgk\nEmrVqoNCoX/GLjj4ouG7J5FIMDMzZ//+PTl60anVavLly/cXr+jbcXOzRKl8jFqtD2rz5TvPyZPh\nPHmSQs+eDd54E0EQhE9PBHOCIAj/cpGREYwaNZS1a7cAsHHjOtLSUrl8+RJly7oTHHyR5OQXjB49\nAU/P8kyfPpkjRw7h5laWGzdu0rVrD8LDnzJv3iyCgy9QurQrAwYMZcuW9URHRwH6yoXlynmyatVy\nIiKeEhERgZ2dPV279mT69ElkZmai1erw85uNg0MRQ+rjsmU/8vhxGD17dqJp0xb89ttxBg/2pVSp\n0gD4+HyLr+8YnJ1Lvvd1OHHiqKF9QEJCPL17d6N8ef1Mz717d1i/Poh8+fLj4/Mt166FULq0K7Nm\nTWPRouU4OBRhwoQxSCRQvHgJatasjY2NLXXq1Gf48IFYWFiyZs1GlixZyC+/7GLgwKHUqlUHb++W\nzJ8/m169BnL5spzY2BokJzcmNPQuJUq8KsOf1/HbtevI1q0bWbRouaEQRlpaGm5u7obnzzp39iYx\nMQErK2v27PmFFi2+eu/r9HeSVUFzxozJlC6dQHy8FdHRP2BsXJXHj7fj43MCV9cypKamGrbJfgNi\n3LiJzJkznbS0NEMft6x1FAqFodrjmDETAOjRozcLF86le/eOaLVaVCoVcXGxDB8+kKZNWxAScpmI\nCH3z8pEjx+HsXDLXd37QoGHMmuVHZGQEMTHPCA29CcCJE8c4cuQgmZkZJCUlodVq0Wq1nDlzkqNH\nDyGRSEhLS8vzOcu8+vt9TG3a1CAs7AAHDlwiNTWeiAhYvrw3kERwcBCLF7f/ZGMRBOGPiWBOEATh\nPyb7j12tVsvKlYGcPXua1atX0K/fQC5fvkT58hVZvHghdevW5cGDe8yadYmvv26LVquhd28fRo8e\nxrRps/DwKE9UVBS+vgNZvz4IgEePHhnSxhYsmE27dp1o1KgJmZmZ2RpK68fg4zOQTZvWM2vWfAAs\nLCzZt+8XSpUazuPHj8jIyPgggRzwp+0DcpaS1/9gL1zYAQcH/TNKjRo1ZffunQCGmZbTp3+jWbOW\n7Nv3KypVCsbGxmRkpNOkSXNkMhkFCxbi6tXLnD9/h7S0VzM7KlUptNpXP9rfppQ9gFQqNVSLBGjc\nuBkHDuyladOW3Lhx3TCr80/wtq0DslfQPH78ApGRT2natB/W1qNyrZs9VRCgVKnSLF++Os/9Nm7c\nnEGDhhteJye/ICzsCT4+g3K0UWjXrhWLFi1n1arluLiUMaRKTp06gdWr9c8EZv/OZ6VKtmvXEW/v\nlhQr5oiTUwl2797BunVbCQm5zPjxozl16jdiY2NJSUkxpEqOGzeCnTu30b79N2g0GtLSUg2zk+3b\nd8LGxoakpERUqlTs7Oz+9Nq9j2HDGjNsGAwatJ/Q0HYvl1py8GAJww2E1w0Y0JeBA4fh4uLKiBGD\nmThxGjodHDq0n9atvQF9gZoFC+YwderMdx7TtGkTqVmzdo7/BgThv04Ec4IgCP9hdevWB8DFxZWo\nqEiuXr2Mh0d5kpKSMDc3p1q1GoSGhhITE839+3dQKJTMmeNHYmIC8+e/el5MpVKRmpqaK23Mza0c\na9cGEBMTTd26DShSpGiO478+C1G//pcEBq6if//B7Nmzm2bNWn6wc5VIJG9sH5BVSh5AJpO+DDpf\nTzHNua1Op8tzn1nvAUil+mClenVXjI33kZKin40zM7uFTvdqZi738TPzPAeFQpkjGG/WrBWjRg1F\noVDQoMGXnyX9bc2anzh4cB/W1jYULFgIF5cy1KlTj3nzZpGQEI+xsTGjRo2jWDGnHK0DypXz5MWL\nJMPr+Pg4Ro8ez969vxAaepOyZd0NwdmcOTMIDb2JWp1GvXoNsbb+EgBv75Y0bdqC06dPotFkMmXK\nDIoUKUanTt4sWxaAtbU1Wq2WTp3asnz56jwDEIDjx68xcmQMYWHuODufY84ce2rWLGt4P69UybCw\nh2+RKinFzMwcZ+eSHD9+BC+vOkil+psJkZERWFpakpSUyIIFs6levRbDh49m9mw/9uz5GalUiq/v\nWNzc3HP095PL5QwfPuqjB3NZjIw0OV4rFKnI5UZ5rpv9uzl7tj+gzwzYuTPIEMzlz1/gLwVyWfsX\nRVcEIScRzAmCIPzLyWSyHLNA6emvCkZk/SiTSmV5BjD58uUnKSkBMzNzlErjl72vLGnR4ktWrAjE\nyCj3j7rsxTq8vJrg5laOM2dO4us7mJEjxxqKQ+TF2NiYypW/4OTJ4xw7dpiAgA1/9bRz8fCowM8/\n76Bp0xYkJiYSEnKZAQOG8PDhgzzXd3R0IjIygvDwpzg4FOHQoQM59nXw4D7q1m3AsGEDsLKywtTU\njLS0NOzsCnPkyEEaN25GcvILypRxw9m5GF9+ac2FC9tRKlVUrHib48c1eR43u6xS9llplq/Lnz8/\n+fPnJzAwAH//JX/twryHW7ducOLEUQIDN5ORkUGvXl1wcSnDrFl+jBgxhiJFinLjxnXmzp1pKLqR\n1TpAIpHg5zeJ5ORkli9fzalTJxg9ejjLlgVQvHgJevfuxt27dyhVqjR9+/bH0tISjUbDkCH9efDg\nHiVKlEQikWBtbUNAwHp27tzGpk3rGTXqfzRu3JSDB/fRvv03XLx4npIlS+cI5BYtWp7jPObPf0xY\nWEcA7t93ZsGCzTmCuSzZA/fsTbOzvvOZmZk51gsK+hnQf687dOicZ6pkz559OHfuDLt2bcfS0pLp\n0+fmeF+tVlOyZCmWLFmFiYlJru3/iqwiR0OG+L5xneDgiwQGriIiIoLSpbejVr9AoylEhw5NuHXr\nBkuW+KPRaHB1LYuv75hc/xZ4e7dk1ap1LFu2iPDwp/Ts2YkqVarRpk07RowYzLp1W9FoNCxduojz\n588ikUhp1ao1bdu2Z/XqlZw5cxK1Wo27uwcjR44z7DevmyeC8F8mgjlBEIR/OVvbfCQkxJGUlIix\nsQlnzpziiy+q57lu+fIV2LZtM8WKOZGcnMzp06dwdi7Fw4f3sbCwwNLSEp1Oh6urG0FBm+nUSV+U\nIetH9+siIsIpXNgBb++OREdHc//+vRzBnKmpGSpVSo5tWrb8mpEjh1C+fMUc6W5/Vdad/HdpHwCg\nUCgYOXIcI0cOQak0xtOzAhER+p5gvXr1Zfr0yRw7dgSFQkFaWio9enRCItEfZ+/eX9i4cR3JyS/o\n1asvACNHDmT06OGo1WsoXLg6Jiam2caY99hbtWrN8OEDKVCgIP7+S/OclfDyakJiYuJblc//0K5d\nC6F27XoYGRlhZGREzZq1SU9Xc/16COPHv0qDzMjQBznZWwdkyWrLULy4M7a2+ShRwvnl6xJERUVQ\nqlRpjh49yO7du9BoNMTGPufhw4eUKKFPv61btwEApUu7cuLEUQCaNWvJmDG+tG//DXv2/IydnT19\n+nQnMzODsmXdGTZsFE2a1KN1a2/Onj1NfLwUY2NX8uefg1weRWKifsZ6795fiIuLZfTo4UREhDNj\nxlQWLlxKcPBFYmKeYWpqRkREOCEhlwkJCebx40dUqlSF4cMHkpqqQq1Op0WLr6hatVqeqZImJsbI\n5XLq1m1A0aLFmDJlQo7re/nyXYYMucPdu2VwcjrJjBkO1Knj9t6fW/YiR38mKiqCuXNHExOj4bff\ndlGoUBR+fktZuHAZRYoUZerUHwypodllzaL5+Azi4cMHhpTUyMgIw+e/e/dOoqOjWLNmE1KplKSk\nJADatu1Az559AJgyZQKnT598Y/sOQfivE8GcIAjCv5xcLqdHj9706dOdAgUK4ujoBOSVsiShdGlX\nKlaszOHDB+nbty9ly7phbW3D5cuXyJcvPz16dCIzM5Patetw+/ZNunfXP9tTvnxFfH1Hv9zvqz0e\nPXqIAwf2IpfLyZcvP9269TIcG6BkyVLIZDJ69OhEs2Ytad/+G1xcXDE3N6d581Yf5Pyzl09/m/YB\nWZUMAb74ojobNmzLtU/9DMqcHMtUKhXPnkVjb18YpVKZaxsbG9scz2/5+AwEcpayf/34bdt2oG3b\nV/3hsp+LRqMhKiqS4OCLtGz5dR5n/inkTjPV6XSYm1sYfry/7vXWAVkzOlKpFIXi1eyOVCpFq9US\nERHO5s0b+OmndZibm+PnNynH7HLWNq/SY6FQITtsbW25dOkCV6+GULq0C8uWBSCTyZg7dyYHD+4j\nLS2NSpWq0r//YNq27UJy8hyePg3E1PQs+fOPAwYB+l5z//vfJJRKJZ06edOxYxusra1RKPSfsUQi\nISbmGYsWLcfOzp6NG9exZ8/PyOVypFIJP/+8ndq16+aZKqlQKPHzm2RIue3Xb2COazN79m1u3dIH\nSffueTJnzmbq1HEjNTWVCRNGExMTg1aroXv33lhZWRlmy8qX92TAAF+MjIy4desGCxfOJTU1DSMj\nI/z9lxIaetPQM/HmzessXDiP9HQ1SqWSMWN+oFgxR8MYChYsZLj5U7iwMWvW/EThwg6GlOmmTVuw\nY8fWXMFc9u/Dm1y6dJ6vv/Y2pAdbWloCEBx8gY0b16FWp5GUlESJEs4imBOENxDBnCAIwn+At3dH\nvL07vvF9a2trQ0rY6NHjGT16PAUKWBAT84L09HR8fAbmmVL5uqxZqCxduvSgS5ceudbLCkrkcnmO\nnlcZGRnEx8eh1WqpWrXa25za38KxY1cZOzaaR49KUrr0YRYudMHD48MUbslLRMQzevf+jefPNyOT\nSXF2bvDRjvVHPDw8mTXLj65de5KZmcmZMydp1aoNhQsX5tixw9Sv/yU6nY779+9RsmSpd96/vtea\nCmNjE8zMzIiLi+X338/kCL7fpGXLr5k8eTwlSjjnKO2fnp6OjY0NRkZGhiCladNaXL8ejonJTsqU\nUbBx46vZ4saNmxmK4HTo0AkLC0vat/8GL686L7dtQXR0FHZ29gDcvHktRw/AjIwMnj59gpubO506\ndcvVhiMgYP0bz+HFC2Wer8+dO0P+/AUNz6UlJyfTrVsHw2zZnDlT2blzG61be/PDD2OZPHkGrq5l\nUKlUuW40ODkVZ/HilchkMi5cOMeKFYtz9E/MfsMnK1BPSkrMsex9vL69Wq1m3rxZrFq1jgIFChIQ\nsIL09PT3OoYg/JuJYE74P3vnHRbF1cXhd5elSK8qikRABBVFECtW7L0XiNIixoLGFmvsBaMkdgVR\nEMUSNcZesNdYsUQFKwQQLKj0ust+f6xsqJaoMeab93l8dGbuvXPv7IL3zDnndwQEBARKRS6XM336\nHn77TQ+xWIaraw6TJnX8JPfKz89n9OidnD37J+XKHaBVq8/lafp7+PvH8vChwjNx504dFi7cQljY\npzPmFiy4wJUrnoAXAIsXb6VXL/k7iUMUFIIfNWrYB8/D1rYmTZs2x8NjAIaGRlhZVUNHR5vp0+fi\n77+A0NBgpFIpbdq0UxpzxedY+Li0a9WqWVO9ug1ubr0pX74ideqUVPl83bpY+GZz5s+fRc2adtja\n1iySryaTydiy5S8jSiwW07ChDa6u7QHYuLGoKmYBcrkcsbjkM9bQKJrLNnbsBOrXL/oyIiLiirKm\nYlLSS/z8zpGWpk6LFuX4+uvSvU5Nm+Zx5cozZLLyQDJNmiiMTCsra1auXMrq1ctp0qQZmpqaRbxl\nPXr0ICQkFCen+hgZGStDKjU1NUvcIy0tjTlzZvD4cRwikUiZ91fA06dPuHXrD+zsanPkyCFsbWuw\ne/dOZS7p4cMH3mhca2pqkpmZWeo1J6eG7N69E0dHJ1RUVEhNTVV+hrq6emRmZnLixFFcXNqWOb6A\nwP87gjEnICAgIFAq27efZu1aF6RShcdh1aqHNG58lRYt3u4VeV/Wrj3G1q29AV2MjIzYu/cpQ4c+\nJjQ06IuQIk9LKxo6mJFRMszy49/vL6MiJUUbqVT6Tt7Tj60G6Oo6CG/vIWRnZ+PrOwQbmxqYmlbi\np5+WlWhbvHRA4WNT00q0atUGN7feSmXMhIQE7t+/S0xMNGpq6mhpaTFx4jRevnyBj4/FVRY3AAAg\nAElEQVQH27fvARR5WH5+swgN3cqdO7fw85tHRkYaYrGY+vUbsmDBXK5du0LNmnZcuxZB48bO5ORk\ns3r1ciIirvD4cTytW7cjKiqSgIDl5ObmMGbMCO7du4tUKsXUNIjTp48TFxfHokVLAJDL8xk3bhQJ\nCfGkpCQTGxuDuXlVkpKes2iRH4aGhrx8+ZJ+/Vzp0qVHkZqKjx+bcf36KkDEoUMPUFU9T79+JQu8\nT5jQESOjE9y5k4elpZjhwxXqrlWqmBMcvInffz9LUNAq6tWr/7c/v7VrA3Byqo+fnz9PniQycuS3\nRa6bm3/Fb79tY8GC2VStakn//l9Tq1Ztpk2biEwmo0aNWvTo0afM8fX09Kld2x539/40auRMr159\nld/Brl17EBcXi4eHKxKJhG7detKrV1+6du2Bu3t/DA2NqFnTrsh4gpqlgEBRBGNOQEBAQKBUoqNT\nlIYcQHa2BQ8eRNCixce/V2KiDFDky8jlIrKyTIiOTvxipMgbN04jKioV0EUieULTpm9XqvwQWrZU\n59ixR2RnWwK5NGjw5I2GXGjoOg4d2o+BgaGyfMD27dvZtGkzeXlSzMzMmDZtNjKZDA8PN7Zs+RWJ\nREJGRjqenl+zZcuv/PbbDnbv3omKigpVq1owa9Z8ABYunEdMzCNyc3Pp2LEL1tY2f2tNZSljzp07\nk7FjJ2Bv78C6dYGEhKxh1KhxSKV5JCYmYGqqUA9t3bod2dlZjBw5mceP26CnF06lSnU4cGCvsvB4\nXFwspqaVcXZuTljYemWdxVmzfuDy5QuMGzeRdu06cvXqZebP92f//j0sX/4zR48eIj9fjrW1NQ8e\n3MfR0Ync3FzGjPmeZ8+esnZtgFKx08zMnLS0dLKyshCLxaxevZyOHbsoayqOGzeJhg1fUGCMZ2dX\n4+zZ6/QrpQ63SCRi8OCSIbRJSUno6OjQrl1HtLS02blzO0+eJCq9Zbt378bBoR7m5lV58SKJqKg7\n2NrWJDMzo4jaLEBGRoayxuH+/XtK3EtFRYVp04rWL6xXr36pSrOFVUILDG2AGTPmFmkXGrpVOfbI\nkWMYOXJMkes+PsPw8SnpOS7+MkBAQEAw5gQEBAQEyqBzZzuWLj1BYqJC2c/c/CDt2tX92+MdPLiP\nrVs3KUPnBg8eyvz5s0hJSUEul2BoqM/Ll4pwqgoVHuHg0JczZ/Yrc2qioiJZsWIxWVlZ6OnpM3Xq\nDIyMjImMvM2CBXMQi8U4OTXk4sXzbNjwCzKZjICAFVy/fpXc3Dx69epL9+69PvzBlIKfX3fMzI4Q\nEyOndm0NPDzaf5L7FODh0QJ19XNcuBBB+fJSxo0rOyw1KiqS48ePsH79FmQyKd7eA7G1rUHbtm1p\n2VKRvxUUtJp9+3bTu3d/HBwc+f33szRr1pKjR8Np2dIFiUTCpk2h7NixV2nkFVB8o/53KU0ZMzs7\ni/T0NOztHQDo0KEz06YphHZcXNpy7Fg4Awd6cvz4UebMWcCKFdvJzExDW/sKMpkh8fFxJCdfYcqU\nGezatYOqVS0wMDAkIGA5xsYm/P77Wc6ePcWIEd8RGXmbiIgrbNu2hS5depCXl8uBA3vIz8+nXLly\nTJkyk6ioO+zevZO7dyORy+UMGtQPfX199PUNSE1VhCdKpVIGDPhaKUrTrl0LtLS0ld9jXV1djIxu\n8VfkoRQDg7z3elaPHj1g5cqliMUiJBJVxo+fTHp6mtJb5uBQlx49+iCRSJg924/FixeRk5ODhoYG\nixevfP2SRDGWm5s78+bNIDR0HY0bN6VoeZLP8zIlJSWFn38+Q1aWKl26VKZ5c7u3dxIQ+D9FMOYE\nBAQEBErFzs6SlSufEha2HbFYzuDBVlSp8vcKFT969JANG4IJDAxBV1eP1NRU5s6dQadOXenQoTP7\n9+9BLA5CVTWVly//oEWLr9DW1gFQ5vEsWbKIH3/8GT09fY4dC2fNmlVMnjyd+fNnMWnSdGrVsiMg\nYIVy87lv3260tbUJCtpAbm4uw4cPpkGDRpiaVvpoz6gAsVjMyJHtPvq4b2LAAGcGlK1po+TmzWs0\nb97qtfCFOs7OzZHL4d69eyxa9BMZGelkZmYpxUC6du3B5s0baNasJQcP7mPixB8ARZ7WzJlTad68\nJc2atfwEKyq9AHtZuLi0Zdq0SbRo4YJIJKJyZTOysmTk5lYjLu4XACSSaJycPJR9ChdnB5g2bQ4v\nX75g06ZQpRImKBQy160LpGLFSsTHx+PpOZi5c6fTr58bcnk+8fFxGBgYsnHjL7i59Wbt2o2IxWLG\njfuVkydT+O23RCIi9jFjRpcSaypXrhxTp+qwcOF2UlL0qFfvTyZOfD/l1gYNGpUqEFTgLSsQLwJF\nXmNhFVUoquBqZ1ebLVt2Kq8VeMSKq6z+U+Tl5TFo0GEuXPACxOzbd46goDul1v0TEBAA8eeegICA\ngIDAv5emTe0ICOjAqlUdcXQsWUfuXYmIuIyLS1tl8WtdXV3u3PlDqezXvn0nkpL+JCioHZ07V8fE\nxEDZVy6XExsbQ3T0Q0aPHo6XlxsbNgTz/Plz0tMV4Wy1aine3Ldt20G5eb58+QKHDu3Hy8uNb7/1\nJDU1hfj4uL+9hi+X0j0rkydPZty4SYSGbsXb20cp91+7tj2JiYqSBzKZDAsLSwAWLVpCr159uXs3\nCh8f9yLGz8egTh17zp07Q25uLpmZmZw/fwYNjXLo6Ohy48Z1AA4d2q80QipXNkNFRcz69Wtp3Vph\nSHt5daRcuVg0NK4B+dSqtRMNjb/CTwsbVvr6iiLiNja2PH36tMR8/vjjBiNHjkFPTw97ewdSUlLI\nzs4GRDRt2pzKlSsTEXEFAwNDXr58werVW9m0qSu5uZVIS7MnKKgRJ09eUY5XuKZir14NOH++HVeu\n1CEsbECpwiT/JHK5nLCwU8yZc4jDh69+1rncvfuACxdaULBFTUpy5uDB2M86JwGBfzOCZ05AQEBA\n4JMjEpXudSnLE1NaZJeFhRUBAcFFzqWlpb1xvNJUBf/fqFvXgXnzZjFwoCcymZRz587QvXsvMjIy\nMDQ0QiqVcvjwAcqXr6Ds06FDJ2bPnoan52BA8VyfPn2Co6MTderU5dixcLKzs9DS+vCi7gWUpYw5\ndepM/P39yM7OpnJlsyJ5Uy4u7Vi9ehk+PsMBMDOriL//HObPn4hUmoOOjoScnGxl+8JKjQUeXLFY\nhfx8GWKxSolriu9TUbVNkQgkElWlYmdCwmNGjhyKnp41+fkFpTlE5Oaa8+efV99YU1FLS+ujPb8P\nYdasfQQGtkEmK4+WVhSzZp3G3b35Z5mLsbE+OjqJpKUVqMFK0db+tDmoAgJfMoIxJyAgICDwyXF0\nrM+UKeMZMODr12GWKdjZ1eHYsXDat+9EePhBZV6UXC6nsE0mEokwN69KcvIrpUS6VColLi4WCwtL\nNDU1uXPnFjVr2nHsWLiyX4MGjdm5cwcODk5IJBJiY/+kfPkKJYpWv4n09HSOHDlEz55lq/X9E6xb\nF6isbwYQGLgSQ0Mj8vJyOXHiKLm5eTRv3pJvvlEoEU6ePJ5nz56Sm5tD376utG7dFk9PVx4/jqdK\nFXO2bt1Ez549cXXtSW5uHuXKafDixQvl/dq27UBQ0GratlXk/slkMubMmU5GRjpyuZy+fQd8VEOu\ngNKUMa2tq5cIE/yr/UBcXQcWOdeoUUP27PkVUBhvPXp0IDU1hZ9+Ws7Ikd8qw0m//34qNja2JCcn\nIxaL2b59NxERVyhfvgKjR3/PkiX+hIcfVJ7X1zegR4/evHiRBKBU7HR378/ChUtJTc3l8uVw4uP9\nALCy2kWHDvXw8Ci9puK/ifBwzdflDyAjw5YDB+7g7v555lKxoikjR95i9epjZGQY4+x8ke+++7JK\nlQgI/JMIxpyAgICAwCfHwsISd3dvfH2HIBarUL26DaNHT8DPbxabN2/EwMBA6XEpLM5QgEQiYc6c\nH1m61J/09HRkMin9+7thYWHJpEnT+PHHeYjFIurWrac0Mrp27UFiYgLffDMQuVyOgYEh8+cveuc5\nS6VS0tJS+e237Z/dmOvcuRtTpnxPv36u5Ofnc/z4EYYMGcHVq5cICtpAfn4+kyaN48aNa9jbOzB5\n8nR0dXXJycnGx8eDFSuCcHf3plmz+gwePJRWrdogkUg5evQYmzcrDJ/CoiY3b16nVas2ymcpkUhY\ntWrtJ1/nx1LGLEAikeDpORgfHw9MTMrz1VdVAUpRSS3sfVP87e09BD+/2Xh4uFKuXDl++GFmob4l\n71W9ujlr1mSxceM2VFTk+PjUQE1Nwvff7yUlRYOmTdU/m7frbWhoFBVgUVOTltHyn2H06La4u78g\nPT0dM7P+ygLsAgICJRHJ3yfb+BNSkKgr8N+jcCK2wH8P4fP97/KlfLZZWVmUK6co2jxt2kQiIq5i\nYlK+hGKmvr4BU6ZMp0KFisybN7NI/bq2bZtx5MgZIiKusHZtALq6uvz5ZwzVq9ty9uwpzM2/on79\nRgwfPuqzrXPMmBEMHz6KFy9esG/fbkxNK3Hy5DG0tbVfP4dsBg3ypHPnbqxbF8iZMwqP0JMnCfz8\n8wpq1rSjRYuGnDx5AZFIhIFBObp374mNjS1NmjTD2bkZEomExYsXcvHiBfz9l2JmVoWwsDOcOpWF\nnl42kyc3xcjI8LM9gy8JuVxO797bOHv2G0CEmlo08+ff+UcMuvf92d227XdmzlQlKckOC4vzLF9u\nSoMGNT7hDAU+hC/ld7PA+2NiovPefQTPnICAgIDAF83582cJCwshKyuLpKTnTJmykGXLnrN/v5gz\nZ0YzbFg/evTozf79e1iyxB8/P/9S5Nb/Or5//y4bN26jYkVTnjxJJDr6ISEhm//ZRZVCly492L9/\nL69evaBz525cvXqZgQM9S5RbiIi4wtWrlwkMDEFdXZ2RI78lNzcXADU1deXaJRIJQUGhXLlyiZMn\nj7Fz5zaWLl3NmDETlGNt3XqOKVNsyM62AuQ8eBDMb7/1/SJq/30KQkNPcfZsDrq6CsPW2LhswzY5\n+RV//GFNwXcrN9eCCxciPlv44pvo168xTZsmEhl5A0fHuhgYCAa7gMCXguC3FhAQEBD4omndui0h\nIZvp06c//ft/zeLFzzh/fiAPH7qRkvKSkycVm+n27Tvxxx/X3zpejRq1qFhRUSz9nw5e8fUdQlRU\nZInzBw7s5fr1q1y8eJ6oqEgaNWpCw4aN2L9/D1lZWQA8f/6MV69ekZmZgY6ODurq6vz5Zwy3b98q\n9V6ZmZmkp6fRuLEzI0eO5cGDeyXanD2b8dqQAxBx40ZNkpKSPtp6vyQ2bTrDDz/UYvfu3mzc6Mbg\nwcfe+P3Q1tbB0PD566N8QIaBQc4/Mte/Q6VKprRu3VAw5AQEvjAEz5yAgICAwH+CAsXMhISiYSqJ\nieVKtFVRUSE/X7ERz8/PRyr9K2dIQ6Nk+38CmUxWSi7XX4jFYurVq4+Oji4ikYj69RsRExPD0KFe\nAGhqajJt2hwaNmzCrl2/MnBgX6pU+Qo7u9rKMQqPnZGRwYQJY1577eSMHDm2xD2NjHIBKQXbBWPj\nRHR1rT/amr8kfv89i5wci9dHIv74w5YXL15gbGxcQnCmW7eedOrkQpMmzkgky0lNdUVffwUmJr0Z\nNGgjRkbGDB48jICA5Tx79pRRo8bRtGlzfH2H8N1347G2VpQBGTbsG8aPn4yVVbWyJyYgIPB/jWDM\nCQgICAj8JyhQzLSy0iUuTo5YnEJ2tj36+hFAxyKKmRUrmnL3biQuLm04e/Z0Ecn6wmhqapKZmfnW\ne2/evAE1NTX69BnAsmU/8fDhA5YuXc3Vq5fZv38PjRs7Exa2HrlcTuPGTRk2bCSgyNXr3r03V65c\nYuzYCUXG3L9/D2Fh69HW1qFateqoqkq4ffsP5s5dqGzTt+8A+vYtWTnc339ZqfMMDz+l/LeJiQlB\nQaFvXNfEiS48eBBCRMRX6OklM3Gi0evi4/9/GBrmUNiwNTJKRFdXIdBSXHCmZUsXsrOz6datDT/9\nNJ+srCw6dFhC48bOjB49nilTvmfdugCWLl1NdPQj5s2bQdOmzencuRsHD+7F2nocsbF/kpeXJxhy\nAgICb0Qw5gQEBAQE/hMUKGZu3LieOnW2AGY4OjYjO/ssHh6uRRQzu3XryaRJ4/D0dKNhw8aUK/dX\n0ebCjjE9PX1q17bH3b0/jRo5lymAYm/vyNatYfTpM4CoqEikUilSqZQbN65RpYo5AQErCA4OQ1tb\nh7FjfTlz5iTNmrUkOzubWrXs8PUdXWS8pKQkgoPXEBwchpaWNj4+HiQkxNOtWy8qVzb7oOckl8vZ\nvv0UmZlyWra0oWrVSmW21dTUZNOmAWRmZqKhofHZVAWLC9Z8DiZNas2jRyFcu2aOnl4ykyaZoKam\nBsD27VuUgjPPnj0jLi4OsVhMy5atEYlEaGlpoaqqqiyLYGVVDTU1NVRUVLC0tCIxMRGAVq3aEBq6\njuHDv2P//j106tT18yxWQEDgi0Ew5gQEBAQE/jN07NiFjh27FDs7sEQ7AwPDIrXLCjxljo5OODo6\nFWk7Y8bct97XxsaWu3cjyczMQE1NDVvbGkRFRXLz5nWcnZvj6OiEnp4+oKjhdv36NZo1a6nc8BdG\nLpdz584tHBzqKft07tyVuLhYRoz47q1zeRNyuZzRo39l69buyOWGWFjsJTg4m1q1LN/YT1NT843X\nPyVvCz/9p9DU1CQsbABZWVloaGgo51O64ExOEbEZABWVv7ZcIpEIiUQVUITPymSKotgaGho4OTXk\nzJmTnDhxlODgTf/gCgUEBL5EBAEUAQEBAQGBQty8+YAffjjIrFn7ePny1Tv1kUgkmJpW5sCBvdSu\nbU+dOnWJiLjM48fxmJqaFhPKkCs3+cU3/AUUP/WxdFiePXvGnj22yOUKkYvo6K5s2FBS+ORTcPjw\nAXx8PPDycmPRovnk5+fj7+/H4MHuDBrUj3XrApVt+/TpyurVy/H2HsjJk8cAhSEaEXGFyZPHK9td\nvnyBKVO+/0fmX0C5cuWKfGaFBWdiYqLLFJx5V7p27cGSJf7UqFFLWXZCQEBAoCwEY05AQEBAQOA1\nkZExeHk9Zc2afqxcOQA3t2PvlDMHYG9fly1bwqhb1xF7ewd27fqV6tVtqFGjFtevR5CSkoxMJuPo\n0XDq1nUscxyRSETNmnZcvx5BamoKUqmUEyeOfpT1icVixOL8Yvf79IqdMTHRHD9+hICAYEJCNiMS\niQkPP8iQISNYu3YD69dv4fr1CB49evB6TiL09PQJDg6jdet2ynOOjk7ExsaQkpIMwP79e+nSpfsn\nn/+baNiwCTKZjIED+xIYuFIpOFPcSC95XPo1GxtbtLW16dy526ebtICAwH8GIcxSQEBA4F/I/fv3\nSEp6TuPGzp97Kv9X7N4dRVxc39dHIiIiunP27BXatWv81r729g5s3BiCnV1t1NU1UFdXx97eASMj\nY4YO9WXUqKHI5XKaNGlG06aKwtFlhQ4aGRnj7T2Eb7/1Qltbh+rVbT4ozDA/Px+xWIyJiQl9+pxh\n40YLpNKKWFvvZPBgu7897rty9eol7t6NYvDgQQDk5uZiZGTE8ePh7NmzC5lMxosXSURHR2NpqRD8\naN26baljtW/ficOHD9CxY1du377F9OlzPvn834SqqmqpgjOFxWaKH3t7Dylx7eHDP4mMjMPaujz5\n+fk0aNDo00xYQEDgP4VgzAkICAj8C7l//y5370a+lzEnlUqRSIRf6x+Cjg5ADqBQbFRTe4qJid47\n9a1Xrz4nTvyuPN6yZafy323atKdNm/Yl+hTf8C9fHsi6dYHcuHGNfv1c6dSpK4GBKzE0NCIvLxcf\nH3dyc/No3rwl33zzLUCpsvhQVClz3LiJ1K5tD8CCBT1p2fIC6ekRNG/uRIUKRu/6eD6Ijh278O23\nI5THCQmPGTvWl7VrN6Ktrc38+bPIzf2rDlu5ckVLRBSEqnbq1I2JE8egpqaGi0ubzybK8jHZsOEM\nc+fqI5MlU7HiTLy8/oWVxQUEBP6VCP/rCwgICJTCwYP72Lp1EyKRiGrVrBk8eCjz588iJSUFfX0D\npkyZToUKFZk3bybq6hrcv3+XV69eMmnSNA4c2EtU1B1q1rRTqie2bduMbt16cunSBQwNjZk1az76\n+vr4+g7B13cMtrY1SE5OxsfHnS1bdrJ2bQC5ubncvHmdQYO8adzYmcWLFxId/QiZTIq39xCaNm3B\ngQN7OXXqONnZ2eTn57N8eeBbVibwJnx8XDh/PoTjx5ujppaGh8cDHBz+2XC3jh27MGzYcB4+NKB1\na3OOHz/CkCEjuHr1EkFBG8jPz2fSpHHcuHENe3uHUmTxW6Orq1umUqZIJKJjx8aYmOjw/HnaP7Km\nevUaMGnSOPr1c8PAwIDU1BSePn2ChkY5tLS0ePnyBRcunMfBod5bxzI2NsbY2JjQ0GCWLl31D8z+\n03L27GnWrDlEcvJyjIyukpT0LWfPaiISBVK3riP16tVn27bNdO/eC3V1jc89XQEBgX8ZgjEnICAg\nUIxHjx6yYUMwgYEh6OrqkZqayty5M+jUqSsdOnRm//49LFnij5+fPwDp6WkEBoZw9uwpJk0aR0BA\nMBYWlgwe7M6DB/epVs2a7OxsbG1rMnLkWNavX0tIyBrGjJlQqkqfRCLBx2cYd+9GMnq0QtwhMHAl\nTk4NmDJlBmlpaQwZ4oGTU0NAEZIZGroVHZ2ixbIF3h81NTU2bnTlwYOHlCunQ5Uq/3ze0oIFvxMb\na0ZEhB1bt56mUaMKREXd4fLli3h5uQGQlZVNfHwc9vYObNoUSnj4QfT09Hn27Cnx8bHUrGlXqlLm\n56JqVQt8fIYxduwI8vPlqKqqMmbMBKpXt8HNrTfly1ekTh37N45R+OekbdsOpKSkYG5e9RPP/NPT\ntGlz8vJyAZDLFWvMy5MoPa8A27dvpX37Tu9lzBWE1goICPy3EYw5AQEBgWJERFzGxaUturqK8Dpd\nXV3u3PlDaby1b9+J1asVOTIikQhn52YAWFhYYWhohKWl1etjS548SaBaNWvEYrFSyKFdu45Mnfpm\nBT65XF5EAfHSpQucO3eaLVs2ApCXl8fTp08QiUQ4OTUQDLmPiFgspnp1689y7/T0dMLDzcjNHYCu\n7q/I5S/IzKyFXJ7PwIGedO/eq0j7All8LS0t1q/f/FoWX2EYlKWUWUB+fn6Z1z4FrVu3LZEHV6tW\n6fl627fvKXJc4OEu4ObN63Tt2uPjTvADWLcuEE1NLVxdi5bBuHHjGqNHD6dt2w5cvXoJNTUNxoz5\nnpCQNbx6lcyMGXOIjn6EhcUBYmObAKCunkD37pWUtfWSkp6TlPScUaOGoq9vwNKlq/H39yMqKpKc\nnGxatmytNPz69OlK69btuH79Cs7OLTh58jjBwWEAxMXFMmPGFOWxgIDAfwPBmBMQEBAohkgkKiYl\nr6C0c6AQQACFEaCmpqo8X7h+VPFxCjbZKioqyOWKTXXhfKHSmDdvEVWqmBc5d+fOrRK5RQJfFoVD\nei0sLFFXb4S6+jm0tBT5dKqqX9OwYQPmz5/NjRvXeP78GQkJj+nevReWllYkJT0jLS2Nr7/uQ3x8\nHPfv32Xz5o3K8X/++Udq1KhFx45dlJv9y5cv0rlzR/bvP/jFbPZlMhlz5x7k5Mk1qKlJGDjQ+4PG\nK/h5/hj16940Rl5eHgMGDGTy5OkMHuzOsWPhrF4dzNmzp9iwIYTmzVvSoIEFPXpc4fDh21hZGdOv\nnzPz5x9FJBLRp88AfvllM8uXBypfMA0ZMgJdXV1kMhmjRw/n0aMHWFpWU6qA7ty5k+fP07hy5RL3\n79/D2ro6Bw7sFRQyBQT+gwj+dwEBAYFiODrW58SJo6SmpgCQmpqCnV0djh0LByA8/CD29g7vNWZ+\nfr5SXv7IkUPUqaPob2paiaioOwDKeloAWlpaRSTxGzRoxI4dW5XH9+5FAWUbmAJfBgUhvcuXB7B+\n/WbGjJlAzZq/kZ3tTGpqF8TiuqSnH6F+/UZYWlpx+vQJUlKSMTQ0YsuWjTg5NaRKla/Iz8/H3Lwq\n9vYOypp0BQZGYUOjsOT/0KFD0dbW5v59RZ2599nsr1sXyJYtH8/oe5fx5s8/yMqV3bh9+wTXroUz\nevTp975PYmICrq69mDt3Bv36dWfhwnn4+Ljj4eGKp6crJ08eIzExATe33owf/x29enXmhx8mkpOT\nDSg8XwW/F6Ki7jBy5F+hkA8e3GPoUG8GDOjF3r27lOclElUsLa24du0qL1++wMmpAZmZmRw8uJ+L\nF88TFLSahIR4BgxoTrNm1bCyqvTWdRw/Ho6390C8vQcSHf2I6Oho5bXC3s8uXXpw4MBe8vPzOX78\nCG3bdnjvZyYgIPDvRjDmBAQEBIphYWGJu7s3vr5D8PR0Y8WKJYwePYEDB/bi4eFKePhBvvvur8LF\nxTfLpaGhUY47d27j7t6fa9ci8PIaDICr60B+++1XvL2/JiUlBVD0d3BwIibmEV5ebhw/fhRPz8FI\npVI8PAYUKbBcWs7d52LdukCuXLn0uafxRVFaSG9aWiwODsEYG++lSpWnSKV5ZGVlUatWbTw8vmHD\nhl8ICgrFyMiY9PQ0pkyZQZUq5vj5+bNsWQDVqilCRIsrZRbwMTb7H/s79y7j3bmjBmgV9ODePf2/\nda/Hj+Pp1asvtWvb8/DhA4KCNhASsonU1FRiYhRGUVxcLNWr29CsWQu0tLTYuXPHG+cpl8t5+PAB\ny5YFEBgYTEhIEC9eJJXoIxKJUFVVZf36tWhr62BmVgUfn2GYmJQv1ObN809IeMzWrZtYtiyA0NAt\nNGnStEwV0JYtXbhw4Rznz5/B1rYGurq67/ewBAQE/vUIYZYCAgICpdCxYxc6duxS5NzSpatLtCuc\ny2NqWonQ0K2lXgMYOXJMif7m5lUJDd2iPPbxGQYoNvVBQRuKtP3++ynvNM9PidoUXuUAACAASURB\nVEwmQ0VFpdRrhQUbBN6N0kJ6ZTIp+fky+vYdwIgR3xW5JpEUDeOVSouG8W7deo6tW2+TkfGU06dv\n0by5HTk5RcN3i2/2Q0LWUK+e01s3+6Gh6zh0aD8GBoaUL18BG5saPH4cz88/LyQ5+RUaGhpMnDgV\nQ0NjPD1d2bFjLwBZWVl8/XUftm/fw5MniSXaFxcxuX//LosW+ZGTk0PlymZMnjwdHR0dXr0KwMQk\nknLlriAS5aGpmY2n5zqSkp7z1VdVSUtLIzY2BiMjYzQ1tRCJwMSkAjExjwgJ2URCQgLz5s1ALpez\natUyIiNvk5eXR7Nm9dHW1iYjI4ONG9dz+PABxGIxu3f/ikgkRktLi0ePHpTIhyv+OTZr1gI1NTXU\n1NRwdHTizp1bSiO9OFevXsbXdzSRkbcAhfAOFOTKlmyvqalJRkYGurp6ZGRkvLMKqJqaGg0bNsbf\nfwGTJ08vc/4CAgJfLoJnTkBAQOAf4GN6MtauPUn79ofp0OEQmzad/VtjZGVl8f333+Hp6Ya7e3+O\nHTtCVFQkvr5D+OabQYwdO5Lnz58D4Os7hGXLfmLwYHc2bAimT5+uSgMkKyuLXr06I5VKmTdvpjJU\nNDLyNsOGeePp6YaPjwdZWVnIZDJWrlyqDGvbvXtnmfP7J0hMTMDdvf87tz94cB9JSUnK423bNivD\n76BoCN674uBQr0RIb6NGzvTo0UdpyBWEQRZQPCRRU1OTzMxMTp/+gx9+MOXSJTdSUzMYPfoF9+8/\n5OrVK2Xev/Bmv1OnskMso6IiOX78COvXb8Hff6kyNHjhwvmMGfM969ZtZPjw7/jppx/R1tbG2ro6\nERGK+54/f4aGDZugoqLCwoXzSrQvoOBHZO7cGYwY8R2hoVuwsqpGSMgaACwtDTE3v4lY7ImeXmXU\n1V+xfv1mevbsg0wmIy0tlXnzFpGc/ApDQyO6dOmBuro6ubk5SKVSlixZxMCBnqirq9OzZx/KldOk\nefNW1K3rSJcuPWjfvhO2tjXQ1zfAwMAQsViFNm3aMWHCVExMKgCKHNf8fMV3Pycn942frUgkLrKu\nv84rThQ24guHxJb2q6Jbt56MGzeS774bhrV1daUK6KxZ096qAtqmTQfEYrFQhFxA4D+K4JkTEBAQ\n+AcoK+TtTWRlZTF9+iSeP39Ofr4MD4/BLF7sT1xcc9TUbpOfr8HcuV7UqnWX9PSnbNgQjFSah66u\nHjNmzMXAwJDMzEyWLFnE3buRgAhvbx9atHAhLGw9UVGRmJiUp0oVc+ztHZg2bQILFvyMnp4+x46F\ns3jxYsaMmYxIJEIqlbJ2rcJTeO9eFNeuXcXR0Um5UZdIJMqQz7y8PGbMmMLs2Qt49OgBt2/fRE1N\njX37dqOtrU1Q0AZyc3MZPnwwDRo0wtT07TlCoDCWgoPDyvR2fGoOHNiLhYUVxsbGAISErCUnJ4dB\ng7xYtuwnXr58ASi8Lvv370FTU4uoqDtlKg5evnyRr7/2UIb0isUqVK9uw+jR4/n55x/x8HBFJpNR\nt64j48dPAhSGQfEXA3p6+tSubY+f3yTU1LqSmvo9aWkd0dZeyowZGtjY2LxxXW3adOD06ZNv3Ozf\nvHmN5s1boa6uDqjj7Nyc3Nwcbt26wbRpE5Xt8vKkALi4tOX48SM4Ojpx9Gg4vXv3IzMzkz/+uFlq\n+wIyMtJJT09X5qR26NCZadMUa1dRUWHePB8cHZ2Ii7Nm4MC+LF36ExkZGdjY1EAikdC4sTNyuRx3\ndy927tyGlVU1rl+/yuPH8URHP2Tt2gBycnLYsCEYFRUVIiNvU6FCRVq0aMW2bZtp0qQZv/22nRcv\nkl6LE8k5cuQQ9vZ1AahY0ZSoqDs0atSEU6f+ynGVy+WcPXuKQYO8yMrK5Nq1qwwbNpLc3FzMzKoo\n21WrVp0WLVyIjLzzWgDlFwCaNm0BgLf3EGXbEyeOKr37vXv3p3fvv148FPf6F1BcBRQUdexyc3P/\nNeHYpSGUURAQ+PsIxpyAgIDAv5SLF89jbFyeRYuWAoqNbl6ejOxsCxITF6Cjswsdnd1cvtyaAQOa\nsmbNegD27t3Fpk0b8PUdzfr1a9HR0VGGf6alpZGcnMylS7+jrq5O/foNSU9PY8OGYB49esjo0cMB\nxebK1LSici4FZRWg9I16AXK5nNjYPzEyMsbWtgbR0Q+RSFRRUVHh8uULPHz4QOm9y8jIID4+7p2N\nuU+xGZXJZMyePY1796KoWtWSadNmsXnzRs6fP0NOTg52dnWYMGEqJ04cJSoqktmzf0BdXZ1OnbqR\nlZVJWFgoV65cIi8vD7lcjlQq5caNa6iqqnLnzi3k8nxq17bn2rWrJRQHC6tGFg+VnTXLr8hxaOg6\njhw5VCTEsW9fV6ZNm0BenhQzMzO8vL5n3DgbqlZtTUzMYaTSZkycCHPnTlGOV9pm/+bN63Tu3O0t\nz7fkNblcjra2DiEhm0tcc3Zuzpo1q0hNTeXevSjq1atPZmYGOjqlt39fqlQxx8jIGEtLS0JDgzE3\n/wpQhJ6qqEiUirEFf2SyfCwsrOjXz43582cRGrqV4OA13Lt3lytXLjF37gwyMtKxsamBTCbD3Pwr\nYmNjCQ8/RL169enRow8AXl5DWLBgNmvXauPgUK+IR83KyppRo4aSnJyMl9dgjIyMSUxMKJYzp/jb\nw+Mbfv75R9zd+yMWq+DtPYTmzVu+9Zm/D1FR0cyaNZ3s7GT09P5efuHHYvLk8Tx79pTc3Bz69nWl\nW7eetG3bjO7de3PlyiXGjp1AYmICO3b8glSaR82adowbNwmxWIy//4JSX4oICAgoEIw5AQEBgX8p\nVlbWrFy5lNWrl9OkSTPs7euipiYBLAFIS+tMhQpzaNjwW549e8r06ZN4+fIFeXl5VKpUGVB4iWbP\n/ssw0NHR4dy5MyQmJmBoaMTRo4dJTk7mq6+qYmFhRUBAsLKtiYkOz5+nAQoBlwKcnZsTGLiSMWNG\ncO3aVeLjY/H09CE5+RWBgasASEp6rlTjTEp6zrhxo7h58xqNGjkzZ84CQKHquWLFYuRyOY0bN2XY\nsJHK82Fh60uc/xTExv7J5MnTsbOrg5/fbHbu3EHv3v3x8vIBYM6c6Zw7d4ZWrdqwc+d2fH3HYGNj\nC8Avv2wCwM/PnylTvkdNTY379+9x8eLvqKmp0aVLN/bt28PJk8eRSvOIjo7G0rIaQIl6a2+icIij\nTCbF23sgtrY1aNGilbLWWlDQalRUnjJ8eAb791egRo35fPONEzExz2nZ0qVEnqNMJmP58gPs2LEG\niSSTNWuCS7u1krp1HZg3bxYDB3oik0k5d+4M3bv3olKlSpw4cZRWrdogl8t58OA+1tbV0dTUxNa2\nJkuXLsLZuRkikQgtLe0S7R8+fKAUbJHLQUtLGx0dXW7cuI69fV0OHdqvzAeTy+XKlwinT59EW1uH\nrl17cvXqFe7diyI3N5fHj+MBOHz4AHXrOpKamoqOji6XLv3O8+fPOHXqGDVq1GTECB8qVjTF2ro6\nGRnp+PqO4ddff0Ff3wBQeAFVVSU0bdqcqVNnKp+DvX1dtmwpGR5c2KNWmMJ5tI6OTjg6OgGKvMXC\n476JzMxMJk8eT1paKjKZFB+fYTRt2oLExATGjx9FnToO3Lp1AxOT8vj5/YS6ujoBAdvx9w8gL0+b\nvLxGmJmdf6d7fSomT56Orq4uOTnZ+Ph40LKlC9nZ2dSqZYev72hiYqLZtCmUgACFx9TffwHh4Qfp\n0KEzQ4YML1KG4eHDB1hZVfus6xEQ+DchGHMCAgIC/1KqVDEnOHgTv/9+lqCgVdSrVx8NDTVGj37K\nwYM7AClZWVCnjjW+vkNwdR2Es3Mzrl27SnDwGuU4pZUvqF27LjNnzkNdXZ1z586wa9cO4uLiuHXr\nD+zsaiOVSnnw4AF6ehVK9NXU1MTY2JiEhAS6devJ2LETychIZ8GCOXh6DqZ/fzdcXXsRHf0IuVzO\n3btRhIRs4siRw6xcuYQnTxKRSCSsWLGENWvWY2xswtixvpw5c5IaNWoRELCC4OAwtLV1lOebNWv5\nSZ5x+fIVsLOrAyiKwW/fvhVTU1M2bdpAbm4OqampWFpaKQvDF89zKl++IgcO7KV2bXsePLjPjRvX\niIuLRUVFheXLF2Nu/hX6+vqoq2uUqTj4NkoLcZTLea3EuJqMjHQyM7No2LAxkydPoksXMzZv3oC7\n+xiGDvVm4sQfiownl8sZOnQ7u3e7AZ2oVOkI9+49wcmp7PDV6tVtad26LZ6erhgYGFKzZi1EIpg+\nfS7+/gsIDQ1GKpXSpk07rK2rAwqDdfr0ySxfHqgc5969e+zbt6dI+wJjTiRSFE1v3NiZVauWkp2d\nTeXKZsqQQpFIhJqaGt7eX5OWloZYrIKXlxuvXr3CxaUtzs7NmDZtItnZWaioqNCjRx82bAjGyakh\nO3b8gpaWFjdv3iA9PQ25XI6lZTVOnz5JQkI89+7dVd4DFN48FRWJUlF20CBvXFzavPNnVhY7d/7O\nlSspmJmJGTq0zTuFFqqrq+PntwhNTS2Sk5MZOtRLGZYZHx/HrFl+TJw4lenTJ3Pq1HHatevIypUr\nePz4J7KznTA2Xkhy8gdP/YPYvn0LZ84oQs2fPXtGXFwcYrGYli1bA3D16iXu3o1i8OBBAOTk5GBk\nZAQoyjDs2bMLmUzGixdJxMQ8Eow5AYFCCMacgICAwL+UpKQkdHR0aNeuI1pa2uzbtxsAHZ1X7Nnj\nyeHDBzhxwhGAzMwMjI1NAIVQRwH16zdk585tjBo1DlCEWdaqVRs/v9l4eX2NuroaKioquLt7Y2pa\nmaVL/UlPT0cmk/LNN960bFm6VH2bNh1YsmQRaWm1uHHjOtra2mhoqGNmZoZEImHOnAUsXryI58+f\nkZeXh6qqGj179mHr1jBGjRqKTCZ7HaanjYqKCm3bduD69WuIRCIcHOopw8IKzn8qY65wCFxBaN7P\nPy9k3bqNmJiUJzh4Dbm5uaW2B7Czs2PLljCmTJnB/v17OHBgL+XLl8fWtiZRUZGEhGzi1auXeHq6\nfcgsSz07f/5sFiz4CSurahw8uI9r164CULu2PYmJiUREXEEmk2FhYVmk39OnTwgPt6dA5j8hoS1b\nt27HyenNuXXu7t64u5cs1P3TT8tKbd+yZWtOny5aqkIsFpfavsCzlZiYwLlzp5W5ZAUkJiZw585t\ntLV1ycvLe12K4SdiY2NYtMiPq1cv8+RJIkuXBqCjo4Ov7xBWrVrKzZs3aN68JRKJBIlEFR0dbVas\nWMOCBXPQ1NRETU0NY2MTzM2/omvX7oAi5PVThPSuXXuC2bNrkZ1tBaQQHb2LRYt6vbWfXC4nIGAF\nN25cRywWkZT0nFevXgJgalpZaQzb2NiSmJhAeno6+fnZZGcrvICpqd0xMNhX5vifmoiIK1y9epnA\nwBDU1dUZOfJbcnNzUFNTL/KcO3bswrffjijSt6AMw9q1G9HW1mb+/FlFfh4FBAQENUsBAQGBfy2P\nHj1gyBBPvLzcWL9+LR4e3wAKg8zDw5UdO35h5MixgGIzPG3aRL75ZhD6+vrKTZKHxzekpaXh7t4f\nT083rl27ir6+PrNn+6GlpUl+vpy8PCkqKhKsrauzYsUa1q/fzMaN2+jbty8Ay5cHKkMLC+jTpz8H\nD56gcWNngoJWcerUcczMzGnRwgUAW9uaBAaG4OMzDBeXNmhoaCASiaha1ZLJk6czZsz3NGjQCC0t\n7dcjllX8XP5JhRuePn3CrVt/AAXF3BXKgLq6emRmZioLvUOBPHx6kWMrq+q8fPkCO7vaqKiooKam\nRqNGTbh+/RpffVUVN7feTJs2merV32wovYm6dR04ffokOTk5ZGZmcO7cGQCysjIwNDRCKpVy+PCB\nIn06dOjE7NnTSi0CrpDPzyh0Ro6qqrREu09JZmYm3303HG/vgXh4DODsWYXXJiBgOY8fx+Pl5caq\nVQqjb/PmDUyaNI6cnGzEYhEbN25DW1uHU6eOM3fuzFKVLwuL9ri7e9O0aXN8fb8jOHgTlSubAYq8\n0KCgUEaMGM20afMZNOggTZv+jKPjcZo1O8D27Rc+6pqPHs17bcgB6HHmzLsJ+YSHHyQlJZng4DBC\nQjZjYGCoVNJUUytcqkIFmUxRqkJbWwUTk98BUFePQ+/zaAYBKHMl1dXViYmJ5vbtWyXa1KvXgBMn\njvHq1StAoer65MkTMjMzS5RhEBAQKIrgmRMQEPi/4ODBfdSv30ipRPgl0KBBo1IVBr/+2r1EHlnT\npi2UoVeFKSs3x9HRqUQdu/ehuNdw164dvHz5gqioO9ja1iQzMwN1dQ1lWGJQ0AmOH5fy8uVTmjR5\nQrNmDVmyxJ+UlGS0tXU4ejScPn0GUKNGzVLPfwpEIhHm5l/x22/bWLBgNlWrWtKzZx+l8WtoaETN\nmnbK9p06dcXf3w8NDQ1Wrw6mW7eerF8fRJ06dVFX1wBg7doN6OrqYW1tS1hYCGpq6mRnZzFixCjl\nWKWJkLyJskIcBw8eypAhnujr61Orlp0yRxEUHs2goNW0bdu+xHiGhka4u//OmjVR5ORUplatPfj6\nNvw7j/BvU1bo4LBho4iOfqQUSbl06QLx8XEsWPATo0ePIC8vjxs3rmFjY8vjx/Gkp6eVqnwJRUV7\noGS4cYsWrQDYuTOOJ0/yuHBBExgHKF4wzJ59iDZtXmJgYPhR1qypmVfkWEvr3TxMGRkZGBgYoqKi\nQkTEFZ48SXxje21tbSpUMOabb2JISIgjNvYMiYnab+zzKWnYsAm7dv3KwIF9qVLlK+zsagNFvdxV\nq1rg4zOMsWNHkJ8vRyKRMG7cRGrWtFOWYShfvuJbyzAICPw/IhhzAgIC/xcUl5X/cvlwL9Xu3eeI\niUnDxaUatWv/vdyTR48esHLlUsRiERKJKuPHT0Yuz2fx4kXk5OSgoaHB4sUrEYlEPHz4hN27a5OT\nY0GlSuEsXhxN+/YuDB3qy6hRQ5HL5TRp0oymTZsDlHn+Y6y9MBUrmrJp044S5318himLtxemRQsX\npecRSsrFFzbSWrduW0Lk5NSpCB48eEbr1nWoWvXdFDwLKCvEsUBlsTg3b16nVas2hTyfRZk2rQtf\nfx3D7dtnaNmyFTo6Ou81nw+lrNDB4gbXpUsXuHz5IjdvXuf586eIRCLi4+MQi1VIT0974z0Ki/ZA\nyRBZVVVFoe6oKG1EonwgnwJDDuDpUysSEp5+NGNu7FhbHj7cRmRkPUxN7/Ldd2/+XVQw33btOjBx\n4lg8PAZgY1ODr76yKHNNBcd+fn5MmDAJkQjq12/EkyePPsoa/g6qqqr4+5cMrS1erqW0nxkouwyD\ngICAgg8y5hITE5kwYQIvX75EJBLRr18/3N3dSU5OZsyYMSQkJFC5cmWWLFmCrq7ux5qzgIDA/yGl\n1Vw7evQwfn7+AFy+fIHffvuVuXN/xM9vNnfvRiISiejcuRvly1dQysoXeFWiox+xYsVisrKy0NPT\nZ+rUGRgZGePrOwQbG1tu3LhOVlYmP/wwiw0bQoiOfkTr1m3x8RlW6lzeR53wQ9i+ffcH9Z8xYy9B\nQa2QSk1Zu/YMy5bdoFWr93/bXZbXMDAwpMhxx45dOHlSlZwcxQY0ISGAhIS7xMbG0aZNe9q0Kek5\natOmPS1auJCYmKDMA4QPX/s/wfbtv7NxYyoAbm7aDBjgDMDChQdZscKB7OxmVKkSzurVKTRoUOOj\n3lsul7NmzTHCw3eRlfWAwMA1b2zfsGFtLC2rftQ5vCuFQwdVVFTo27dbmUW4Bw70pEGDRkycOEaZ\nS7dlSxhaWtro6paufAlFPXGKENm/QktzcnKYPn0Sv/yyCyOjLF68ADAG7gOKHLRata5gadn6o63Z\nzs6KgwdNefgwhipV7JTKmWVRYOzo6ekXUZktTIFSJoCr60Dlv2vVqsX69X+VgBg+fNSHTP2zcPz4\nTVaufExOjoQOHcDX95/5HSsg8KXxQcacRCJhypQp1KhRg4yMDHr16oWzszO//vorTZo0wcfHhzVr\n1rBmzRrGjx//seYsICDwf0hpNdeCgwNJSVHUUNq/fy9dunTn/v17JCU9V276MjLS0dLS5tdftyll\n5aVSKUuWLOLHH/8qkL1mzSomT56OSCRCVVWNtWs3sH37ViZNGkdIyCZ0dHTp378H/fu7ERFxpcRc\nvgSkUim7d2shlZoC8PRpMzZt2v63jLn3wcxMBKQBCu9P5cr3MDV1KLP93bt/MmLETSIja2Fmdp45\nc4xp167uJ53jx+Datbv88IMRr14pwvuioq5hZXUHR0cbtm5VIztbYSTExXVg7dptH92YmzlzLwEB\nHZDLe6Ki8oywsONMnmz+3uMkJiYUMZxAUR7h0KH9jB79cf4vLyt0UFNTs0i4aMOGjQgKCqBOnbqI\nRCKeP3+GRKLIExOJREyZMhN/f78SypcF1wto3bodP/44jx07flGWxijg++/t8fVdS4UKSWhoHKdK\nlaqULy9hzJja76U6+i5oampSu3bNjzpmYY4cucrNm89p1coSR8fqn+w+n5qkpBeMH59KfLyihuXN\nm9FUqXKB7t3LLmwvIPD/ygcJoJiYmFCjhuI/Iy0tLaysrHj69CnHjx+nZ8+eAPTs2ZOjR4++aRgB\nAQGBt2JlZc2VKxdZvXo5N25cR0tLm/btO3H48AHS0tK4ffsWjRo1wdS0EgkJj1myZBEXL/6OpqaW\ncoyCN/WxsTFERysKZHt5ubFhQzDPnz9XtisI67O0tMLS0gpDQyNUVVWpVKkyz549K3UuXwIikQix\nOL/IueLHn4IRI9owcOCvWFjsws7uF2bN0kJXt2xFhh9//IObN93Iy7MnOron/v7xn3yOH4OLFx/x\n6tVfnqHkZAcuX/4TuVxOfrHHnJ//8UVdzp3TRC5XyLnLZOU5c0bto41ta1vjoxhyhUMHo6Ii8fAY\nwKFD+5Whg3p6+tSubY+7e39WrVpG/fqNaNu2AzNnTgFg+vRJZGVl4uo6EC8vH6ytqxMYGEJo6Bbm\nz1+EtrbiZ7G4aE/t2vaEhW0jODiMypXNmDVrPqqqqvz44zwWLZqBk5MtFy82ZPPmDhgb/0ZWVhih\noStIS1OEcvr6DiEqKhKA5ORk+vZVCMs8evQQHx8PvLzc8PBwLVLnruD8okXzyS/+BfgErF59DB+f\nSvz4Y1/69NEmOPjkJ7/np6Jv367Ex9dHReUppqajyM624ObNlM89LQGBfyUfLWcuPj6eyMhI6tSp\nw4sXL5R5KcbGxrxQxC8ICAgI/G2K11xzcmpAly49mDhxDGpqari4KGo26erqEhq6lYsXz7Nr168c\nP36EyZOnA39tJOVyShTILkxBLk2Bl64AkUiETCYrdS6enoM/8RP4cFRUVPj6axnLlt0lK8sac/ND\n+PhYvr3jByIWi/n5597v3D49vagRkpb2cb0jnwpHR3P09G6QklKgiPkHDg6KUg09emQSFPSYvLzK\nVKx4mkGDKn/0++vo5BQ51tb+cAn3x4/jmTZtIm3adOD69QgWLlzMunWBPH36hMTEBJ4+fUK/fq5K\nkZr169cSHn4QfX0DypevgI1NjSLhf+8SOjhjxlwA0tJSefXqJX37DqBv348jgpOdnc2aNSd58eIV\ncXGxzJw5X1mj7ezZU2zatIGxYydgb+/AunWBhISsYdSocYhEolJVVXfv/pW+fV1p164DUqkUmUxG\nTEw0x48fKbUA9qdk1y4ZmZkKb1x6ug07d97Cu2Sa5Wfj7NnTxMQ8YuBAz7e2VVFRoWLFazx50pbE\nxGWoqcVRo8aX8dJMQOCf5qMYcxkZGYwaNYqpU6cq34oVUNYvQAEBAYH3obh64v79ezA2NsbY2JjQ\n0GCWLl0FQEpKMhKJhBYtXKhSxZy5cxVhV4Vl5c3NvyI5+VWRAtlxcbEl6nGVhlwuL7P+25fAuHHt\nadz4Bvfv36J16zqYmVX83FMqQbNmIs6dUxg+kEHDhq8+95TeiQYNajFt2mk2b76HXC7C1VWDxo0V\nCqMzZ3bF0fEcf/55DhcXG2rV+vhG9LhxFjx5spPoaBuqVYtk/Hirt3d6A7GxMcycOZWpU2eRmprC\n9esRymtxcbEsXx5IRkY6bm696dmzL/fuRXHq1HFCQ7eSl5eHt/dAbG3/XijpvHn7CQszJC9Pnfbt\nj/6PvfMOqKn/4/jrdttLQ0h2KDREZkY/hOxRZBXx8JgP2VtWZh57RzYRHnvzGI+RyCoy00BG2rfu\n7f7+uE+XFIoQz3n9wznne77ne86593Y+5/P5vt8sXuySK4PtTyGVSunRYzdnzvRCVfU5Zcv6I5Mp\nXhzkRh0zJ6ysbP7N7D+nYcNGlChR8pMG2N8SVdWs2T+xWPbNj5kX6tVr8J6Y0acRiUTMmqXG4sUr\nSEzcQps2g9DWljJu3EgkEglRUZE0aOConAt4+fJFpSdkZrltfpfICggUVL46mEtPT2fIkCG0adOG\nJk2aAGBsbExsbCwmJia8ePECI6PPK0GZmHxfJS2B74twf39tvsf9vXs3hNGj56CiooKqqire3t6Y\nmOjRsWN7Nm7cSPXqCrnrV6+iGDVqnLKsadSokZiY6OHm1glf39loaWmxbds2li5dwvTp00lISEAm\nk+Hh4UHNmraoqYkxNNTGxEQPQ0MdNDRUleenpibGyEiHV6+ilGNRU1NjypQpP9VnvG3berlu+yPO\na+rUDpQseZIrV4IpVUrO2LHuiMXi7z6OL2H48JYMH57ztt69czZgz4lt27ahqalJu3btctU+MjIS\nP7/p3LixnaioaEqUaJmrh9mc7q9EosPbt3FMmDCKJUuWYG5uzqVLl5TfBV1dTZycGmNqaggYUrhw\nYUQiCQ8fhtG8eTOKF1f8zXdyaoyOjkaeP0MXLoSwcqUdqakKb76AADsaN75Av365v345cf58MGfO\nNAcUc+7S0ozYt+8B9epZoa+vzfPnCYjFKsrxpqTooKYmxsREDy0tDQoVEIHtwgAAIABJREFU0sTE\nRA+ZLAkVFREmJnp07epK/fq1OX36NGPGDMPb2xtdXU06duyAl5fXV403r/zxhynDhl0kNTUGE5NV\nqKtLWbz4FlOmTOHcuXP8+eefyGQyDA0NWb9+PXFxcYwbN47IyEi0tLSYOnUqFhYWLF68mOjoaCIj\nI4mJicHDw4MePRSB6bp16wgMDATAxcUFDw8PIiMj6dOnD3Z2dgQHB2NlZUX79u1ZsmQJb968Ye7c\nudjY2BAYGMjt27eZOHEiL1++ZPLkyURGKspSp0yZgp3du3m0IhF4eDjSuHF5+vc/wJw5nQgMDOTR\no/vs2bMHdXV1mjdvzu+/90FNTY2tW/3ZvHkjmpqarFq1in37Ahg4cGD2i/QL8TP9zRH4tnxVMCeX\nyxk/fjzm5ub07NlTub5Ro0bs3r2bvn37smfPHmWQ9yliYz8tMSzw82Jioifc31+Y73V/LSxsWbt2\nc5Z1sbEJnDv3D82bt1aOwdjYjJUr/bO1s7Orw8aNAQDEx6dhbGzGggXLs7Xz9V2m/H/ZspWYNm2u\nsu/MbUWKlMpxLL8aP/K7265dDTLjmNevkz/d+BdDJpPRuLGiJC+31//16ySkUhlJSTIMDIqSmCj9\nrHT/x+7v69dJaGvrULhwUU6fPo++fhHi4pKRSKTExiaQlCRBS0us3Fcuhxcv3pKUlEZiYqpyfXKy\nhMRESZ4/Q9evPyY19X2POH0ePkz46s+iVCpHVTUeqdIfXY5UmkJsbAKJiRJUVNTR0dHl+PGz2NpW\nZcuWHVhZVSU2NgFj4yJcvBhEsWJl2LVrLxkZcmJjE4iKisTMrATNm7fjwYMnBAffpEaNWqxbN5xW\nrVwwNDQkPv4tyckpFCv2bbPgTZvasmTJWdasWc+ffy7BxKQI8+fPZtOm7axevZxly9ZQrJgpCQmK\na7lgwXzKlq2At/dsgoODGD58BOvWbSEpSUJ4+IMsmVcnp9aEh98jIGAnq1atJyNDTt++HlSoUAVd\nXT0iIiLw9p7FsGFj6dPHncDAvSxevJpz586waNFSfHzmkZCQSkpKGrGxCUyaNAVr66pMmTKLjIwM\nUlKSs9xfuVzx2c/8XMfGJpCQkErVqvakpMhJSZFQsmRpbt26R0JCAuHh4bi4uAKQni7F2trml/xN\nzkR4rvp1+ZIg/auCuatXr/LXX39hYWGhfHvo5eVF3759GTp0KLt27VJaEwgICAjkN56e3dHW1mbI\nkI+kQvIZuVzO/v0XiI6Ox9m5KqVKmX6X434JP6NJ+q9ETEw0w4cPxtKyMvfuhVGmTDkmTvTm0aNH\nH7XEqFjRghs3QmjSpCnJycloaWnTpUt3wsPvMneuDxKJBDOzEowdOwk9PT3CwkLx8ZmKSCSiZs38\nNf1WU1Nj5sy5eHkNQktLC2Pjd5+jD73gFIiwsbFlzpyZ9OjRC6lUyoUL52jbtkOej92kSTUsLfcR\nFqZQMixe/CTNm1f40lNRUrlyRbp1C2TLFg3kcglaWnEMHPiu7O9T6phdunRn4sSx/PXXburUqUem\n5+HJk8c5evQgqqqqGBsXxt3dEz09vRwNsL91MAfw+nU0SUmvGDduOFKpDIlEwp07t7Czq0axYorf\nq0xPwZs3Q5gxYy4A1arZ8/btW5KTkxCJRNStWw9VVVUKFTLA0NCI169fcePGdRo0+B8aGpqAwncx\nJOQa9eo1xNTUjHLlFGW9ZcuWw96+5r//N+fZs+hs4wwODmLSpGmAYk5tbkWk1NXVlP9XUREjkylK\nSe3tazFlyow8Xy8BgV+Brwrm7O3tCQsLy3Hb+vXrv6ZrAQEBgc/i57fpux5v3Li9+Ps7IZUWZe3a\nA6xZk4SNzZeZbn9rfh2T9J+Xp08jGDduMlZWNvj4TGXXrh2cPXsaHx9fDAyyW2JIpVLWrNkAgJ/f\nKjKnm0+fPhkvr9HZRDl8fLzx8hqDrW1Vli1b+Nnx7NmzC01NzWxCHDlZEYhEIjQ1NZkz50+GDRuA\nh0cf5XgUc+Hf7f/2bRwSiQRLy8rUq9cADw83jIyMMTcvn20efW4wNDRg/Xprli3bjkymQufOpbCy\n+rr5f5nMnduBzp1vEReXSL16u9HUVAQm74u0fOiVCFCqVBn8/bcqlzNN5Xv06EmPHj2ztf+YAfb3\nwNm5FRMmjFFmbs6fP8uJE0dzbJtzYI7S/gEUwZZMJsumfyCXy5XrsgZZivLz9/fNy7HzgkgkokoV\na3x9ZyuzpCkpKbx8GUvJknm35RAQ+BnJNzVLAQEBgV+Z+Pi3BAaaIpUq3q4/ftyK9et34Ov7bYK5\ngmCS3rp1S7p16/1Nzu+/QJEiRbGysgGgWbMW+Pv78fDhA4YNGwBARkYGxsbvTNEbN26arY+kpEQS\nExOziXIkJmaur/pv/y25ePHCJ8fTrl3uFEVNTYsrzah1dXVZvVoRYGaKV3h69s3SXl1dAwMDhdVE\nly498PTsS2pq6r+frS8TQClXrgTz5pX4on0/h7291TfpFxSCcNu3n0NVVYSbmyPq6vlnD5Ebqlev\nyZgxwxkwoC+gRnz8W8zNyzN//ixiYqIxNS1OfPxb9PULYWNjx9Gjh+jZsw/BwUEYGBiira2DXC4n\nIeEt7u6d3wvwRdjaVmXGDG+6d/cgI0POqVPHcXZupQzKMr0IczfOGuzevZNOnbogk8lITU3Jkp17\nP3DM/P/HBPUMDAwYP34KU6aMIy0tHYC+fQcIwZzAfwYhmBMQEBAogBQEk/QuXdrTurUr+vr6P/JS\n/LS8/+Apl8vR0dH5pCWGpuY7wZLExAQCAwO4c+cWL1/GMmHCaCZO9GbgwN/IyJAxcOBvpKamKlX8\nEhLiefkylpSUFLS0tFi+fDHnz59FLBZTq1ZtBgz4g7VrV6KtrUOXLt0JCwuld+/pyGTyLCWaMpmM\nFSuWcP36VdLS0unQwZW2bTsQHByEn98qDAwMefToARYWlZg0aRoBAduIjY2lc+euiMW6lC9fjPj4\nl6SlpeHs3IoKFSy+3QUuYCQmJtKp00GCgjwAKfv3+7N5s6syS/U9KFOmLL/91h9PT0/S0qSoqqri\n5TWaUaPGM378SDIy5BgZGeHruwRPz774+EzFw6MLWlpaTJgwBcj83GYPmipWtKRFi1b89psHADVq\n1OLmzRs0adIMkUiEpWUlLC0rMXOm92eDsaFDRzBnzgwOHNiLiooKI0aMo0qVd0F2poXF+y8WnJ1b\n4ezcStlmzpwFyv9Xq2avfOkgIPBfQwjmBAQEBHKBvn4hOnaMYf36GKTSYpQuvZ+ePb9+Hs/HMDev\nwNKlC1m+fDF169bH1raq0iTd2bk1t2/fYtKkaSQmJipN0uvUqUfNmrWVfeRkkg7ZM0I5maQDlCxZ\nkufPnxWYYM7JqT7Hjp390cPINc+fP1PaXxw7dpgqVazYt29Pri0x4uLe0KlTVyIiIpBIUtm1K4DU\n1JR/Pxur6d69E8uWLWLlSj/Wrl3F4cP72b59Mx06uHL27Gm2bNkFoLTkeL880sfHm6lTvSld2iJL\nieb+/XuV2bi0tDQGDOij/Ezdv3+PTZsCMDYuTP/+vbl5M4TWrduxaNFqrl//i4wMQyIjT7JhgwG2\ntt/uu1FQ2bDhLEFBPQExoMrp093Yu/ckLi7/y/djfWxO5s2bN9i8eT0gx9KyEiNGjEVNTQ0Xl9Y0\nauTEpUsXSEh4J9yiq6tLr159cHRsDLz7jsXERHPunCKgmj17AdOmTSQlJQWAUaPGY2VlQ9++PYmI\neMy4cSNo2bINwcFBbNu2mTlzFhAf/5axY4cTHR2NpqYWDx7cx9m5FdHRUcyc6Z2jR+GX8PBhJMuX\nh5CRIaZLl7LY22d9efCz/WYICHwJX2faIiAgIPAfYsaMtqxaFcK0aTvZtcvim86XyzQmNzcvz+rV\ny1i/fg0tWrThyJFDnDhxJJtJup1ddfbs2cWsWdOUfXxokr5u3RbWrduCv/82fH0XK9t9yiQ90+Kh\nYPBzeZaWKlWa3bt30L27K4mJibi4uDFt2mxWrFhMz55d6dWrK7dv3/jo/rq6elhZ2TB+/BRiYqLx\n919DerqU4cMV3mdt2rTj4cP7tGjRmEOH9pGQkMjz58/Q0dFFXV0DH5+pnDlzSilYkUlmiaa9vT2g\nKNHM5MqVixw+fIBevbrSr19P4uPfEhn5FJFIRKVKVShc2ASRSET58hWJiYnh8uWbpKVpkXlvYmIa\nsW/fgxzPJzExkd27d37RtXRxaU18/Nsv2vdX5enTCDp0cGXTpgB0dHTYunUTM2d6M3XqLPbt24dM\nJlNeb5FIhJ6eHv7+2+jYsRMLF85Xrs9K9u+YkZERCxYsxc9vE97eM/nzT0Wpd//+g7GxsWPdui10\n6tQ1yz5r167EwqIS/v5b6ddvINOnTwIUnnuXLoVQpkxr5s5dxLp1qz86p+5zvH79hp49b+Lv78bG\nja707fuasLDHnz0fAYFfDSEzJyAgIJBLRCIRrVo5fJdjFRST9IJIcnIyY8eOICEhHplMym+/9ade\nvYZs2bIBdXV1XFzcWLRoPg8e3GfhwuVcvXqFAwf+UqrnfS/EYjETJ2Y9ZoUKFVmyZFW2tosXr8yy\n7Orahb//Pq3cZ9iwUezatYPw8LtKURszs5I0auSUo4rf6tX+BAVd5vTpEwQG7mDhwuXZ2mTyoRCF\nl9coatSonWVdcHBQlkBfLFZBJpNSpIghItH7D+MS9D6irJ2QEM/u3QG0b++SbZtUqigJ/BCZTIZY\nLM5xrlRBw929Pvv3r/+3zFKGo+MW2rbNfq75xYdzMtevX0Px4maUKFESUJQlBgbuoFOnLgA0adJM\n+e/ixb65Pk56upQFC2Zz/344KioqREY+BT4tYPKhUmZMTAxubu2JjIwhMbE2s2e7cfjwegoXLsSb\nN68pXPhdpcDBg/u4ezeUYcNGAXDkyEF27tyOVJrOw4cPOHnyAs2bO1K5cm2Sk6MpWXIX0dHLiIxs\nSkDASiIjvUlNTcHBIXcG5QICPztCMCcgICBQAHn48D5Lly5ERUWEqqoqI0aMA8DJqTlv376lVKky\nAMTGxjJzpjdyuSKD9vvvgwFo0aI18+b5KAVQpk2bzcKF80hMTEQmk9K5c9dswdyHKoUFFQ0NDXx8\n5qKtrUNcXBy//96LevUaYmtbjW3bNuHi4kZYWChSqRSpVEpIyDWqVq32RccaOfIPpkyZ8Unp9EGD\n+jJo0DAsLbOKfaSlpfHPP+epU+fLXgB8WKZpY2NLePhdbt9+xMaNMaSkpPDixZVsKn6FC5uQmppC\nnToOWFvb0rlzW0Dx8C2XK0RNdHX1uHr1KqVKVeTo0UPKY9asWYfAwJ3Y2dmjqqpKRMQTihQpCsCL\nF8/x8OiCSCQiLU1CqVKl2bRpFerqbyhduiOxsb9Tt+4btLTeZCmla9asBSdOHCUtTcLz589p3tyR\nFi1aU7p0WZYtW6hU8ty+fQ/z5vkQFHQFNTVVtLV1cHHpTJEixYiNfcGgQX3R1y/EkiWrkEgkzJ8/\ni7t3QxGLxQwaNIxq1ew5eHAf5879jUQiISoqkgYNHBkwYMgXXf+8oqurS0BAS7Zt24Oamgg3t46o\nqalx9uxpSpYsTZkyZfP1eB/OydTV1cuSvXxfbfJj+4rFYjIyFEFZRkYGUml6trbbt2/G2LgwEydO\nQyaT0ahR3VyN7/1gLyUlmebNf2PFCglyuS4gIiTEg5o11yGVZs3MvT/mx48fcfLkMVas8EMsFuPo\nWJujRw+RmpqKjY01u3aNQF9/N4UK7eD16y6EhR3C3b0LzZq1IDAwIFfjFBD42RGCOQEBAYECSM2a\ntbPMf8vkxo3rtG7dTrlcvnyFHC0aGjZsRMOGjZTLuckI2dlVx86uunJ548aNBdKYVi6Xs2LFEkJC\nrqOiIuLly1jevHmNhYUld++GkpychLq6OpaWlQgLC+XGjevKt/x5Pc6cOX9+NiuU03ZT0+K4u3ty\n8eKXB3OZZZqzZk2lTJlytG/vwo4dW/HyesqDB4qytqJFZYwc6YWamhhQqPhpa2szZsxw0tLSADmD\nB3spx5k51HHjJjN16lRksgxq1KitPIfWrdsRExNN797dkcvlGBoaMXPmXJ49iyEy8imBgfvR1y/E\n7NnTOXr0EAMHDsXOrjqbN29ER2caGzacZd261Tx9GqE0nXZza09iYiLTp89h7doVynLNnTu3IZPJ\n2LQpgNu3b/4ryjOZ8eNHUqpUaW7eDKFFizYMHtwXIyNjlixZhVisOM/AwABUVFTw999GRMRjhg0b\nxNatgYBibt/69VtQVVWja9eOuLq6YWJS5IvuQV7R0dGhd+9mWdb9/fdpHBzq53sw92Gwb2lZib17\nA4mKisTEpBJHjhzM8hLjxImjdO/ekxMnjiozesWKmXL3biiNGjXh3Lm/kb5zVFeSnJykvH6HDx9Q\nll5ra+uQnJyU49jeV8ocPXoYGRkZnDq1BS2tsqioSHjzxhOx+BlJSXGMGTMMNTU1hgwZjrW1bZZ+\nTp48yqVL/+DkVB8dHV1kMhkxMdGoqanRu7c7UVH72bkzA1XVqzRurM7jx9HKDGSzZs4sX744p+EJ\nCPxSCMGcgICAwE/CtzRJT09PZ8uW06SmyujUqTaGhgb5foz84ujRQ7x9G4ef3ybEYjGurm2QSNIw\nNFTF1NSMgwf3YW1ti7l5eYKDFZmr0qXL5KrvmJhovLwGUaWKNXfvhvL48SMOHDiOvn4h1q9fw9Gj\nhzAwMKRIkaJYWFRS+pOdOnWc+fNnkZiYwJgxk6hSxYo1a1aQlpbGjRvX6dHDk0aNmuTpPHMq0+ze\nfSS//95Yufz8uSfu7vqMHJk1gFi92j9bf+9bClhYWLJ3715lsJ6ZvRKJRPTrN5B+/QZm2Tc5OYnO\nnbuir6+wIBg9egKtWjmxYMEcAAoV0gfkSCSSbKbT+vqF0NTUomJFhThFpk1DTEw0IpGIsWOHK0V5\nAgK2EhZ2hxcvnvP2bRyRkRFYW9ty8OB+Dh8+oPTIu3kzBBeXzoDCA65YMVOePo1AJBJRvXpNtLV1\nAIW6Y0xMdJ6Duc+V7Do7t2Tt2lWkpaUpzcU/VBGtWbM2DRv+j/Pnz3L9+jX8/dcyffoczMzyx3Lh\nw2C/c+duVKlizcSJowE5FStWol27d2WeCQkJeHh0QV1dXVma26ZNe8aMGU7Pnl2pVasOWlrayvaZ\nAX779q6MHz+Kw4cPZmlTvnwFxGIxPXt2pUULhXJp5suCD5UyjY0L4+fnj5vbAF6+1AFeY239O4UK\nGTNrlkKVcsSIwWzaFJAlo3f69Elq1arL7Nm+BAYGsHz5Yjw9+7J1q+IF1qRJrahe/S8uXXrK1Kmd\naNkya7mygMB/ASGYExAQEPhJ+FYm6VKpFA+PAI4f9wDUCQjYyI4d/+Ps2WMEBV37oqzWtyQpKQlD\nQyPEYjHBwUE8exaj3GZrW5WtWzcxbtxkypUzZ9EiXypVqpyn/qOiIpk4cSqVK1vh6toGgNDQ25w5\ncxJ//22kp6fj6dk9S1llRkYGq1f7888/51m3bhV//rmM337rz927oQwdOvKLzjOnjF+FCsXR1b1H\nYqLCX05F5SVmZprZ2uU3IpFI+ZB94EAQhw69JjFRwqpVvhQvXixb+w9Np98n06ahWLHiFC9uppSY\nDw4OYs2aFVSsaMmQIcNZsmQBaWlpjBgxlrNnz/DyZSy9e/dg7dqNnxxrVgNr8ReJ+HyqZNfcvDz+\n/n78+ecyNDU12bRp/UdVRHV0dKlXrwEODvWzZMrzg5yC/erVa+DntxkTE71sWfVu3dzp339wlnWG\nhkZZTNIzt79vCVCiRMkshumZbVRVVbPNxczM7Ovr6ys9MQFcXdsgFosZMqQrx4+foVmzyyxd+gJd\nXRPGjlVkjpOTk5WKmZm8ePECiSSNN2/e/JtpW5Tl+w6K+cGZ5u/W1racOHGUpk2dOXr08EevnYDA\nr4SgZikgICDwH+fUqSCOH+8AqAMq3Ljhjp/fPz96WNnIDG6aNm1OWFgoHh5uHD58gNKl35Wv2dhU\n5fXrV1hZWWNoaISGhobScDu3FC1qSuXK7zyv5HI5N2+GUL++I2pqamhra+PgUD/LPg0bKuTnLSws\nlQ+bijlqHxeJ+BTvP0y/j7V1Rby8HlGy5G6KFduPu/sBunT59kIP1arV4NSp4+zde46hQw3YubMx\nr183wt19PunpinlW4eH3Prr/y5exREQ8Jjk5WWnTkJSUQEJCPKB4ofDo0QP09PRQUVEhJiaa27dv\nAYrgWl1dne7de2JgYMDz58+xta2qnOsXEfGE58+fUbp0mRyv95fcgw9Ldq2srJUluxoaGjx+/JD+\n/T3p1asrhw8f/KyK6Jd+Dj5F3kRhfvxk2MOHgwkMvM3bt2k0bVobkLNqlb9SZTcw8ABaWlpZzkss\nVqFPn9/x8hrI7797IpFIePXqVY4+dgB//DGCwMAAPDzcePky9qcQzhEQ+FqEzJyAgIDAL8DnysLq\n1HFg06b1yOVy6tSpp3y77uRUn6pV61Kq1J+8eDEVdfXHGBmt4syZdNTVv49yZ27JNBIuVMjgo8bb\n9vY1OXXqXSCaOY8qL2hp5ZTpEn3wQJ714TxT6VFFRfzFUuu5ITExETOzOC5fbk9s7AuWLPkTkajD\nNzteJmXLlsPd3ZMFC3woVMgQTc3KvHgxAZFoBO7unRGLValatRojRihsEz58hi5e3IyjRw+RkBDP\nqVPHadWqHZ6e/Vi+fBE9e3ZFJpPSsWNnZDIZoaG32bVrO1ZW1gAsW7aQ2NgX9O/fh1q1alOhQkVK\nly7DvHk+eHi4IRaLGT9+CqqqqlmMqTP5kgd6VdWPl+yampphb18rTyqi+R1UfCzY/xgBAXvz9fh5\nJTExlbFji6OiUgMNjet4ee2mRo3aBARso2vXHgCEh9+lQgWLLN8za2tb5PIM1q3bwu7dO1m2bBFV\nqlgpfwsAHB0bK33yTE2LZ/lt+O23/t/pDAUEfhxCMCcgICDwC/CpsrCSJUuxYsUS/Pw2oaurh5fX\nIM6ePU39+o6kpqbi7NyEFy9iiYoywtR0OAYGrqxf3xJv77GUK/dzmT9HRT1nzZqrZGRAr162lClj\n9tV9ikQibGxsmTNnJj169EIqlXLhwjnatv10EKWjo0NycvJXH/993pf3L1bMlOnTZ+dr/5/C2bkV\nISEifH07AopSxrQ0N5YsqYCxsbGy3ftz8wB8fZcwevSwbCWBQBYxH4B27Tpma5OTEqm6ujrjxk3O\ncYzOzq2Uy5klnF/Cx0p2q1Sxxtd3dq5VRBU2ITkLhfxXSEmRk5xcAV3dSECds2cNOXHCiz//nIuH\nRxdkMpnyZcD7Afkff4zA23sCmzf7U69ew08GxSdPhrBnzzM0NaX88Yc9ZmZFv9PZCQj8WIRgTkBA\nQOAX4FNKjg4ODahWzZ5ChRSiJk5Ozbl+/Rr16zuioqLC//7XhIYNM5g7dxl375qyeHEHdHV1adGi\nBaGhHy+dK2i8fv2Gbt0uc+dOF0DE8eMBBASoUbx43sQvsj4wKv5vaVmZevUa4OHhhpGRMebm5dHV\n/ZhdgWIfOzt7Nm1aT69eXb9IACUnVqxYTFRUJL16daVEiVI8efKIDRu2c/DgPs6ePU1qaiqRkU9x\nc+uGRJLG8eOHUVNTZ+7chejr6xMVFYmv7xzi4t6gp6eDl9cYpc1Fbhg6tDG3bq3j4kVLdHVfM2iQ\napZA7mPkJTPl53eaPXvSUFWV0aePCS1a2Odqv4sXb3Ht2lNq1CiDvX2lz+/wGWxt7di4cR1WVtZo\naGgqS3YNDAwYP34KU6aMIy1NUWL6KRXRxo2bMnv2DHbu3M60abPyTQDlZ8LC4g/u3DEgPr490J6K\nFbdjaGiEt7dPtrbvB+S5zbT9808oAweKefXKBZATHLyRv/5qhra2do7tBQR+JYRgTkBAQOAX4NNl\nYQr58Xe8859SV9dAJBIhFotxcLBGKn2pDFK+xTyfb8nevZe5c6czmcFUeLgLu3cHMHCgc677+LB8\n7f3ytC5deuDp2ZfU1FQGDeqLhYUiYHjf3qFQoUKsWOGHRCJBX1+f1as3fOVZZaV//yE8evSQdeu2\n8OxZDKNGDVVuy1wvkUjo3LktAwb8gZ/fZhYv9uXw4QN06tSFOXNmMHLkOEqUKEl09ENmz579SUPx\nD9HU1GTjRjfi4t6gpVVJKTzxKfJSEnjy5DWmTatAUpIlAOHhp6lcOZIyZT4dAPn7n2HatNLEx3fC\nwCCYqVPP4+b2dWXC1avX+GjJbrVq9jne25xURK2tbdm0acdXjeVnx8vLmnv3tnH7dk2KFLnPkCGG\nn93n9u1wbt9+SsOG1hQtavLJtseOPeHVK9d/l0TcuOHEtWuhODhU/+R+AgK/AoIAioCAgMAvQmZZ\nWNWq1bC1tWPPnl1UrGhBpUpVuH49mLdv45DJZBw/fjTH0rVKlay4fj2Y+Pi3SKVSDh/+udTgChfW\nQSR6/d6aBAwN1fOt/zlzZtCrV1d69+6Oo2MjKlSwyLI9Pj4eV9cd1KwZhYPD3wQEXMy3Y2fyfoD9\nYbBtZ2ePlpYWBgYG6Orq4eCgEEYpV648z55Fk5KSws2bN5g4cTS9enVl8uTJvHr1Ks9jEIlEGBoa\n5SqQyyvBwS+UgRzA8+d1uHQp7LP7bd2aSny8Yo5dXFw1tmxJzPex5YV//gmlY8cDODkdZ/Lkv366\nFyP5jYVFaQ4ebMSxYy84c6YinTrV+WT71atP07ZtBoMGNaNVqztcvhz6yfaGhgDvlDB1dSMwMyuc\nDyMXECj4CJk5AQEBgV+Ej5WFGRsX5vffBzFkyO/I5XLq1q1PvXqKB/33y98KFy6Mp2df+vXrha6u\nHjY2VnxDLY98p1UrBzp33smuXfbI5WJatbqAm1unfOt/8uTpn9zu43OGv//2BFRISIDZswNp2zYN\ndfX8Cyg/RVZJfhXlsoqKCjKZDLk8Az09Pdat2wKQo3z9j8bKygiT9TckAAAgAElEQVRNzQekppoD\nULhwENWrf8m8zR8XPKWmpjJy5BPu3XMD4MaN1xQrdoL+/b+8zDYxMZFjxw7Tvr3LR9s8exbDzZsh\nODk1/2RfMTHRjB49jA0btn/xeL4ELS0tbG2rfLadXC7Hz09CfLyivPbJk1asWLGdmjU/Xjrbv38T\nQkI2ceaMBRoaifTtm0qZMk75NnYBgYKMEMwJCAgI/CJ8qiysSZNmNGnSLNs+76vCAbRo0ZoWLVoD\nBfNh/1OIRCIWLnRhyJCHZGRIqVCh83eVJo+P1+D9gpe4uMIkJSWirm6Ub8fQ1tbOs6hKZlZIW1uH\n4sWLc+rUcf73vybI5XLu3w+nfPmCI3LTvHkNRo48xt69IaiqSunTx5Dy5W0+u1/Xrlrcv3+D+Hgb\nDAyu0q2b/ncYbc48exbDw4fvsrZyuRH37+fd6+593he++RjR0VEcO3bks8Hcz4BUKs6ynJ4u/khL\nBaqqqqxe3Zk3b16jqaklzJUT+E8hBHMCAgIC/2Ey3/gXK1aF06efYGqqjofH/34qf6ZDh/azbdtm\nRCIR5ubladTICX//tUil6ejrF2Ly5OkYGhpx7dpVFi2aDygCv6VL16ClpcWWLRs4deo4aWnpNGjg\nSO/e/b5oHI6Oeuzff4+UlIpABtWq3cPAoGo+nqnClsHa2hZ3986ULl1WeZ+yS/Jn9eHK3DZp0nTm\nzZuFv78fkIGjY5MCFcwBDB7sxODBn2/3Pu7uDbC0vM3VqzuoWbMs1avX/TaDywXFiplSvvxpwsIU\nQaiKykssLD4djHyO94VvatSohVwOly5dQCQS4e7em8aNnVixYgkREY/p1asrrq4uVKtWh2nTJimN\nuL28RmFl9fnA+EcjEolo2TKFVaueIZUWw8AgCBeXQrnaz8jo82I8AgK/GiJ5ASnk/pne/grkjZ/t\n7b5A3hDu789NTEw0Awf+TmjoLF69qoVI9IZu3fbg6+uS473N/JNRUIK9hw8fMH78SFauXIe+fiHi\n4+MRiUTo6ekBsG/fHp48ecygQUMZPXoYPXr0wsrKhtTUVNTU1Lh69QqnT59g1KjxZGRkMGbMcLp1\nc8+z0XgmAQH/cOZMAoUKSRgzxlE5joKI8N39dly5cpc5c+6TmKhO3bqpTJjQ6qu+M5liNxs2bOf0\n6RPs3RuIr+8S4uLe0KePO6tWrSci4glbt25izpwFmJjoERkZi0ikgrq6Ok+fRuDtPYE1azb8sDLL\nvCCXy9m58zyPHiVSv34p6tSp/KOHVKAQvru/LiYmef+bIWTmBAQEBP7DrFixmNjYWHR0fBCJ6iKT\nGXPhwjbc3XfSokVz3Nx6EhMTjZfXIKpUseb27ZukpaWRmJiISARSqRQHh/oYGRVm//49SKVSrK1t\nmTv3TzQ0NJkxYwoaGpqEh9/lzZvXjBkzkYMH9xEWdofKla2UXmGXL1/Ez28VaWlpmJmVYNy4yWhp\naX12/MHBV2jUyAl9fcWbe319fR48uM+kSWN4/foV6enpFC+u8JqztrZl0SJfmjZtTsOGjTAxKcLl\nyxe5cuUSvXp1BSAlRSHt/6XBnKtrHVxdP9/ueyOVSvH1PcajR2IqVJAzdKgwn+hbUqOGBQEBFp9v\nmEvef+9+48Z1nJyaK4VoqlatRmjoHXR0dLLsk54uZcGC2dy/H46KigpPn0bk23i+NSKRCFfXej96\nGAICPwWCmqWAgIDAf5j+/YegoWFIRMQekpProqb2hPT0AaxZs4Hbt28TEnINgKioSDp0cMXXdwmx\nsS9ITU1h2bK11KlTjzt3bvP27RuOHTvLtGmziI2NZf9+haS/SCQiMTGBlSvXMWSIF2PGDKdrV3c2\nbtzBgwf3CQ+/R1xcHBs2+LFw4TL8/DZhYWHJ9u2bczV+kUiUTSlwwYI5uLi44e+/jZEjxyGRSADo\n3r0nY8ZMRCKR0L9/byIiHivXr1u3hXXrtrBtWyAtW7bJp6tbcBg7dh/z5rVi166OzJrlxJQp+3/0\nkAS+kJw+8zll/bZv34yxcWH8/bexZs1G0tPTv9cQBQQEviNCMCcgICDwH0Yul2NsrEGFCjvR1j6J\nru5JTE0X0a9fTx49ekRk5FMAihY1pXJlKwCKFCmGqakZ5cqZY2lZCV1dXUxNzRgwoA/Lli0iJiaa\nR48eKY/h4FAfgLJlzTEyMqZcOXNEIhFly5bj2bNobt++yePHD/n9d0969erK4cMHef78Wa7GX61a\nDU6dOk58/FsA4uPfkpycROHCCl+qQ4feBS1RUZGUK2dOt24eWFpWJiLiCbVq1ebAgb+U84piY1/w\n5s2br7yqBY/gYD0gUxSiEEFBn896ChQc3he+sbGpyokTx8jIyODNmzeEhFyjcuUqaGlpk5ycpNwn\nOTlJOYfs8OEDZGR8nQiLgIBAwUQosxQQEBD4j6Ohoc6BA7WYOvU4Fhbt6NdPIQCSOS8jJiYaLa13\nnmJqaqqoqWXK3iuEHfbu3c3ChcvQ1tZmwIA+pKVJ3mv/TiL/Q/l8mUyGiooYe/taTJky47NjXbt2\nJdraOnTp0h2AsmXL4e7uyaBBfVFREVOxogWenn2ZOHE0enr6VK9uz7NnMQAEBGwlODgIkUiFcuXM\nqV3bAVVVVR4/fszvv/cCFA/NEydOw9Dw86bGPxMGBikfLKd+t2P/DHO0voSzZ09TsmRpypQp+82P\n9b7wTe3adSlfvjw9e3ZBJBIxYMAfGBoaoaenj1gspmfPrnTq5EL79q6MHz+Kw4cPUqtWHbS03ik8\nFpQ5rwICAl+PEMwJCAgI/IfJfONvYGCAm1tH1qxZQUqKO1paWjx//py3byWf7wRIS5NgZGRMYmIC\niYm5n5gvEomoUsUaX9/ZREVFYmZWgpSUFF6+jKVEiZLKNu+3/xBn51Y4O7fKsq5evYYAyGQyxGJF\nwDl06Mhs+6anp9OmTXtcXd0+O9bZs6fj5tad0qXLsGGDH+7unkDuPMB+NOPHWzJy5GYiIkpStuwT\nxo8v+KqGBZ2//z6Ng0P97xLMQXafwwED/siyrKqqysKFy4F3L2L8/bcqt/fvr5AINTUtjr//tm88\nWgEBge+FEMwJCAgI/If58I2/k1NzZZZKX1+PsWOnZJO9zy6DD02aNKVv355oa2tnM8n+VDB27tzf\nrF27EhUVFYYM6YeGhhYxMVFYW9vy5s1r5s5dxJEjBzh8+ACGhkYUKVIUCwuFeXBUVCS+vnOIi3uD\npqYmo0ePp1SpMsyYMQV1dXXCw+9hY1OVQYOG5njuvr5H2bBBjFSqRsuWL5k1q/1HMxYZGRmMHj1B\nubxx43plMJcbD7AfTbVqFTh2zJz4+LcUKlT1izIz69ev4ejRQxgYGCrvg719DebO9UEikWBmVoKx\nYyehp6dHWFgoPj5TEYlE1KxZ6xuc0ddz5MhBdu7cjlSaTuXKVgwfPgZf39mEhYUikaTi6NhYaVOx\nfPlizp8/i1gspmbN2jRs+D/Onz/L9evX8Pdfy/TpczAzK/GDzyhnNm8+x7p1ichkYtq1gz/+EMRv\nBAR+JQRrAoFvjiCh+2sj3N9fl299bxUP/N7Mn78YVVU1Bg/uy6RJ0+jduwcrVvhRubKVss2qVf7I\nZFI8PbvTrl1H3Ny688cf/Rk5chwlSpTk9u1brFq1lIULlzNjxhTi498ya5bvR4OWoKDb9Ox5grS0\nUsTF9aBIkYlYWQWzbds2rl69wv79ezl37m/atu1AUNBlvLxGsWrVMgYNGsapU8fZtm0T5cqZU7as\nOTKZjHPnzlCqVGlq1KjNgAFDcvSui4mJZsSIIdjY2HHrVggmJkXw8ZmPhobGN7vGnyIv9zc09DZz\n5sxg1Sp/0tPT8fTsTtu2HTh8+ABeXqOwtbVj7dqVJCUlMmTIcDw83PDyGoOtbVWWLVvIxYsXClSZ\n5ePHj1i+fBEzZ85DLBYzb94srKysqVu3Pvr6+shkMoYOHcDQoSMpXLgw/fv3ZsuWXQAkJSWio6PL\nzJneODjUp2HDRj/4bLKTeW9DQx/Qtm0qcXG1AdDUfMTKlQ9xdq75g0co8DUIf3d/XQRrAgEBAQGB\n78alS6EsXPiIlBRVmjRRYeDAJnna//r1YOLji+Dg8AhNzQTq1ClLSMi1LGIrN25co0GD//0b8Gjg\n4NAAgJSUFG7evMHEiaOV/aWnSwFF9u9//2vyyezTvXvRxMc3w9BwI3FxPVBXf0BSUipSqZQbN65T\ntWo1jh8/QpUqVsrMXmZGsn//wQQGBrBu3RZA4QH26NED5fLlyxeJjHzK6tUblN51ISHXKFKkKJGR\nT/H29mH06PFMmjSWM2dO0rSpc56u24/g5s0Q6td3RE1NDTU1NRwc6pOamkJiYoLSxqF585ZMnDiG\nxMREEhMTsbVVGKY3a9aSixcv/MjhZ+Pq1cvcvRtGnz49AEhLS8PY2JiTJ4/y1197kMlkvHr1kseP\nH1GmTFnU1TXw8ZlK3br1lYI+QDZVyYLG1asPiIt7p86amlqWO3eCcC74HzkBAYFcIgRzAgICAgJ5\nJiEhnj/+iObhw84ABAU9plixC3TsWDfXfVy4cI+wMCvevGkMwD//nKN69bgsYivwYUCmeHiWyzPQ\n09NTBlAfoqmpmeP6TBo3tsPM7Boy2W1EokTU1FKoWtWasLBQQkKuMXToSFRUVHB0bPzZ8/jwgf5j\n3nVFihTF1NSM8uUrAGBhYUlMTPRn+y8YZJfDzy0FNeBxdm5Fv34DlcvR0VF4eQ1izZqN6OoqMm9p\naRLEYjGrV/sTFHSZ06dPEBi4Qzk3raALidSrV5lixc7x7Nn/ANDXv0WNGmY/eFQCAgL5iWBNICAg\nICCQZ0JDH/LwYXXlskRShpCQvJX9qKmVQVf3DCJRKiJRMurqtzA0NM3SpmpVO/7++zQSiYTk5CTO\nnz8HgLa2DsWLF+fUqeOAImC4fz8818cuWrQwK1eWxchIjQYNJuPkZE7jxo4EB18hKipKmY350of1\nj3nXva/mee/eXRISfo5SKRsbW86fP0taWhrJyclcuHAWTU0t9PT0CQm5Dijk7+3sqqOrq4uurh43\nbijWHz166EcOPUeqV6/JqVMnlDYU8fFvef78GZqaWujo6PD69StlNjElRZGBrFPHgcGDvbh//x6g\nEA9KSkr66DEKAmXKlGDePBUcHQOoV28X3t4RNGhg/aOHJSAgkI8ImTkBAQEBgTxTvnxJihe/RXS0\nQnFSRSWWsmXVP7NXVtq1q8mJE28oVcoVAG3tilSvbs2+fe8CqIoVLWnc2ImePbtgaGhE5cpVlNsm\nTZrOvHmz8Pf3QyqV0qRJU2XWKzdBmI1NeTp1asKBA3/Rvv1kypUzZ9EiXypVqvzZfVVVVZFKpaiq\nqmbxAAOoVas2q1evoGlTZ7S0tIiNfYGqqlq2PkJD76Cjo/PZYxUELC0rU69eAzw83DAyMsbcvDx6\nerqMHz+FefN8SE1NxcysBOPGTQZg3LjJ/wqgQI0atQtcBqtMmbL89lt/vLwGkpEhR01NjWHDRlGx\nogVdu3akSJFi2NjYAgq/tjFjhpOWlgbIGTzYC4DGjZsye/YMdu7czrRps76bAEr//p4sX+730e0u\nLq3Zu3cPoFBxbdq0Gk2bftmxnJzqc+zY2S/b+V/27NmFpqYmzZu35ODBfdSsWYfChQt/VZ8CAgLv\nEARQBL45wkTdXxvh/v66fO7eHjx4lUWLnpOSoo6jYzJTprTO80P74cNX2b//FWpqaQwbVp1SpUw/\nv1M+cvXqFUaMGMLhw6fQ0NCkS5cOtG/vQqdOXWnatCFHj55Rth08uB+DBg3DwsLyX3XDv7GwsGTi\nxGl4e0/gwYNw7O1r8fTpE8LD7xEf/xZDQyN0dfVQV1dHIkklJiaGbdsCuXHjOt7eE9HR0aZo0WIs\nX+733YVQ8vrdTUlJQUtLi9TUVAYN6svo0eOpUMEiWzu5XK4UCSloQdx/AVfXNuzZs5v0dPFX9+Xk\n1IBjx/7Oh1EpGDy4HwMHDsXSslK+9flfRPi7++vyJQIoQjAn8M0RfnR+bYT7++vys93bK1duEhn5\nmiZNqqGnp/iDGBYWyuHDBxg6dMRH9wsPv8fLl7HUqePw1WM4ffoEly5dZPTo8YBC+XDEiCHMmuVL\noUIGnDhxlMuXLzJ27KQsweGPIK/319t7Ao8fPyQtLQ1n51Z0794zW5t79yIYOjSIBw/MKFXqGXPm\nVMbOrkI+jvrH8ezZS0aO/JsnT/QpUyaeuXMbUrSo8XcfR2a27OXLl0yePJbk5CRkMhkjRozFxqZq\nlmBu7NgRvHjxnLQ0Ca6uXWjTpr2yD1fXLly4cA4NDQ1mzZqPoaER0dFReHtPIDU1BQeHBgQEbMtz\nMHfo0H62bduMSCTC3Lw8ZmYl0NLSxtTUlBkzvDExMUFDQ4O+fQfw11978PGZB8CVKxfZvXsXM2fO\nzfdr9qvxs/02C+QeQc1SQEBAQOA/yZQp+1mzphppabZYWe1h48ZamJkVxdKy0mezAOHhd7l7NzRf\ngjlz8wosXbqQ5csXU7duffT0dHn48AEDB/YlKiqJtDQRGhradO4cBRRccZCc+NC0OiemT79OUJAH\nAG/ewPTpW9i169cI5saMOcuRI+6AiLAwOaqqG/Hza//Njjdy5B9MmTIDHR3dD7Yosp3Hjh2mVq06\nuLt7kpGRQWpqarY+xo6dhL6+PhJJKr/95oGjY2P09fVJTU3FysqGvn0HsGzZIv76azceHr1ZuHAe\nHTq40qxZCwIDA/I85ocPH7Bhgx8rV65DX78Q8fHx7Ny5DZEIHB0bs2vXjiwvMJYs+ZO3b+MoVMiA\nAwf20apV2zwfU0Dgv44ggCIgICAgUGBJSUlh5Mg/6NmzK+7unTlx4hhBQZfx9OyGh4cbPj5TiYmJ\nYdMmM0QiCSVL9iY+fgd9+vQlOTmZ4OAgRo0apuxr5kxvfvvNA0/Pbpw7dwapVMqaNSs4ceIYnp7d\nOHHiGG5uHYiLiwMUZuFubu15+zYuV+MtWbIUfn6bMTcvz+rVyzh9+iRly5qjodGV27fPEB5+hlu3\nDjFhQhBQ8NUQ88rr11pZll+90vpIy5+PqCg93qmriv5d/nbMnbswWyAnl8uVLwAqV67CwYP78PNb\nxYMH99HW1s7WR0DAVnr27Eq/fp68ePGcyMgIANTU1Khbtx4AFhaVePYsBoBbt27QpEkzAJo1y7t/\nQXDwFRo1ckJfvxAA+vr6PHnymNevXyvb7Nmzk6Cgy/8eowVHjhwkISGB27dvUbt27tVwsx733fdc\nQOC/hpCZExAQEMhHZDIZYvHXz1URUHDp0gUKFy7C3LkLAUhMTMTdvTOLFq2gRImSTJ8+mQMH9pKW\nVh9TUy9iYv5EIrHC0XFztjloGzb4YW9fk3HjJpOQkEDfvh7Y29fit9/6c/duKEOHjgQgIuIxR48e\nolOnLgQFXaZ8+YoUKmSQq/G+fPkSPT09mjZ1RkdHlz17dhIXF8fr169QBALpqKs/ISZGl5IltUlK\nSszPy/XDqV49lcuX4wF9IBU7u/gfPaR8o2zZeEJCMlC8B8+gbNm3+dZ3TuWQLi6t8fPbRFJSEl5e\ng6hSxZq7d0OVwZytrR1Ll67mwoVzzJw5hc6du9G8eUtln8HBQVy9eoWVK9ehoaHB4MH9/hVxAbH4\n3eOfiooImUyWZTw7dmxRBnWfYseOLbRt2wENDYUViEiU3cLiyZPHqKm9EwBq185FmZlr0aINo0cP\nQ11dnUaNmqCiIuQYBATyihDMCQgICOSB9evXcPToIQwMDClSpCgWFpW4cOEsFSpU5MaNkH8VFSuy\nbNlCZDIZlpaVGTFiLGpqasqHM339QoSF3WHp0oUsXryStWtXEh0dSVRUFHFxcXTr5k7r1u1+9KkW\nCD4sW9TW1qZ4cTNKlFCoaDo7tyIwcAcNG6Zz544xEokVJUocoWtXy2xB9eXLFzl//m+2bt0IQHp6\nOs+fP8uS7QBo2bINY8YMp1OnLhw4sJeWLVvnerwPH95n6dKFqKiIUFVVY8SIsaioqDBkyBhKlTqJ\nSJTBmzfuVKiQQosWrZk3zwdNTc0fIoDyLZg0qQV6eke4e1eF0qXTGT0699euoDN/vhNqapuIiNCl\ndOkEfHy+UCIyB7KXQzbKkrWNiopk4sSpVK5shZNTAwCePXuGiYkJrVu3Iy1NQnj43SzBXHJyEnp6\nemhoaPDkyWNu37712XFYW9ty4sRRAgK2IZVKc2wTExPNiBFDsLGx49ChfZw7dwYrK1siIp4QEfGY\np08jePAgnKlTfThx4hgPHoTz4sUzunbtSGpqCitXLqFNm/Y4Ojbm8eOHREZGsGDBXOrXb0h6erry\nt9LZuRXnz59FJpMybdosSpUqw507t1i0yJe0NAkaGhqMHTuZUqVKf+XVFxD4uRGCOQEBAYFcEhp6\nmzNnTuLvv4309HQ8PbtjYaGYj6Uo19uARCKhS5cOWTJHu3fvpFOnLp8sqXv48AErV64nJSWZXr26\nUadOvWzy3R+TCf+Vpb8zyxb/+eccq1cvo3r1Glm2ZwZhkyY1Y/To07i5BdCypQWVK5fNsb8ZM+ZS\nsmSpLOvu3Mn6kFukSFGMjIy4evUKoaF3mDJlZq7HW7NmbWrWrJ1t/e7dW5g06QiPHmlRr14y06Y1\nRVdXl4YNG+XYz6BBfRk0aNhPp/onFosZMaL5jx7GN0FPT4+lS7/NHLmAgK2cPatQTn3x4gVPnz7N\nsr1oUVMqV7YC3pXmXrsWxNatG/+1x9BhwgTvLPvUqlWXPXt20b27KyVLlsbK6p2/3Pu/Renp6Vy5\ncomePbsikaSyYsUSXrx4ztatG5FIFPPw5s3zISwsFIkklerVaxIZ+RQHh4aIRCLu3r3Lw4cPcXHp\nRJs27Zk/fzb//HMBZ+dG1KpVBzU1NRwcGjB+/BTOnDnJzJnePH0agb19TWbO9MbTsx+nTh1HU1Mr\ny2+lgYEhfn6b2L17J1u3bmL06AmUKVOWpUtXIxaLuXLlEqtWLWX69Dn5f0MEBH4ihGBOQEBAIJfc\nvBlC/fqOqKmp/fuAUl+5rXFjxVv6iIgnOWaOOnXq8tF+RSIR9eo1RF1dHXV1dapVsyc09Bb16zt+\n2DLH/du166j8/6FD+ylXrvwPCeYSExM5duww7du7EBwcxLZtm5kzZ8FX9flh2WJgYADPnsUQFRWJ\nmVkJjhw5iJ1ddcqWLYeqqpTWrUthaVmW5OQkZelXJjVr1mbnzm0MGzYKgHv3wqhY0TKbTxxA69bt\nmDp1Is7OrfJlXpumpiY+Pq1YtuwEkZFaHDlyg44dPz4/SCQS/XLz6QRyJudySEmWNlpa7z7LmXYZ\nzs6tcHZula2/gIC/MDDQIz09gXnzFuV4zPctN9TV1ald2yGLAmv37p3Q0NCgRo3adO/uSokSJVmy\nZBXdu7ty8+Z1Chc2oVGjxuzcuZVOnboQEnKNq1eD8PNbjYqKGD09PczMSlC8uBnq6ho4ONQnODiI\nAwf20bBhI6pXr8H06ZOJj3/Lhg1rady4KQ0bNmLYsEHK38rMFx0VK1py5sxJABISEpg2bTJRUU8R\niUQfzR5msnbtSrS1dejSpfsn2wkI/MwIwZyAgIBArsk+HyQTTc2chR7kcrnyoVwsFpORodhfIknL\n1nbLlg2oqyuMt/fv/4udO7ezcOFyrl69wv79ewFYtWpZNjnxzAcWU1NTwsJCmTp1grJ079GjhyxZ\nsoCUlBQKFTJg/PjJGBt/m0AvISGe3bsDaN/eJd/6/LBs0ctrFMnJyUycOBqZTEalSlVo184FVVVV\npk71YcGCuUgkEjQ1NVmwYOm/QZGir549+7Bo0Xw8PNzIyMigeHEzZs9egJ2dPZs2radXr650796L\nxo2dcHBowMyZ3rRokX9lgsOH72bLFldAl61bH/D27WmcnSsyfPhgLC0rc+9eGGXKlGPixKwZlnnz\nZhEWdgeJJBVHx8b07t0PUGSKFy2aT0pKKmpqaixatAJ1dXVWrFjC9etXSUtLp0MHV9q27ZBv5yCQ\n/7xfDvn48aNclUPmJ+bmFfD1nUvnzl4UKWLOpElugKK0c8IEb6ysbPj9d0/c3NoTF/eGxMTELGIr\nYrEKGRkZ3LwZgra2NkWKFOXx40c8fvwQU1OFb+SHLyZOnTpOZGQ86ekZFC9uSq9efXnwIJz3m6mr\nqyn7z5zTt2bNCuzta+DjM49nz2IYPLjfJ89NeCEi8F9ACOYEBAQEcomNjS1z5sykR49eSKVSLlw4\nS5s2igflzCCvVKnSxMREZ8kcVa1aDYBixUwJC7tD7dp1OXPmhLJfuVzOuXNnGDp0JFu3biQ8/B7G\nxsaA4s3zjRvXqVq1GsePH8lRTjwzYPlQ+lsqlfLnn3OZPfudx9mqVcsYO3bSN7k+K1YsJioqkl69\nuqKqqoqmphYTJozm0aMHWFhUYtKkaYDC+y2nADM8/C5z5/ogkUgwMyvB2LGTqFmzNhs2+FGxogU3\nboRw8eIFDh7cz9atu1BVVSUpKZEuXTqybVsglpaVWblyXZYx2dlVx86uOgAaGhqMHDku27j19fVZ\nvXoDoBCwCQq6QUzMU8qXr5iv83HOnzcEFOqEqanmHD9+HWdnePo0gnHjJmNlZcP/2TvzgBjzP46/\npmu6iwodEklFypH7vuW2ZLGI3NbNSm65rXWvYyMikZy5WbfcVO4rQqdC0TXVzPz+mF+jUVjk2n1e\n/3iO7/U8M43n83w+n/dnzhwfduzYptJvwIAhGBoaIpVKGTlyCJGRD7C2LsXUqRPw8ZmLg4Mj6enp\naGlpsXfvbvT19fH13UBWVhZDhvSjevWamJtbFNp1CBQu7w6HfGOIfEmjJClJQlTURNLScjAy2kqX\nLjMwMpJjamqGk5MzsbExxMfHYWdXjqioR5QpU5Z79+6ojCESiVBTU6NKlWr4+MyhU6fW2NiUYdCg\nYVy6dJG0tDQMDAyV7S9cuMb9+2uxtBzG1auehIU95ty5/TYq9kAAACAASURBVEoBFLlcztq1qwkL\nu4JEkoWmpuJxNS0tjVu3bhASspOXL18oX4qdPXuaa9fC6N27O1ZWVkye7JPPMy8g8G9FMOYEBAQE\n/iEODuWpW7c+Hh5dKVrUBFvbsujr66uExInFYiZMmJrPcwTQp88A5s71Yc0afSpXrqrsoyiua8eK\nFUu5c+c2w4eP4vTpk5QpY8udO7eJiAhj5Mjf8smJX758ocB15hqWT55E8ehRJCNHDgEUMvsmJmZf\n7P4MHjycR48esm5dIGFhV/D2HkNAQDAmJqYMHtyXa9fCKV/e6Z0G5syZUxk92gsXl8qsXbuadev+\nYvjwMcpwqjVrFAZXXFws586doV69hvz992EaNmxcKAqi2dnZ9OkTzKVLLzE23ouTU3MVz+rnoqcn\neWtf8SBarFhxnJycAYVUe3DwFpV2x44dJiRkF1KplOfPk4iKegiAiYmpMqcu11Ny6dJ5IiMfcOKE\n4mVBWloa0dFPBWPuO0ZTU7PAcMh16wLIzs7G3NwCf/8tBfQsHLZvDych4RfkcjEymQEyWQBGRmqA\n4nckLS0NLS2xUpHy2rVwdHS0kUiyUFNTVypkurhUJjT0FP369URf3wCZTEZcXCz6+voEBm4kJyeb\nYsWKk5WlS0aGBnK5AfHxszEzm8/s2c9p2rQmGhqKOTIzJTx8GIm//xYuXbrA+PGjef48CWfnSvz1\n159YW5eibduOHDy4//9zV+Hp0yfMm7cIX9+V7N27m06dfv5i90xA4HtCMOYEBAQEPoJu3Xri6TmA\nzMxMhg4dgIODYz7lyapVq+HntylfXxeXSmzevKPAcW1t7Zg0aTojRgxBLpdTsaILtrZluXr1EjEx\nMdjYlP6gnHguucaHXA6lS9uyapXfp17uR5E3BFUul+PoWAFTU4XxWLZsOeLj49DX1y/QwExLSyU1\nNRUXl8oAtGzZmsmTxyvHy81JBEU+W2DgBurVa8iBA3vx8ppUKOtft+4Yhw97ANq8fDmex49jOHbs\nIk2a1CgUQZJRo0yZOnUfsbFlqVAhjDFjVAUtgHzGY2xsDFu2bGLNmo3o6+sze/Z0srKyeJ99OXr0\nOKpVyy/CIvDjMGfOfjZsMCYnR0yLFn+zdGnnLybbL5XGY23dGblcHblck+TkrtSpc5Xdu7fRt29P\n1q7diJqaGteuhSOVyrCxKU27dh05efIopqamnDhxjOzsbPT19Zk/f7HSQ6+oxReDtrY2GzYEKfNo\nvbwmsXfvVIyNN5GYOIEnT3ZSp44f48e7c/ToEQCaN29B2bLlEIlEVK9ek0aNmnL79i2SkhIZOfI3\nqlRxxdDQkP79BwOgr6/P69ev8fDoSnp6BjVq1Poi90pA4HtEKOghICAg8BHMnz+LPn2607dvDxo2\nbIydnf1njbd790X8/e+zbNl9Jk3a/X+DL4BKlarg4lKZXbu2U65cufeOoZDWV2zr6r6pXWZtXYrk\n5JfcuHEdUChuPnr08LPW+zFoamopt/PmvZQubcu6dYGsWxeIv/8WFi5cxjtSEZXkzUmsWNGFuLg4\nrl69jFQqpXTpMoWy3rQ0OfAmNEsmK8rLlwphlM/xzuWKNLRvX52TJ505efI1+/c3xsHBBoCEhHjl\nZ3TkyEGcnV0AxeealpaGtrYOenp6vHjxnPPnzwJgbW3D8+dJ3LlzC1DkXUmlUqpXr8WOHduUcz55\n8pjMzMxPXvv3wODBnu8937lzW169Kpyab82a1ftwoy/MpUs3WLnShefPW5CS0pCtWzsTEHDii803\nffpAHBzakpAwlVevfqV/fyk9evSiVCkbbGxs6NHDnbJl7di+fR9z5y4kOfkl27dvRV1dg2LFihMY\nuB03tzbY2tqxbp0vGRmZjB07nk2bgnF1rabytyMSgY6ODt27N0BLK5JSpdywt69P/fqqnvWC6tUB\nZGVlsWrVJWrVklCr1k3WrFEIucyePZ0xY8bj778FT8/++QRkBAT+zQieOQEBAYGPYOrUmYU21vPn\nz5k0KYeEhFUAREY+Z9iw9bx48Rwnp4qIxdqIxWKlt0r1oUh1O3f37dplM2bMY8mSBaSmpiKV5vDz\nz90Lzfh5m4JUId/G2tpGaWA6OVUkJyeHp0+fULp0GQwMDImICMfFpRIHD+5T5roVRMuWrfDxmUzv\n3v1UjuetgXXjRgRmZsWYM+cPxowZpvSsJScn079/L4KDQ9i/fw+nT58gMzOTqKgo7OwukJTkiIHB\nXnR1k6lb9y/l2IcO7WfevBlIpVK8vafg6FiBjIwMFi2az6NHD5FKc/D0HEDdug3Yv38PJ08eIzMz\nE5lMxrJlqwEwMjLOV4Dc2roUO3duZe5cH2xsytCxY2dCQ08jEomwsytHuXL2dO/eiWLFSigNvYIE\nXxYvXkHbth2Ii4ulb98eyOVyihQpyuzZv3/U5/i9sXLl+z3LhZtP9u0FM6KinpGZWSnPESOePcsv\nmFRYaGlpsWFDV2JiotHRscHEpCpxcbGoq6szefIMlbbvii6oWbMZCxfeJDOzDi1bimnTpgGASoho\nlSquVKniCsDo0a3p0KECT548o1q1Cujp6amM5+xcmd27d+Dm1oaUlBQiIsIYOnQkQUFXSUhIJCvL\nkcTEyixevIMuXVLIyEinaFETcnJyOHRoP8WKFQd4p2CVgMC/CcGYExAQEPhGREY+JSGhvHJfLjch\nM9Oa48fPKY/lfXDKKyfesGETGjZsAoCn5wDl8QYNGqvULrOzK8fy5W8Mki+JkZExFSu60KvXz4jF\nYooWNcnXRkND450G5sSJ01iwYA6ZmZlYWloxYcLUd87VrFlLfH1X0qxZi3znoqOfMn36HLy8JjJl\nijcnTx57r9R/bp6fRCLB3b0dDRqIKF36ZzQ0rnHq1HG6dOmGXC5HIslk3bpAIiLCmDPHhw0bgtiw\nwQ9X1+pMmDCV169fM2CAB66uNQC4f/8e/v5bMDAweO99K+ihOdf4A955H94WfJHL5aSkJNO370AG\nDvz1vXP+SOTWV0xKSmLqVG+lF3LsWG+cnSuptPX2HsuzZwlkZUlwd+9Gu3YdlWO4u3dTUYJNSEhg\n+/Ygnjx5zMuXL5QvTYB8c40Z442Li+pcoPAK+vkFYGhoVGjX27RpFRwc9nLnjjsA5ubHaNnSrtDG\nLwiRSKQsp5L32D8hPT2dwYNvcfu2oqTAqVP3MTa+QIcONfK1vXs3ipUrbyKTqdOtmzUNG1YvcM4G\nDRpx8+Y1evdW1JwbMmQERYoURUvLkdTU4lhbd0Iu10QisefVKwf69RvEgAG9MTY2pkIFJ+VLpbwv\nugQE/q0IxpyAgIDAN6J8eVvKlj3PgweKhyht7UhcXY0/0OufExQUyvnzqRQvLmX06KbKsgdfknd5\nLnNru8G7DUw7u3L51ChB1bDJ5dq1cBo1aoqenn6+c+bmlpQtq3j4tbd3IC4u9r1rrlzZFR0dHXR0\ndDA0NGT27CGYmpqyb5+UyMj7gOKhsGlTheHo4lKZtLQ0UlNTuXjxPKGhp9i8eSOgEFFJSIhHJBLh\n6lr9g4Zc7tify/PnL+jf/2+uX7fFxOQZkycXo3Xrd3s2fywU9+fIkYPUqFGLXr08kclkBYaPentP\nwdDQEIkkk/79PWjYsAmGhoZkZmYWqAT76lUKP/3kTnT0UyIjHyjHyTuXXC4nIyOj4JV9AUuhSBFj\n1q934s8/t5CTozB6nJxsC32e9/ExoiuRkVHcvv3GKMvMtOPixXA6qKYSk5T0Ak/Pu9y/ryh9cPLk\ncTZtilS5trwvrIYMGcGQISNUxmjRwow9e0rz+PEAQEq9en5YWFjSoUNnOnTonC/nNO+LLgGBfyuC\nMScgICDwkUil0kJRT9TXN2D58lIsXryZzEwtmjfXpEOHRoWwQli37iRTppRHIikDSHjwIIA1a7oU\nytjfkjNnIli79i9evoxi+fJVBbbJrU8FoKamjlQq+X+NP0XO3tv5NKrt1ZT7ampq7xSZAZRv/GfN\n+p2SJa1Vzt26dQMdnYJrD+alsJQKZ806w5kznoCIlBSYM2czrVoVnhLn90D58hWYM8eHnJwc6tVr\niJ2dai5pXFws/ft7KEV3oqOfsnLlUqKjFQWm163zZdmyhTRr5kZ8vCLn8sKFcwwfPoYVK5YAIjIz\nM7h2LZySJa2ZPn0iO3YEY2BgwLhxE6lY0YWUlGSmTZtIUlIiTk7OXyyMr0wZK/74w+qLjF3YWFmV\noHjx2yQk5IZvv8LSMr8kw5EjV7l/v51yPy6uEYcPB3+Uodq8eRWWL7/KoUPbMDDIZuzYNqipqXH7\ndhReXuFERxtgZ5fC4sX1MDf/csq9AgLfE4IxJyAgIPAW69ev4fDhAxgbF6FYseLY2zty9uxp7OzK\nce1aBE2bNqds2XKsWLEEqVSKg0N5xo71RlNTUyXs6s6dW/z55xKWLVvN2rWriY2NJiYmhuTkZH75\npRdt23bA2rooBga7UVdP49QpKdWqFSkwnOtjOXlS8n9DDkDMpUtm5OTkoKHx4/7sr1t3kpkzy/D6\n9QaMjcM5deox3buX/HBHFEbT3bu3cXSsoJTt/xBvq3MeO3aEKlVciYgIR1/fAD09fapXr8m2bVuU\nnsd79+5QrpwDERFh3L59E4BTp05gbV0KG5vSH3nF/5yUFG3y5nu9fGlEVlYWYrH4i835tXFxqcyf\nf/py9uwZZs+exs8//0LLlq2V52/evE5mZgarV69DLBbz888dlMa4mpoavr7+nDsXysqVy1RUSUuU\nMKd9+05oaKizcaM/zs6VmDZtIlOmzCQ5+SVBQYFMnuzFrl0HWbfOFxeXyvTu3Y9z586wd+/ur34f\nvjeKFCmKj48GixcHkZ4upn79ZAYP7pivXenSxdDWfkRmpkI0SiR6QYkSH//9bN68Cs2bqx6bNCmC\n8+d7AhAdLWfKlE34+rb/+IsREPgB+XH/VxcQEBD4Aty+fZOTJ4/h77+F7OxsPD17YG+vePDLrXUm\nkUjo1u0nli5dhZVVSWbOnMrOndvo0qXbez0hDx9Gsnr1ejIy0unT5xdq1ar7j8O5PhZ9fdUQNEPD\n9ELxJn5LtmzJ5PVrRY5hcnIltmx5QPfu+du9/RmIRCK6devB5MnehITspFatuuQaPm/n0snlb4y4\nvOdEIhFaWlp4ev6iFEAB6N27H0uX/oGHR1dkMhkWFpbMm7dIZczTp09Qp069L2rM1a6txaFDT8jK\nsgakVKoU+68y5ADi4+MxMzOjbdsOZGVJuH//rooxl56ejpqaGmKxmMePo4iPj1PmweV+9+3tHUhO\nfqnsY2BgyNGjhwG4e/dNIeyLF88TFfUQkUhEWloqaWnpZGRkEBERxuzZCwCoVauuSiHs/zIdO9ag\nY8f8pTXyUrOmM4MHHyAgIJKcHDGtWj2hW7dOhTJ/QkJeARURz57pFsq4AgI/AoIxJyAgIJCH69cj\nqFevIZqammhqalKnzhup8txaZ0+ePMbCwlIpGODm1oYdO7bSpUu3d44rEomoW7cBWlpaaGlpUaWK\nK7dv3/hg6Nin4uVVncjI9dy44UyxYk8YO9bshw+5e3v5IlH+ELe3wxa7deuh3Pb336zczq1P5ebW\nhkqVqtCt209UqFARHR1tduwI5uzZ02RlZVO/fkMA5s9fzJQp45HJ5MjlcmJjY3FwKM8vv3TO54kF\nRfkELS0tbty4RmjoacLDw/D3X8vMmfOxtCz88Lm+fRuioXGSCxcuUaSIhAkT2hT6HAXxJQRA3ib3\nexsWdpnNmzeioaGBrq4ekyZNV2lXtWo15HI5PXq4U7JkKaWiYd4x1NTUkclkyuOlS9uyY0cwMTHR\n2NqWVbbLyclGKpWiqamJpaUVkyZNV4bNCgqJ7+ZDvzHe3m4MH56GTCbFwKD6e9t+DI6OKdy7JwXU\ngUwqVCicl2ICAj8CgjEnICAgoELB9Y1AtdZZXvK+jVbkZin6SyTvlxMXidQ+GDr2qZQsWYI9e9oT\nHx9H0aK10NX98d9U9+ihy8OHYSQnV8LE5DK9ehWeARETE83kyT6kpaVy/PhRfH03IJPJGD9+DBER\nYSQnv8TUtBi//64w1tLT0wDVh9f7959y40YSder8jYXFZapXF+Pk5EzduvWpU6eeisrol8DDowEe\nHl90iny8qx5YYZIriuHm1gY3t/xGanBwCAC6unqIxWJWrFiDtrYOw4YNpEQJc+LiYlm+3FfZXkdH\nhwkTpnL16mW0tbVZunQlW7YEkJaWxuLFKwCoU6c+dnb2dO+uCN27f/8eJUqY4+JShSNHDuLh0Zdz\n50J5/frVF732fyNvlyEoDBYvbomR0WZiY3Wws8ti0iS3Qp9DQOB7RSgaLiAgIJAHZ2cXQkNPk5WV\nRXp6OmfPnlaey31otbYuRVxcLDEx0YCi/lilSlUARf5NbiHnkyePqvQ9c+YkWVlZpKQkExZ2BUfH\n8sTHx2NsXIS2bTvQpk0H7t+/W2jXoqGhgZVVyX+FIQfQo0c9tmzJYcaMYIKC1OnUqVahjV28uDnl\nyztx4cJ5Ll26oCwM/+TJY6Kjn1KmTFkuX77AypXLiIgIR1c3/wPp8uWRpKQU5/79joSF1eLixafK\nc/8Gb05GRga//TaC3r2706vXzxw9egSAbduC8PTsgYdHV548iQLg1asUvL3H4OHRjYED+yiVIj08\nupKWlopcLqdVqyYcPLgPgBkzpnDp0oXPWp+Ghga9e/ejf38PRo8eSqlSNkD+UNq8uYW5h+vUqc/J\nk8dp3botw4atxtW1FXfv3sLDoxs9enRh925FiRBPz/5ERITRs2cXTp06QYkS5p+1ZoHCQU9PjwUL\n2hMY2Jzp09ugqan54U4CAv8SBM+cgICAQB4cHMpTt259PDy6UrSoCba2ZdHX11d5IBSLxUyYMJXJ\nk72QSqU4OlagQ4fOAPTpM4C5c31Ys0afypWrquRc2draMXz4IJKTk+nTpx8mJqYcOLD3vaFjPyJx\ncbF4eY1iw4agTx4jLOwKmpqaODk5qxyvUsWBKlUcPneJ+dDR0VZu9+jRm/btf8rXxs9vE+fOncHX\ndwWurtXp3buf0hMrk8lITMybo6ZOWtqbHMUfPcQV4MKFsyreybS0VFatWoaxcRH8/ALYuXMbmzcH\n4OU1ibVrV2Nv78icOX9w9eplZs6cwrp1gVSs6MK1a+EUL14CS0tLrl0Lp2XL1ty8eYNx4yZ89ho7\nd+5K585d33ne2NiY4GCFaEneItYlS1qjqdmBS5d6cumSNocOXWHx4k5Mn+6q0t/Q0IiFC5d/9joF\nBAQECgvBmBMQEBB4i27deuLpOYDMzEyGDh2Ag4MjbduqFk2qWrUafn6b8vV1camkUug7L7a2dvmM\ntXeFjv3XuXr1Mrq6evmMuS9NjRo18fVdRfPmbujo6JCY+AwNDU2kUikGBgY0b+6Gnp4++/YpQvty\nPbE1a9bG1PQySUm5RpuEIkUUuVm6urqkpaV91ev4Etja2vHnn0tYuXIZtWvXU6qu5oaPlivnwMmT\nxwBF7umsWb8DCqMpJSWF9PQ0nJ0rEx4eRokS5nTo0JmQkJ0kJSViYGCAWKxd8MRfgdevX3HmjC2g\nWENyclX27dtOq1Zv2oSEnOPu3RRq1LCgfv2v+70UEBAQeBeCMScgICDwFvPnzyIq6iFZWVm4ubXB\nzs6+UMbN65yZO3c/e/ZooaEhpW9fXXr1qvfujj8gUqkUH5/J3Lt3BxubMkyePJ1Hjx6xfPkiMjIy\nMDIyZuLEqZiYmBIcvIXdu3egrq5O6dJlGDRoKCEhO1BTU+fw4f2MHDmuUMo1vI9cz1m1ajWJiopi\n0KA+gMIQmzTJh5iYaP78cwlqaiI0NDQYO1bhRcrriW3SxJGjR69QqtQOzMzCcHCwARTCOfPmzWLb\ntiBmzJj7RQRQvgYlS1qreCerVq0GvKnTp66uWpcvf2ipiEqVKrNjx1YSEuIZMGAIp04d5/jxo8ow\n5W+FWKyNru4rXiqFLuVoa7/JeV2w4CBLllRHIimFoeF1fHxO0737v+tvVkBA4MdEMOYEBAQE3mLq\n1JmFPqan5wDl9s6doSxfXoesLMVD/YwZF6hWLRJHx39ePPd758mTx3h7T8HJyZk5c3zYvn0rp0+f\nYM6chRgbG3P06GH++msF3t5T2LTJn23b9qChoUFaWip6evq0b98JXV1dunbt8eHJPpO3FTDd3bvi\n7q4aqmdpaUX16jXz9X3bE+vllbvVjPT0dORyORUruhAQsPWz1zlv3kx+/vmX95Y4OH36BCVLfpma\ndklJSUrvpL6+AXv27HpnW2fnyhw+fIDevftx9epljI2LoKuri66uLsnJyUilOVhYWOLsXInNmzcy\nerTXO8f6GmhpaTF4sDoLFpwgObkUlSqdZsyYOsrzISHqSCSlAHj1qiK7dt0tsCyGwIc5cGAv1arV\nxNTUFPg6iqgCAv9mBAEUAQEBga/M/fuvlYYcQEqKC9euRX27BX0BihUrrgyRbNGiFRcunOfhw0hG\njRpCnz7d2bDBj8TEREARvjdt2kQOHz6AmtqbPLMfVTPk8eM42rbdQdWqETRtuodLlwpH1MbLa9IH\njbRTp04QFfWwUOZ7m4cPHzBgQG/69OnOunW+eHj0Ja+YCLzJK/X0HMDdu3fw8OjGX3+tYNKkacpW\nFSo4UbKkwjBydq7E8+dJODt/Wc/rP2HAgIacPm3F4cPxhIS4YWFRTHlOU1Om0lZdXfZ29/8cv/02\ngrS01I/qI5VK2b9/D0lJicpjX0MRVUDg34xI/p38BSUmvv7WSxD4QpiZGQif778Y4fP9eE6fvoGn\npw4pKYoHWCurQ+zZUwZLyxLfeGWqfOpnGxcXy7BhA9m2bQ8AV65cYvv2rbx48ZxVq/zytZfJZISH\nXyU09DQXLpzF338L/v5r0dHRVakT96l8qrdKEf65HXt7ByZPnvGP+/XtG8KePb8o92vWDCQkpG2+\ndnFxsYwZMwwHh/Iq4ajXr19jxYolSKVSHBzKM3asN5qamgwdOoBhw0Zjb+9As2b1cHfvxtmzZxCL\nxcyd+wfR0U/x8hqNnp4++vp6H6xpJ/zt/nMCAs7g41OE5OTKWFicYuFCHRo3dvnWy3onX/qzPXhw\nH9u2BSGV5lC+vBNjxoxn4cJ53LlzG4kkk4YNm9C370BA4Xlr0qQ5ly5doGvXX/j99zmYmZmhra3N\nihVr6dHDHTe3NoSGnkYqzWHGjLlYW9t8sbX/GxD+dv+9mJkZfHQfwTMnICAg8JWpV8+J2bMTaNx4\nGy1aBLN4seF3Z8h9LgkJ8dy4cR2AI0cOUr58BZKTXyqP5eTk8OjRQ+RyOQkJ8VSp4srgwcNITU0l\nIyMDXV1dZS23zyEnJ+eTvVW7dm1j8eIV/8iQy8nJUW6/eKFaj/D584LrEwI8ffqEn35yJyAgGD09\nPTZvDmD27On4+MzF338LUqmUnTu3AaqKmJmZmTg5ObN+fSAuLpUJCdlJxYou1K1bn6FDR7BuXeB3\nmZuXlPSCfv124uZ2hF9/3U5q6o8hDNOjR11CQrRZunQ/e/aU+q4NuS9FXFws3br9xPjxY1i4cB53\n795m8eIV3Lp1k9mzpzNgwK+sWbOBBg0ac+jQAR4+fEBg4AaeP0/i4MF91KlTj+bN3ShdugwSiYQy\nZcrSv38vZDKZUhG1Q4fObN4c8K0vVUDgh0LImRMQEBD4Bri718bd/VuvonB428NUooQFVlYlGTly\nCFpaWshkMkaOHEvr1u0ZOXIwMpkMHR0dBg8eRsmS1owbN5KYmBhAjplZMfT19alatTrDhw8iMHAj\nRYsWJTs7mypVXLlx4xqvX7+mePHivHjxnCJFiiKVSklPT8fQ0AiZTIpUKqNGjZpcuxZB/foNCQ09\nTXh4GP7+az/orcrl999nExsbw5gxw3Bza0NERBixsbFoa2szbtxEbG3LsnbtajZs8KN8eSeMjY15\n+vQJDg7lycm5TunSS0lMnIC29mV0dPYzYsQO6tdvQKdOP6vM83Y46vr1a7CwsMTKqiSgUDvdsWMr\nXbp0U+mnqalJ7dp1AbC3d+Ty5Tc12r6TgJsCGTPmBAcO9AJEXLkiRV19E0uXdvzWy/pHODjY4uDw\n78lr/RRiYqKpW7c+d+7cIisri2HDBpKRkU54+FWOHTtMSMguHj16iI6ODkeOHCIlJRlTUzOWLl3F\nokW/ExERBsCzZwn89JM75cs74e7erkBFVAEBgX+G4JkTEBAQEPhs8nqYTExMaNu2I0WKFKFHj94c\nPHgcV9fq7Nq1je3b93LkyGnKli2HkZExr1+/Ji0tjcDAbRw7dpY1azYCcOzYEUaN+o2jR88wZ84C\nkpISadOmHbVr18XWtiwtWrTG3z+Iv/7yp1+/QWhpadG//2A2bAjCyMiInJwc1qzZQK9enp/krfrt\ntwmYmpqxbNlq4uJisbd3xN9/MwMH/srMmVOU7eRyOUuWrGTOnD9o1KgpcXGx7NgRRMuWnbG0HE3j\nxlL27duFuroagYEb882T19sml8vR11cNsXmXYaau/uZdrJqaSEVF8nuuaRcVZcibPDt1Hj36+JAi\ngW9H8eLmlChhjptbG8zMirF8+V8EB+9BXV2dTZs2MHLkWBwcHKlbtz737t3h0qULJCY+w8trNE+e\nPCY6+ikAJiamlC/vpBz3XYqoAgICH0bwzAkICAgIfDZve5iCgzcD0KRJMwBu375JlSquGBkZA9Cs\nWUvCw8NQU1OnUqUqGBoa0bdvMNeuFcXUNA0joxOEhp5i8+aNZGdno6amhomJGRUqVCQ09DT79oWg\npaXJwYP7SU19TWxsDFu2bERf3wB1dXWaNGmusr5P9VbJ5fJ31kwTiUSoq6ujpaVFXFwsu3Zto0uX\n7jx9+oTY2GNADqmpF0lM7ERi4jOeP0+iT5/uVKtWkyFDhgNvwlGdnCpy5MhBHBwc2b17BzEx0Vha\nWnHo0H4qV676j9erra3zXde0s7Z+ze3buXtySpYUnY+NGwAAIABJREFU8n5+JHR0tKlatTrjx49B\nKlWIwLx6lULFii5cvnyRc+dCqVWrDtu2BWFnV44ePXoTELCe5ctXK9UqDx8+gKam5re8DAGBfxWC\nMScgICAg8Nm87WESiRSBHzo6OsrzqgaVqnE1a9ZR9uzpBWjw+DHY2/uyadNyrK1LKQVVSpWyoVQp\nG+RyOZs2bWDJkj+YNm0WjRs3Y+XKZURHP8XXdwUJCfFoa6vmqX2ut+qfGoMaGprs3r0dd/duzJs3\nE4lEgq/vSp4/T0IkUmPVKj+uX7+Gp+cvZGZmoqurx/btQUyfPpHs7GyCgnYhk0np2rUjpUuXwd7e\nkaCgQDp37opEImHRovlkZ2cjkWTy5EkU1tY27NgRzPPnSQwY0BsLC0sCAzcWWNOuIAn4jIwMpkwZ\nT2JiIjKZFA+PfhgZGRUowNK5c9vPFqqYN68O4E9MjCFlyqQwe3bTj+ov8O2xsSlN//6DmTFjMkOG\n9EdbW5uff/6F8+fPsnnzRsqXr4izswvm5pbs2xeCTKYw+hITn6GhoUmjRk1YsuQPPD1/YeXKtwWR\nRN+1Z1lA4HtECLMUEBAQEPhs3hY8cXZWFYhwcKhAePhVUlKSkUql/P33YSpXrkqFChUJD7/K06cZ\ngAZqaskApKc7ERQUqOwfHx/HjRvXiY2N4erVy7i5tUZLS4v4+HiePn3CmTMnKVvWjm7deirru+Wi\nq6v7Wd6q3JppQJ6aaXrvNPCcnJzZuNGPnJwcoqOf4O7elRYtWiMSiVQETv74YxkikQhHxwps2bIT\nLS0txGIxqalpODiU57ffJtCqVVulx1NHR4dJk6azdu1GVq70448/5gFgbFwEI6MiLFmykmnTZhEQ\nsBU/vwAVQ04qlRb4kHzhwllMTYuxfn0gGzYEUaNGrfcKsHyuUIWFRTE2bvyJY8easmZNJ4yNv//a\nYnFxsfTq9fOHGxbA1auXGTduVCGv6NuR+x1q0qQZZmbFWbHClzVrNtCsWQtMTExwcanMihW+zJw5\nn19/HUGzZi3R19dn2LCBTJkynoyMdGrUqI21dSn8/DYhFosJDg5RvmBwcHBk6dJV3/ISBQR+OATP\nnICAgIDAZ2NtXYqdO7cyd64PNjZl6NixM9u3vymUbWpqyqBBQxk+fBByuZzatetRt259AMaNm8jM\nmXMpVWonOTnFiYlZg7V1JSASD4+uZGVloaOjw86dW7l48TwSSRYWFhaYmJiyc2cw+/fv4cWLF+zc\nuY3ixUtQooS5iuHSpElz5s2bVaC36v0ovASengOYM8cHD49u/zeopinOFmAciUSKENIKFSrSvXtn\n1NTUyMrKAkAsFnP16mWlwElcXCwGBoZERFylS5duWFpa8fhxFHfu3KJr118IDw9DJpMikUjYvHkD\n169fY9CgPkgkWVhZWfH69Wt69x7A7duvgGSaN/+JNm3q4+XlDUCzZvVo374Tly9fZPTocco1SiSZ\nTJgwjrZtW2FrW54//1zCypXLqF27Hrq6uu8VYBGEKv67mJtb4O+/RbkfHLxb5Xzec7m4u3fF3b1r\nvuP+/lt4/vwFq1adQyZTo2dPF2xsLAp/0QIC/wEEY05AQEBA4LNRV1fPJ+EfHByist+0aQuaNm2R\nr2/NmrXZs2c38+cf4OpVDWrWDGDq1MaUKKHwhsTFxeLlNeqjar3lpWJFFwICtn644VvkfVidM2dB\nvvOengNUvFNFihSla9cexMREk5j4il9/nYSv7zwiIx/Qp08//v77EPr6Brx6lQIoHo69vCayc2cw\nAC4ulTl37gzq6hpUrVqdgwenIpPJadmyNceOHcHAwABLSytycnJYsWIN/v5r8fV9iLr6bRISJvP6\ndQf09VtTu/YJ6tVrSGZmJhUqODF06EjlGtPT05kyxRs3tza4u7uTmPgaP79NnDt3Bl/fFVStWk3l\nGhUhs2+M1v+qUIVUKsXHZ/I/qgd4/vxZli1biFisjbNzJUQixX3s1q0Tq1b5YWxsjEwmo3v3Tqxe\nvU6ZR/pvRiaTsXDhYW7dUsfCIpORI2vSrdspIiI8ABEHDwYTFKSOlVXxb71UAYEfDsGYExAQEBD4\nbD43z0UkEuHl1eqjxt+37yJhYS9wdDSgU6c6yuPJySnMnHmS58+1cXUVMWRI0y+Wh5N33Nzt8eOX\ncvfufeRydcTidExMzDA0NEJHR5fr1yOQSCQFCpy4uFRmxowptGrVFmNjY1JSUkhOfkmjRk3w9V1B\n8eIlSE1NxdW1Grdv3+LcuVCyshzR0DBDLtcH1DEwqEJ4eBj16jVETU2Nhg2bKNcnl8sZP34Mv/zS\ni2bNWgKQlJSEgYEBzZu7oaenz44dwcTHx6msr1KlKl/k3v1IPHnyGG/vKTg5OTNnjg+bNwcQErKT\npUtXYWVVkpkzp7Jz5zbat/+J+fNnsWzZaiwtrZgyReElFYlEtGjhxuHDB+jSpRuXL19UKrr+F5g1\naz/LlrUCjIBsLl/+g4iIUeQqm96/78727cGMGNHyWy5TQOCHRDDmBAQEBAQ+i7fDr77G+H/9dYyZ\nMyuQmdkELa1oHj06yNixigfBgQMPcfx4H0CNgwfjEYmOMmTIlxHaOHz4pMoaHz9+wsmTfcnMdEVD\nIxpLy/6sXLkJP79VlCtnz+TJPty4cY3Jk72QSqU4OlagQ4fOAMrC6i4ulQEoW9aOly9foKGhgbm5\nJc7OLhw+fIBTp05w5MhBsrNzsLe3JzJSBogwNLyGk5NYaVRqaYnzGZvOzi6cP39Wacw9fPiAqVO9\n0dc3wNi4CGPHepOa+rrA9b0pKaDY/lQD+f79eyQlJVKrVp0PN/5O+Kf1ACtXroqFhaUylLd5czdC\nQnYC0Lp1O8aPH0OXLt3Yt283rVu3/TYX8w2IiNBGYcgBaBIXZ42a2ktkshL/P5aBvr4g4yAg8CkI\nxpyAgICAwA/H3r1SMjPLApCVZcWBAxqMHQsSiYQbNyzI1feSSktw5crXK6Kdnp5BVpYBkADsB9IR\niRoREDBY2aZq1Wr4+W3K11cs1ubYsbPK/XHjJiq3XVwqsW9fCBMmTKVMGVv69u2Js3Mlhg/vR8+e\nx2nYMI7GjTU5ePABjRvnz1HKpV+/Qfj5+fLHH/OYO3cm1avXpF69htSuXVfFi1fQ+vKGneYKVeSK\nwHyMYXf//l3u3r39UcZcTk4OGhrf7pGloHqAueGyuccK5s3xYsWKU7RoUa5cucTt27eYNm32l1ru\nd0eRIqoCRNbWUL/+frZvr0VOjpiWLY/g4dHlG61OQODHRjDmBAQEBAR+OMTinLf2swHQ0tLC1DSZ\nxMTcMzJMTDK+2rrKlStLw4aBHDumD7gBezh/vg27dl2gQ4canzyui0tlNm5ch5NTRcRibcRiMWlp\nOmzceJXevfty6NBWAgNVhWXyG1iKfXt7B5YuXUitWkepVq0m6urqhIeHERS0iefPnzNkyHAaNmxC\neno63t5jSUh4RlJSBmZmzRg8uAl2diaMHj2UChUqcvfubX7/fSkBAeu5c+cWEkkmDRs2oW/fgYCi\nvuDSpX+QkZGJlpYWixYtZ82aVWRlZXHtWjg9e3pSq1YdFi2az6NHD5FKc/D0HEDdug3Yv38PJ08e\nIzMzE5lMxrJlqz/5/n0ub9cDPHv2NCYmply/fo2goE3o6OhQuXJVSpWyIS4uVhmmeuTIIUAhRnPk\nyGnatu2Aj89k3NzaIBKJOH36BCVLlsLGpvQ3u7avwdSpNUlMXM/9+8WxsHjO1KmOVK1qx8CBd8nK\nekmlSl1RUxM8cwICn4JgzAkICAh8BbZuDaR9+58Qi7ULZbyCaoZ9DPv37+Hu3duMGjXuw42/QwYP\ntuDBgwPExNSkWLEwBg0yBRQGzNSp1vj4BJKUZISTUzyTJn29PBx1dXV8fKpz/LgmOTklefx4DwBn\nztyiQ4dPH/fu3dv8+usIxGJtlixZQGKinKNH56CjE4al5Q4aN7YlPv4poaGn0NTUpG/fgcyZswBv\n77FK8ZZx47yZPNmbZ8/iCQraia2tFZGRMSxfvogXL56zcqUfUVGPGD9+NA0bNkEsFjNkyBi6d48l\nJqYm1tZdGTq0PkuXPiYmJprJk30oX94JgAEDhmBoaIhUKmXkyCFERj7A2roUU6dOwMdnLg4OjqSn\npyMWi+nffzB3795m5MjfAFi9+k9cXaszYcJUXr9+zYABHri6Kgzf+/fv4e+/BQMDg8/4VD4PkUiU\nT61VU1OTCROmsmjRPJVwVA0NDcaNm8i4cSMRi7VxcalMbGw0uYZ0nTr1mT17Oq1aKUIsT506QZ06\n9f71xpyVVXF27eqERCJBLBYrjzs5OXzDVQkI/DsQjDkBAQGBr0Bw8BZatGhVaMbcPwlrmzdvJj//\n/As2NqWRyWQf9eY7Li4WT8+x+PkFfrjxN6BxYxcOHkwkLOwizs5lsLAokeecM40aVSQ7OxstLa2v\nvjZzc3NKlIggLi631p4EM7PPU350canCli0BdO7clbCwq7x8qQtooKNzhcTEn5DLM1izZpbSmHr4\n8AFVq1Zj4cJ5vHjxggULThMaGoJYrEGDBlWVLwEMDQ0BqFevAaAoCP3ixQtAETq4YMFC1NSSsbL6\nCw2NZyQmOnHu3HaKFzdXGnIAx44dJiRkF1KplOfPk4iKegiAiYkpDg6OgKLeH8CyZYto0KCRsu/F\ni+cJDT3F5s0bAcjOziYhIR6RSISra/VvasgBlChhzqZN21SONWtWn6pVqzFr1u94eY1i/PjJZGZm\nMn36JB49ekipUqVJSkqkZcvW2Ns70KxZff76awXHj/+NXA4GBgZcvx5BaOhpwsPD8Pdfy8yZ8z+i\nbMaPSV5DTkBAoHAQjDkBAQGBQiYjI4MpU8aTmJiITCalUaOmJCUlMnz4IIyNFcWdFyyYw507t/OF\npXXu3BY3tzaEhp5GKs1hxoy5WFvbkJKSzLRpE0lKSsTJyVklR8fbeyzPniWQlSXB3b0b7dp1BODv\nvw+hp6evrDP29OkTAgLWo69vQNmy5ZQy8z8qxYub0bKlWYHnRCLRNzHkAAwMDPH21mDx4mBev9an\nZs0YRo3q+Flj2ts7cPfubdLT0xCLxWRllURb+8b/jbmJJCauxNNzh9KYevToEWXKlKVFi1ZMmLCI\nXbu8sLZeR1xcbySSE3h7y1TG19R8813I/W4dPnwATU0ZCQnzycx0oHTpxmhqPsHSUo/bt9+8lIiN\njWHLlk2sWbMRfX19Zs+eTlZWFgW9b3hX8fJZs36nZElrlWO3bt1AR0fnc27bV2XHjmCMjIwICNjK\nw4eR9OnTHYArV+6RkZHBrl3hiESp1K1bj5CQnXh49KVu3frUqVNPWb/veye3TMiGDUHfeikCAgL/\nRzDmBAQEBAqZCxfOYmpajN9/XwJAWloq+/fvYdmy1UqPyIABv6qEpT18+IAyZcoiEokwNi6Cn18A\nO3duY/PmALy8JrFunS8uLpXp3bsf586dYe/eN2IU3t5T0NTUZOLE31i8+HeCgjbh6TmQjIwMihQp\nyvr1gTRtWhd1dXWKFSuBSCTiwYN7VKjgRExMNNOnT0IiyaROnfoEB2/hyJFTKtcjlUpZtWo54eFX\nyMrK5qef3Gnf/qevd0N/QLp2rUWXLjKysrLQ1q772ePlKlru37+H6tVrkpWVxIULB9DSisLRcS8v\nX15l3brAPMaUBIBWrdqxcWNfDAxOkJrqRnp6LSQSX54+fUzx4s4qIh5vk5aWRrlyZRg69Dpbt+5D\nQyOGBg1W0qzZGIKCljBixGCWLFnJ5csXSUlJ5uzZ0/j7ryU6+ikvX76kWbOWPH+eRJMmdejY0Z2L\nF88zevQ4RCIRGRnpyuLlRYsWZcuWTTx7Fk9iYiIZGekMGPDre0RFvk+uX49QFlcvU8YWW1s7Xrx4\nyYgRmWhoaHL58maKFr1I+/YXiI+PVvb70a5TQEDg+0LINhUQEPhPM3ToAO7cuV2oY9ra2nH58gVW\nrlxGREQ4enr6+docO3YYT88eeHr24NGjhzx69Eh5LvctfblyDsTFxQIQERFGixaKOmy1atXFwMBQ\n2T44eDM9e3bhzp3baGlpMXHiNGrWrAWgLAKdmZmJg0N5Nm4MolKlKhgbF0Eul7NkyQJ+/rk7/v5b\nKFas4IK9e/fuRl9fH1/fDfj6+rNnzy7lugTejZqaGtrahRNWCwpFy82bA6hUqQp//DGI0qV34+ho\nwsKF1dDT00dPT48XL55z/vwbRUxTU1OMjAwoWnQFKSk/kZVVFh2dmkyaNJ727duzfPlioOB6ec2b\nt+TOndvcvLmejh1jsbCwoEQJRbioRCIhIyODnJwckpISKVHCnFmzpmFsXIS6desTFxfDuXNn8PGZ\ng0Qi4cSJo+jq6uLgUB6xWExU1CPatGmOlZUVM2fOJzY2mhs3riOV5mBjU5qaNWshEn16+YNvxduG\n2dWr94mKak7uu/MXL6pz61aSSsH1s2fPIJFkfs1lfhYymYx582bRs2cXRo8eikQiUfkdTU5Oxt29\nHaDIzfX2HsOoUb/i7t6O7duDCAzciKfnLwwc2IdXr14BEBKyk/79e9G7d3cmTRqnvB+zZk1j8eIF\nDB7sSZcu7Tlx4ui3uWgBge8YwTMnICDwn+ZLPDCWLGmNn98mzp07g6/vCqVBlUvBYWkS5fnc8Ed1\ndTWVh76C3uBfvXqZK1cuMW/eIsaPH41MJuPWrVuUL++Empqa8to0NDQwMysGgL29IxERYVhYWHDz\n5nXmzl0IQLNmLfjzzyX55rh06TyRkQ+UD1JpaWlERz/F3Nzic26TwEfytqKloaEBrVo1o2JFZ8qV\ns6d7904UK1YCZ2cXlX4DB/Zg0aJVFCkSjqHheSZN6oazc1nMzAxITHydb57c2nlGRsasWuWnPJ6T\nk0P37p0wMjLCycmZMmVsuXPnNteuhdOqVTvu3bvDxInTAMULgPDwMIYNG4W6ujrBwSHK76LiXxHj\nxk1Q1rsbPdqL0aOHUrt2PSwsSnHp0i0aNWqKm1ubL3AnvwwVK7pw7NjfVKniyqNHD3n48AGdOvVC\nX//NyyJ19QTMzMSAQqpfV1eXI0cOKcVt/ikfmwNbmDx9+oRp02bj5TWRKVO8OXny2Ht/Rx89esi6\ndYFIJBJ+/rk9Q4aMwM9vE8uWLeTgwX106dKNhg0bK8PDfX1Xsnfvbjp1+hmgQHEeAQGBNwjGnICA\nwH+CuLhYxowZhoNDee7du4ONTRkmT56u0mbBgrn55NWvXLnEtm1BSkXAS5fOs3PndmbP/p2LF8/j\n5/cXWVlZWFpaMWHCVHR0dOjYsRVNmjTn6tXLuLpW5969u+jq6pGWloahoRFpaWloa+uoeFIqV676\n3vW7uFThyJGDeHj05dy5UF6/VrzRTk9Pw8DAAFvbskyfPochQ/qyd+9OXr9WDZ/T0NAkPPwqr16l\nIJfLiI2NUQpT/BNGjx5HtWo1/3F7gcKnatVqHD9+Trm/efMO5faECVPf2e/69Qh+/dWT1q2bfdb8\neUM9K1Z0wda2LFevXiImJhpzc3Pu3s3r4ZZ/VPHy3BcgY8cuY+3abaSm1qJ06ccEBjajSBHjz1r3\nl6AgT2Z2dhY3b16jR48uZGdnoampRaVK5enZcz9//51J6dK9KVo0iitXpBgZGf+/rxopKcl07Nia\ncuXKsWrVunf+rnTu3JYmTZpz6dIFfvnFgyZNPu/z/FTMzS0pW9YOUORyfshLX7myKzo6Oujo6KCv\nb0CdOorSGWXKlCUy8j4AkZEP8PVdSVpaKunpGdSooYgsEIlEBYrzCAgIvEEIsxQQEPjP8PTpE376\nyZ2AgGD09PTYsUNVoW7AgCGsWbOB9es3Ex5+VakI+ORJFCkpyQDs27eHNm3ak5yczIYNfixZsgI/\nvwDs7R0IClIUWpZKczhy5CByuYywsCv07t2Pdu06MGbMMEaMGIydXTmlJ2X69Mn5PClvePO229Oz\nPxERYfTs2YVTp05QooQ5ADVq1EYqldK160/4+6/F2bkSTZq04N69u6ojiUR4eg5g4MA+rFmzCn19\nA0QiERUqVOT4cYXH7e+/Dxe4iurVa7FjxzZychS13Z48eUxm5o8TFvZfZevWUFq2bEdo6BWaN3cr\nlDHzhnq6uFRm167tlCtnj6NjBcLDr5KSkoxUKuXvvw9TqVKVd47Tr98gDAwM+eOPeQAkJSWRmJjI\noUMdeP58ONraj7lypQ9Ll54plHUXNrneS3NzC/z9twBQpUo1LCysCAjYir6+ATk52ZiYmFKqFIwb\nN57Dh2dw4MAegoP3oK9vwMOHDxgxYgzm5hbs2rWfVavWvfd3RSQSYWRkjJ9fwDcz5AAV4SQ1NXWk\nUinq6urIZIoogrxRBvnbqyn3RSKRMvJg9uzpjBkzHn//LXh69lcZoyBxHgEBgTcInjkBAYH/DMWK\nFcfJyRmAFi1aERy8ReX82/LqeRUBDx3aj5tbW27evMGUKTM4dy6UqKiHDBrkCUB2dg4VKyrGFou1\nWb78L4oXfyOXb2/voAwbgnd7UoKDQ5TbDg6OLF26CgBDQyMWLlxeYJ8FC5Zy8eJ5/vxzCWpqIk6d\nOs6YMeNJTX0TQicSiWjVqi2tWrXlxImjnD17hpEjfyM6+ik+PpPZuHEd1avXRF8/f35f27YdiIuL\npW/fHsjlcooUKcrs2b+/+0YLfHP+/PMIc+dWRSI5jkj0gmnT9jNrVvvPHreg4uUuLpUxMTFl0KCh\nDB8+CLn8nxUvHzlyLLNnT2fFiqW4ulZn4cL5mJmpI5MZ8OzZNEBEdvaP85hSqlQpzp49Ta9eXYmL\ni6FWrTo8eHCfa9fCGTnyN44f/5tdu3YQG5uCRJLKypW7mT9/tMoYN29ef+fvCvBNjbj3YW5uwd27\nt3F0rPBJeW0ZGekULWpCTk4Ohw7tf2f+roCAQH5+nF9JAQEBgc8k70OlXC5X2X9fHlurVu3w8hqF\nlpYWjRs3VeaquLrWYNq0WQXO9bUl1atXr0n16qphkMuWrQYgMDCUnBxv6tU7QqtWWXh7t1bmnZiZ\nmfHXX+sBRSmDp0+fAIqHsz179pCY+BqRSMTAgb8ycOCvX++CBD6LY8dESCSlAJDLi3LqlF6hjPu+\nUM+mTVvQtGmLfH1yvVi5BAe/UWLN+1Jj06ZgevYM4u+/+wBaWFoeonNn20JZ99fA0NAIZ+fK1KtX\nn5SUFJUwVLFYzJYtm9DQ+Inw8IEULz6JXbvKYGGR3xv+Pf2uFMTbxrlIJKJbtx5MnuxNSMhOatWq\nS67Bnj+XTjU8Nfdcv36DGDCgN8bGxlSo4ER6enqB8/1ogjgCAl8DwZgTEBD4z5CQEM+NG9dxcqrI\nkSMHcXZ2ITT0NHK5/L15bKamppiamuLvrwh/Aihf3omFC+cRExONpaUVGRkZJCUl5quV9a2JjHyM\nj48+L14ocpMePYrBzi6Uzp3rAHDnzh0WLZqPXC7HwMAAb+8pKv3XrDlBQIAEmUxEp04iRoz4Pj0D\nAqro6KiGuunqSt7R8tsSFRXL1KmXePZMFyenVFavbouf325SU6F9ezucnH4cYw7ehKFOmDCVMmVs\nWbp0IY6O5f//+6JNRIQ56uov0dM7RXp6Da5ckaKrq6vMp/0Svytv14YLDNxIZmYGBgaG7N69A3V1\ndWxsSjN9+uwPjpU3rBSgW7ceym1//83K7f79BwPg5tZGRcQmryGf91yHDp3p0KFzvvnejmB4+8WA\ngICAYMwJCAj8h7C2LsXOnVuZO9cHG5sydOzYmdDQ04hEIpU8toIUAZs1a0lKSgrW1jYAFClShIkT\npzFt2gSysrIBRc7d92bMXb8exYsXDZX7WVmW3L//RrrexaUS69cHFtj3woWbzJ1bilevFGFef/wR\nSfnyl2nWzPWLrvlH4F3Fk9euXY2LS2VcXasX2O/06ROULFkKG5vSX3R9o0bZERUVzL17VbCyus3I\nkeZfdL5PZdSoC4SG9gLgyhUJuro7mD79x1GwfJt3haGWLWtHuXIOREb+TokSu8nIqArIKVo0gwYN\nOjJmzDDMzIqxZMnKd/6uyGQypk6dwMuXL5HJpHh49MPS0orlyxeRkZGBkZExEydOxcTElK1btxIY\nuJns7BxMTEyRyd4Uic/1bm3a5M+2bXvQ0NAgLS31W9yud3L0aDhr1sQjlYpwdzfA3b32t16SgMB3\ni0j+nWSTFiSPLPDv4F3y1wL/Dn6Uz/ddD9//lIUL52Fv70jr1u0KPJ+c/BKZTEbRoiafs8xCJyEh\nkVat7vL0qUIAw8DgJmvWvKRRo3eJrrxh69YTDB3ahryhUZMmbWP48PyhdP81PvX7NGvWNOrUqfdR\n8uq5AhMfS1paGlFRTyhZ0kJZrD4v3/pvVyaTUbnyceLiOiiPNW++nYCA5t9sTV+aU6duMmXKQxIT\ni+LgEMeqVY0wM3v3b4ZcLufRo0doamoSGXmPCxfO4+U1EYC0tFTGjh3O3LkLMTIy5ujRw1y8eB5v\n7yloakrJzlZ8ZxYtms+JE8fYvfsgAJs3B5CRkc7NmzfQ0dGhfv2G1KvX8LsI4QR49Cia9u3jiY9v\nBICxcRj+/hJq1arwjVf2/fCt/3YFvhxmZgYf3UfwzAkICPxn+NR8C0/PHujq6jJ8+JgCz0+cuJut\nWy0ANdq1O86CBZ2+m9yO4sXNWLQogdWrt5KdrUa7djo0alT/H/Vt0qTi/9g784CcsjeOf963fZUt\nS0mpVKRIYxiyJcY2zNjXMBh+1rGHoiyhLNmXlLJkZDD2nRFZxhZmZEmJNor29X17f3+8ekkhS9b7\n+Wfee+65555z79Wc55zn+T5UqhRCQoK8ftmyF2nU6PPaefyUFCRPvnEjjIoV9fH0XIi3t6fCWFu1\nahlnzoSgpKREgwYNadasBWfOhHD16hUCAtYze/YCMjMz8PKSJ9Y2MDDExcUNHR0dRo4cSs2aFly7\nFkbjxg7s37+XoKA/FbsoAwb0YevWHa818rStySyMAAAgAElEQVS0tKhdu+TpJ96XtzVwxWIxRkap\nxMUVlORhZJRN164d8fPbVKwB+qXTtGltTpyoRU5OzhsTykulUoYO3caBAw1RUsqgc+co4uPPs2rV\nMn74wQEdHW3u3Ytg7Nj/AfLvsXz5igDcvn0bL6+FZGSkk56eVkgdsiAht7e3D1euXMLffx2enh60\naOGIm9vsdx7b+vVrqFvXjvr1v2PkyKGMHPn7W6U/KeDUqRvEx/+iOE5OrsfZs8GCMScg8AoEY05A\nQOCb4OVYj7fBz2/TK88dPHgOf/8WSCQGAGzebM0PP4TQpUvJDKaPQdOm1jRtav3W11laGrNw4X38\n/ILJz4eePXX57rsv390pPPwmBw/uY+zYCe/VzuuSJ6ekJBMScpItW/4E5LsoWlraNGnSlMaNHWjW\nrCUAzs49GTduMra29Vi/fg3+/msZPXo8IpEIiUSCr28gIDeUzp49jYNDc44ePUzz5i3fabfuc8Pb\n244ZMzbz+LEmtWql4ObWnn79fD91t0oVkUj0RkMOIDDwBHv29AG0kEjgzz8r4etrhrJyJuvWrcTO\nzh4TE9NCid0LmDJlCnPnLsTU1Iy9e/9i0aL5pKamoK6uQWjoab7/vhEJCfHY2dnj7e2Jjo4u48dP\nea9x/frrb4XG+K4LWnXr1qBMmaukpMhjltXVI7GyKvdefRMQ+JoRjDkBAQGB9+Dhw2QkkufxSPn5\nFYiPz/iEPfqwtG5tR+uvzOvN0tLqnXYMXuZ1yZO1tXVQVVXD09ODH35woHFjB8W5guiG9PR00tPT\nsbWtB8CPP7bH1fX5hNrR8fmD79ixM1u2BOLg0JwDB/YyefL09+5/aSCVSvHwcOX27XCMjWvg6urO\n9evXWLnSB6lUiqVlLSZMcEFFRYWLFy+wcqUPampSWrV6Xl5ATk42U6dOokWLlrRq9SOurpN5/Pix\nIl7sc5Xp/1CkpEiA5yqkMpmYpKRM+vVri5aWNrt2bSc5OVkh6iSRSHjwIBoTkxpkZj6X+j969BBm\nZuYMGeJMxYr6GBubKN5TVNQ9UlNTKVeuPLt2/UlIyN/k5uagpqaGi8sMjIyqs3//HkJCTpKdnc3D\nhw/o2bMPOTm5HD16EBUVVby8fNDV1S3iQiyTydi3bzcREXcUXg27d+/k/v1IRo0aV9yQAbC1rcm0\naX8TELAdqVRM5875tG0ruHYLCLwKwZgTEBAQeA86dKjP+vW7iYiQx/0YGe2jXTubN1wlUBpkZWXh\n5jal0IS/atWq+PgsJDs7GxUVFXx8VhEe/h9bt25mwQK5cMTixQuIjLyHVCph0KChNGnSjP3793D6\n9ClycnKIiXlI06bN+d//RhMXF8v//jeYrKws0tPT+OmnNkyf7s6OHcE8eZKEqqoaly79w44dwSgr\nK3P16mUSEuLZsWMbU6a4cvbsGa5evUxgoD/Dho0C4PLli/j5rUVNTZ2oqHt4eLgCoK6uUchVMykp\nkcuXLyKVSjExqfEpH/UriY6+j4uLG9bWNnh6ehAUtIndu3eydOlqDA2rMXv2DHbu3E6nTr8wd657\nkfLu3XsBkJmZiZubC23bdqBNm3acPHmMChX08fLyAfjsBDtKg06d6hAUtJvIyJ8AGRYWfhw+fJbj\nxzeirKzChAkuiMVifHy8SU9PRyqV0KNHb0xMajBmzJgiUv8FypDx8XEkJaUwcOAQVFRU6NbtJ9av\n34iysjI9e/ZFSUmJf/45z9q1K5g9ewEAkZH3WL58LYcOHWDt2pV06NCZChX0qVatGgcP7qN7915F\nduNEIhEtWzoRGOjHiBFj2bDBl5Mnj+Hu7vnGsQ8Y0IwBA0rjqQoIfH0IxpyAgIDAe1C5ckX8/U3x\n9d1Gfj4MGGCGiYnBp+7WN8n586FFJvwDB/bBw2MelpZWZGZmoqamVuiawEA/7O0bMHXqDNLS0hg6\n1Bl7++8BuHv3Nhs2bEFZWYXevbvQrVtPUlJSePz4EdOnu7N5cwDKysocO3YYA4NqVKhQkcTEx5ia\nmhMe/i9r1mxAW1uHwYP7k5aWQrly5WjevCVWVrWpU8cWd/fp6OjoEhFxl7t3b9O+/U9Ur27Mf//d\nICcnh/T0tEKumoGB6/HwcGXAgMEf98G+Bfr6lbC2li9mtGnTjg0bfKla1QBDw2qAXI5+x45t2NnZ\nF1vevXsvZDIZU6aMp0+f/jg5yVNqmJqas2KFjyJezNa27qcZ4EfExMSADRty2bRpG0pK+fzvf32p\nXPn3IvWWL19bpKxXr160alVUFdTb+xCrVlUhPb0ijRr9ycaN7RXn0tLSmDVrBjExDxCJREilUsW5\nevXsycvL49ChfWhr62BtbcODB9HUqGFGRMSdV45BQ0MDO7vvOHMmBFvbemzZEkiNGoXTTbxrfN3+\n/Xu4desmv/8+6a2uExD42hCMOQEBAYH3xNLSGG9v40/djW+elyf82tralC9fQTFJ1NTULHLNhQvn\nOHPmFEFBGwHIy8sjISEekUhE/foN0NSUu7kZG5sQFxdLVFQUmpqa2NrWIyhoI6am5tjbN2DlyqXk\n5GSTnp7OkydJ5Ofn06dPV0BEfr6UIUOGk5cnISbmIXv37kYsFgEiVq/2w919GlJpPnFxcUydOoPV\nq5dz5colNDW1CrlqtmnTnoAAP5ycPl+Xsxd3ZmQyGdraOqSmphQqK44Xy0UiETY2tpw7F6ow5qpV\nM8LPbzNnz55m3bqV2Ns3+KyN2g+FlZUJc+aUPI3F7t0X2Lz5CaqqKnTrpsNPPz1PkZGQkMDq1fqk\npclzTIaGmuHjsw2QP39f39XY23+Hp6c38fFxjBr1PAZOVVWF1auXERPzEKlUysaNfmhpabNz53Zi\nYh6QnJyMsrJ8ShkefpM7d27h4TGdSpWq0K1bT/7660/u349CVVW+mNK1a0ccHVvzzz/nyc3Nfaf4\nus9FZEpA4FMj/tQdEBAQEBD4Nrh8+SKTJhXdWfhQFEz4TU3NWLduJX//fbxE182Z44W//xb8/bew\nffseqlc3BuQT2ALEYiWkUikikQixWKwQ1BGLxaioqFCuXHlmz16AsbEJpqbmbNoUzPHjoRw/foaT\nJ8/Rp48zf/yxGTMzc06cCOXw4VNIJHmYm9dk3LjJ1KtXn7lzvdDW1kZJSUzfvs5YWdVi3boAmjd3\nJDQ0hIkTx9CiRSu0tLRL4/F9EBIS4rlx4zoAR44cxNLSiri4WGJiHgJw6NB+6tWrj5FR9WLLCxg8\neBg6OrosXDgfgMTERFRVVWndui29evXj1q3wjzyyz59r1+4wZYoWJ05049ChzkyZos21a893zVJT\nU8nIqPDCFWKysp6v6WdkZFChglwNc9++3UXaHz58NAYGhlSsqM+gQb9x584tnJx+xMmpLbGxMTx5\nkoRUKmXJEi9MTExxdZ1F+/YdOXnyGI8ePSIhIR5VVVU8PFxJTHzMuXNnWLXKl7Jlyyru4e09j8GD\n+9OvX3fWr1+jKL9581+GDx/EgAG9GTp0AJmZmYUWAEJDTzNs2KBCCwcCAt8KgjEnICAgIPBV8PKE\n/+bNf3nyJInw8P8AyMzMKOQ6BtCgQUO2b3+ucnr7ttxIKG4HSSQSUbOmBVlZ2Qqxk9zcXEU7+/fv\nUfz29V1VpM3MzAxFHsKDB/cVSuRcHAVxeeXKGfLvv7FERt7D2fnXkj+Qj4xIJMLIqDo7d26jb99u\npKen06NHH6ZOnYGr62ScnXuipKRE585dUVVVLbZ8/vzZSCQSAMaOnUBOTjYrVy7l3r27DB06gIED\ne7Nhg+8H35ULDt5K377daNu2JZs3BwByqf2goFcr2X5unDlzl8TEhorjxMTvOXPmruK4Ro0aNG58\nBpD/G9DXD6FDByNAHuvWu3d/Vq9ezqBBfZ59m/Kdr4JYuOf/JuS/raxqo6uri1gswsysJllZWTx+\n/JjIyAju3r2Nu/s0AgP9ePz4MS1btqJMmbI8eZLEL790o2JFfapXN2HHju2FxjB06P/w9Q1kw4Yg\nrl69TETEXfLy8pgxYypjxkxkw4YtLFmyEjU1NcXO3N9/n2Dz5gC8vZd+leksBATehOBmKSAgIPCN\nUJxAiIGBIcuXy4VAypTRY9q0GZQvX4GHDx8wceICHj9OQiwWM3v2fKpWNWDFCh/Onw9FJBLRv/+v\nODo6KQQ89PTKEhkZgYWFFW5uswA4dy6UZcsWoaamjo1N6cY53bt3lxUrfBCLRQqBCJksn8WLvRR5\nvRYvXvFsciq/ZsCAwSxduhBn557k5+dTtaoB8+cvfqW0uq6uLvr6+kybNpH8fBnJyU9p0cKRAQMG\nM2+eBw8fPuDUqRNkZWUVafPnn7sxbdokDh7cz/ffN0JD47nbZ3EeY5mZGYwaNYKoqCzy8rR5+tSV\nRYsusHjx55nrr3LlKmzevL1Ief363+Hnt7lE5S+rdBaIdoDcSC4tdu3ajo/PKsXOFHx5bnx16lRF\nSyucjAxLALS0wrG2fq60q6SkREBAR5YuDSYjQ4n27avTqJEVwcF/AWBtXYegoB2K+kOGDAfk8Yxt\n23ZQLGAEB//F5csXUVFRVZxbvHgBHTp0wsLCkhMnjhZJlzBp0u8YGFQlLy9HEVPp5NSG/fv3Fqp3\n/Phhdu/ehVQqJSkpkaioewDFukvLZDIuXbpIePhNFi9eUawbtYDAt4BgzAkICAh8IxQnEDJhwmjm\nzVtEmTJ6HDt2mLVrV+Li4oa7+3RGjvwftrbfk5eXR36+lJMnj3H37m0CAraSnPyUwYP7U7euXFb/\n7t3bbNoUTPnyFRg+/FeuXw+jZk1LFiyYw7JlazAwMMTNzaVYo+VD0aBBw2In/GvW+Bc6rlevvsKl\nT01NjYkTpxa5pmCSWsCCBYsVv4ODi7qgAcyYMee1/TM0rEZAQJDiePhwuZqlnZ09dnb2ivLRo8cT\nEXGP3NxcKlUayNGj3RTn9u49iZvbE8qW/fR5t+LiYhk/fhTW1jZcvx6GpWUt2rbtgJ/fWpKTk5kx\nYxahoafR1NSiV6++APTr1x0vr6WUKVOm0MLCgAFDaNmyVSExjHPnQlmzZgUJCSmAFr/9No5Onb7/\noGNwcnKgdeu2xMQ8pE+fbvz661BiYh6SnJzM5csXqV27Dr169WXkyKFYWFgSFnaVrKxMpk93JzDQ\nn8jIezg6OikMn09Jkya2TJ58nKCgf1FRUaJLFxEODi0L1dHS0sLFpf0rWng9mpqaZGZmvraOkZEx\nyclPuXHjOmZm5vj47OXo0dXUqVMbPb1yQJSirkxW2GCOjY1h69bN+PpuRFtbm7lz3Z/F0xV/L5FI\nhIGBAXFxsURH3/8g6UYEBL5EBGNOQEBA4BvhZYEQHR1t7t2LYOzY/yGVSklNTaVGDTPOnj1DRMQd\nWrVqxePHac9yf6lw/XoYeXm53L8fhbGxCXXr2nHz5n9oaWlhZVVbsathZlaTAwf2sn37H1StaoCB\ngSEArVu3ZffunZ/wCZQOoaFh3LwZR8uW1piYGL5XW9nZ2Tg77+TUqSaoqz/B2PhWofNKSnmfVbLw\nmJiHzJ69ABcXNwYP7s+xY4dZvdqP06f/JjDQH3PzmoXqyyfvsmIXFgrOi0Qinj59yoIFc9DQ+ImL\nF0cjFmczZkwMOTmhdO/+IRPXi5g4cSoXLpxj/fqNnDkTQnZ2Nrdu3eTnn7sqdntEIhEqKqr4+gYS\nHLyVKVPG4++/GR0dXXr06EyPHn3Q1dX9gP16N4YNa8mwYVCxog6PH6d90LbLlNGjTh1b+vfvgZqa\nmsJl+EWUlZWZNWs+ixcv4L//YsjIKMPTpxNITVWlUaMdpKQkK2IqT548ho2NLWfOhCCTycjIyEBd\nXQMtLS2ePEni3LnQZ/GVxiQlJRIe/h+WlrXIzMxATU0dmUxG5cpVGDFiDFOnTmLWrHmfbcoOAYHS\nRDDmBAQEBL4RXlYEtLOzx8TElNWr/YiLi2Xy5N9ZtGgZZ8+efmUbbdt2xNj4ubpewcq6svJzsRAl\nJTESSV4xVxevZPgl4+NzhMWLrcjMbIyBwVGWLk3GwcH6ndtbufIEJ04MBFTIyIC7d1UwMlpOdPRv\nqKo+oFevxM8qLqhKFQOF1LyJSQ3s7Rs8+21KfHxsEWNOjui1qQZkMhn//nsda2sbgoPrAKrk56uS\nmanL0aP/0b37hx+HRCJh+PBf6dPHmZCQv8nJyWbXrj9p3tyRmJiH3L17h6SkRK5fD6NDh5+oUcNU\nYcxUrWpAQkL8Z2HMlTYzZswutvzF9ADm5jXp128EnTrVAOSLG6mp0KpVAkZG8ezcuQ01NTVyc3P5\n+eeunDkTgkgkwty8JjVrWtC7dxf09StjY2MLyA1EDw/PV7hLizAyMmbGjFm4uk5hwYLFVK0qpIYR\n+LYQjDkBAQGBb4TExER0dHRo3botWlra7Nq1neRk+Up5cPCWZ65m8t0IZWUVevbsyZMnTzE3r4mL\nixs2NvWYN28WNWqYUblyFQ4fPoCGhib//HOOsmXLsW/fbjZt2kB6ejrVqxtjbFyDGzeuERPzEAMD\nQ44cOfSpH8EHRSaTERQkIzNT7t4VE+OEn9+29zLmMjLEwHPDOCenCh4e1XnyZDfVqpWnWbOiucM+\nJYUVP8XPdnHlv6VSKUpKSshkz4VeCgRj3pRqQCQSoaSkhI5OGklJBaUytLSyS31MjRs7cOvWTZo3\nd0RTU5MFC+ZQrZoR48dPQSKRsHChJxUq6Bfq65vEbL41dHQ0UVFJJU+xpiOlTJkydO8+kfPnn9Kw\nYROGD2+FkpISy5Y9V618MUbyRSwtaxVxl37RFdrc3IJNm7aVxlAEBD57BGNOQEBA4BuhOIEQsViM\nj483T58+JT8/n169+mJgUI3Jk39/NqFW5vTpEM6ePUPz5o74+Hgzc+ZU1NXVAahf3x5HRycCA/3w\n81uLn98mfH1X888/5zEzM2fSpGlMmjQWNTV1bG3rERv78BM/hQ+LVFpYFDo///2CAn/6qQZ//nmM\n2FhHIJ8GDQ7i6NipSLLzL4UqVapy5kwIALduhStENF5eWHhRCl8kElG7dh0WLpzHr79+z8qV+0hK\nKouNzS0mT25W6n0uUG2UyWTk5uZy48Y1xGKx4rtPTU0rZMwJFMXa2oLevXewebMyEkk5vv9+F3p6\neoweXZ2srFZAOnfvBrNkSdd3av/gwUv88UciSkoyfv1VLuQiIPCtIhhzAgIC3zzp6ekcOXKQn3/u\nyuXLF9m6dXMhwYuvhVcJhCxfvlbhZtmhQ2eF8MOmTYE8fpyGt/c8cnPlS+wGBoaMHPk7165dxcfH\nm/nz59Cv3wB+/rkbISEnKVNGj/Hjp7B9+1aio6Np0KBhIYXD+Pg4jhw5qEgG/SUjEon45ZdcVq6M\nJifHiIoVz9Knz/tN8m1tzfH1vcXOncGoqkoYO7bNZ23Ivaz4WHD86FECDx8+oFmzlhw8uI9+/bpT\nq5Y11apVB15eWFBmwoTCIjR6enpMmjSNKVPGYW1tiK5uGZYtW6NITF1a43hRxbTgv9raOhgZVWfk\nyN+xsLDkypVLbN365aQs+FR4ef1C9+7XSUm5j4NDZ3799W+yssyfndXm9OmyyGSyt1YNvXz5NuPG\nqZGYKDcEr1w5wF9/xWNoWPkDj+DjUvA3ODDwj0/dFYEvDMGYExAQ+OZJS0tl585gfv753VaJv0ZU\nVFQVv5WUxEilkkLnd+3ajrq6BgcPngAgJORkodxsf/8dzqVLiWzZcoxOnbJwde0IyBXrjhw59FUY\ncwAuLu2wtT3H3bvnad7cFBubd3exLMDe3gJ7e4sP0LvSpSBxegEvusjp61fC0LAaampqLFq0vMi1\nlStXLnZh4UWXu4YNf6BiRX1WrVpf6nGCK1asY/Lk32nbtgN169oxefLvDBo0FICzZ0/zyy/dsLCw\nRCaToaOjy/z5zxd7XuyzQGG++66O4remZm6hc5qaOe+U/uHUqUiFIQfw4EFrTpzYSb9+X7Yx97ZI\nJJJSW9wQ+LIQvgIBAYFvntWrlxET85CBA3ujrKyMuroG06dPLpIzLTz8ZrE52b4GSiI7XkBg4Hpi\nY2OQSCRs2yaPtevXbxAeHq6IRCL+/fc/7t1LJiurPioqAezencfVq+vZuHELq1cvJzo6ioEDe9O2\nbUe6d+9VyiMrfdq1K738Z18yUqkUDw9Xbt8Ox9i4Bq6u7ly/fo2VK32QSqVYWtZiwgQXVFRUuHjx\nAitX+pCXl0dmpi6amr9gZSVTLBDk5GQzdeokWrRoSYcOnT9YH180Jl71281tNt7e8wgI8OPJk1SS\nk2uTl9caJ6cM3N07fnH56D4V48ZZc/t2EP/99x2VKt1l9OiiapglwcREGxWVGPLy5EInWlo3sbJ6\nPxXZklCQisPSslaJvumuXTvSsqUT58+HoqqqxsyZczAwMGTOnJk0buxA8+aOgDw9xpEjIUXuNXv2\nDLKysgAYN24S1tY2XL58EV/f1VSoUI47d+4Wygso8O0iGHMCAgLfPMOHjyYy8h7+/lu4cuUSLi7j\nC+VMu3btKrVqWbNkiRfz5xfNyfY1UBLZ8QL69/+V27dvkZycjI6OXMGvQoUKmJnV5MSJY+jolCc9\nvRWammeIj19IdnY9unffjJqaGsOHjyIoaNNX6cYqUJjo6Pu4uLhhbW2Dp6cHQUGb2L17J0uXrsbQ\nsBqzZ89g587tdOr0C3PnurN06WpmzTrP1av/kZOTzaFDXbGxWUxmZiZubi60bduBNm3afdA+Hj78\nN1B4l/HF3zk5OYjFYry8lhATE0fr1gkkJcnj9qKiHmFhcYo+fUo/ju9rwNLSmAMHKnHvXhRVq1q9\nc67ETp0aExa2l7/+0kBZWUq/fmLs7Vt94N4Wz4MH0UydOuON33T37r0QiUTo6OgQELCVgwf34eOz\nkAULFhdj/BddDChXrhyLF69AVVWVBw+icXefjq9vIAB37txiyZJ9qKp+/eqpAiVDMOYEBAS+eV50\nD5TJZEVypsXHx6GtrU1kpDwnG0B+fj7ly1f8JP0tLUoiO/6iS9n27bsV4haJiYloa+syZsx46tVr\nSKdOEaSkVKNiRU/y8+tQv37DZ8qGX196AoHi0devhLW1DQBt2rRjwwZfqlY1wNCwGiBXI9yxYxt2\ndvaK8n//vUVq6i/o6W0hOdmZ3FyYMmU8ffr0/+iuufv3X8bdPYn4eEOsrc/Qu7cGSUnPjQapVJ97\n97I+ap++dDQ0NKhd+/3FStzcOjB9en6hGMePQUm/6QKPg1at2ij+u2zZohLfJy9PwuLF87l79w5i\nsZiHDx8ozllZ1cbAwOCD5xEU+HIRv7mKgICAwLdF0XgxKSDPneXvvwV//y0EBGxl0aJlJWpv+PBB\nwHPxj6+N8PBYmjaN4OBBNRYtukl+vozly8uhr7+MmjWb0bFjBitXziE6OqpE7W3btoWcnNKXoBco\nXV6cZMtkMrS1dQqdL86wr1ixsHGkpAQ2NracOxdaOp18DQsWxBEZ+QtZWQ34558BnDiRjInJ8xyM\n2tr/8f33gqrlp0IsFn90F9eSfNOv6lNBuZKSEvn58m8/Pz+/2Jycf/yxmfLlKxAQsBVf342KlB4A\n6uoa7z0Oga8LwZgTEBD45ilJvJiRkTHJyU+5ceM6IA8+j4y8V6L2V63yA56Lf3xN5Ofnc+2ahMTE\nVujohBIdbc/ChRdp1MgKNTUxQUH98fCYhqVlLaKj76OlpU1mZsZr2wwO3kp29rdrzK1fv4agoM9T\nLTEk5CRRUZElqpuQEK/493LkyEEsLa2Ii4slJkaenuLQof3Uq1cfI6PqivKZM60wMVmEsrImjRtv\nQE9PjcGDh6Gjo8vChfNLbVwvk5+fT0qKeqGynJwKLF9elbZtt+Lo+CceHpG0bm1XKvd3cnIotnzO\nnJmcPHmsVO4p8GZK8k3Xrfv8mzh27LDivwU7epUrV+HWrZsAnD59ComksLgUQGZmhsLV/eDBfUIe\nQ4HXIrhZCggIfPOUJF5MWVmZWbPm4+PjTXp6OlKphB49emNiUuON7RcEuL8s/mFv3wBPT3ckEgn5\n+TLmzFmgcNf5/BEpkiXn5akWKs/KkkvpSyQS+vfvgUwGKSnJxMY+RCKRIBKJGDCgN61atSEs7DKP\nHz8mP1+Ks/Ngnj5NIjHxMaNHD0NPryw+Pqs+zfA+IR9rt6Fgx/ltOHXqJI0bO2BsbPLaeiKRCCOj\n6uzcuY158zwwNq5Bjx59qF27Dq6uk5FKpVhZ1aZz564oKyszdeoMRfmPP9Zm7NgJqKur062bPE5o\n7NgJzJ3rzsqVS/nf/0a/03jfBrFYjL39E2JicgFVVFWjcXBQ5rvvLAkIsCz1+xcXRwV8dLdCgcKU\n9JsuIC0tDWfnXqiqqjJz5hwAfvrpZ6ZMGc+AAb35/vtGaGhoKuoXvNuff+7GtGmTOHhwfzF1PtJg\nBb4YRLLPJIBB8P39eqlYUUd4v18xwvt9M05OTTly5BRXrlwqJP6xZIkXtWrVoXXrH5FIJEil0o+e\nU6xAoc3a2obr18OwtKxF27Yd8PdfS1paKtOmuWNgYIinpwexsbGoq6szadI0TE3NSElJZubMaVy7\nFsGjRw5oal4gKWk2Xl4ZaGo+Yc6cmZiammFlVZv//W802to6tGrVBGVlFSpXrkKLFo74+a2lTx9n\nQkNPo6ysjJfXEoYOHcD69RtLXY7+cyIgYD0HD+6jbNly6OtXwsLCCnv77/Dy8iQnJwcDA0NcXNyQ\nSPKYMGEM69dv5M6d2wwa1Ic//9yLvn4levToTGDgVry956Glpc2pUyd48iQJAwNDzM0tsLCwIjQ0\nBHPzmly7FsbPP3fC1LRWsQqtu3fvZM+eneTlSTA0NMTV1YPbt28xefI4tLS00dbWYvbsBRgYlL6K\n4Idg/fo1aGpq0atX3xJfk5OTg4uLL8nJqjRvbkH//k2LKBF+CLZu3cT+/XsA6NChM92791L8zZDJ\nZCxevICLFy+gr18JFRUV2rf/6Y33F/HSUSIAACAASURBVP4uf3jeNg9ct24/fZC/YzKZjKioKJSU\nlDAyMgKE9/s1U7GizpsrvYTgZikgICBQAq5eDSco6ChxcY/euY2X185q167Dxo1+bN4cQHx83CdL\nDh0T85CePfuyZcufREff59ixw6xa5cekSZMIDPTHz28tFhZWBAQE8dtvI5g9W67g6e+/Dlvbehw8\nuId27bRRUYnF2zuZevUqcfz4EdTU1PH33wJAjx4DadKkI9nZ2WRlZbF48XJatnRCKpUSHX2f33+f\nhJ2dPbt37/wkz+BTEh5+k+PHj7BhQxDe3j6Eh/8HwOzZMxkxYgwBAUGYmprh77+WsmXLkZubQ2Zm\nBteuXcHSshZXr14hPj6OsmXLoaYmdw2MirpHmTJl8PXdSF5eHuHhNxX3k0gk+PoG0rdvX5Ys8WLO\nnAWsX7+R9u07snbtSgCaN2/JunWBbNiwherVTdi79y/q1LGlSZOmjBw5Bn//LaVqyGVkZLB9+wmO\nH7/wQURz3mU3S01Njdq1lXFy0qB//6bv3M7rCA+/yYEDe1m3LoA1azawZ89O7ty5pTh/6tQJHjyI\nZvPm7Uyf7sH169eEnblPyNs9+/d/T/n5+Qwb9gdNmsho0iSbceO2CyJSAkUQ3CwFBAQE3sCKFcdY\nuNCE9PQOGBkdZtWqJ3z33fu7Wjk5/Ujt2nUIDQ1hwoQxTJo0FTs7+w/Q47ejShUDatQwBcDEpAb2\n9g0AqFmzJnFxsSQkxDFnjhcAdnb2pKSkkJmZQVjYFebO9UZFRYX588fQrt1uWrSow9Gjh7h1K5zs\n7CwGDuzNgwexpKToc//+MczNbZBItElLS8PIqDoqKio0bdqcdetWUrZsObS1tT/6+D81165doWnT\nFs+MeTUaN25KdnYW6elp2NrWA+DHH9vj6joFAGtrW65dCyMs7Cr9+g3k/PlQQKaoKxKJKF++AjY2\ndTEzMyc5OZmOHZ/nZnN0bA3AvXv3XqnQGhFxl3XrVpGRkU5mZhbff99IcX1pTyafPHlKr17HuHKl\nB0pKT+jZ808WLery1kZMcbudMTEPWbRoAcnJT1FXV2fy5GkYGRlz+vQpAgP9kEjy0NUtw4wZs8nO\nzmb37h2IxUocOXKAMWMmAnD16hX++GMzSUlJ/O9/o99rl+7atavP3r3cCG/WrCVXr15RnL969QpO\nTj8iEomoUKEC9et//L8PAnJeTFlREoKD/3rve27ZcpydO3sAuuTlQVCQAa1ancXZuc17ty3w9SAY\ncwICAgKvQSaTERAgJT3dFoDo6PasWfPHOxlzmppahcQ/YmNjqFrVgK5de5KQkEBExN1PYsypqqoo\nfovFYlRU5MfymDgpYrHKKyfwrypv27YD27f/gb//Fnr1mklcXFlACZlMCZEohadPn6CpqYWSkjKt\nW7dFS0ubDRt8MTGpgaamJhkZGV+dm+WBA3v57ruGVKjwcqL5tzNS6tatR1jYFRIS4nFwaMamTRsQ\niUT88MNz0YwX00C8/I4K1PBkMhkmJqasXu1X5B5z57ozb94iTE3NOHBgL1euXHre21LeGVq9OpQr\nVwYAIqRSTbZt+54hQ25Tq5ZFidt4cbdTKpUwaFBfLCysWLBgLhMnujxLg3CDhQvn4+OzClvbeqxd\nuwGAPXt2sXlzICNHjqVTpy5oamrSs6fcPXPv3l08eZLEqlV+REVFMmXKuPcy5op7li8WiUSlbzwL\nfL48fZoHPM8nJ5VW4PHj9E/XIYHPEsHNUkBAQOA1yGQypFKlQmUvH7+JggmbmZk5SkpKDBjQm23b\ntnD8+BH69evOwIG9iYyM4Mcf23+wfn9IbG3rcfjwAQAuX76Inl5ZNDW1sLW1U6RaOHv2DGlpqYhE\nIurXb8CJE88V9+rXt0JD4zzVq3dEJJIgFlegfPkK3Lt3l5ycbAYO7M2GDeto3rwlIBcIGD9+FGPG\nDP/4gy1F9u/fQ2Li4yLldevW49Spk+TkyN0nz5wJQV1dAx0dXcLCrgJyRbt69eoD8vdx6NB+DA2r\nIRKJ0NXV5ezZM9jY1FW0Wb26MWfOhDyTNJcRGhqiOFdgHJiYmLxSoTUrK5Ny5cojkUg4dGi/4toC\nQ7s0kUrFvGjg5uWpk52d++oLiuHF3U5NTS0aN25Kbm4ON26E4eo6mYEDe+PtPZekpCQAHj1K4Pff\nR+Ds3JOgoI1ERT1Xqn3RlhKJRDg4yJOEGxub8OTJk3cfKGBrW/fZu5e7H586dUKxwyo/b8exY0fI\nz88nMTGRy5cvvaY1ga+Nzp3rYWq6S3FsZRVMx47ffcIeCXyOCDtzAgICAq9BLBbTvn0Gvr7xSCSV\nKV/+PN27F1W7fB2HD/8NyBUxX1Zn7Nt3wIfq6jvz8u7Ai8cikYiBA4fg6emBs3MvNDQ0mD59JgCD\nBg1h5sxp9OvXHWtrWypXrgLIJ7lDhgxn0yZ/nJ17oaysjKNjM27erMHTpzNYsWIZhobVMDSshoaG\nJv7+W7h1K4L9+w+Sl5dHly496NKlx0cb//vwsniFg0OzQiIJW7ZsJDs7ixo1TAkPv4mb2xQSEx9z\n4MAJRYxkzZqWODo6MWBAL8qWLUetWrURiWDatJl4e3uSnZ2NgYEhU6fOAOQ7usnJyQoJdFvbes+S\ntj93UTU0rEaTJk1xdu5JTk4OpqZmaGtrF1JDVFVVfaVC6+DBwxg6dAB6enrUrm2tSN3h6Nia+fPn\nsH37H8yaNa9U4ub69KnD/v07iIj4BcjGyekwtrY937KVojteBXnBCuI4X2Tx4gX06tWPxo0duHLl\nEn5+a1/ZcsHOdUGb70PNmpa0a9eBIUOcAejY8WfMzS0U76hZsxZcvvwPfft2o1KlytSpY/Ne9xP4\nsqhWrTIBATkEBv6BWCxj6FB7ypUr+6m7JfCZIahZCpQ6gurS18238H5lMhk7dpzh/v0MmjY1xt6+\n5O5exXHx4i2OH4/EwECd3r2bfbaCBh/r3S5ffpRFi4xITzfFwuIwvr61sLCoXur3fV/Cw2/i6enO\n2rUbyM+XMXSoM25us5g1y01hzAUFbXoWOziEUaN+o2fPvqxZs7zEinjFcfnyRbZu3axQRX0VWVlZ\naGhokJ2dzciRQ5k8eRrm5s+/3c/t3+6LaoH378cxb94KxOJcRKJkzM0tuHr1ElKpFBcXN6ysar+2\nrdu3w5kzR/5u5G6W/ejU6RdOnTpO9+69adGiFTKZjIiIu5iZmTNoUB8mT3bFwsKSuXPdiYuLZdmy\nNWzduomMjAx+/fU3QO5++sMPTRSulQWqk58bn9u7FfiwCO/36+Vd1CyFnTkBAQGBNyASiejSpckH\naevIkSuMGaNMYmI3xOIkwsJ2smDBLx+k7S+JHTvOsmdPGioqWYSGqpOeLnchvHWrOytWbGXp0s/f\nmHuTeEUBL66Zyt12pXh4uHL7djjGxjVwdXVny5aNhIaGkJOTg7W1DZMmTQPg4cMHeHl5kpKSjFgs\nZtaseYXavnnzX7y85jJ79gL09MoyZ84xEhPVqF9fmbi4Y0RFRZKbm0vbth0KGXIlJS0tjcmTjxAZ\nqUO1aul4ejanfPnS3xmoXr0KTZtakpWVyZUrl8jJycbffwthYVfw9PR4ozH8qt1ON7fZeHvPIyDA\nD4lEQqtWrZ8Zc0NxdZ2Mjo4u9evbEx8fB0Djxk2ZPn0yZ86cUgigvLxzXVpER8exefNVVFRk/Pab\nAzo6bz/JExAQ+PoRjDkBAQGBj8j27Y9JTOwCQH5+eQ4cqMDs2bmoqqq+4cqvh2PHrjJpUhVSU1sD\nWYjFRwqdz839Mv7XJBKJOHBgL40bN8XS0gqZTEZGRjr5+c+Nt5yc7CKT/+jo+7i4uGFtbYOnpwc7\ndmynS5ceDBw4BIBZs9w4cyaExo0dcHefTv/+A3FwaE5eXh75+VISEuIBuH49jCVLvJk3bxH6+pVw\ndt7GgQPOgDJ79sQxdaqUGTPmvNcYJ08+wvbt/QAxly7JkEgC8fP7+IsPrVrJ1ftsbeuRkZFBRkY6\nWlqvVz7t338Q/fsPKlK+cOHSImVNmjSjSZNmRcqrVTMiICAIkBvitWtbo6z8/PsscKH+0Dx8mEDv\n3mHcvt0dkHLy5AaCgzuioaFR4jYOHNjL1q2bEYlEmJmZM3jwMObOdSclJQU9vbJMnepGpUqVmTNn\nJmpq6ty5c4unT58wZYor+/fvITz8P2rVsla49zo5OfDTTz9z4cI5ypWrgLv7XPT09IrNSaimps6c\nOTPR0tLm1q3/Cil/zp49g2bNWuDg0BwAd/fpODo6Ffv8BQQE3owggCIgICDwEVFWlhY6VlHJQ0np\n7QRVvnRCQuJJTa3z7EiD/Pw4IAWA8uXP8csvFT9Z394GW9u6JCcnk5eXS1ZWFiEhJ2nY8AeSk5+Q\nmppCbm4uoaGnFfU1NTXJzMxAX78S1tby2Kc2bdpx7dpVLl/+hyFDnHF27snlyxeJirpHZmYGSUmJ\nikmvioqKYhfw/v1IvLzmsmDBYvT1K5Gfn8/Vq+UpWKOVSKpw4cL7R1FERenwfKogIjJS93XV3wsl\nJaVChnBubs4r635s1+Rduy7g4HAAO7vTDBmy7ZmwzPsRHLyVvn27MWuWa5Fz27Zd4fbtbs+OlLhw\noTuHD/9T4rbv3LlDYKAfy5atZsOGLYwePZ5FixbQrl1HAgKCaN36R5Ys8VbUT09PY80af0aPHseU\nKePp3bs/GzduIyLiLnfv3gEgOzsbS8tabNy4jXr17PD3l8cVFpeTsIAC5c8FC5awevVyADp06MT+\n/Xuf3TedGzeuF1JiFRAQeDu+jOVPAQEBga+E4cNrcvnyTiIi2qCldZsBA/Lfy5gbPnwQq1b5ER8f\nx/XrYTg5/fhO7XTt2hE/v03o6pYhOHgrf/31JzY2dZg0ye2d+/YqDAyUkRtv8tQDeno1GTZsFzk5\nWrRsacT339t98Hu+SFxcLOPHj8La2obr18OwtKxF27Yd8Pdfy9OnycyYMQsAH5+F5ObmoKamhovL\nDIyMqpOTk83cue5ERNzFyMiYMmXKMHv2DNTU1LCxqceSJd6oqqrRpUsHzMxqYmxsorhvu3YdWbHC\nh6SkRHJy5O3KZDJEIhGLFskTd1esqI+f39pnxkLxBktBHrm8vFxu3w6nUaMmiMViypXLIi6uoJYM\nPb2s935WhoZpXLwoe9YXGUZGpRenU65ceYUhrK6uQWjoaUV+u+PHj2BnZ09Y2FW0tXXQ1NQqtX68\nTEZGBh4eGTx8KBfl+euvHMzMdjF5crv3anfXru34+KyiQoWiixfq6gC5gHzHXix+Qpky6iVu+9y5\nc7Rs6aRI76Grq8t//13H01NuwLVq1YZVq+Q7lCKRiMaN5caUiYkp5cqVL5R3Mj4+FjMzc8RisSJH\nYevWbZk2Te52+qqchK9S/qxb146FC+eRnJzMyZNHadGiJWKxsLcgIPCuCMacgICAwEfE2tqUPXv0\n+PvvY5ibV8XGxum92lu1Sp4jLDY2hiNHDr2zMffiTkfBJNPKqkapBNn/+mtLbt7cwYkT5VBTy2X4\ncE2cnT+u615MzENmz16Ai4sbgwf359ixw6xa5cfp038TGOiPq6sHK1asQ0lJiX/+Oc/atSuYPXsB\nO3duR0NDk02bgomIuMugQX1YuzaASpUqM336JHx8VqKmps6mTRuQSCQMGDBYcc9mzVpSs6Yl3bt3\n4s6d21hb1+HIkYPY2Nhy48Y1dHXLkJmZyYkTR2nZ0glNTU0qVtQnJOQkDg7Nyc3NRSbLV6gyuri4\nMnbsCNTVNahXrz7TplXD3T2IR4/0sbK6z/TpLd/7Oc2f3xKpNJCoKF2qVUtj/vzS20FRVlZmwIDB\nDBniTMWK+lSvbqw4p6qqyqBBfRQCKMXxooDKh+TJkyQePTJ6oUSNR4/ebzfdy2susbExjB8/irZt\nOxAWdoXY2FjU1dWZNGkagwY1Z/fuocTGaqOiEkOVKjLu3XPg9Ol9xMXFkpAQz6hRv3P9+jX++ecc\nFSroM3/+IpSVlQkPv8nGjRtJT0/n5s3/mDZtBuXLVyAtLY1lyxZz48Y1HB0L/91RUVEhPT2dI0cO\nFsk7KZVKeZmCRQh4fU7CVyl//vhjew4d2sexY0eYNm3mez1LAYFvHcGYExAQEPjIVKhQni5dmn+Q\ntpycHDhyJITVq5cTHR3FwIG9adu2I/b2DfD0dEcikZCfL2PuXC8MDAw5dGg/27f/gUSSR61a1owf\nP0WxKi6TyQpNMrt370b79l0+SD9fRCwWs2hRV6RSKWKx+JOoeVapYlBo98HevsGz36bEx8eSnp7G\nrFluxMQ8QCQSKSa0YWFX6dZNLpNvamqGqak5AP/+e52oqHsMGyaP0crLk1Cnjg1btpzmjz8yUFKS\n0b9/WRo2NMLIqDo7d25j3jwPjI1r8PPPXUlLS6N//x6UK1eeWrWsFf10dfXAy2suvr5rUFFRwcPD\n81l6AShbthwLFixmwoTRTJ06g1atbGnZsg4ZGeno6DT4IM+pbFk91q//eIZ216496dr1eRoCiUTC\n+fNncXRsw+jR4z9aP16kSpWq1Kmzm0uX5Hn81NUjaNjw/dxNJ06cyoUL51i2bA3r16/BwsIKT8+F\nXL58kdmz3fD330KXLrU4evQIY8ZMpVGj+vj5rSUuLpalS1cTGXmP334bwNy53owcOZapUydy9uxp\nGjVqwpIlXsybN49JkybTooUja9euZMSIMWhraxMVdQ9f30D2799TKJ8dQFpaKocOHUBFpfipYX5+\nPidOHMXRsfWzRQj59S/nJNTXr/TG8bdr15HBg/tToULFQkb727Jt2xY6dfpF4X78vvUEBL5EBGNO\nQEBA4ItGbggNHz6KoKBNCrn6JUu86NatN61b/4hEIkEqlRIVFcnx40dYvdoPJSUlvL3ncfjwAUWy\ncpFIVGiSaWpqWKry129yL42Li2XChNHY2NTjxo0wKlbUx9NzIYmJj1m0aAHJyU9RV1dn8uRpGBhU\no2fPXwgO/ou0tDTat3dk2bK12NrWZcSIIUydOqNQTrSXdx8KdhAKdiJ8fVdjb/8dnp7exMXFMnr0\nsFf2s2DHwd7+e2bOfC44cvbsDfr31yQlxRaAW7fOsn17Fps3by/SxpAhwxkypGiSdEPDaoVyE2Zk\nZHD9ejT9+snrVqpUmY0btxUai45O6cW1fUzCwu4wdmw4aWkShg07h5eXMg0bWr72mvz8fObPn1Po\ne4mOjsLLy5OcnBwMDAxxcXFDR0eHkSOHYmFhSVjYVbKyMpk+3Z3AQH8iI+/h6OikeB/Hjh1GX387\ntrZ+qKgY0a1bN7p1a/FBxiiTybh+PYw5c7wAsLOzJyUlhczMDJSUlGjbth0//GAPyP99Nmz4A0pK\nStSoYYpMJlO4NJqamhEXF0d09H0iIyPw8PAgNzeXxYsXoKysjEwmw9DQiNTUVJyde1G2bFmFsElB\n26tXLyMhQe6nu3KlD3p65ThzJoTLly9y9+4d1NU1+O+/f5k/fw4go2JFfXbv3qnISRgfH4e5eU3C\nw2/y6FECKiqq+PquZuXKpYwePb7Qok3ZsuUwNq5B06bN3+v5BQdvpU2bdm800kpaT0DgS0Qw5gQE\nBAQ+Ia9yDVu/fg22tvUUO0Zv4uWUobVr1yEw0I/HjxNo1qwlhobVuHTpArduhTN4cD8AcnJyKF/+\n7RKgf2wePnyAu7snkydPw83Nhb//Ps6+fXuYONEFQ8Nq/PvvDRYunI+PzyqMjKoTGXmP2NiYZ5P0\ny1hZ1eLRo0dvldy6QJWyIJapICk4QN269Thy5CB2dvbcu3eXiIg7iEQiateuw6JF84mJeYiBgSFZ\nWVkcO3aVlJTnBtrjxw0JDd2OlVWNd3oW8fGP6ds3hGvXOqKu/pDfftvHtGnt36mtL4F5827x77+9\ngd4ALFgQxI4drzfmHjyIZubMuYW+l82bAxk3bhK2tvVYv34N/v5rFcaF3OAIJDh4K1OmjMfffzM6\nOrr06NGZHj368ORJEsePH8HPb6NiAaRKlcwPPtZXpfx92fhQVn6+6KCk9HwK93z3WIaJiSl//hlc\nZCFm1KjfGDduMhYWhZ9hgVFnYWFFZOQ9AgP/4MKFc5w8eYx9+46Sn5/PlCnjkUqljBr1O87Ov6Kr\nq0tOTjZDhjizfPk6OnfuioPDd/z22wi+/74RU6dOJCsrk4CArURG3mPOnBkcPvz3s53WMJSVRTx8\nGI2TU5sSP6OsrCzc3Kbw+PFj8vOltGjRisTEx4wePQw9vbL4+KzC29uT8PCb5ORk07y5I7/++hvB\nwVuL1Ltw4ZwiNtXAwJCpU2egoaHBqlXLOHMmBCUlJRo0aMiIEWNK3D8BgU+FYMwJCAgIfIYUJCl+\nV5ycfqR27TqEhoYwYcIYJk2aCkDbth347bcRH6KLH4UqVQwwM5O7MlpYWBIXF8uNG2G4uk5W1MnL\nkwBydcmwsMvExsbSt+9A9uzZSd26dlhZ1SrS7suunS8ei8VievXqz5w5MwgIWE+jRk0o2AHt3Lkr\nc+e607dvN6pXN8bSUt62np4e06bNZObMqeTm5gHQqNGPaGndIiPD4lmdy9jbv5shB7B06XmuXesP\niMjOLseGDUkMH55EuXKft0H+rqSmqhU6Tkl5867Ky99LTMxD0tPTFC6FP/7YHlfXKYr6TZo0BaBG\nDVNq1DBVPMuqVQ1ISIjn2rUrpb4AYmNTj8OHDzBgwGAuX76Inl5ZNDW1XmngvQ4jI2OSk59y9epV\nDAxMkUgkPHgQjYnJm7+7gvuFhJwkJORvrly5xMCBckM6KysbkJ8PDg4iJESekuHRowQePoymVi1r\nVFRUCu0UqqqqKnYR4+LiyM7Opn//nVy4UJlKlbwwNbVBQ0OzxGM7fz6UChX08fLyASAjI539+/ew\nbNkahdDL0KEj0NXVRSqVMnbs/7h37y7duvVk27YtinrJyckEBvoVim/944/N/PJLN0JCTrJly5+K\n9gUEvgQEY05AQEDgE1Oca5i3tyeNGzvQvLljiVaLNTW1yMzMUBzHxsZQtaoBXbv2JCEhgYiIu3z3\n3fdMmTKe7t17U7ZsWVJTU8jMzKJy5cofc7hvRWF3SCVSU5+gra2Dv/+WInVtbe3YuTOYpKREBg8e\nRlDQRq5cuVQkNqhKlaoEBGxVHL/obvbiuaCgHYryApc7NTU13N3nFttXOzt71q0LfKn0GH/+eQOx\nOJ/+/bWxtX335PN5eSq8qHCZk6NDTs6r5fs/Fi/HI02cOIaZM+e8Mg/c+vVr0NTUolevvq9tt2HD\nbC5efIJMVg5IpUGDN0+uX/5e0tNf7yasoiJXiyzYpSvgxTjJ0lsAESESiRg0aCienh44O/dCQ0OD\n6dNnKvrwcjjpi8dFFyTkIjKzZs3H29ubp09TkEol9OjRu0TGHIBMBqdOnSQ1NYW+fQfQqVPheMnL\nly9y6dI/rFnjj5qaGqNG/aZI0/DyTuGLu4hy1+UTnDw5EFAhMvInoqOjCA29QuPGJVOvNTU1Z8UK\nH1atWsYPPzhga1u3SJ3jxw+ze/cupFIpSUmJREZGUqOGWaE6r4pv1dLSRlVVDU9PD374wUGh8Ckg\n8LkjGHMCAgLfNC4uE3j0KIHc3By6devFTz/9/NH7UJxrmHwiJyIlJfm1q8UFEzozM3OUlJQYMKA3\n7dp1IDc3l0OH9qOsrEz58hXo338QOjo6DBkynHHjRpCfL0NZWZnx4ycXY8x9fEGSkqKlpUXVqgac\nOHGUFi1aIZPJuHv3DubmNalVqzazZrliYFANVVVVzMzM+euvHYqV/NIiPT0dL6+TpKaq0LJlOTp2\n/E5xbtgwR4a9OtzurejevTqHDx8nLq4lkEWrVleoXLnHh2n8HZFKpUXikd70vEsqeDN9egfKlTvK\nrVv5mJqKGDXqp7fun5aWNrq6uoSFXcXWti4HD+6jXr36JbpWJBJRv36DUlsACQ5+no+tIGXAiwwa\nNPS1xy8mLH/xnLa2NomJiZibW3L7djjnzp3FyelH7Ozs8faeS05ODtbWNkyaNA2AkSOHUrOmBVeu\nXOLx40ckJSWirKzMpUv/YG1tw5w5M58pZapw/34UERF3UVNT4/79KP7990aJx5uVJQKeG9tSaVme\nPr1Z4uurVTPCz28zZ8+eZt26ldSv/12h87GxMWzduhlf341oa2szd677K3MVvhzfWsC6dQFcvHiB\nkyePsWPHtkLxqgICnyuCMScgIPBN4+LiVij+o3nzlgqXnY9Fca6EBWhr67x2tbhgQqesrFxk4tG3\n74Ai93J0dCoiSw4QHLz7hd9/FTn/qSjOHdLNbRbe3vMICPBDIpHQqlVrzM1roqKiQqVKlaldW64G\naWtbj2PHjmBqalZc0x8EmUzGoEH7nu04KLF793Vksgv89NO7q0kW5PmzsLBkyhQ3JkwYQ2pqMv36\nDWLjRmP27QtGT0/EkCFdS10JtLjFDicnBzp16sLFixdo3rxlkXikF3MWHjiwl61bNyMSiTAzM2f6\ndPdC7cfEPCwiZmNkZAzI3/WIEW+XuqO472Xq1Jl4e3uSnZ2tiI8q7rriHqWxsUkJF0A+L6Kiopg8\n2ZXateswbNgIpkyZw++/D2HgwCEAzJrlxpkzITRu7IBIJEIikeDvvwV39+mcPXuG2rWtsbP7Dg+P\n6cTExDBx4ljmzvUiLi6WihX16du3G9WqVcfauo7insXtFL54rls3G3bs2ElExM9APg0abKdVq5Ib\n6ImJiejo6NC6dVu0tLTZu/cvNDW1yMjIQFe3DBkZGaira6ClpcWTJ0mcOxeqMNw1NTUV9WrVsi4S\n35qY+JgKFSqSnZ1Fo0aNqVPHlh49Or37CxAQ+IiIZO/ilF0KlKZimsCnpWJFHeH9fsV86e93/fo1\niviP+Pg4Fi5cpjAGPgYvC6AEBW0iKyuT+Pg4fvihCc2bO5KXl6dYLY6PjyuV1eLQ0KtERCTQunV9\nKlWqAHz57/Zj8OjRIxo0eExmHMSaCAAAIABJREFUZkNFWc+e21m6tOTCDi/Tp09XRTLpGzeu4+u7\niiVLVn6I7haiJO83NTX1JbGLtbT/P3vnGRDV0YXhZ5dd6tJEsGChWFBRhGCvUTEaNdEoAWzYWxJ7\nrLFHsKAGjYoSaSrYjd1YY8GosYFG8TN2moKKtKXsst+PlZUqFlCT3OfX3r0zc2fuXS5zZs55T5cO\nzJ3rzaefdgDA1fUL1q1br1kEyT1OTExk+vTvWbMmECMjY1JSUjA0NCQgYC36+vq4u/dlzJiRfP/9\nNI2Yzdq1K4XdkHckLi6WMWNG0LOnG8ePqzh40BYTk18xNi6HtXUkKpWS5ORkevVyo08fT777bjhD\nhozQuCN7ec3RvHsADh06yI0bf/Hdd+Pw8PgKf/8QjIzeTjH17t0YQkMj0dZWMWJEKwwNDV+77vnz\nZ1m50hexWO3COXHiVK5di2D79i2Ym1vg67saL685XL0agYVFRQwNZbRo0ZrOnbuyffvmfOUuXbrA\n6tXLNfGtw4aNws6uDlOmTHjhNqrCw6OfRun3Y0N4N/97MTd//b+JXISdOQEBgf8sRcV/ZGdnlfl1\n3yS5sVwuL/PVYm/v/axe7UhGRjNsbffyyy/W1Kv39kIdH4qnT5+xadNZ9PUl9OnTNl/C4rJCJpNh\nbHyNdI3AYQ6Ghq//G9q0aYNGLbNr1+48eHBPk+evY8fO7NnzK0lJzxg4sDc//rjojVQ5S4P8YheP\nefjwIWKxWDPRLw6VSsWlS3/Srp2LxsgrOHGXy+VcvRpZpJjNx8DduzEsWuTHw4eXMDWV0a1bdxQK\nBdraUnr1cmf58iXcvv03vr6ruXjxT/bt283MmfNwcWmFq6sHZ86cRkdHhwULlmBqWu61r6tQKJBI\nJMUevw4ikYjQ0A1cvLgELa0cVCoxmZnHsbQcwPz57holx1x0dfUK1c+lbdt2BAau5ZNPnLGzq1Oi\nIRcefoVbtx7RsaMjlStb5DtnbW3J9OmWbzSWXBo3bkrjxk3zfVe7th09e750NS5q1xWgZ0+3fOWK\njm9Vu1kKCPzTEIw5AQGB/yzp6WkYGhq+VfxHaVKcq5xIJCI9PS3favE334wt1WtnZGSwcaOMjIxa\nANy+3Z01azazfPk/y5h7/PgJbm6n+euvPkAGR46EEBzsVmIuu3dFX1+fCROk+PjsJSmpIp98coXJ\nkzu/Vt2oqBscOLAXf/9gcnJUDBvmycyZ8zh37g+N8l7duvb58geWBampqRw+fJAePXpx6dIFNm3a\nyKJFy4oRu8hEW1vntdw7RSLRKxUZVaocDA2LFrP50ERF3cPT8xQ5Obd58GAXn322kT17djJ58gw2\nb95Ir17uREXdQKFQoFAoiIi4TMOGaiGPjIwM7O0bMGzYKCZOHIOnpwflyplha1sDLS2tfLteLi6t\nOHxYncvtl1/8MDIy4v79e0yaNB1//9UYGRnx4MF9NmzYyurVK7hy5SJZWdl89ZUrX375FZcuXSAg\nYC0mJqbcvXub2rXrMHToSGJiYtDS0qJSpRloaaXz9Olg9PQuo6WlR3p6OsePH6Fdu5curHmfU65L\nYi7a2to0adIMH58FTJ0685X3bdGiA/z8syMZGc1ZtWo/a9c+p2HDmm/9HIpa+IqKusHBg/sYO3bi\nW7dbsP3PPx/N0aNp6OtnMmlSYywtS058LiDwsSD+0B0QEBAQ+FA0adIcpVJJ376u+Pn9nC/+o6zJ\nVbCcNGksZmblyczMJCYmmgsXzhMefoqYmGisrW0wMyuPlZU19vb10dHR5c6d26XaD6VSiVIpKfBd\n2RpAZUFQ0LkXhpwI0OPQoS84derie7l2//6tOHPmE86dM2T7dtfXdkGLjLxC69afoqOji56eHm3a\ntOPKlcv5yryPSIiUlGR27txa6Pu8ix337t0tdrGj4OQf1Iack1Mjjh8/QnLyc0DtspmLSqVWYK1c\nuTLHjx958Z1azOZjIDT0Bs+eGZCa2hGVypTDh9tRr15Drl+/xs2bN0hPT0NbWxt7+/pERd0gMvKK\nxk1RKpXSvHlL7ty5za1bN2nUqAlBQaGMGVOU8fHSKL516yZjx35PWNgOVCqV5jg0dDt79vyKTCbD\n3z8Ef/9g9uz5VRNb+/ff/2Ps2Ils2LCV2NgYbt68gY2NDVKpNjLZc+TyBjx/7o5EUo+//vqFCRO+\no27d/K7keY3z9u07Ehq6nkGD+hIbGwNAhw6dEIvFhXbG8pKVlcXGjTpkZNQEtLh3rxv+/qX7vgKw\ns6tTKoZcLsnJcqZMqc6uXT0JC/Ng8ODTZGdnl1r7AgJljbAzJyAg8J9DpVLx+PFjxGIxPj7LP0gf\nilKwzJsMOzh4B0OGTMLWdgAGBsloaalYsyaw1AUvDAwM6No1nvXrE8nJKU+lSsfp0+f9uvKVBoVv\niwKp9P0ZpTKZDJmsaCn+4ijqWZaxnkmR+PmtICYmmoEDeyORSNDV1eOHHyZz587fpKena8QubGxs\n8PX1ITMzg/Hjv2P69FmYmZWnatVqeHj0RCqV0Ly5WqBHLs8gLGw9CoWS7t07Y2ZWHkfHTzRucLnj\nnDnzx0JiNrliQB8SsVj54pPamJZIMpBIxIjFIipVsmT//j3Ur++ArW0NLl36k5iYaKpXtwJeSvRf\nuqRWg8zdHS7JyK9Tpx4VK1Yq8vjPP89y+/bf/P77UQDS0tKIjn6IRCKhTp16mgT3NWrU4vHjx0gk\nEkxNTfH3D2b//ks8f76Hr76aRoUKhXPkrVixJt9x/foObNiwJd93kZFX6NLli1e+f1QqVaGFoZyc\n0vtBx8REM2PGZDp06MSVK5dYtGgZ69at4dGjeOLiYnn0KJ6vv/agVy93AIKCfuHQoQOYmJhiYVGB\n2rXr4OHRl6ioG3h7z0UkEtG4cRPS0pSkp9dBJMrEwmI2T55cZMCAMCZMmIKTkzP79+/h1KnfycjI\nIDr6Ie7ufcjMzOLIkYNIpdosXuz71jGEAgKlgbAzJyAg8J9CpVIxZsw2mjRJoGnTGKZO/fW97H4U\n5FXJsN3cerJ69QaePROzfbsbZ86k4+TUBJFIRFxcLP37F5ajX7duDRcunH+rvixa1ANf37NMm7aV\n0NByNG9er1CZb78dRlSUWkb82LEj9O3rypgxI9/qemXBkCHNadgwCFAASXTrdoBmzRxLqPVhcXBo\nyMmTv5OZmYFcLufkyeOFcuLlZf/+PSxbtqjU+zFy5GgsLasQGBjKqFFjXuwITWTjxm1UrFiJSZOm\nM2/eAiQSKb6+qzl58jxdunRj7Vq1KMu1a1c5cuQUhw+fYtKkaWzduptff92Gs3Njtm7dxa5dvyGR\nSBg/Xh0bN2jQMNzd+5KU9Iw7d+KYNm0WQUGhbNiwhQEDhpTauLZsCSUzM+Ot6o4a1YwqVeKRyQ4j\nld7k668vEhl5GQcHJxwcGhIWtoGGDZ1wcHDk11+3U6tW7UJtqA2f/O8WLS0tcnLU3+Xk5KBQvNwB\nKhi3VvB4/PhJBAaGEhgYypYtu2jUqAkqlSpffjwtLTE5OUrNsVgspnfv9owc2blIQ+5VbNoUztCh\nh+natS/79+/B1dX9leV1dHT44ounaGk9AqBixd/p3fvt4uMK8uDBPWbMmMz06XOoU6duvnMPHz5g\n2bKV+PsHExjoj1Kp5MaNvzhx4hjBwZvw8VlOVNQNzQKCt/ccxo+fTFCQ2r1XIlEBmZiYbATEZGSM\nY9q0WcyfP1sTV3j37h28vHzw9w9h7dpVGBgYEBCwEXv7+hw8uK9Uxigg8LYIO3MCAgL/KTZv/p3N\nm7u/SEQMwcE2tG17js8+a1qsDPu7iBkUx6uSYfv4HOT4cVfN+ZQUS27dintle4MHD3/rvohEItzc\n2pRYJndVfu/eXUye/AP16zu89TVLG1NTE3bs6MT27buQybTp0cMNsfjjXq+sVcuOzz/vytChngB0\n69ajUILjvJL5ZZWGIO9ihkqlKrTTEx8fh0wm4+7d24wdOwpQGyJmZuoytrY1mT17Oq1bt6VVq7aA\nWnkwPPwkYWHrAcjOzubx43hN2oHw8OuMHfuY+/c/oXLlSLy99ejc+fWSR78OReW/exMsLMzYvbs/\nXl4J3Lw5goQEPbp160HNmrV4/jyJ9esDNa7POjo6GiP8++/HaNpwcmrE+vWBNGyolsdPTn5OxYqV\n2Lo1DCMjI9LT01EoXk/wpXHjZuzYsQ0QsXXrJr79diwWFkXHdRkbm7Bnzx4+/7yLRo7/Tdm58yxT\npliTnl4b6IGzcxD6+gYl1ps//0ucnU/z8GEaHTrUKhUhpWfPnjF16kS8vHyoXt2KS5cuaM6JRCKa\nN2+JRCLB2NgEU9NyPH36hKtXI2jVSi2CJJVKNSldUlJSSE1N1SQc/+yzLvzxRzjduq3n6tXf0NJq\nxJgxWtSrV5+KFSvx8OEDRCIRjo7O6Onpoaenh0xmSIsWrQGwsanB7dsfh2uwwH+XMjPmTp48iZeX\nFzk5OfTq1Ythw4aVXElAQECgjElIyNAYcgAKRUXi4s4CReecyytmsGrVcnbv3omn5+BS71feZNhV\nq+qhpfUYLa2nZGXZIZEkU7lydU3Z3Hi7a9ciMDe3wNt7CT4+3rRo0Yq2bdvTq1c3XFw6cfZsOGKx\nFpMmTcfPbwWxsTF4ePSje/eeJCYmMmvWVNLT01AqlUyYMBUHh4acP39Wo3RnY2PFhAnT0dNT7xCo\nVCoCA/25ejUCb++5tGzZmlGjxhQ3pPeOTCbD07NjmbQtl8uZOXMKCQkJ5OQo8fQcgqVlFX7+eRly\nuRxjYxOmT59FamoqP/44S6OKFxcXy5Qp4wkO3kRU1I1C5d3c+nDq1Alq1arNb7/tR6lUMHbs94wb\n9w2ZmZmYmZUvMrlxURTlViaTydi9ewfZ2QqqVKnCjBlz0dHRZf782ZiYGBIZeY3ExATEYjE//jiL\ny5cvanaOABITH7Nu3RqkUilaWhJWrVqHnp4eq1evIDz8FJ6eHjRq1ITmzVsSHn6KkJAA/PwCiY5+\noDEIPT2H4Oe3AhMTUwCioq4zY8ZM7t//DTOzFeTkPGDBgssEB4vo06c/3bp159KlC6xbtwYDAwOi\nox/i5OTMhAlTEIlEHD58kA0bglCpVDRr1pKRI78DKDH/3ZuiTjxdWB3R2bkxx4//oTnOjXFTqVT5\nEqZbW9swfPi3hIWtZ8CA3tSqVZuRI7/jzJnT/PzzTzRp0gw9PX1N+YJ52fIed+vWnbi4WBYv9iIp\n6RlLlizAy2txsfnxAL74ogcTJnynkeN/E06ffv7CkAMQERHhRGxsDNWqVX9lPZFIxFdftXplmTdF\nJpNRoUIlIiIua1xZ8yKR5F0YE6NUKoGC4jsqTf/yolKpEIlErFvnxpQp5+jV6xOcnQvniMy/+CbW\nHL+8noDAh6NMli2VSiXz5s3jl19+Yd++fezbt4/bt0s/CFZAQEDgTenatQFWVns1x7Vq/crnn6tX\nzrduDWPAgN4MHz5II8OeK2YAULt2HeLjX71D9roUlwx7797dHDjgR/36PahYcTVVquykbt1kbG1f\nxrE9fPiAnj2/Zv36Lchkhpw4cSzfzplIJKJChYoEBobSsKEjXl6z8fLyYc2aIAIC1gJw+PBBmjRp\nRmBgKEFBYdSsWYukpCRCQgLw9V1FQMAG6tWrx+bNG/P1ceDAodjZ1WHWrPkflSFX1pw7d4by5S0I\nCgolJGQzTZs2w9d3MfPnL2LduvUat8Pq1a1QKLI14hRHjx6iffuOKBQKfvqpcHlAk7T5l19CcHfv\ny7Vr6Zw7N5JjxxYSFVWOdevUz+xV7sDFuZW1afMp/v4hBAWFUr26NXv37tJcMyUlhTVrAhk2bBTx\n8XH07t2fadNmkZ6exq1b/yMpKYmoqBv06eNJUFAYAMuXLyU5+TknT/7OvHkLCAoKpXPnrjg5OTNy\n5HekpqZy+vQJKlWyxNm5seZeFRSUyMl5Of3Q1r6FltYI1qwJIDDQn8TExBdjus64cZPYsGErMTHR\nnDhxjMTEBPz8fmb5cj8CA0OJirrOqVO/A2oVyXr17AkKCmXAgCGUL2/OihVrSi1v3aZNG+jf343+\n/d3YsiWM+Pg4PDy+4scfZ9G/vxvz5m2mbdsOjBmzieTkZIKCfmH9+kBkMkOsrKyxtrbF1LQc1apV\nZ8CAwYwc+R1GRkasW7eGn3/+ifj4OB48uAeoXRafP3/OoEF9GDlyEA8fPmD48G+YMmUGDRt+gq/v\nagwMZDg6fsLChS+VTseNm0Tnzl0BtRx/aOj2txq/mZkCeJm6wNz8AeXKvbtHwtsglUrx8lrMwYP7\nOHz4YL5zRf9NiGjQwIHw8FNkZWWRnp7OmTOngdzYVkMiI68AcOjQAU0tR8dPOHLkNwAePLjPo0fx\nVK9uVYIi60eRqlngP06Z7MxFRkZSrVo1qlRRTz66dOnC0aNHsbW1LYvLCQgICLw21taWBARkEBy8\nBbFYxdCh9bGwMCtWhj1XzABALBaVyipspUqVCQ7epDn28Oir+bxkiVqQJS0tjYiIG9jYWFKxYocC\n9QvH2xWkZUu126SNTQ3kcrnGRUgqlZKWlkrduvXw9p6LQqGgVau21KxZi8uXL3Lv3h1GjBgEqKXj\n69QpOoH6f20SY2tbk5UrfVm9egXNm7fC0FDGnTtFux22a+fC0aOH6Nt3AMeOHWHevAU8eHCvWDdF\nUCsIgnoHcM2aRKTS/VhaJvDsWTYnTmgxsQTxvqLcylQquH37b/z9V5OWlkp6upwmTZpp6nz66acA\n2Ns3QE9Pj9mzp6Gjo4O+vj7x8bE8fvyI5ORkgoPXsXPnVmQyGeHhJ7l+/RqPHsWxePF8XF092LIl\njPT0NFQqFa6u7tSrV5/U1BQiIq7w9ddfoqOjQ0pKcr7+lisHOjr3UalEyOVN6NEjC2NjE5ycnLlx\n4xoymSF169ajUqXKAHTo8BmRkVeQSCQ4On6CsbEJAC4unbhy5TKtWrV9rfx3b0tRaSQcHZ1eiHLM\nZe/eh/j4uGBtHcbmzT2Ji1uNgcFZgoM3kZ2dzaBBfbGzqwNQaOHFxMSUgIAN7Ny5jbCwDUye/ANW\nVtasXOmPlpYWf/55jrVrV/LjjyXHS169eotz5/7ms88cqFq18luPd8KEDty6FcL581UwNExh3Dhj\nZLI3T2ZcGohEInR1dVm06CfGjRuFp+eQfK7HRe1M2tnVpWXL1nh6umvSQuQKFE2bNuuFAAo0atRU\n8yx69HDFx8cbT093tLS0mD59NhKJJN/zenHVfH0rK/dnAYHXpUyMuUePHlGp0ktFpgoVKhAZGVkW\nlxIQEBB4Y+ztbVm8OP/i0uvKsL8Pbt68z7Bh17hxowVmZreYPv02ffu21JwvGG+nVGYWaiOvG1De\n5Nm5bkEODo6sXOnPmTOn8fKajZtbHwwNjXB2bqJx6zM3NyQhIaXIPv7XJjBVq1YjIGAjf/xxGn//\nVTg5OWNtbYufX0Chsu3auTBjxhTatGmHSCTC0rIKt2//XWx5eCl2kZ6ejpbWfhITx5GW9il6eucp\nV+7Vub3UFJ3TzctrLgsWLMHWtgYHDuzl8uWX6RpyfxdisZiKFStpcnl5ec1BqVQiFmvRunXbIt08\ns7OzuXDhPL//fhRtbW1Wr16X73xgYCh//HGa3bt38sknjfjtt/0a983MzCwsLU3p2zeKnTv/wsxM\nwrRp37wciaiw01CuO1xhXn7/uvnv3oa8aSQA2rRpR0TEZSpUqETduvbMnx8LmOaOgHv3njJiROGY\nraJo06YdoI6hPHHiGKCO7Zo3bxYxMQ81O7clsW3bWWbMMOLJE1d8fC4xe3Y47u4t3mq8Ojo6BAa6\nIZfL0dHR+WDxp3kXvnJTMwC0bKmOWRs0KH8IT958dB4e/Rg0aBgZGRl8++0watdWG9O1a9tpxE8A\nRo0aDajz6RWVdLxz566a3U6ArVt3FXtOQOBDUCbG3Nu8TM3NP8yKj8D7QXi+/27+Dc+3S5eO7N+/\nC09PN6ytrXF0bIiJiT5isUgzPmNjfXR1pWU+3jFjorhxQ60c9+RJVfz8tjF2rAyRSERmpgESiZam\nDzKZDmKxEl1dKUZGepibGyIWizAzk2FiYohMpoOenramfO659PQUatashp1dP3R0xDx4cJfhw4fj\n67sYufwZ1apVIz09nbS0J1hZWSGVamFqqo+5uWG+z/8VHj9+jKWlGX36fE3lyuaEhYWRmppMTMxt\nGjZsSHZ2Nvfv36dGjRqYm9dBR0fKpk3BfPllN8zNDTE2rkdKyvMiy0ulWpiYqJ9d+fIyjIySiI9X\nKw+amQVgbq6Dubkhhoa6+Z5lXlq3bsasWbMYP3402dnZnDsXjpubGxkZ6dSqVR1DQ12OHz9ExYoV\nMTc3RFdXbciZmxsW+k3p6koxNtbH2dm50O/h8ePHWFhYIJdn8cUXnfj00xZ06NBBU1cdf7me69eN\nqFQJPDw8OHz4N6pXr0Zc3F1q1mzN+fOnkEq1GD78M7Ky/sfRo0cxMdElLS2NyMjL/PDDVO7cuUNU\n1HUyM59TuXJlTp8+jru7Ow0bNmTFiqVIJAqMjIw4efIY/fr1w9zcEJEo/7vI0FCGjk7pvJ8MDXVR\nKjM0benrayOT6WJoaIC5uSGWlgryKlcaGyvR13/5rPT0pMhkupp7n/dvtVIlU0xMDDEzkyEWq/u7\nZMl82rZtRd++fYmJidGM0cREHx0dSZFjCgtL48kTdSLwp08/YdOmnXz33buO/Z/7Nz5hwmxu375N\nZmYmPXr0oHlz53dqb9mygxw7loWRUSbz5jXHxqZ0lDrflv/S+1fg1ZSJMVehQgXi4l7GlcTHx1Oh\nQtGqS7kUt/or8M/nVav7Av98/inP99Sp36latTpWVtaAWmr/22/HaVyfALy8luark5qayi+/rCcu\n7hkSiQQnp+Y4OTUv8/EmJ+dfEEtNlfLo0XO0tLR4+jQNpTJH04fU1Ezk8kwyMrJJTpaTkJBCTo6K\nJ09Syc7WIjVVfS63fE4OPHmSSnj4KcLC1iORSNDXN+CHH+agVEqZMmUmo0ePISsrG4lEzKBBIzAw\nMCM7W8mzZ+kkJKTk+/xf4c8/I1i50hexWIREImXixKmIxWK8vReSmpqKUqnAza03xsbq/3WtW7dn\n9erl9Os3VHOfZs/2LrJ8draSpCS5pty0aWNZsGAYIEWlSuX5cz06dHDByMgYU9Ny9OrlyrNnScya\nNQ8AX98lZGVlkpSURMeOn2FhUQEdHT127PgVY2NTWrZsiYmJKZ9+2p70dPVzy8jIRiQSkZCQUug3\nlftbKvh7ABg2bBR2diqmTJnwQrZdxbffjtPUnT9/L/7+lpibr+DmTTEXLybh57eYjIwM5s6dq4nz\nUijU10tPz6J6dRs8PPqQlJRE//6DAF2SktKxs6vLjBmzXgigNKJhQ3XC6qFDR9GnT19UKhXNm7ei\nfv1GL64vyveb7NLlSwYOHPRWAiAFsbWtw/z5c/jqKw9yclQcPPgbM2bMRaFQkpCQwpQpzbh/P4iH\nD9Oxt9/G0KHNOHgwlK++6o1CoeDo0WN8+eVXmntf1N9qUlI62dnq9p48SUJXV/1uXb8+jJwcFQkJ\nKSQlpZOZqSjyby8rK78LeGZmzn/qb7QgU6bMznf8Lvdi/fqTTJ1an6ysagBERQWzb9+XmhyC75t/\nyv9dgTfnbYx0kaoMAh8UCgWdOnUiKCgICwsLXF1dWbp06Stj5oQf5b8X4aXz7+af8nznz5+tUXsE\n+O674Xzzzdh8xlxetm49h5eXnISEqjRocJmAgDZUrKiOcVIoFEgkZZfZZcuWM0yZUoXU1HpAMh4e\n2/H17VVm1yuOf8qz/bcSFxeLu3sPAgNDsba2YciQ/tSoUZOpU2dy+vQJ9u3b80KdUgctLS1Onz7J\nwYN7+eGHufTr9zUKRTYbN25DIpHSu3dPVq9eh7m5hab9sni+ffoc4vDhnppjS8tfuXSpXbEeOwEB\na9HT088XNwpw6dIFNm3ayKJFy4qs9yHYvHkj+/btBtRpJFq1asPkyePyxb+6un7BunXrMTIyJiBg\nLYcPH6RcOTNMTU1p2rQ5Xbt2x8trDi1atKJNm3b5ykdF3WDVKl+WL/fj2rWrzJ8/Cz09PZo1a8mh\nQwfZunUXly5dYPPmjflET3IJCTnJ3LnVSU62x9DwBtOm/c3gwW3f1+35VzNmzG+Ehb18B+vqXuDs\nWRmVK3+Y3Tnh3fzv5W2MuTKZjUgkEmbMmMHgwYM1qQkE8RMBAYG35U3yv8XFxeLtPZfnz59jYmLK\ntGkzefz4EeHhp7hy5TIhIQHMm7cQgOPHj7BkyQJSU1OYMmUmDg4NUSqVrF69grCw40gkMvT0+nDh\nwgCmTfNCVzcSIyMj7t+/R1jYjjIZq1wu588/N+PoeJ/U1GwcHdvh5TWuTK71JmzfHs7//pdCkyYV\nadeu4Yfuzr+e48cj8fW9ikplwq5dfzNunC3W1jYa2XRra1vi42NJTU1h3ryZxMQ8fPE3ksXgwWqx\nDZnMSJMbzMrKmri42HzG3Juye/cFli17TGqqDi1aPGPJkh6FdiYqVEgHcsgVy65UKbXE0IuiTr9K\ncv9V7N9/gXPnEqleXZuBAz8t1Rg6N7c+uLn1yfddXkMOYOvW3ZrPxcVs5Y3Lylvezq4Oy5f7AWBv\nXz/fO2bo0JEAODk54+RUtLtg//6tqVHjKhcvbqNtW1vq12/7FqN8e1JTUzl8+CA9evQiMTGRn35a\nzI8/LnyvfSgrKlVSABmAOmayYsUHlCtXuikYBATeljJbWm7Tpg1t2rw6Ca2AgIDA6/Am+d+WLVvM\n5593o1OnLuzbt5uffvLB29uHli1ba1bDc8nJycHfP5g//ggnMHAtP/20ir17d6Gnp0dS0iQSE9tR\ntaoHaWktyMjQ5uHDm6xfv4WKFSu9orfvRq4Efm6+qrS01NcSH1i3bg0ODo5F5kh6V7y99/Hzz63I\nzrZEJrvOnDkn6devdakXG+jbAAAgAElEQVRfJy9xcbFMnjwun6ABlO04PxaePXvKxInPiIvriqXl\nPpYsaUKVKuH5xGxyhWx++cUPZ+dGeHv7EB8fx3ffDWfjxm3s37+HmzdvaNoUi7XIycl56z4lJz9n\n1qw0YmLcALh/PxUbm4OMHv1ZvnJz5rTnyZNgbtwwxcIijXnz6r6y3YICFrk4On6Co+Mnb9THkJCT\nzJpVg7S0TxGJnvD337vw8ur+Rm2UJosWzefevTtkZWXRuXNXatasXXKlPMTHJzJ16iliYw2xtU1m\n0aKOGkXG4mjevD7Nm9f/IDs3KSnJ7Ny5lR49elG+fPl/jSEHMH68C/fuhXL+fDmMjTOYNKkSurpv\nnoxeQKAsKDs/IQEBAYFSYuvWME6dOgFQbP63CxfOAXD9+lW8vX0A+Oyzz1m9ermmnYJe5W3afPqi\nvp0mf9yff57l9u2/qVhxF3p6qxGL05DJztCwoQ7R0fXK1JCDwhL4Dg4vd8Fy+1/UbsPgwcPLrE8H\nDmiTna12J0pNrcvu3dfp16/MLvdKynKcHwvXr9/l4UMnJBK18ZWVVZWrV89ScO6oUqlIS0vVJOfO\ndQEsjneJqoiPf0xsbI0838iIiSlcztDQkODg9+8SDHDwYAZpaWqDSaUy49ixDysQMWvWj+9Uf+LE\nkxw61B8QcflyDlLpRnx9P5xxWhJ+fiuIiYlm4MDeVKlSjfv37xISspn9+/dw6tTvZGRkEB39EHf3\nPmRmZnHkyEGkUm0WL/bFyMiImJholi5dRFLSM3R1dZk8eTrVqllx7NgRgoL8EYu1kMlk/Pzz2vc+\nNm1tbfz8XF+hqiog8OEQjDkBAYGPmrfJ/1bcpLXgP2GpVPtFfa189cePn0SDBo4sXXqUxEQJLVoY\nYmVlzqZNpZNixc/vZywsKvDVV66AerdJX98AlSqH48ePoKury8OHD/D3X0Xt2nacOXOaevXqc/Pm\nDRYvXs66dX7cvHkDkUhEly5f8vXXHvliAi9cOM+qVb4olUrs7OoyceJUpFIpvXp1o3PnroSHn0Kp\nVDBv3gKqVbMqsb9SqbLA8dvv8LwJOTk5LFw4n2vXIjA3t8Dbewk+Pt6acfbq1Q0Xl06cPRuOWKzF\npEnT8fNbQWxsDB4e/ejevWfJF/kIqVPHiipVrhAf3wAAqTSGunUNuHMn/29YLBbj4dGf+fNnERy8\njmbNWpKbA6uo/FfvMgmtVq0q9eod4do1OwB0dO7i7Pxxqenp6ORPTK6rm1VMyX8G9+8b8zKnmZi7\ndw0+ZHdKZOTI0dy9e4fAwFDi4+OYNGms5lzu95mZmbi5fcmoUWMICNjIihVLOXhwH19/7cGiRfP5\n/vtpVKlSlb/+usaSJQvx9V1NcPAvLF26kvLly5OWlvoBR/jfS8ki8M/gwyQOERAQEHhN3jT/m719\nA44ePQTAoUMHcHBwBEBfX5+0tLQSr9e4cTN27NiGlpYWU6d+zpgxtfn8c8d3H0ge2rd34dixw5rj\n48ePYmJiQnT0Q7y9l7J2bTAKhYKmTZtz585tYmKi+eorV9av30JS0jMSExMICdlMcPAmunTpBryc\nvGdmZuLlNYe5cxcQHLwJpVLJzp3bNGVyExR3796LsLANr9XfoUONKFfuNJBK1aoHGDGiaqnej+J4\n+PABPXt+zfr1W5DJDDlx4lihhMsVKlQkMDCUhg0d8fKajZeXD2vWBBEQ8P5X70uLcuXMWLjQkEaN\nwjEzG8SYMadxd2/FtGmzNG7Cufm3cmOrAgI2MnToSE0OrM6duzJ27PeaNhctWkbDhk5v3SddXV1W\nrbLniy/C6NBhOzNnRuLq2vzdBlrKjB5dC1vbnUAs5csfZdQokw/dpXeiWrXneY5yqF79wxoyJZF3\nEa3ggpqjozN6enqYmJggkxnSooXaTdvGpgbx8bHI5XKuXo1kxozJDBzYGx8fL548eQJA/foOzJ8/\niz17fs236CYgIKBG2JkTEBD4qGnSpDm//rqdvn1dqVq1Ovb29YH8K6R5P48dOwlv7zmEhq7H1NRU\nIzbQvn1HFi6cz7Ztm5k3b0ERV1K30a1bd+LiYhk8WC19bmpaDi+vxW8tyFAUNWvWfmGUJfLs2VMM\nDQ25c+c2f/55josX/yQhIQGVKoe7d28zduz3REdHU7euPQCWllWIjY3hp58W06xZSxo3bqppV6VS\n8eDBfSpXtqRKFbXB1blzV3bs2MLXX3sARScoLgl39+Y0afKAq1dP0qSJHRUqmJfOjSiBSpUsqVGj\nJqB2hY2Liy1UpmVLdWy2jU0N5HI5enp66OnpIZVKSUtLxcDg1TFGHysuLg1xcXk7oZkdO8K5eTMF\nZ2cLXFze3oAriJ2dFb/8YlVq7ZU2jo41OXSoApGR/6NGjeolpkT62PHxacXUqeuJjTXExuY53t4d\nNede5XL9MaKtLdV8FovFmuPc2E+VKgdDQ0MCA0ML1Z04cSrXr1/jjz/CGTy4n0b9U0BAQI1gzAkI\nCHzUSKVSfHyWF/r+0KETms9t27bXpByoWLFikTml6td3YMOGLZrjFSvWaD6bmJhodjREIhHDh3/D\n8OHf5Kv/NoIMr+LTTzvw++9HePLkCe3buxAfH0/fvgP48suv8pWLi4tFT+9lsJQ6JmkT586d4ddf\nt3Ps2GGmTp2pOV9wclcwxiN3EqWlJX6jVW5r62pYW1d7ozG+K/kngFpkZ8uLLZNXHCT3+L+4ir9o\n0QGWL29OVlYVDAyimDXrBAMG/HfEyAwNjWjRovT+TovKR1malORyrVJl4+bWlsGDhxMXF8vQof01\nLtft2rmQkpLM6NETANi9eyf379/lu+/Gl0lfS0JfX5/09PQ3qpNrlOrrG1C5cmWOHz/Cp592QKVS\ncfv239SoUZOYGPViVt269pw9G87jx48FY05AIA+CMScgICBQDCqVipMnL/D4cQqdOzcuUUnuTWjX\nzoWFC3/k+fMkVq70JzR0FwEBIdSq1YA6dWqQkPAYiURaqN7z50lIJBLatGlH1arV+PHHlzLnIpGI\natWqExcXS0xMNJaWVfjtt/1FutclJiZw48ZfpTaeVxEXF8uECd9hb9+Aq1cjsLOrS+fOXQkMXKtJ\nfm1pWQVv77nExsaiq6vLwIFDAfXkNjY2moiIK+jrG2BjY0toaAgbNgSRmJjA9evXaNq0xTuJe3xM\nBAX9wqFDBzAxMcXCogK1a9dBJpOxe/cOsrMVVKlS5UVuOV3mz5+Njo4ut27d5Nmzp0yZMoM9e3ZQ\nqVIQGRkOPHrkze7df1G37lkCAtaSlZWFpWUVpk1T5y8TKJl32fl6nXyU7du74Ou7RGPMHT9+lD59\n+nP1agT+/iHk5OQwZcoEIiIuY2FRgZiYaGbMmEvduvbI5XIGDPDgm2/GoqWlxYEDe/j+++lv3d93\nxdjYhPr1Hejf343q1a3zuUPnv4/5vSpyz82c+SM+PgsIDg5AoVDQoUNHatSoyapVvkRHP0SlUuHs\n3FizWy8gIKBGMOYEBAQEimHSpJ1s3NgWhcICB4ethIa2xtzcrFTatra2QS5Px8KiAkuXniYgwBWZ\nzITBg8dhaSmhfHlTZsyYV2gilJCQgJfXHFQqtQjJiBHf5WtXW1ubadNmMWPGZJRKJXXq1KN791x1\nwaInVO+DmJhofvxxEVOnzmTIkP4cPXqI1asDOH36BCEhgVSooDZcvL2XcOnSBZYuXajJYXb//n26\nd+9JVlYWBw7spWvXL/H0HMxXX3XB13cJTZu2eOWE8Z/CjRt/ceLEMYKDN5Gdnc2gQep8cW3afEq3\nbmoVQ3//1ezdu4uePd0QiUSkpqawZk0gp0+fYMqUCejoDOLmzW+oVq0n2tpRiMXJhIRsw9d3FTo6\numzYEMTmzRsZMGDIBx7tu/M6iwRWVjYsW7aIu3fvoFQqGDRoGC1btnlthUWA337bz8KF81AqlUyd\nOpM6deohl8uLbffEiWNkZGSQk5PD7NnzmTlzKunpaSiVSiZMmJpPofZVLtcDB/YGQC5X99HCogIV\nKlTSuFzr6enh5NSI8PBTVK9uhUKhwMbmw+b0LUrBs3PnrnTu3FVznOsFUfBcpUqVWbKksBfG/PmL\ny6CnAgL/HgRjTkBAQKAI7t69y6ZNDVAoqgMQEdGPVas2M2tWl1K7RnDwJtLT03F2voRCUZmkJE+S\nkjxxctrCzz93zlculxo1ahIQUFi4JG8i4k8+aURAwMZCZfJOomxta1CxYqVCapEPHtxj8WJvMjMz\nsbGxYvz4aSgU2UycOIZ169Zz69b/GDSoD9u378XCogJff/0l69dvQUdH55VjrVTJUjPRzJv82sam\nBnFxsTx6FKeZtDk5OZOens6GDVvYtGkjLVu2pm/fAQDs2LGV338/yu+/H8XY2Jjnz5+TkZHxygnj\nP4WrVyNo1aotUqkUqVRKixatUKng9u2/8fdfTVpaKunpcpo0aaap06KFOnGxtbUt5cqZ0bNnbWbO\nPEVmphUVK+6hQwd99u69w4gRgwDIzlZQv36DDzK+sqCkRQIrK2ucnRszbdosUlJSGDbME2fnJsDr\nKSyqVCoyMzMIDAwlIuIy3t5zCQnZTEhIQLHt3rr1P4KDN2FoaEhY2AaaNGlG//6DUKlUyOWFXYXf\n1uUaoFu3LwkJCaB6dWu6dPmijO7yh+P8+WtERkbTunUdatWq/qG7IyDwUSIYcwICAgJFkJmpQKHI\n64omQqksfQFg9Y6SqsB3pe8yGBh4gl27MpFKlQwdWpH69Svw8OEDZs/2YvLk6cycOZUTJ46xcWMI\n48dPwsHBkbCwQAID1zJ69ASysjJJT08jMvIydnZ1uXLlMg0aOFCunFmJhhwUFkDIjW8TiUTk5CgR\ni6XFukrq6OSdwKpYuzZYUz8jIwMvr8PExOhQt24O48Z1fK0k6x8noiLvgZfXXBYsWIKtbQ0OHNjL\n5csXNefyJhHX1pbi6tqURo2iWbAggU6dHDA3Nyc+vgmzZ89/b6N4nxS3SGBtbUt8fCwJCY8JDz9J\nWNh6ALKzs3n0KB6RSKRRWNTT0yuksHj79i1A/fvs0EGdGN3BwZG0tDRSU1M5f/5sse06OzfG0FCd\ntqFu3Xp4e89FoVDQqlVbatasVWgMBV2ub9++hb+/Hx07dkZPT69Yl2t1+/Y8fvyY//3vJiEhm9/6\nPrq4tOLw4VNvXb8s8PM7xqJFtqSm9qJChZMsXfoUF5fSVRYWEPg38E/9jycgICBQptSqZUvHjicB\n9Uq6tfVu+vQpfREEPT09evVKQls7GlBRvfp+Bg2qUWK9N+Ho0cvMnVuDM2d6cuLE13z/fTZxcY8L\nqUXGxESTmpqiSefQo0cPrly5DIC9vQORkRFERFyhX7+BRERcIjLyCg0avJ3iYkEcHBw5dOgAoM4t\naGJi+kIIIr9x06hRU7ZufblTOXz4Ovz8XNmzpycLF7rg7b2/2GukpqZq0jRcunSBSZPGlUrfS4sG\nDRwIDz9FVlYW6enpnDmjnlzL5WmUK2eGQqHgt9+KH18uVlZVqFatAqamJtSrV5+rVyOIiYl+0Zac\nhw8flOk43ifFLRLkFcCZP38xgYGhBAaGsm3bHqpXtyqybkGFxeLI9eYtrt288YgODo6sXOmPubkF\nXl6zOXhwX6H28rpclytnRqNGTXFx6cSIEQPx9HRn5swpyOXpL65d2H24XbsONGjQ8B1jel/fLVml\nUr2XGNXQUAWpqfaAiEeP2hAY+KjMrykg8E9E2JkTEBAQKAKxWMy6dV8TFLSf5OQcevSoj7W1ZZlc\na86cbjRrdpb79//gs88aYGVVuVTbv3DhEWlprTXHcXHNuXx5UyG1yNTUlHz18k7YGjZ0JCLiMo8e\nxdOqVRs2bAhCJBLRvHmr1+rDqxJYi0QiBg4cirf3XFq1akS9evX54YfZmnN5q44dO5GlSxfi6emB\nUqnk7l0LIHccJly6VPwuYUpKMjt3bqVHj17FlvmQ2NnVpWXL1nh6ulOunBm2tjWQyWQMGTKCYcMG\nYGJiQr169vkUA4tL0ZGLiYkJ06fPZvbsaWRlqZNqDxs2iqpV368y6YeiceOmbNu2iXHjJgHwv/9F\nUauW3SuNkYL50o4dO4yTkzMREVeQyQwxMJC9drvx8fGYm5vTrVt3srKyuHXrJp06FXbVzutKDeDq\n6o6rq3uJ5QAiIyNwd+/zirvw+qSnpzN16kRSUpJRKhUMHTqSli3bEBcXy/jx32qUNBcvXs7Bg3sL\nifV4ePQlJiaapUsXkZT0DF1dXSZPnk61alZv3JecnILKvP+8OFgBgfeBYMwJCAgIFINEImHIkI4l\nFywFOnVqWnKht6RePVN0dO6RmWkFQPnyF7G3t+LEifzlDAxkGBkZERFxBQeHhuzatUuTjsHBwZE1\na1bi6PgJIpEIIyMj/vgjvJAAS1HkJrjOJW9836lTv7N2bRA6Orp4e/vQsqUzfn4BmvODBg3TfM7M\nzCQpKYkpU2Zqdj+6dduT71qmpoVjknLx81tBTEw0Awf2RiKRoKurxw8/TObu3dvUrl2HmTPnARAV\ndYOff16GXC7H2NiE6dNnYWZWnm+/HUbt2nZERFxBLk/nhx/mEBISyN27d2jf3oWhQ0eWeC9KwsOj\nH4MGDSMjI4Nvvx2GnV0datasnUfE5iV572Nx91ilUlGrlh1r1wb/Y3KSvQklLRIMGDAEX18fPD3d\nycnJoXJlSxYuXPbaCosikQhtbW0GDeqjEUABGDBgCMuXLymx3cuXLxAWth6JRIK+vgE//DCn1Mb+\n559XmDt3KnXq1MHJyblU2tTR0cHbezH6+gYkJSUxYsRATS7HvEqaxYn1ACxaNJ/vv59GlSpV+euv\nayxZsrDIdDEl0asXLF16h4wMG8zMzuPhYVoqYxQQ+LchGHMCAgL/KPbv38PNmzc0K+ICJdO1axNu\n3fqNPXsuIZUqGDLEhGrVqhc5EZ42bTY+Pt5kZGRgY2PFhAlqqfOKFSsBaNIcODg4kpiY+FquXa9K\ncLx16yY+++zzAnFxakJDQzh+/AhZWdnUrt2AQ4cacOuWNVZWQ6hcOR09PW2++KILcvkGnj37AwOD\ny6SnG7Jy5V2++WZMofZGjhytEb24fPkiU6dOYMOGrZiZlWfkyMFERl6hbl17fvppMQsXLsXY2ISj\nRw+xdu0qpk6diUgkQirV5pdfQti6dRNTpkwgMHAjhoZGuLl1x82tj0YB8W1ZtGg+9+7dISsri86d\nu1KzZu23buvy5Vt8//1fREdXwsYmmp9+akStWh92Ry4uLpbJk8dp4rtCQ9eTkSHH0NCIXbt2oKWl\nhZWVNXPmeBWrGJnLqxYJ8p77/vtphfrxugqLefNR5kVHR+e12i14XFqsXn2MxYurkpp6iMePj3Dp\n0v9wciocj/emqFQq/Px+JiLiCmKxiMTEBJ49ewqQT0mzKLEeULvxXr0ayYwZkzVtZmcr3qovY8e6\nUK/eBaKiLtCihQ1OTo3fcXQCAv9OBGNOQEDgH8W/cXfhfTBu3GeMKxAilnci7OHRV/N5zZpAAMzN\nDUlIeOl6uWPHy3iffv0G0q/fwGKvV9Atq06dety5c5vMzAzatm3P4MHD2bp1E4mJCYwePQITE1PN\n6v3atas4cuQ35PJ0QkI2Y2xsQseO7iQnP8DS8hFKZSqpqd3ZunUUfn4raNbsL8LDT9OmzafMmvUj\naWmpRfYp16h0cWnFwoXLqFOnHuXLmwNQo0Yt4uPjkMlk3L17m7FjRwGQk5ODmZm5po2WLXNFMmyx\nsVErSAJUrmzJo0fx72zMFSXt/rbMmxdFZGQ/AJ4+hR9/3EhIyMflXpn797xxYzDbtu1BIpFonl9x\nipG6uoUN/4+NR4+eEBR0DrEYhgxpjqmpSam1rVKpCAxUkJqqXli5e/cL/Pw2s3btuxtzhw4d4Pnz\nJAICNqClpYWr6xdkZmYBFFDSLCjWo3rRtxwMDQ0JDAx9574AuLg44+JSKk0JCPxrEYw5AQGB98pv\nv+1n27bNKBTZ1K1rz4QJU1i6dCFRUTfyTfRBnXdr+fIlyOUZaGtr89NPqwB1wusJE0YTExNN69Zt\nGTVq9Icc0n8CuVzO6NH7uHrVlHLl5MyYUYNmzexeWSevW1ZycjJGRkYolUrGjh3FnTt/4+rqzpYt\noaxYsQYjI2NNPXv7BmRlZbFnz68MGOBBuXJmZGREI5e7kJz8FVWq9CclZRMREc2RSrWJjY2latWq\naGtrc+LEcc0uQfGoDQipVFvzjZbWS9ELa2vbfK6eecmtk7tLp2lRJCInJ6eE675fnj7Nnxj82bOP\nN1G4rW1NZs+eTuvWbWnVqi1AkYqRjx/Hv1X81fvkyZOnuLuH89dfvQEVR44EsX1753cUKHlJTk4O\n2dla+b4rePy2pKWlYWpaDi0tLS5dukB8fFyR5Ro0cGDRIi/69RuIQqHgzJnTfPnlV+jrG1C5cmWO\nHz/Cp592QKVScfv230KibwGBMkQw5gQEBN4b9+7d5dixw/j5BaClpYWPzwIOHTrAsGHf5Jvo3779\nN9WqVWfWrGnMnbsAO7s6pKeno6Ojg0ql4tat/xEUFIpEIqV37564urpjbm5R5DXj4mKZOHE0DRo4\nFptPzdKyClOnztTIiQsUZv78I+za1ReQcucOTJ++kaNHa79ypzSvW9axY4fYvftXlEolT54kcvfu\nXWxsilbtbN68JZcuXaBduw4ATJ78A+3atUEmO4aBwUlycgyRSJ7j57cCqVRKq1Zt6NPHkwsXzvP7\n70fZsWNLkTE6+vr6+cRDVCoVK1f6cu7cGRITE8nJycHFpRPx8XEMHNgHS8sq3LnzN1WqVGXRop8A\niIy8wty5P7yYUCuYNGkcixYte9vbWqY0bJjM9esZgC6QjKNj8fGE7wstLS1ycl7u6GRmZgDg4+PL\n5csXCQ8/RUhIgGbXeP78xf84sZbNm8+9MOREgIjLl/uxY8du+vcvnfhbLS0tunRJZd26xyiVFpQr\nd55evcq9U5u5f8cdO3Zi8uTxeHq6U7t2HapXty5UBooX6wGYOfNHfHwWEBwcgEKhoEOHjoIxJyBQ\nhgjGnICAwHvj4sXz3LwZxZAhatevrKwszMzMCk307927A4CZWXlNUL2+vj6gnlB88klj9PUNALCy\nsiYuLrZYYw4gOvohc+Z4F5tPbd26NZp8agJFEx+vw0vVSIiLM0cul2ueS1HkumXFxsawadNGfvll\nPTKZDC+vOWRlZb7yek2aNGXJkoUaY1BXV4svv3Tj1q1satQwYPToTvzxRzgrV/pqlDibNWtB/foO\nuLl9WWSbxsYm1K/vwJEjv7F69XJyclQoFNkEB29iwYJ5HD16mAEDhjB48HAWL/YmOzsbsVjM/fv3\nuHo1gpycHNavD2Tt2iDi4mKZM+cHPmav38WLu2Fm9isPHkipXTuH8eNLP3brTSlXzoykpKckJz9H\nV1ePM2dO06RJMx49isfJyZkGDRpy9Ogh5HJ5sYqRHzv6+hIgE7URDZCKTFZyLsY3Yd68L7C3P8WD\nB+m0bl2Npk0bvVN7hw6p1ZCMjU2K3ZUuqKRZUKyndm31u7pSpcosWbL8nfojICDw+gjGnICAwHul\nc+euDB/+jeY4NjaG8eO/LTDRz3rlJLmgpH5J7m0l5VPr1KkLM2ZMeYdR/fuxt1exZ89TVCr1DkDt\n2rHo6zd7rbppaWno6uphYGDA06dPOHv2jEYlU19fn7S0tHxulqDOJ9egQUNOnfodT093RCIxOjrR\n9O/vzMqVvvTtuw4DAwMaNnQiOzuLSZPGkZWVhTp2R0Ry8vNCbYI6Ju306ZP4+4ewfPkSatSohUgk\nYurUmSgUM7lx4zoAtrY1CAzcCICPzwLi4mIZO3Yivr5LqFixEjk5Klxd+3LlynmgeKGMD4lUKmXG\njMIy+B+ShITHaGlJGDrUE3NzC6ysrFEqlcydO4O0tFRUKhWuru7IZDIGDBjCmDEj6dfva0Adl3jp\n0oWPLrl1Qfr0acuRI8EcOvQFoKBbtwN07+5WqtcQiUS4u7cuuWAZUlCsJzo6k8mT9yOXS2nfXsHE\niZ0/aP8EBP4rCMacgIDAe+OTTxozZcoEvv66N6ampiQnP+fRo/giJ/rVqlnx5EkiUVHXsbOrS3p6\nGjo6ukXmhyopgW1J+dQESmbMmI5kZh7g4kUp5cpl8MMPLUusk+uWVbNmLWrVqk3v3j2xsKhIgwYO\nmjJffNGDCRO+w9zcAl/f1ZodV1C7W4JapfD58ySWLl3IypXhKJVKnJwaMXHiFAIC1qKvr4+/f7Cm\nnqvrF6+V1FgkKijioI5Hio5+SEpKsua7l/F06vH4+PzG6tWVUalkVK8er4kHFHg9jI2NNWqWxZGa\nmkpiYgKJiQmsW7ceY2O1gIiLy4c1YF4HqVRKcLAbp05dRCrVolkzN8Ri8YfuVqmTV6wnKekZ7dtH\n8PCh2miNjIyhSpXTuLuX/J4QEBB4NwRjTkBA4L1hZWXN0KEjGT/+G3JyVEilUsaNm1TkRF8ikTB3\nrjfLli0mMzMTXV1dli1bWUR+qDdXuCyYT+3gwX2anSKBohGJREye/Plrl3+VbHxeevZ0o2fPl7sW\nue5eAG3btqdt2/aA2v1rzhzvQvWtrBrg77+cvXt3IxaL8PQcAsC2bZsJDz+FUqlg3rwFVKtmRXLy\nc7y955KRIWf48IG0a+fC0aOHiYuL5d69u4SHn3whrR5BSkoKAwf2pl+/QZprVatWnejohxw+LCYl\npTkVK27n2bNqLFt2klmzPrwL45vi6OjIoUMnC6ULKGtyd+L+978orKxsmDFjDlevRrJqlS9KpRID\ngwqcO/c5aWl/U778Y4YPH0yFChb51E7PnDmNjo4OCxYswdT03eLFygItLS3atv3vSOlHRd3j4UNH\nzXF2tiV//XXmA/ZIQOC/g2DMCQgIvFfat3ehffv8WtP16tkXWdbOrq5GJj+XgnmbXkd8oqR8apaW\nVYo1NgQ+PlQqFWtzuAAAACAASURBVPv3n2H9+rNcvFgBHR0HDA0b4e9fHWvrCvj5rcDExJSAgA3s\n3LmNsLANTJ78A+vWraF27TpcvHiB4cO/YcWKpTRq1IRff92OXJ7O1Kmz6NixE35+P3P06CGNvHpE\nxCVAnVusX7+BLFz4M4aGG8jIqA+IyMiQvqK3AgV58OA+U6fOxN6+Ad7ecwkL28Du3TtZvtyPKlWq\n0qrVEFJS0khKmoKx8SEMDNzw9VW7WmZkyLG3b8CwYaNYtWo5u3fvxNNz8AcekYCdnRVVq17h4cMq\nAEilsdSta1BCLQEBgdJAMOYEBAT+MRw5cpktWx4jkSgZMaImDRqUrJBWcIfI3b0PV69GkZiYxsqV\n/kgkwmvwn4RKpWLcuO1s2tSZnJwOSKVrKFfuFM+fm7B06U0CAkYC0KZNOwBq1bLjxIljgDrR8fz5\nixkwQL179/z5cwYMGIKurh5isZiOHTsB6h24XBdPIF+C+s8++5xNm5ScODEIC4v5SCQGdOtWtczH\nLZfLmTlzCgkJCeTkKPH0HMLq1ctxcenE2bPhiMVaTJo0HT+/FcTGxuDh0e//7J1nQBRXF4af3aU3\nqQpWigZUBLEX7L3Ghl0Ru35qbFHRWFGJXWygKFgRxa7BCPYSY0Ox90pTUEDqwrL7/diwiqAxStFk\nnl87s3PvnDtDmTPnnPfQqVNXUlNTcXefSFLSW7KyZAwZMiJH4+2ioHjxEtjbOwDK67lx43pKlixF\n6dLK6yiV1kRb+zIJCa4AJCe/awGhrq6uuje2thW5fPlCIVsvkBeGhkYsWmTEihU7SE9X1sz16iXU\nzAkIFAbCU4yAgMB3weXL9/jpJzViY7sBEBa2jwMHjCle3OSz51AoFPz88x62b69NZmZJGjUKYsuW\nzt9FE+KCpEWLBv9IVOLq1Suoq6urHsgLkydPnrBrlxNyuTkAmZkjefbMCF1dPSIjV+Pvr/y3ll0n\n+X7/OPh4faWm5rufgQ8juQqFgoMHz/HyZTJi8Qt0dI5TrdpmdHVL8tNPY6hXr1K+rjEvLlz4A1PT\n4ixa5AVASkoyPj4rKVHCHH//AFauXMr8+bPw8fFHKpXSv38POnXqiqamJp6ei9DR0SUhIYHhw92K\n3Jl7//oqFAr09PR5+zZRta9SpSSuXs3661gZ9eu/66Emkbx7bBGLRTnurUDR0rSpA02bFv7fBAGB\n/zr/vopcAQGBfyUnTjwhNraeavvx41acOhX+j+a4dOkGAQHOZGZWBEpz6pQb69adzF9Dv0v+Wc1h\nWNhlbty4XkC2fBqZLAu5/F1ao0QSi0Khjr6+Hj16dOH+/XsfHevg4ERIyGFAuQZDQyN0dHRzOXgf\n9qP7+ec9DB1ajWnTuuLnV45fflnA778fZvfuDTRs6EhhYGNTgcuXL+DtvZLw8Gvo6ip7emU7ZtbW\n5alcuQra2toYGhqirq6uUof08VmFq2svxo0bSVxcLPHxbwrF5o/x8mUMN2/eACA09Hfs7CoSHR1F\nZGQEADY2b3F21qJfv12UKCHGxSX/61nv3r3D8uWL831eAQEBgcJGiMwJCAh8F5QurYVYHIdcbgqA\nru4DfvihFHK5/LOV4uLjU5DJ3hdLUCet6PsoFzgBAZvR0NCgW7eerFixhEePHuLl5c2VK5c4dGg/\nkLeoxPHjx1m5cjUyWSYGBsWYOXMu6enpHDiwB7FYQkhIMGPHTsLRsWqhraVChfK0bbuDAwfKAXqY\nm3tTokQIRkZ6nD+vy4QJUz5oM/FOMGfgwKF4es7B1bUX2tra/PLLLOURIlGOVhhOTjXYunUjbm69\n6dixC7t22SGXlwDgwYOubNgQyK+/Fm4j6zJlyuLnt43z58/i67uG6tWVfcWyI5BisRh19fdVW8XI\nZDJOnTpMYmICfn5bkUgkuLh0RCrNKFTb30ckElG2bDn27t3Jr7/OwdLSmh49+lC5chWmT59MVlYW\nFStWxsvLHTU1NXbvTsihdvp+VO+fCh+9j51dRVUPy89BJpN9Vkp2TEw0N26E06JF6y+27XOZN28W\n9es3UIkECQgI/DcRnDkBAYFC5ciRYHbt2oFMlkmlSvbY2FQgJiaKkSN/AiA4+CD37t1h3LhJuY51\ndX3D4cMm6Ou7Y2tbm2XLXtK4cVPu3buLp6fyLfulS3+yd+9u5s9flOvcjRo5UavWXi5edAPEWFvv\nw8Ulb/GVfxOOjtUIDNxKt249uXv3DjKZDJlMxvXr16hatRpHjx7JU1SiRo0arFu3EYCDB/exbdtm\nRo0ay48/dkVHR4eePfsW+lpEIhFr17rQqNFREhIy6Ny5D6VLj89xTFDQftVnO7uKrFjhA4CBgYHq\n5+R9Bg4cmmPbwMAAX9/NgDKKBB9Gsgo/qSUuLg59fX1atmyDnp4+Bw/uy/H9x9JHU1JSMDIyRiKR\nEBZ2mZiY6MIw96OYm1uwbduuXPurV6+Jn9+2XPs/pXZqa1uRdevWMH/+bG7cCMfOrhJt2rTH338d\n8fEJzJzpAYCX1xIyMqRoamri7j6TsmXLERZ2mcDAbSxcuEylchoVFYWWlhaTJk3DxqY8GzasJSoq\ngqioKMzNLXJI8X+MqKhIQkOP/CNn7nMdxQ/JS9lXQEDgv4fgzAkICBQaT58+4fjxUHx8/JBIJCxZ\nsgBtbW1Onz6pcuaOHw/F1XVQrmMXL/6VJk008fCoS7NmmfTr144mTZoD0KdPNxITEyhWzJDffjtI\n+/Y/5nl+LS0ttm9vw5o1O8nMFNOzpz3W1qULbf1Fha2tHffu3SE1NQUNDQ3s7Cpy9+4dwsOvMnbs\nzx8VlYiOjsbDYx5v3rwmMzOTkiVLqeb8jDZuBYZEIqFfv/yNRhw+fIXff49DRyeDn392xtjYCFCK\ndXTqdJbt28ujUBhjbb0fN7fPj+jkF48fP2T1ai/EYhFqauq5IpC5H+yV2y1btmby5PG4uvbE1rYi\n5cpZ5RiT1+dvkVevXnPmzHUqVCiFg8MPqv2RkRHMnbsQd/cZDB7cn2PHQvD29uPs2VNs3uzP9Olz\nWL3aF4lEwqVLF1i3bjVz5y7MMXe2yqmn5xLCwi4zd+4MlZLps2fPWLNmPSdOHGXIEFfVi6W2bTuy\ncOE8fH03kZWVxdChrsye7YmPzyqeP3+Km1tv2rTpQLduPfD2Xsm1a1fIyMikSxcXfvyxC2Fhl1m/\n3gcDAwOePXvKpEnT2LBhLYaGRjx58ghb24rMmKF0RjduXM+5c6eRSqXY2zswadI0le2f009RQEDg\n343gzAkICBQaV65c5N69uwwe3A+AjIwMjIyMKFmyFLdu3aR06dI8e/aMKlUc2b17R45jpVIpJiYm\naGhoIBaLc6QWtWrVliNHgmnTpgO3bt1UPQTlhb6+PpMntyvYhX5jqKmpYWFRiuDgg1Sp4oiNTXnC\nwi4RGRmJpaXVR0Ul5s6dS7duvahfvwFXr17Bz29dUS2hQAkNvcZPPxmQkNAYUHDrlj979nRGTU0N\nkUjEsmVdcXY+TWxsKu3bO1GmjHmh21irVh1q1aqTY9/7EcgPW3a8/52Pj1+OcfHxb0hKektYWBix\nsUm5FF+/NcLDHzBs2AseP26Bnt49Jkw4xv/+p/z9t7AohbW1DQBWVtbUqFHrr882xMREkZychIfH\nDCIjXyASiZDJZLnmz1Y5BahWrQaJiYmkpqYgEolwdm5IVFRkrpdQL148w9m5Ib6+3kil6bRq1RZr\naxtGjBjN9u1bVS1T9u/fg56eHr6+m8nIyGDkyMGq+/jgwT22bNmJubkFYWGXefjwPlu3BmFiYsqI\nEYO4fv0aDg5V6dKlu0qB1cNjBufOnaF+/QYFe9EFBAS+GwRnTkBAoFBp06Y9w4b9L8e+3347wPHj\noZQrZ0mjRk0+eSyAhoZmjkhC27YdmTx5HBoaGjRt2vyza+j+Szg6VmX79q1MnToTa2sbVqxYSsWK\nn1ZhTE5OxtTUDIDDhw8ByjTYS5cuUKNGLTZsWIuOji69en1+uuU/Vc4sDI4efUlCQre/tkRculSb\n58+fqZwEkUhEt25FqwCZHygUCsaO3U1wsBUSSQZDhlxgwoQWfz+wiPH2fsDjx8pUy+RkJ/z9nzBi\nhBx4VzMIOesGxWKliun69T7UqFETT8/FxMREM3r0sDzP8SmV0w9fQkmlUoyNjXFzG8KgQf3Q1NRU\nta/4cJ5Ll/7k0aOHnDx5DFCmvUZEvEAikVCxYmXMzS1Ux1asWFn1+1a+/A/ExETj4FCVsLBLBARs\nQSpN5+3bt1hb2wjOnICAgArhiUdAQKDQqF69FidOHCM+Ph6At28TiYmJoWHDJpw5c5KjR4/QvHnL\nTx6bF6amppiamrJpkx/t2nUonMV8Zzg6OvHmzWvs7atgZGSMpqYmjo5OwMfT7UaNGsX06ZMZNKgf\nhoaGqlS+lJQUfv89mP379xAdHaU6PizsMpMmjfsbS769dL5ixWTAu4iNoWEUhoaGRWdQAbF9+0kC\nAzuRmNiYN29asny5I+fOXStqs/4WmUySYzszU4JcLv/bcQqFgpSUdy8kfvvtQJ7HfY7KqbIWLwB/\n/wACAnbj5jaEhIQE0tPTSEtLRSqVftSO8eMnqcbu3LmfmjVrA6ClpZ3jOHX1d/30sltqSKVSli5d\nyLx5C9m0KZAOHTqRkVF4AjbR0VH0798j1/4NG9Zy+fLFT47dsGEt27dvLSjTBAQE/kKIzAkICBQa\nlpZWDBkygvHj/4dcrkBNTY0JEyZjbm6OpaU1z549wc6u0t8em1d9T4sWrUlMTKRsWctCXtWXER0d\nxcSJY3BwcOLmzXDMzIrj6bmE58+fsmiRJ1KplFKlSuPuPgN9fX1GjRpK5cpVCAu7THJyElOmzPhH\nKpLVq9fkxInzqu3t2/eoPoeEnOLw4UMEBm5DJBJhY1Oec+fOEBCwET09PfT19enVqx+6unrs37+H\nqlWrMX78JPz81qGtrQMoa5e8vVfy/Pkz/ve/IUyePI2yZS2Jiopk9uxfSE9Po379hvl3AfORceOa\ncvOmH+fPV0Ff/zWjRyswNv78/oXfCy9fSlEojFTbUmkZnj4Np379IjTqM+jWzZRz5y7w+nVtxOJY\n2rRJVAmGfPi34P1tsVhMr179mTdvJps2baBuXWfef5mQfejfqZxWr16LKVMm0L17b4yMjHj7NpHU\n1FSWLVvIkCEjiIqKxNt7BePGTUJHR5fU1BTVOWrVqsuePbtwcqqBmpoaz58/o3jxEp+99mzHzcCg\nGKmpqZw4cZSmTYs+mjpoUN4Rzvf51uswBQT+LQjOnICAQKHSrFkLmjXL/TAikUjQ09OnX7/uuLj0\nomPHzvz66xxcXHrxxx9n/6r7KklqagrFihmqFOBiY2MZMWIgdevWp0OHTkWwoi8nIuIFs2d7Mnny\nNGbMcOfUqeNs27aZ8eMn4ejoxIYNa/H3X8eYMRMQiUTI5XJ8fTdx/vw5/P3XsXz5mnyx4/HjR2zc\nuJ6SJUsRHx/P3bt3qFatBo0aNSI09ChPnz7BzW0AERGjSU9/g4nJUZWs+/PnT+nTpxuxsa9o2LAJ\nRkbGuLoOYsmSBXh5eePltZguXVxo1aote/YE5Yu9+Y22tjbbtvUkLi4OHR0rdHV1i9qkAqFNGzu2\nbAkhIkIZ/a5Y8Tdatcr/Hm75TevW1TE2vsPJk0GUKaNFz57K3/MPa/2mTp2p+vz+d++/uBgyZASg\njPQXK6aMvn6OyumHL5YaNGiEuroGzZu3Qi6XM3z4QMLCLuPgUBWJRMKAAb1p27YDLi49iY6OYtCg\nvigUCoyMjJk/f1Gudhgfbmejr69Phw6d6N+/B8bGJlSqlFN9tzAcJrlczoIF83K8dFq82FPVFuH8\n+bOsWrUcLS1tqlRxICoqSlUz+PTpY0aPHsbLlzF0796Lbt16Fri9AgL/NUSKb0QKKTY2qahNECgg\nzMz0hfv7Lya/7u/bt28xMDBAKk1nyBBXVq1aR7t2zVmwYBn16jmzZs0KdHV1cXUdxPz5s3F2bsSR\nI4kEB99HW/s3TExM2Lt3xxdJfBcF0dFRjBs3isBA5YPmtm2byMjI4NCh/ezeraxPi4yMYPr0Kfj5\nbWX06GEMG/Y/7O0dePPmNSNHDiYwcG++2LJrVyDXroWhr1+MyZOVSnk3b17H338tcXGvycjI4Pnz\neKKiFiGRxGNk5IujY3Vq1dJnz54gVq/2ZcgQVzQ01FEoFJQsWYrMTBlbt+6kXbtmHDgQgkQiISUl\nmU6d2hIaejpf7Bb451y6dJeAgKeIxXKmTauDsbHx3w/6l3H27Cm8vVfi7j4Te/sqOb5bsSKU/ftB\nIpExaFAxevSoV0RWfh359Xc5OjqKnj07s2HDVsqXr8CMGe44Ozfk8uWL1K/fgDp16tOrVxfWrFmP\nubkFs2ZNIy0tlQULlv2VinmBlSvXkZKSTO/eXVV/CwS+DuG56t+LmZn+Px7zfTz1CAgI/OsJCtrO\nmTPKHlKvXr3ixYsXH5XM79ChE0uWLCMkZDUWFod4/nwHL16oc/LkVZo3r1lka/in5BRvkJCc/Ol/\nztk1NWKxRKU4mR+IRCIMDY24cOE83t4rqVevAb6+a6hVqwZnz/5BSkoKkIaGxkOyspTph2lp6iQm\nJmBgYICFhQX6+vr8/PNUDhzYq3orL/BpNm/2o3//gYV6zpo17ahZ0w747z4QOjs3wtk5t6BNcPBF\nFi92Ij1d2b5h5sw/cHJ6Snj4n+zfvxtbWzumT/+4Um5BolAoOHHiEi9fvqVt25oUK1as0M5tYVGK\n8uUrAMo2J9l1sgqFgufPn1KyZCmVkEvz5q04cED5kkkkElGvXgPU1NQoVswQIyNj4uPfqGoYBQQE\n8gdBAEVAQKDICQu7zJUrl1i71p+NGwOoUOEHMjKkH5XMr1LFkbi4ONTVnwFZZGSU/6v+53URrSB/\n0NXVw8DAgPBwpSjF77//hpNTwafBVatWkytXLuHl5Y2NTXl8fFby4sUzdu7cybx5C3Fyqo6amg4i\nUToAYnEGFStqqsbr6OhSsmRJrl9X2q1QKHj48AGgvFfHjoUAEBLye4Gv5Xtiy5aNRW3CN8vHhDcK\nklu33qgcOYA3b2pw5cpD9u3bxfLla4rMkQNwd99H374V+OmndnTqdJqoqFeFdu4PXzrlfJH0YZpn\nzmQvNbWcaqMyWf69hBIQEFAiROYEBASKnNTUFPT19dHU1OTp0yfcunXzb8e0bt2aN29GExs7HgBL\ny2Batfp8QZBvgbzEG6ZOncXixZ6kp6dTqlTpHHVAH4zONzusrKzp3NmFSZPGoqamjqGhISVKWHD3\n7m0mTRpH1apOqKtnUKPGTeTyGJKSMmnQoCL3798jKektkZERzJgxl+HDB5KWlka/fj1o3rwl5ctX\n4KefJjJ79i9s27YJZ+dG/1lRBHf3ibx69ZKMDCkuLr2IiookI0OKm1tvrK1titRR+KdER0cxYcJo\n7O0duHEjHDu7Sn+pPa4jPj6BmTOVa/HyWkJGhhRNTU3c3WdStmw5goMPcvRoCG/exJGeLqVhw8aM\nHDmGQ4f28/jxQ8aMmQDA0aNHeP06rlDXVb26OXp6t0lOVoowmZuf486dE0RFRTJhwmiaNWtJZGQE\njx8/IitLxsCBQ3F2bsTPP//E8OGjsbEpj5tbbxo1asqAAYNZv96HEiXMv7qWNyoqku3bbZHJygJw\n61YvvL134OGRf/0yv7RlSNmy5YiKiiQmJhpzcwv27dvN27dvAaGhuYBAYSE4cwICAkVO7dr12Ldv\nN337ulCmTDlVHcvHJPMBevXqye7dATRvnoGa2g4GD65QJM2cv5QPxRve79W2dq1/ruNXrPBRXQND\nQ8McTaHzg+zm4SKRshfWxInuXL58jgMHDnL37h2aNWuJubkFbm5DmD9fKcM+ZMgIHByqMmnSWDQ1\ntWjatAVRUREsWPAuzdLComSOptXZAhT/NdzdZ+SqCd29eyf+/gFFbdoXERkZwdy5C3F3n8Hgwf05\ndiwEb28/zp49xebN/kyfPofVq32RSCRcunSBdetWM3fuQgAePXpA+fIV8PRcQu/eXXFx6UmzZi3Z\nssWf//1vLBKJhJMnj6Gjo8ucOdO5f/8ulpbWTJ8+mydPnrBq1TLS0tIoVsyQadNmYmJiSkTECxYt\n8iQxMQGxWMzcuQswMjJmypQJJCW9JStLxpAhI3B2bkR0dBSTJ49j8+YdAAQEbCE9PY2BA4fStetc\nLl78A5FIxA8/lGXOHG+6deuAlZUNu3fvRF1dnbFjJ+LoWI2hQ12pUaM2jo5OhIdfxdzcHDU1NW7c\nuA7A9evX+PnnqV99rTMyMsnK0nxvj4isrPxOrPr4S5aPvYARiURoamoyYcIUJkwYjZaWNjo6Oqp0\n8Y+JuggICOQvgjMnICBQ5Kirq7N48Ypc+0NCTqk+N27cjMaNm6m2r1+/RrNmLfjll86FYmNRsXHj\nadavTyUjQ43WrVOZPbtDgUS3atWqQ61adXLsc3auSZ8+g3Idmx0tjIl5SVKSCC+vtZia5pTyj4h4\nyZQpfxARoY+19VuWLGmKkdG/r3fb55JXTej3woeRuHLlLDE2NmbRonnExydQpkwZKleugrv7BJ49\ne8arVzHcunWDPXuCePjwvirCNnBgXzp27ExWVha3bt1g2LABaGpqERMTTZUqxalWrSbnzp2hXDlL\nZDIZMTHRzJw5F3t7Bzw957B7907OnDmJp+dSDA0NOXYshHXr1uDuPoPZs3+hf383GjRoTGZmJnJ5\nFmpq6nh6LkJHR5eEhASGD3fLs1Yuu38iwIMH5zh27CBqamqkpCQDkJSURNWq1Xjx4jlSaTrTp0+h\nbFlLMjMzefUqBkdHJ3btCsTCoiR16zpz+fJFpNJ0oqOjKFOm7Fdf/3LlytGmzQ727y8P6GFpeZC+\nfW2/eL4Po8QdOyr/hq5cuZSLF//E2NiU2bPnY2hoSHJyEpqaWri69srVKqVECWWdnI1NeTIyMti0\nKZA2bZoA4ObWmz59Bqj6hgIq51lAQCB/EZw5AQGB74qQkDC8vPxITX3A2LGTi9qcAuX+/SfMm2dC\nYqIyncrX9yWVK5+hR4+i79e2f/9Fpk1T8OqVE2XKXGDpUiMaNXqnDDh58nlCQ/sDcPu2Ak3NLXh7\n/7sd74/xfk2opqYmo0cPIyPj402mv0Xej8S5uvYkPT1dFYlbtmwRCoUCe3sHxoyZwJgxw5kxw53B\ng4chl2cxatRYVq1azpo16zl69AgODo7IZFksXLiMSZPGqWqwOnT4kc2b/ShXzoqmTZuTnJyMvb0D\nAK1atWXTJj8eP37EuHEjAaVkvomJGampqbx+HUeDBo0B5cshUEcmk+Hjs4rw8GuIxSLi4mKJj3+T\n5/qyUwJtbCowa9Y0GjZsrJovI0NKUNB2VSqhiYkpHh6eqp6WMpmMu3fvULJkaWrWrE1iYgL79+/F\n1rZivlx7kUiEj48L9euHkpAg48cfq2BlVeqL5/swSty4cVPS09Ows6vE6NHj2bhxPf7+6xg3bhJz\n585k/PjJebZKyXaAjxwJJjb2FQMG9MbGpgImJuaEh9di/Hh1rKz2sHx57a+yV0BA4NMIAigCAgLf\nDdevP2DcOHUuXdrErVt/MHu2Nk+fRhW1WQXG7dsvSEx811cqK6sET56kFqFF7/D2juPVq+aAKS9e\ntGP16pyRpogIvfe2RB9sf3u0aNGgwOb+WE2ompoaMpmswM6bn1hYlMLa2gaRSETp0mVVzeKtrcuT\nmprKs2dPadWqLQBaWlpkZEjR1zegShVHli1bREpKMklJbxGLcz92ZDtSlSrZ8+rVK0JDf6d+/Zz1\nlQqFAl1dXaysbPD3D8DfP4BNmwJZunQlH4puZBMScpjExAT8/Lbi7x+AkZExUmkGEokEufzdGKk0\nXfV50aLldOniwr17dxkypL/K0Zw2bTbdu/emRo1a7Np1kLJlLbl//y6gvI9mZsU5ceIo9vYOODg4\nERi4lapVnb7iiudE2buuOWPHtv5qxygoaDsDBvRm2LCBqiixWCymWTNlFK1lyzZcv36NlJRkkpOT\ncXRUrqN163Zcu3Y113w//tgVM7PibN26k44dO3P5cjwXL/YjJqYj58+7MmvW5a+yV0BA4NMIzpyA\ngMB3w4kTj4iNfdf3KSKiOcePXy9CiwqW+vUrY2l5QrVtaHiVevW+jTfcUqlGju2MDPUc21ZWibx7\nyM7C2jq5cAz7YgquuKd27XpkZWXRt68La9euVtWEduzYmQEDeuHhMb3Azp1f5FQ0FKscLZFI9Jcz\nJlI5ZWKxGB0dHfz81nH8eCj16jVAoYARIwbx5s1rPrzW7zttTZs2x8GhKrq6urx8GcPNmzcACA39\nncqV7UlIiFftk8lkPHnyGB0dXczMinPmzEkAMjIykErTSUlJwcjIGIlEQljYZWJiogEwNjYhIeEN\nb98mkpGRwR9/nFWt4+XLGKpVq8GIEaNJTk4mLS0NTU1NDh7cw4ABg5HJZPTs2Zl+/bqzYcNald1V\nq1bDyMgYDQ0NHB2rEhcXq3KCYmKiCQ39tJJrXi8TgoMPsmyZss4wOTmZvXt3fXKOz+FjysHwzqlW\nKBR/m8otkUhQKOQAuaLMaWk5k75iY3W+2m4BAYGPI6RZCggIfDfY2BRDQyOCjIzSAOjo3KNixZJF\nbFXBYWZmwurV5nh77yAzU0Lnzvo0bPhtNDFu1SqD+/ejyMwsibb2I9q2zdkIeMmSpmhobCEqSg8r\nqyQ8PVsXmC1paWnMmDGF2NhY5PIsXF0H4+Ozkg0btmBgUIy7d2+zerUXK1euJTU1leXLF3Hv3h1A\nxMCBQ2nUSFnns27dGv744yyampr8+usSjIzyp6H2x2pCnZyqM2LE6Hw5R2Gio6PD6NHjVNvFixen\nevVahIQcZsCAwfz000RWrVqOn99WIiMjKFWqNJMmTeWXXyZjaWlFzZp1WLlyKUCunoTXr4fTs2cf\nRCIRZcuW1bCnbgAAIABJREFUY+/enfz66xwsLa3p1q0ntWrVxctrMcnJyWRlyejRozdWVtZMnz6H\nRYvms379WtTU1Jg7dwEtW7Zm8uTxuLr2xNa2IuXKKdsOqKmpMWDAYIYMccXMrDiWlsr9WVlZeHjM\nICUlGYVCgYtLT/T09Ni//wgrVixh6FBX5HI55cpZ5hD5ARg8eDiDBw8HwNTUjNOnL6q+i4qKJDT0\nCC1a5P4dkMlkqKmpkdfLhPcdqqSkt+zdG0Tnzt0++z5lO2fvz/OxKLFcLufkyWM0a9aS0NDfcXBw\nQldXD319ZasUR8eqOVqlWFiU5O7d29jZVeLkyWOq+XV1dTE0TAYyAXUgHXv7b/1FjoDA943gzAkI\nCHw3tG9fl+HDD7FvnxZisZw+fUTUrduiqM0qUN5v8vwtMWVKW6ysznD//jmcnIxp375pju9NTIxY\nt65wauQuXPgDU9PiLFrkBUBKSjI+PivzPHbjxvXo6+urlESTkpTKe+npadjbOzB06EjWrFnBgQN7\ncXXNLf7yNWzbdpZt21IA6NlTm/79i7728XPIysrKs43G+5/d3Ibg6TkHV9deaGtr88svswBlSl9Y\n2GVEIjHW1jbUqVMfyE4b7E2bNu24eVOfK1dEpKWtompVW6pVqwHAtm25I1EVKvzAqlXrcu0vXboM\nXl7eufa/r6T6Pt269aRbt5659q9Zsz7XvqNHQ7h58wYikRhbW1sGDx7OmDHDSUxMxNDQiKlTZxAb\nm8qYMXNJTdVHR+cpRkZyRo8eS+PGzfDxWcXz509xc+tNmzbt0dc34OTJY6SnpyOXy5k3bxFSqRRX\n115oaGggEomQyWTEx79RNev28VlJZGQEbm69qVmzDiNHjiEgYDMnThwlIyOThg0bM2jQMKKjoxg/\nfhTVq1cjPPw6ixevoESJdyq/H1MO1tLS5vbtW2zatAEjIxPmzJkPwLRpebdK6dWrL9Onu3PgwF7q\n1nUm2xl1cqqBmZk/1ao1R0enCY6Otkyd2j7PeyAgIJA/iBTfSCOQ2NikojZBoIAwM9MX7u+/mKK4\nv3m9cRbIf76X390XL54zfvwomjZtQb16DXB0rIqLS8c8I3ODBvVjzhxPSpUqnWOOpk3rcfz4HwAc\nOxbK5csXmDz5l3yz8fLlO/Tpk4lc/ozExN4YGFxn1qzLXL/+R67o1NcQHR3FxIljcHBw4ubNcMzM\niuPpuYS4uFiWLl1IQkI8WlpaTJ48jerVq7B3729s3uyHTJaJgUExZs6ci5GRMRs2rCUqKoKoqCjM\nzS2YOXNuvtn4PgsWBLNkSTtAWVNZqVJbDh1aj56efoGc75/w9u1bBg7cSlTUAbS1BzJzZmWqVi3D\n3Lkzadq0Oa1bt+O33w5w9uxp7txpwKNHNxGL04mOXkaHDstJSfmNwMC9XL16he3bt6ruc3DwQdav\n92HTpkD09fVZtmwh+/fv5eTJ81y6dIFVq5axaVMgu3btwNfXmyNHThITE82kSWNVipAXL/7JyZPH\nmDRpGnK5nClTJtCnT3+KFy9Bjx6d2LFjBxYWVp9aXr6hUCh4/Pgx6urqlC379eqdAn/P9/K3WeCf\nY2b2z//2CTVzAgIC3x3vK6kJCJQpUxY/v23Y2JTH13cN/v6+OUQupNKMHMfn9Q5TInmXqCIWi1TC\nF/nFlStPSUoqh6HhdgDevnXg/v3Yr5rzYzZGRLyga9fubNmyEz09fU6dOs7ChfMZN+5nNmzYwsiR\nP7FkyQIAHB2dWLduI35+22jWrCXbtm1WzfPs2TO8vLy/2pGLjX3N//63j+7dQ/DwOJTD7ocP1VA6\ncgpAQUzMWESib+PRZM6cE1y/bkF8vAs3bgxi1qzHGBgYcPv2DVXKZKtWbblx4xoxMXqAiOTk5oCI\nxMSyvHmjVM788OdNJBJRo0Yt9PWVD203boQjkSjTlJ2cqhMVFUm/fj3Yvn0z6elpxMe/yTXHxYt/\ncunSBdzcejNoUF+eP39GRIRShKhECQscHBwK8Mq8IysriyFDdtCggQRn5zR+/nmP0CxcQKCQEdIs\nBQQEBAS+a+Li4tDX16dlyzbo6upx6NB+VU1PnTr1OHXqXU1PzZq12bNnJ2PGTACUaZbZD9X5TWDg\nVoKDDwJQtWpdSpYMRl39OWXLdiIrqwJ2dpU5fz6cX36ZzJMnj7C1rciMGR4A3L17J8/m2KNGDeWH\nH2y5fj2c5s1bUry4ORs3+iIWS9DT02PatFlYWJRSpefZ2toRHR3FzZvhTJ/+rpVHZqZSRfPVq5fM\nmDGFN29ek5mZScmSSoEdkUiEs3NDNDRyCt38HT4+qyhevARdurgAsGHDWnbvvkd0dCYSyVuePJES\nF3cPL68JREdH8ezZEkqUOI+W1l0iI9dhZvYLMtnuXNevfftOdO/e65MNv4OCAtm/fw8SiQRLSytm\nz57/Rfctm7g4bSCNbCGf2Fh9lfrohw6Lre0bwsIUKBTqQBqVKkk5f/7jTo22tnae+0NCDiOXK1iz\nZj1nzpxk+fLFuV5GZNO37wB+/LELAIcPHyIwcBsBAVtISkokMjKSiRMn5UgFLVHCnHnzZqGpqcWD\nB/eIj3/DlCnTCQ4+yN27t6lUyV6VRtmiRQM6d+7G+fPnMDExZfDgEfj4rOTVq5eMGTMBZ+eGSKVS\nhg8fw82biZQsGUxs7BS2bWuKufkKXr+OQCqVEhkZQcOGjRk5csw/uPICAgL/BMGZExAQEBD4rnn8\n+CGrV3shFotQU1Nn4kR30tPT+fXXOaxfr4eTU3VVJNfVdRBLly6gf/8eiMUSBg4cSsOGjXPVgH0t\nd+/e4fDhQ/j6bkIuVzB0qCuurl0JCnqMsXFfevXSwc5Om82b77F1axAmJqaMGDGI69evUamSPcuX\nL2LBgqUUK5azOXZ2PdX69Zv/Wk9Pli5djampKSkpybx9+/YD5UkJb9++QU9PH3//gFx2Llu2kF69\n+lG/fgOuXr2Cn9+7ejRNTa1/vO5mzVrg5bVE5cydOHGUmJheREV1RaHQQyx+Q3h4e0DpTKenx1On\njgkPHw6iXr2TZGYqa8byun5OTtVypV++H6Xftm0Tu3blbPj9NTg5wbFjtlhYbCE+fgCVKsWSmpqC\nvb0Dx46F0KpVW0JCDuPo6MTkya3o1+8wCoU2Tk5vmD69DW3aLAJAR0eX1NQU1bwfOoIODk48fvwY\ngHv37qCtrY2+vj7Pnj1RjdPR0SE19V1bktq16+Dr60PLlm2Ijo7C39+XxYtXoK6uzsSJY/Dw8KBt\n2w6qVNDlyxfj6bkYgOTkJNau9efs2VNMmTIBHx8/rKysGTy4Pw8fPqB8+Qqkp6dTvXotRo78ialT\nf2bDBh+8vLx58uQx8+bNxNm5IXv2BJGZCc+e/Ya6+mNKlx7E06cHSExM4+HD+2zcGICamjq9e3fF\nxaUnZmbFv/qeCAgI5EZw5gQEBAQEvmtq1apDrVp1cu3fvn1Prn3a2tpMmzYr1/6QkFOqz40bN6Nx\n42ZfZdP169do2LCJyiFq1KgpxYopsLTUY/PmVoBSJr5ixcqYmpoBUL78D8TERKOnp8eTJ48YOzZn\nc+xssvuBAVSp4si8eTNp2rSFSpXzQ3R1dSlZshQnThylSZPmKBQKHj16iJlZNVJTU1TnP3z4kGrM\nl6bKVahgS0JCPHFxccTHv0Ff34DixUVkZCxFW/syCoUYufytqnl3iRIW+PqOUo13cfFFoVDkef3C\nw6/i7Nwo1zk/1fD7axgzpgUKRSinTtWgWLEOaGgYsGrVbcaOnYSn52wCArZgZGTE1KkzMTAwoHbt\nctSvX5VGjZRiQNlOZvnyFVSCL23bKgVQ3n9hMHDgUPbuDcLVtRfq6uqYmprh6tpTpSYJUKyYIVWq\nONK/fw/q1KnPyJFjePr0KcOHu5GYmIBIJP5LFVOp1nnt2jVmzfoVUKaCenuvUNlUv76yDYKVlQ3G\nxiZYW9v8tW1NTEwU5ctXQF1dndq16/51XcujoaGBRCLB2tqG6Ghli4cbN8Lp3bszDx4c4MmTjmRm\nlqRixXU4Olqjq5uFjo4uAJaWVkRHRwnOnIBAASE4cwICAgIC/1liY18zd+5Z3r7Vpm5dNYYObfr3\ngz6DvKJ7eQX81NXfpTFKJGJVPZmVlc1HlRi1tN6l6E2c6M7t2zc5f/4cgwb1Y/78RXkqT86Y4cHi\nxb+yaZMfMpmM5s1bUrduNQYOHMr06ZPR1zegevUaql5syojXP142AE2aNOfkyaO8fv2a5s1b8urV\na3buvEZKygAqVUokOXmjKnVQWzvv6N+Ha8juffZ3Db+vXQvj3LkzbN7sx6ZNgapatC9BJBIxdmxL\nxo5tCUzJ8V1eypnZKYrZZL8gUFNTy3V8mzbvFB4NDAw4derC39rzYe2ii0tPXFx6snv3Dl6/fq1K\nkd20KZAOHVp81CFXV1dGbsVica7+gdk/f+/XkIpEyoj3h8cAmJubsmmTKVu37uTatVimT6/Kmzev\nckWH5XL5365PQEDgy/g2qowFBAQEBAQKGYVCwZAhx9i+vQ+//daV2bOr4e9/6u8HfgaOjlU5ffok\nUmk6aWlpnD59gipVquZIlfsYZcta5tkcOy8iIyOoVMmeQYOGYWhoiEgkVrVdAKWEvJvbECwsSrJk\nyQo2bgxg69adDBgwGABn50bs3LlfJYyyYoUPoIwW9ezZ94vW3rRpC44eDeHkyWM0adIcU1M9fvzR\nnosXW/DTT5a8evXyk+NFIlGu63fmzEkcHJwwMjL+7Ibf6elpX2R/UbBo0WFatTpKx46HCQm5+o/G\nlitXnoCAfdSseZDOnfcRFnYLJycnjh0LAVClguY3jo5VCQk5jJ2dJUOHVkJLK4Pq1avl6UQKoigC\nAgWHEJkTEBAQEPhPkpAQz61b5cnukZWZWYZLly7h5vb1c//wgx1t27ZnyBBXADp06IytrV2OVLm6\ndevnGf1SU1PDw2NBns2xP2TNGi8iIl6gUCioUaOWSvjkSzh37jaHDr1ASyuT8eMbfbEwjJWVNWlp\nqRQvXgJjY5OPNu+GvCKYyu28rl+FCj8AfHbDb11dvS+yv7AJCjrH8uX1yMxUtst4/vww1au/xsTE\n5LPGr137ghcvJmFs7MeLF2ImT9YkOHg5EydOypEKms3n1Ifmju7m/q5zZxcWL/bE1bUnEomEadNm\noaamlqfasKA+LCBQcAh95gQKHKEfyr8b4f7+e/m331uZTEaDBkd59Mglew/DhgXh4fHfaHL8/v09\nf/4OgwdnEBvrDMipV8+PoKAuqpS8r6Vbtw74+W3FwKAYLVo0IDT0TL7M+29g1qzfWbPG5b09L9m1\n6xYNG9b8rPEdO4by559dVNt2dnu5c6fzv/p397/Ov/1v83+ZL+kzJ0TmBAQEBAT+k6ipqTFzZgnm\nzw8kPl4PJ6eXuLt/H45cbOxrAgMvoqkpxtW1MZqaml8136FDz4iNzXYoxJw/35CHDx9TsaLt1xuL\nMjKTlpaOh8cM0tPT6d+/B66ugylWrBhr1niRlZWFnV0lJk50R11dnW7dOtCiRWv+/PMcYrGESZOm\n4eOzkqioSHr16kenTl0BCAjYTGjoEaKiEjAwqMygQT1o3bp6vthcWDg4GKCp+RypVNlwu3TpK9jb\nV/rs8XZ2Kfz5ZwagAcixs3tbMIZ+BgqFgt9/P8+rV0l06FALY2OjIrNFQOC/guDMCQgICAj8Z2nd\n2olWraoik8nyLQpV0Lx69Zru3c9y+3YfIJPQUH8CAly+yn59/SxARvZjgZ7eS4yMSnzRXO7uE3n1\n6iUZGVJcXHrRsWNnAK5cuYipaXG0tLTZvHkHycnJ9O/fgxUrfChdugxz585k795ddO/eC5FIRIkS\n5vj7B7By5VLmz5+Fj48/UqmU/v170KlTVy5e/JMXL54TF9eJq1ddKVnyf0yYEIWamoTmzat+8bUo\nbLp0qcfz5yGEhl5BSyuT//2vJMbGn5diCTB3blvU1IJ4+FCLUqVS8fBo+feDCoiJE/cQENCKrCwz\n/P2D2LatJqVKfdnPkYCAwOchOHMCAgICAv9pRCLRd+PIAWzefPEvR04EaHDqVDeOHbtE69b1vnjO\nMWOacOWKP+fO1UVXN44RI15jbv5lDpG7+wwMDAyQStMZMsSVxo2VCqFWVtb4+/uSmZlBePg1dHR0\nKFmyFKVLlwGUCo979uyke/deAKo2BNbW5UlLS0NbWxttbW3U1dVJTk7m4sU/OX/+HDEx4ZQtewCx\nOI3k5BaEhr6kefMvvhRFglI188vGamhoMH9+x/w16At4/vw5QUH2ZGVZAHD7di98fALx8GhXxJYJ\nCPy7EZw5AQEBgSIkLS2NGTOmEBsbi1yehavrYEqVKs2qVctIS0ujWDFDpk2biYmJKZGRESxdupCE\nhHi0tLSYPHkaZctaFvUSBAoZZTsxOZAtuy9FQ+PLJfhB2ZQ6MNCFp0+fYmBQFjOzL09VDArazpkz\nSlXQV69e8eLFCwBKlSqNn982fvyxFb6+a6hePWdNWHb7gWyy5e3FYnEOZ1spjy8DoHv33nh4/MDr\n19neWybFiu36YtsFvpysrCyysnK+FJHLBeETAYGCRmhNICAgIFCEXLjwB6amxdm4MYDNm3dQp05d\nvLwWMW/eQjZs2EK7dh1Yt24NAAsXzmPcuJ9VMvJLliwoYusFioLBgxtQs+ZGIB14TYcOh2jc+PPE\nMj6FRCLBxsYGMzOzvz/4I4SFXebKlUusXevPxo0BVKjwAxkZUgBev37zV/NpNXr16sfNmzeIiYkm\nMjICgCNHgqlatVquOfPSaROJRNSuXYeTJ48xalQC5uaH0NcPpnHjVYwb93UN3wW+DEtLS9q3vwQo\na/ZsbPbRv3/lojVKQOA/gBCZExAQEChCbGwqsHq1F97eK6lXrwH6+no8fvyIsWNHAiCXyzExMSMt\nLY0bN64zffpk1djMTFlRmS1QhOjp6REU1J4DB35HT0+Ttm17IBZ//N1sXjVsLVo0oHfv3hw/fgIT\nE1MGDx6Bj89KXr16yZgxE3B2bohUKmXJkl+5d+8OEomEUaPGUa1aDYKDD3L27GmkUimRkRE0bNiY\nkSPHAHDq1HHu37/HqFFDKVHCnPDwdz3Tnj59zKxZU0lPT2PjxvVMnOhOcnIS06dPJisri4oVK9Op\nU7e/js4pn59T2l75uWbNOjx9+pRDh/xxdJSjqanF7Nnz0dbWJjk5mdDQ3+ncWTlfWNhlAgO3sXDh\nsvy5CQK5EIlEeHu70KDBceLjM+jUyYkyZcyL2iwBgX89gjMnICAgUISUKVMWP79tnD9/Fl/fNVSr\nVgMrKxt8fPxyHJeSkoy+vj7+/gFFZKnAt4SOjg49e346AhUUFMj+/buxtrZhw4YtOWrY0tPTqVu3\nLm5uI5g69Wc2bPDBy8ubJ08eM2/eTJydG7JnTxBisbIJ+fPnTxk3bhTbt+8B4OHD+2zcGICamjq9\ne3fFxaUnIpGIc+fOYG9fhdjYV4SFXcbExPQva0RUr16DJk2a0bJlI3x9N6ns9PPbloft+1Wf27Rp\nT5s27fP8zsWlJy4uPXONT0p6y969QSpn7mvJyspCIvm6VNb85syZk5QpU07Vay8/+Nq2EWKxmL59\nhciogEBhIjhzAgICAkVIXFwc+vr6tGzZBl1dPfbt20VCQgI3b97A3r4KMpmMFy+eY2VlTcmSJTlx\n4ihNmjRHoVDw6NHDr2oSLfDvZt++XXh5ebN//x4GDOgNvKthU1dXp0GDBsTGJmFjU/6v9EcJ1tY2\nREdHA3DjRjjduvUAoGxZS8zNLXjx4jkikYjq1Wuho6MLgKWlFdHRUSQkJODkVJ1p02YBsGtXIC9e\nPMfJqXoOBywk5NRXr00mk7F//1mkUhldujizb98ugoMPAtC+fSdu3bpBZGQEbm69qVmzNnXrOpOW\nlsovv0zmyZNH2NpWZMYMDwDu3r2TZ43qqFFD+eEHW65fD6dFi1b06NHnq+3OT06fPkn9+g3+kTMn\nk8lQU/vUo59Q4yYg8L0hOHMCAgICRcjjxw9ZvdoLsViEmpo6Eye6IxaL8fJaTHJyMllZMnr06I2V\nlTUzZsxl8eJf2bTJD5lMRvPmLQVnTgCAwMCtOZyZ58+fEhUVyciRgwARW7bsRFNTk9Gjh5GRIUUi\neffvXyRS/uxBtrhI1t+eL1ucRDlGQlZWFqIP/ACZLIuwsGdMmHCEOnUMcHGp+/ULRRklGzBgJyEh\nvQF1tm1bhLHxH6xfvxm5XMHQoa7MmOHBkyePVJHssLDLPHhwj61bgzAxMWXEiEFcv36NSpXsWb58\nEQsWLKVYMUOOHQth3bo1uLvPQCQSIZPJWL9+c77Y/XdER0cxceIYHBycuHkzHDOz4nh6LuHIkWAO\nHtxLZqaM0qVLM336HO7fv8e5c2e4du0qmzf74eGxAE/POYwaNQ47u4q8efMGF5euBAUdIDj4IKdO\nHSc9PR25XM7ChcuZMmUCSUlvycqSMWTICJVyqICAwPeH4MwJCAgIFCG1atWhVq06ufavWrUux3Zc\nXBxZWVksXuz1Qf2QQF6MGjWU0aPHY2trR7duHfDz24qBQbGiNqtAuHv3DocPH8LXd1MOZ+bChfMM\nHjyCY8dC0NTU5OnTJ9y6dfOz53V0rEpIyGGqVavB8+fPePkyhnLlLLl3706uY0UiERUrVmbFiqUk\nJSWhra2Nn18QkZENiI3tRlDQY5KTT+Hm9vVOw8GD5wgJ6QnoA/DgQWmaNi2HpqYWAI0aNeXatau5\nxlWsWBlTU6W4S/nyPxATE42enh5PnuSuUc2mWbPC7dkWEfGC2bM9mTx5GjNmuHPq1HEaN26q6tXn\n6+vNoUP76dq1B87ODalfvwGNGilbP+SuLXzHgwf32bQpEH19fbKysvD0XISOji4JCQkMH+4mOHMC\nAt8xgjMnICAg8I0zb95vbNxojlRqQNOmO/D17fpd9UUrCt5/qM0v51cul39SaKSouH79Gg0bNsnT\nmalWrQYhIYfp29eFMmXKYW9fBch9Td7fzP6uc2cXFi/2xNW1JxKJhGnTZqGmpvZRp8HU1Ix+/dwY\nMsQVAwMDEhNLIJcrHej0dGtOnLiKm9vXr1cmyyLn44sYuTyn4mVet1xdXUP1WSJ5F4HMq0Y1Gy0t\n7a819x9hYVFKFW23tbUjOjqKR48e4uvrTUpKMqmpadSu/S7CmZfSZ17UrFkbfX191Rgfn1WEh19D\nLBYRFxdLfPwbjIyM839BAgICBY7gzAkICAh8w9y8eZ+1ayuRnu4AQHBwJdatO8j//te6iC0rHAIC\nNqOhoUG3bj1ZsWIJjx49xMvLmytXLvHbbwdo06YdGzasIyMjg1KlSjN16ky0tXM/gO/atQMDA4N/\nPE+3bh1o1qwlly5doE+f/ujrG+Dn9/fnK0zycqyyd2loaLB48Ypc379ftzZw4NA8v9PQ0GDq1Jm5\nxn4oSPK+QmSLFq3p2LEzmZmZNGkygPT0Kqrv9PTSP3NFn6Zjx/oEBGzj7Fk3QIK5eRCJiWlIpenI\n5QpOnz7BtGmzCQzMLawCykjmtWtXsbOrxK1bN3ny5HGeNapFQe70VSnz58/h11+XYGNTnsOHD3H1\n6hXVMe/fe4lEgkIhByAjIyPHvFpaWqrPISGHSUxMwM9vKxKJhLZtmzJixCAqV7YH4KefRpKUlEif\nPgO4fPkCPXr0+Whd3tmzp3n69DF9+w746JqCgw9y794dxo2b9PkXQkBA4LP59l4xCggICAioiI5+\nQ3p6qff2aJGYWDDnGjFiYMFM/BFiYqIJDf39k8c4OlYjPPwaoHwIT0tLQyaTER5+FRub8ixa9CsL\nFizDz28rtrZ27NiR9wO8vb3DJ+fZtMmP5cvX5JpHJBJRrJghfn5bqV69Fps3++Hllfu4osTRsSqn\nT59EKk0nLS2N06dP4OjoVGjnT0tLY8KEfXTpEkrfvj/j6tqTAQN6Ua1aSYyMUlBTu07VqluYNKlG\nvpxPQ0ODgIDOzJ27n5kzd3HwoA9durgwZIgrw4YNoEOHztja2lGliiP9+/dgzZoVf0UTlePt7CpS\ntary+qipqVGnTj18fFYyYEBv3Nx6c+vW9Y+eWyYr/HYgaWmpGBubIJPJOHIkWLVfR0eHlJQU1baF\nRUnu3r0NwO+/f/z3KiUlBSMjYyQSCWFhl3n79i0zZ85l+nQP5HI5IpFSYbRZsxZMnvzLJwVWnJ0b\nftKRg/yLjAsICOSNEJkTEBAQ+IapV68Kjo6HCA/vD4iwsDhOu3Y2+Tb/+/23vL3zTjUrCGQyGVFR\nkYSGHqFFi49HGW1t7bh37w6pqSloaGhgZ1eRu3fvcP36NZydGxITE8Xo0UORSCRkZsqoUsUhz3nK\nl6/wyXmePn2scmY/nKdZsxYA3Lp1g6dPHzN8eN7HFRU//GBH27btGTLEFYAOHTpToYJtoZ1/8uTD\nBAb2QflI8SOdO29h7dquACQnJxMXF0upUu3yJTU4LS2NGTOmEBsbi1yehavrYKZN+5nRo8fTo0cf\nWrRoQGzsS/r1646JiSmTJv2Cj89KTp48xpgxEwDlz3x0dDTjxk0iOPgghoaGzJ49n7NnT7N5sx97\n9gRx9GgIc+Z4YmRkzIYNa4mKiiAqKgpzcwtmzpz71ev4GHk5PoMHD2Po0AEYGhpSubI9qampgLKe\nb8GCeezatYO5cxfQq1dfpk9358CBvTRr1pRsZcr302IDA7dy8OA+YmKiOXHiGLq6SkVSD48ZtGvX\nkYwMKXfv3mbgwD65RFX+/PMP1q1bg1wux9DQkOXL1+SIumVfP5ksEwODYsycOVdI3RQQKAQEZ05A\nQEDgG0ZXV5etWxuyYkUgmZnquLiUw9GxYBQss3tMhYVdxs9vHSYmRty5c5cmTZpjZWXN7t07yMjI\nYP78xZQqVZp582ahoaHBvXt3SUlJZvTo8dSr5/zJZtPZqnpZWVlkZmby7NkT3Nx606ZNBxo2bIyH\nxwwN72x0AAAgAElEQVTS0tIAGD9+Evb2Dujp6ePm1gd1dXWePXtCWNhlUlJSePz4EQqFApFIhIFB\nMby8vD+6NjU1NSwsShEcfJAqVRyxsSlPWNglIiMjsLAoRY0atZk1a16eY99Po/zUcUVJjx596NGj\nDzKZjPj4eORyOUFBBwrl3A8e6PPucULCgwfvhGb09PTQ09NTbW/YsBYdHV1SU1NwdHSiRo1ahIdf\nZdEiTzQ01PH29mP9eh/+/PMcdes6q5qRZ3Phwh+YmhZn0SIvQNl/cd++Xarv09PTqV69FiNH/vTR\n/nkAWVky9u7dhaampmqso6MT7u7zWL78KlFR4cyZs4BlyxYA8OzZM9asWY+GhgYFhYVFSTZtClRt\n9+rVV/X5XTP1d1Sp4sjWrTtz7Nu0aTsAZmb69OkzCHiXFpstlOPntzWHUM7UqT/j4+OHgUExKlWy\nZ/v2rarU2WxHMD4+noUL57FmzXrMzS1ISkpSfZ+No6MT69ZtBODgwX1s27aZUaPGfnZdX0GQ/fP2\n/rV8n4Lo1ScgUNgIzpyAgIBAEfO5kuQeHnPQ1NRi3rxZaGpq8eDBPeLj3zBlynSCgw9y9+5tKlWy\nV9U5Xbz4Z571XX/++QcrVy5FU1MLB4eq71ny7sHs4cMHrF79OxkZYlxcOtKhQ6f/s3eWAVFlbxx+\nhu6yQLBAKSXEVuze1V1XxVpFReVv69qFhaBgIq4oJuiCK3Z3d6CirphgEAoiHQIz/w8jIwgoKpj3\n+TQz99xzzo2B+877nt+PVav8CQraxNat/8qyHM+fR7N6tT/Pnj1l5MjBbNq0/b1m07lV9a5du5rn\nwTEjI53Fi/9GSUmJp0+fMGvWNFav9sfEpCoHDuxl1ix3bG3t6Ny5AzVqWOHsPIw9e3YxZcoMzMws\nSEtLIzY2hgoVKhZ4nm1sbAkM3MiUKTMwNjZh6dJFWFhYUr26FYsWeRAR8QxDQ6NC+7G0rFGkdl+L\n8+dDmTjxAc+eVcLE5Aze3jUxN69c4uMaGCQDEnLuH+n7gsl5+B8w4H+yzw4d2o+jY3/atGkPwO7d\n29m//3iBWSoTk2r8/bcXPj7eNGzYGBsb2zzBgqKiokwgpDD/PJBmhrdvD6JHj7cP+U+ehDN4sCvp\n6QqIRJmEhWlx4kQIIpEIe/sm+QK5qKhIJk78C3//f4t4pr4uuYVyrl69R1xcBUaODEQsTpO1KSjw\nkkgk3L59E1tbO/T1DQBkYiq5efHiOdOnTyIu7iWZmZmUL2+Yr82X5kMlnp/i1Scg8K0hBHMCAgIC\n3wAfI0kuEolITk5i5cp1nDlzkkmTxrJixVqqVDFm4EBH7t+/R5kyZWXru5SVVdi4cT3//vsPPXv2\nwdPTDW/vlRgaGjF9+uQClf8sLCwpXbo0MTFJGBlVkD0gGxubEBx8BZA+KLVoIS1BNDKqQPnyhjx+\nHP5es+natevmUdXLTWZmFosXe/DgwX3k5OR49uwpIH2AB2jUqDHKyiooKytTrlw5dHR00NHRwcNj\nDtnZUuEHZ+eh7wnmarJhwzpq1LCS9WNjUxMdHR2mTp3JzJlTeP06s9B+dHV1i9TuazF37gNCQ3sC\ncONGQ9zd/8Hfv3KJj+vu3pj09A2EhWlRsWIi7u55rTb8/NZw4MBedHX1KFu2HGZmFri7z6JhQ3uS\nk5M4fvwoly5d5MKFc6SmppCWloaT05/07t0fO7vaLFw4l+fPowEYOXIsa9f+w9y5s5k2bQKKiopk\nZmaSlJTEtGkTyMrKYtAgR0aOHItIJCI4+ApPnz4hKiqSlJRktmzZhLFxVR4/DiMpKYk1a1agra0D\ngIfHXJ49G0BKSldUVS9RqpQ3x49HUqkSMqXQ75mcwCY5OZmRI8OJi6tOdrYeenqX2bnzEn36tP7g\nvu9j8WJPevbsQ6NGjbl27Spr1/p+cJ+SoKD7bffuHezate2DXn1Xr17O5+n3I1x7gR8bIZgTEBAQ\n+Ab4WEnyRo0aA1JZdT29Uhgbm7x5b0x0dCQvXjwvcH3XkyePKV/eEENDIwDatGnPrl3b880nt4y7\nSCSSvReJRO81lf7QQ9/7lB///fcfSpUqjYuLK9nZ2bRo0RAAU1MzGjSwR0lJGYlEQrt2v2BubgmA\nsrIyS5Ysz+ch5+29UvY6p9ywVq06HD9+XvZ5TrYQpBL+q1blN4d+t1SxsHbfAvHxKu+8/zIqm/r6\npQkI+KPAbaGhdzh27DDr1weSnZ2Fk1NvzMwsAOm90qFDJ0JCbuTxS2vduonM7HvmzKl069YLa2tb\noqOjGT16CH5+mzAxqcqjRw+oVKkKqakpBAT406/fAC5evICrqyfjxo2Q/dDw9OkTvL1X0qqVPUuX\nLqJy5SpkZ4tRV9egQ4dObN8eRN++PYmOjkBV9RUpKaCjsw5l5dtcvfqE+/dVaNOmnex45s6djUgk\nom7deiV9aosVGxtb3NxmYW1dlwcPLKlYcT3R0Z5IJOsICUkqdD+RSET16lYsXDiPqKhIDAzKk5iY\ngJaWdp4fZFJTU2Q+fvv37ynx4ymIgu43c3MLmjZtTseOnYD3e/VpamoW+AOagMC3jBDMCQgI/NTk\nrBOLjY1hyZIFzJnjUaT2xc3HSpLniEnIycm9s6/UP0tOTr7A9V337997Z+RPX88ikUg4fvwI7dt3\nIDIygsjICCpVqpzHbNrHx5vbt28yc+YUTEyq8fTpY7ZtC6JzZwfU1TV49OgBgYEb6dmzN8HBl4mK\niuLixQsYGBggFouJiorE1XU6AI6O3fPJ7Oco+mlpaRMcfI9Fi+6TlqZEixYwbFjhmYZPOdbNm0/w\n8mU6v/1mh5FRuWLru7ioUyeR0NBUQA2RKI569TK+9pQICbn2prRPGVCmUaMmBbYrbF3VlSuXePw4\nTPY+KSmJQYMciY+PR15env79B/H330v4779bLF7sSUZGOpMnjyE1NZWsrCxEIhENG9pz//5dsrPF\nVKxYkV69+jJ/vhvq6hrs3r0DKytb3Nw8mTFjMqdOLUNHJxBIQE1NnZ07dzJq1BAuX75Iv34DmTt3\nFmPGTMLGxpbly71K4IyVHDlCOUuWuGFikk5s7AAyMiwAMZUrS/+G5Fb9zI2Ojg4TJkxl6tTxiMUS\n9PT0WLRoWR5xFScnZ1xcJqKpqUWtWrWJjo7K1eeXUbQs6H6TSCiyV1/+dvULGEVA4NtCCOYEBAR+\ncqQPGaVLl/lgIJe7/ZfgXUnysmWLFkDk/JJe0PquSpUqExUVKfv88OGDefZ7+7rwvnO2iUQiypXT\nZ9CgvqSkJDN+/GQUFRVlZtPdu/9BTMwLPD0XY2VlS8+enbG1rcmxY4fp3NkBE5OqxMe/Yu/eXURE\nPKVUqTIkJ6cgEkFY2COZOEVsbAxWVjYsX74633x+++0Pxo4dgZ5eKa5d68L9+z0AuHTpMWXLnsPB\noWGRztn7kEgkjBgRRFBQZyQSHTZs2Mn69emYmVX67L6LEw+P3yhXbg+PH8tjYSFi2LBfv/aU+Pzv\niwRfX798Sphr1/qiqqqGubkF3t4r6dChVaHtFBQUuXnzBv37D+TEiaPY2trRunU7zp49hUgkws3N\nEwBn52E8ffqUJUv+pl+/XmzbtheAyZOn4+IyieTkZJKTk7Gxka4zbdv2Vy5cOPeZx/dlyRHK2b8/\nmCVLokhL206TJgMZOlTqG1izZi1q1qwla587w12/fkPq18/7fcrtOWhv3xR7+6b5xnzXl7BkKfh+\nK6pXn7v7LObNW1RgOwGBbxXBZ05AQEAAqZiBo6O0nGbfvt1MmTKesWNH0qNHZ5Yvz2+6HB8fz+DB\nTpw/f5bY2FiGDRtE//69cHTsLvMz+xjeJ0k+ZMiAfAv08wZeeff181uLoqICU6fOZMqU8bRo0ZDB\ng51Ys2YFW7duZsKEqUyYMBonp97o6ZWSBWc5ZtF2drXx8HhrBO3tvRIzM3NA+rCXe1udOvVYvdqf\n2NgYGjSwB96aTXfp0o0//3Skbt0GqKqq0qHD71Svbk18/CtiY2MJC3tEtWpmbNy4GRUVVe7cuY2c\nnOhNwCgnMxnW1y+fJ5D7668JsofDLl26ExCwFWfnUdy/bydrk5FRiWvXEot49t9PZGQEu3bZIJHo\nAiIePuyEn9/tYum7OFFQUGDChPZ4eDTE0DBBtmZswoS/vtqcbG1rvvHAyyA1NYWzZ99mtYuiclin\nTn2Cgt4qPObPLBe1nSifUEpmZmaBfcnLy5OVlc0ff+yiUaMjTJ16ALFYnK/d11Rp/Fzat7fj4MFf\nOXWqFXPm/F5o5qwo3pM3blyjd+9uODn9SVzcS/76awfduh1i2rRd+czLi4tr165y69ZbP8AdO7Zy\n4MDeQu+3tLSUInn1FebpJyDwLSNk5gQEBAQK4MGDe6xfH4CCgiK9enXBwaEHZcqUBeDVqzgmThyD\ns/NQateuS2DgRurVa4CjoxMSiUQmrV9UPlaSPEetsqB9c2+zs6vNvHkLmTjxL/z8AmWCBPXqNeCf\nf97KuRfG+9bG5Sf/w+C7D4hSGwFo3rwVJ04c4eXLl7Rq1Ua2vXfvfvz+e+c8+0RFRaKqqiLbf/bs\nPZw9q4aGRhrjxpnQsKF0/VWlSoYYGt4gIsL4zdhxVKnyab5mmzZtZN++3QB06NAJMzNzDAxmkJJi\nj6rqNbKyyiEWN/ukvr8ESUmJbN8exB9/5L93vjSmpua0bNmafv16oqurh6Vlddm2wn6QyP169Ohx\nLFrkQd++PcnOzsbW1o5x4ya9aUeR21lb2+Dp6S77fl65cgkDA0MePw5j5sypzJzpxoEDe6lZsxbq\n6hrEx8sTHm5Genpt4uK8sLLSe2OzoElIyHWsraWlxJ9LUNAmdu7cipmZOS4urp/dX3FTFO/J3Gqk\nAwduZdcuR0COEycyyMoKYt683/O0z8rKQkHh8x4/g4OvoKamTo0aUp/HTp26yLa9e7+JRDBw4OAP\nevW5us4rtJ2AwLeMEMwJCAgIFECtWnVRU5Ma6lauXIXo6CjKlClLVlYmo0YNYezYSdjY1ATA0rI6\nc+fOJisri8aNm1GtmmmRxti/fw+bNv2DSCSiatVqDBw4GHf3WSQkJKCjo8uUKdMpV04fN7eZqKtr\ncPfuf7x8+ZKhQ0fSrFlLYmNjmTFjMqmpKWRnZzNu3GSsrW3p2rUja9duREtLm61bN/P06ROGDh2I\nRCLHvXv3uXjxLhDH/ft3SU1NRUdHBy+v5VSsWJlhwwYRFvaQjIwMTE1NmTbNlalTJ/DyZSwVK1bC\n2tqWo0cPsWTJcu7fv8exY4e5ezeU9PQ01qxZydmzp8nOzsLVdZ5McKF3776IxRJOnz6Bi4srCgoK\neHjMISEhnr//XgVAvXr1WbVqBW3atEdVVZWYmBcoKOQNxnx9j7F8eVskklIAPH++hSNHKqOqqoq2\ntg7u7posWbKJ1FRlmjRJZuDA39895R8kx4tr1So/mRdXzZquKClFExXVnhcvZmFq6oCVVcqHO/tK\nrFjhTUTEM/r374WCggIqKqpMmzaRsLCHmJlZMH26NGg4f/487u5zyc7OxtzcknHjpGWyPj7enD17\nGnl5eerWrc+wYaN49epVPlVJKyubIs3H0dEJR8fCMzy5f4CAtxliAG1tHWbNmptvHycn5zzvi9LO\n3r4Jhw8fYMECd0xMqlK/fkPMzCxZsGAuffv2lNl3iMVikpJ6UqbMfOTk0nj9uiKKim1kc5UKoEiz\ngZ+7FmzHji14efnIhEOgeIKd4uJd70kdHd0899Hu3TtkaqQXL54jNLQppUvPR139DADXr0tLNoOD\nr7B69Qq0tLR4/DicCROmsmbNSjQ1NXn48EGhXpYFGZGnp6eza9c25OTkOXRoH6NHT+DKlYsyP7kG\nDRpx5swpUlJSSE9P59dff0dTU5MjRw5RvboVwcFXSE5O4saN69jY2Mq8+pKSErGwsMbff9N7hZoE\nBL41vo2/FgICAgLfGPkFSaRZKgUFBczNLblw4ZwsmLOxqcnff6/i3LkzuLvPpHv3P2nX7v3rlR49\neoi//1pWrlyHlpY2iYmJzJkzg19+6Ui7dr+yd+8ulixZwNy5CwCIi3uJj89awsPDmDRpDM2ateTw\n4QOyjKBYLCY9PR14m9kIDb3DuXOnMTQ0olmzznh5zebVK0ceP66AgcEc1qzxo3JlY7p27cjcua64\nukqNvq2ta+LpuZhJk0YzZco4xo+fgpfXAoYOHcXEiX9hYFCe+fPdsbCwpH79hrIHUR0dXdau3cj2\n7VsIDNzIxInT+OWXDgwa1BeAjh3/kAW6aWmplC1bDj09aWBWp059wsPDGTy4PyAtf3Jxcc0jnnD/\nfrYskAMICzMnOjqKKlWk2bj27e1o3/6TLreM3F5cAE2btuDGjWsYGhoxcWIi0dFbyc6uR1ZW+ucN\nVIIMGTKSsLBHrFsXwLVrV5k8eSwbNwZRqlRphgwZwM2bNzA1NWfy5MksXrwcI6MKzJkzg+3bt9Cu\n3S+cPn2CgICtgNSUG8DLa0EeVclx40awcWPQ1zzMj+b33zsTGlqOiAh5wsN96d27P9WqmbJy5bp8\nbY2NVTl9ehPSjHMKDg5SVVMzM3PWrw+QtXvX1PxjmD/fncjICMaOHcHz59E0atSEyMgI9PUNGDVq\nHAsWuOcLntPS0li82JOwsEdv1BqdC1ynVnzk9p68l+c+Cgm5TseOnbh5860a6cWL80hJieLx413I\ny79EQ6M9L19Kv//3799lw4bN6OsbEBx8hQcP7hMQsAVNTa1CvSwLMyL//fcuqKmpyXwCr169JMvU\nzpkzgzFjJmJjU5M1a1aybp2vzKpCLBazapUf58+fZd06X5YsWQ7A/v3BTJ2awLNnplhYHOfvv82o\nUcOkBM+rgEDxIQRzAgICAh+FiMmTpzNt2gT++cePP//sS3R0NGXKlKFjx068fv2a+/fvfjCYCw6+\nTIsWrWWS+lpaWvz3301Z8Na27S/4+EjX6olEIho3lj6wVa5chbi4OOD9GUGJREJIyDXq1WvAkSOH\n8PX1JjGxI1lZZRGJ5BCLJbi6zkBBQZ709HRiY2O4c+c2pUqVpk2bdigoKNCmTRvc3NxYuHAejx+H\n4+npRlpaKq1bt2PVKh/KldPHxqYmVlbWLF7sKZP3NjU15+TJY8BbwYV3yV0amoODQw8cHHoU2tbM\nTAE5uVjE4tIAGBvfwcCg2XvP88dSWKZFSUmRDh0aARAYuJG0tG+3/Cr3Wi6JRIKFRXVZwF21qilR\nUZGoqKhiZGSEkVEFQCpSsW3bZrp06YaSkjJz586mYcPGMguMd1UlU1NTSU9PR0Xl+/Hg6t17DDEx\nYkSi1yQmdiYo6CEuLhYFtvX2bszMmf8QG6uOlVUakya1JzLyBfv2BVOhgi5t236+LcH48VO4dOkC\n3t4r2bLlX86dO8Py5atRUlLKZ8mQEzz7+6+ldu26TJkyg6SkJJyd+1K7dr0vch3evY+io6Oxts7b\npk6ddLKz9VBU3ImxcTwmJnW4c+c/1NXVsbCoLjMdl/ZnKfsxpzAvy/cZkRe0ZDElJUekRvpDW7t2\nv+LiMkm2vWnT5oA0KM9R2wRYvDiKZ8+kf3vu3DFnwYJA1q8XgjmB7wMhmBMQEPipKWitzvuktHO2\nzZzpzsSJY1BTU0dFRYXAwA0oKCigpqbOtGmzijRuQQIKhYkq5Fbpy2nz4YygCIkENDQ0EIuVUFB4\nTkaG2ZttCvj4rEZDQ5MJE/6iZ8/esixMzoOhWCxGUVGJdesCmDfPlapVqxEaegdra1uys7O4dSuE\nkSPHyOaTk82Ul5f7yPV2+fH03M/u3QrIy2fj5KSOo2NjBg5szvPnezlzRhlNzdeMG1e12B9i3y0N\nPXXqOC4uswv04vteyO0ZmHNtClrPKN0uz6pVfly5cokTJ46ybdtmvLx8KExV8nvi1au+PHnSSfY+\nJGRroW3Lly+Lr+/bMt07d8JwcnrEw4ddUFSMwslpF66uvxXLvHLOvb19E5SUpNeqoOA5LS2NS5cu\ncPbsKQIDNwCQmZnJixfRVKxYuVjm8j7y30dZ+dro6WkxfHhVfv21JQCurjdk95qKSt7SxaJ4WRa3\nEXnOGLmrLQCSk/P+HUlJUUJA4HtBCOYEBAR+anLW5+QWEnlXStvTc3G+9oqKiixa5C37/GOlt+3s\n6jBlyjh69PjzTZllAjVqWHP06CHatv2FQ4f2y35dLoy8GcGMPBlBkUiErW1Ndu7ciry8PG5u0xk+\n3InsbG0yM01QUVHi8uWLNG/eColEQmRkBPXrNyQu7qVsDd6xY8coV64cx48feVPutJyOHTthamqG\nvLw8GRkZqKmps337h8VUPoZdu87j7V2fjIyKALi6XqJ27QdYWlZl2rSSlTjP8eLKXRqqqamVL/j5\nUr5Zn4KamtoHhRsqVqxERESEzKLi4MF91KxZi7S0NNLT02jQoBFWVjZ07y4NaHLUInv16gPA0KED\nmT9/CRIJHD58QCa2Ehx8hU2b/snzncnBw2MO3bv/mU+Z9UtRunQKjx7lvJNQunTRs6urV4fy8GE3\nADIzDdm8WZ/x4xPymdV/DjmlvTnzKyx4dnObT4UKFYtt3OIgJyC1tq7Jzp3baN++AwkJCdy4cY3h\nw0cTFvboAz0UTGFG5O+qUErnAOrqGmhqasnWw+WI2nyIRo0SePAgAdBGWfkJzZsLYu8C3w9CMCcg\nICDwidy9G8a1aw9p2NCSihXLf9S+VaoY4+joxPDhzsjJyWNqasbo0ROYO3cWAQEb0NXVzSMMUVAG\n8dq1K+/NCJqamtOwoT1btvyLr+8iGjduxPXr52nXrgzJyc3Ys2cXfn5riYh4RqlSpfj1198wM7Ng\nzRpfNm36h1atWvLXX5NYsGAe0dGRxMS8IDk5GTk5OUxNzXj27Bl9+/YoYM3O55kE37uXIAvkABIS\nbLl+fQ+WllU/uc+PIXdpqEQi4fLlEAYNGicTpsitNvotoq2tg5WVDY6O3VFWVpaVsuVGSUkJd3d3\nXFwmkp2djYVFdTp16kp8fDyTJ499IykvYcSIMUDBapHq6hpERUUWWTlz4sRpxX2oH8Xs2RZMmbKR\nqChNTE1fMXNm0deavZswF4vlCrQrKC7eDZ7v379HtWqm1K1bny1bNslsO+7dC8XU1LzE5lEU78nc\n7Zo2bc7t2yH069cTkUjE0KGj0NXVIzw8LM/+hZmTv7utMCPyRo2aMG3aRM6ePcWoUePzzG/q1Jks\nWDCX9PR0mahNISPJXnl4dKJy5SM8fizBzk6DHj1aFX6wAgLfGCLJN2KUEhOT9LWnIFBClCmjKVzf\nH5if9foGBp5l1ixt4uLsKF/+DAsXKtGype3XnlaxUti1zcrKIj09DQ0NTeDtr/LFla06c+YW/fur\nkpAgPZ+GhofZtasSFSoYfGDP4kUikTB8eBBbtzZHLFahRYvd+Pt3lZXCfe+877sbEOCPkpISXbv2\nYOnShTx8+AAvLx+uXr3Mnj07uXUrhNWr/Vm0yIMzZ05RsWIl6tSpR4MG9qxd64u2tk4+9czhw50Z\nMWIMZmbmtG7dGAeHnpw7dwZlZWXmzVuIrq7eFznu7Oxs5OXlP2qf69fvM3BgFE+e/IqcXAy9e+9l\nwYIuH97xAzg4/M7q1X5s3bo5j6BHQkI8ixZ5EB4ensdqISMjg6VLF3LrVghisZjy5Q3z+D7m8LP+\nXf5ZEK7vj0uZMpofvY+QmRMQEBD4BNasSSIurh0AkZEt8fXd/MMFcwURGHiOhQuTSUrSoU6dhxgZ\nyXP0aCkUFTMZNEiV/v0/X1nP3r4Gc+acZevWLSgoiHF2NvzigRzAoUMX2LLlVyQSfQCOHevH+vW7\ncXZu+8Xn8qWxsbFj06aN3Lp1k5Mnr5CRocavv+6gQYNQbG3tuHUrBJFIlEc5E6Rllvfv382nnmll\nZZMn2E9PT6dGDWucnYeyfPlSdu3aTt++A77IsX1sIAdga1uNzZtV2b9/M/r66nTu3PnDOxWBoKCd\nQNGsFtLT03n27ClDhoyQ/ZAi8GHOn7/DiROPMTJSoXfvpt90ibSAwKcgBHMCAgICn0BWVt4HwszM\nj39A/N5ITk7CwyOTyEhpRuLQoSbAv4BUVMLd/QL29mFUq/b5a6K6d29E9+6f3c1nkZCQhkSSe02U\nEqmp30QxS4ljZmbO3bt3yMjQJTm5FKmpDXj2zIqkpH/o3bs7GzeuBwoW7MmvnhmVz5NOUVGRhg3t\n34xlwZUrF0v2gIoBY2Mjhg0z+ipj3779iOHD/+POHRsMDa/g6qrFL798eC3Yz87evZcZM0aDV68c\nEIlecvPmdjw9iycQFxD4VhBWeAoICAh8Ar/9JkZZ+TEAmpq36dz5+5Fo/1Ti4+OJjc39MKsIaMne\nJSRYEhr67IvPq6To0KE+tWoFAtK1Uaamm+nWze7rTuo9REVF0qtXF9zdZ9GzZ2dmzZrGpUsXGDzY\niR49OnPnzm3WrFlJYOBG2T59+nQjOlrqZbZ//x769u1Jv369mDfPFQMDQ5KS4hGLVVBTO0X58s5k\nZcV8UHyjKKqH8vJvf0uWkxN9tvrpj87Chbe5fbsnYrElT5/+xqJF0V97St8FO3a84tWrugBIJKU4\neFCXrKz896OAwPeMkJkTEBAQ+ATGjGlLtWoXCA29RJ06BjRr1uRrT6nEMTAoT82a27h40QYQoaJy\nCzm5RHKEE6tUOUGDBtbv7eN7Qk1NjX//bcvKlUFkZYno3duO8uXLfu1pvZeIiGfMmePJ5MnTGTjQ\nkaNHD7FixVrOnDmJv/+6PF6E8Had47sm9klJSQQFBXL9+jUkkrI8e/YPlSr9jpxcfJ4yxaIoZwp8\nPikpynnevyulL1AwCgp5AzclpUzk5IQ8hsCPhRDMCQgICHwiHTvWp2PHrz2LL4e8vDxr17bAwyOQ\nlBRlWrTQRF6+LDt2bEVRMYthw6pSunR+5cTvGS0tLcaP/+VrT6PIGBgYYmwsNTuuUsWY2rXrvvOR\nnUEAACAASURBVHltQnR0ZL5gTookn4m9pqYmNjY1EYtXU69eJV6+PEFsbHY+Vcfcypn16zeiQYNG\n71U9zKEgdVaBwmnWTI5z5568UXlNolGj+K89pe+CoUNNuX59Ow8ftkRT8x4DBigKwZzAD4cQzAkI\nCAgIFJkyZUqxYEHeCLaYtCAEioEc43YAOTk5mU+ZnJycTMVRInkrqS+1ICjYxL5WrTq0b/8rDRvW\np1mzlkAbWreWZqCDgnbJ2s2YMSfPfrl9vXIk9AG8vVfKXuf4NQI0a9byTf8ChTFkSCt0dc9w9eol\nKlYUMXRopw/vJICVVVX27SvFmTNnqFatPObmzb/2lAQEih3h5wkBAQEBAYH3MH78KFJSkklOTs5j\nkB4cfIUJE/76ijP7eAwMynP3bigAt2/fJioqEhBhZ1eH48ePkJiYAEBiYmKJjJ+QkMCkSbsYOvQQ\nmzadLZExflR69LBn/vy2jBjR5pMUOX9WdHV16dixMebmJl97KgICJYKQmRMQEBAQEHgP8+d7AVKB\nka1bNwHwxx9duX//Lnfu3P6icwkOvsKmTf/g6ZnfWwzylyy+W87YtGkLDhzYS58+3bCzq0mFCpWA\ngk3sc8yWi6skUiKR4OR0gNOnnQA59u69h5zcObp1a/jJfQoICAj87Aim4QIljmBu+WMjXN8fl5/l\n2n6MQfbp09LywK5du1O6dBnWr1+DnV3tfAbZuRGLxcW2TudDwdzH8KWvb2xsLHXrRpGc/DZ469Zt\nK8uWtflic/hZ+Fm+uz8rwvX9cfkU03ChzFJAQEBA4KfGxsaOGzeuAxAaeoe0tDSysrIICbmOra3U\niiDHIFtRUQmRSMTlyxfZsWMrKSnJvH6dAcDFi+cJCZH207VrR3x8vHFy6s3x40c4fPgAffv2wNGx\nOz4+3rKxW7duLHt9/PgR3N1nAVJVSmfnfvTt2wNf3+WytWoAaWmpTJs2kT//7Mrs2S4lck7S09MZ\nP34nf/xxmBEjthdL2aWmpia6us9zfZKNru7rz+5XQEBA4GdGCOYEBAQEBH5qcgyyU1NTUFJSokYN\nK0JD73DjxjVsbGrK2kkkEvT09DA0NGLdugCsrW0Ri8VMmDCVjRuDkJeX4/Jlqfm1SCRCW1uHtWs3\nYmNTkxUrlrF06QrWrQsgNPQ/Tp8+8abXgksYvbwW0L17L/z8NlG2bLk8871//y6jR49j48YgIiMj\nZAFkcTJ16n78/Lpz9mxn/v23N3/9dfiz+1RWVmbSJE0qVdqKtvYJmjdfy8SJzT5/sgICAgI/McKa\nOQEBAQGBnxoFBQUMDAzZt283VlY2mJhUJTj4MhEREVSuXKXQ/apUMUZLS5vSpcsAoKOjS1zcS9n2\nli1bA3Dnzm3s7Gqjra0DQOvW7bh+/RqNGzcrtO/bt28yb96iN+3b8vffXrJtFhbVZWNWrWpKdHQU\n1ta2n3bwhXDvngZSU3gAOe7f1y6Wfh0c6tGpUyYpKcloa9sJtgSfyKZNG9m3bzcAHTp0okmTZowZ\nMxxzc0vu3QvFzMyUCRNcUFZWITT0DsuWLSYtLQ1tbR2mTp1BqVKlGT7cmerVrQgOvkJychKTJk3H\nxqZ47yMBAYGSRwjmBAQEBAR+emxsbAkM3Mj//jecVat8SEtLw8LCkoCADSQlJbFz5zb2799DZGQE\nKiqqgDRIS09PA8DNbSYvX8Zy6tQJLl++SFpaGqqqqojFYnbu3MbNmzeIjY1BQUGBcuX0ZX3kDmYy\nMjKKNFdFRSXZa3l5qeVAcVO+fAogISdzaGiYXGx9KyoqoqOjW2z9/WyEht5h//49rFrlh1gswdm5\nLzVr2vH06ROmTJlBjRrWLF48l23btuDg0IMlS+bj4bEIbW0djh49hK/vciZPno5IJEIsFrNqlR/n\nz59l3TpflixZ/rUPT0BA4CMRyiwFBAQEvnOioiJxdOz+tafxXRMf/4rnz6M5evQg8vLyKCsrY2NT\nUxZsbdmyCX//f7G3b0p6ehrLly8lPDxMtn9qaiqJiUnY2zfB03MJSUnSNWYnTx4jMzMTTU0tRo0a\nx61bN7l584ZsLZ6enh6PH4cjFos5deq4rL/q1a04fvwoAEeOHPrg/IOCNtG7twOursWzhs7NrQlt\n2/pTteoOmjXbwNy5dYulX4HPJyTkOk2aNEdZWQVVVVWaNm3B9evXKFu2HDVqWAPw22+/ERJynSdP\nHhMW9pDRo4fSv38v/P3XEhMTI+uraVOp75qZmTnR0VFf5XgEBAQ+DyEzJyAgICDwQ9G6dWMOHz5N\nbGwMS5YsYM4cD/bt283du3fymFjn5urVy+zYsZ/MzEwmTvyLwMBtAAQGbqRbt57cvn2LmTOn0rRp\nc+Tl5Th//gzh4WHo6+sD0gybiooy1ta2VK5cBbFYaswdEnKDdu1+RVFRkRkzJpOdnY2hYQXs7aWC\nJoMHD2fChNFoa+tgYWFJWpo00zdy5Fhmz3Zhw4Z11K1bHw0NDdlcC6pM3LFjC15ePrLyS4CsrCwU\nFD7t33zp0nps2CC4wX+LFFSaKhLl/Vwikbx5L6FKFRNWrFhbYF85WV45OfkSyfAKCAiUPEIwJyAg\nIPADIBaL8fBw49atG5QpU5a5cxdy8OA+du/eTmZmFkZGRri4zEZZWYVjx46wfv0q5OTk0dDQYNky\n3689/WJG+lBbunQZ5szxkH7ynrVZ8+e7ExkZwdixI4iKikJZWVm2LSDAj9at2zN27ESGD3cmPPwR\nERHPsLdvRlhYGLGxCYwfPxYVFQU0NDQJCblBQIA/IpEIZWUVRCKIi3tJcPBVFBQUUVRUwM6uFiAt\nzVRSUkJbWwdra1uGDx8tG7dMmTL4+q4H4MiRgzx9+gQAO7va2NnVlrX7668Jeeb//Hk0jRo1ITIy\nAn19A/73v2G4u88iISEBHR1dpkyZTrly+ri5zURHR5OQkFu8ehXHpEku7Nu3m9DQ/7C0rCHzmBMo\neUJD73DgwF5Gjx5XpPY2Nra4uc2id+++iMUSTp06jovLbLy8FnLr1k1q1LBiz5492NjYUrFiZeLj\nX8k+z8rK4unTJ1SpYlzCRyUgIPClEMosBQQEBH4Anj59Qpcu3diwYTMaGpqcPHmMZs1asGqVP+vX\nB1CpUhX27NkJgJ/fahYt+pv16wPw8Fj0lWdecuQuP81tqXru3BkGD3YiISGeS5cu8PDhAyQSMDAw\npHNnB9LSUklMTOD169ekpqYikUiIjY0hNjaGiROnoaWlzblzVojFirx40ZnTp38hOTmVly9jZddA\nJBJx8uQxrKxsCAjwZ/Toccyfv4TMzCx27dohm0tsbAwrV67LE8gBhIaG0q9fL/r27cmOHVtl2x8/\njmTDhoPcuHFP1nb8+CmULl0Gb++VdOvWi/DwMLy8fJgxYw6LFnnyyy8d8fMLpE2bdixZskC2X1JS\nEitXrmPkyDFMmjSWXr0c2bBhMw8fPuD+/XsIfBnMzS2KHMgBmJqa88svHRg0qC//+18/Onb8A01N\nLSpWrMT27Zvp3duBpKQkOnXqioKCAq6uHqxY4U2/fr3o378Xt2+HFNLzlxGjGT7cmdDQO19kLAGB\nnwEhMycgICDwA2BgYEjVqtUA6fqXqKhIHj58wKpVPqSkJJOamka9eg0AsLKywc1tBi1atJatmflZ\nOHnyOJs3B7BgwVKysrLw91+Ll9dyevfuRtWqVQkJuUGdOvUYNKgvZcqURVFRiezsbJYuXYicnBzz\n57tjbl6Xdev6UrXqMkDEo0edqFTJD11dPdk1kJOTIyoqEgeHniQlJeHo2ANFRQUkEkhNTQGk2cLm\nzVsVmDW0sbFl/fqAd+Z+k9GjU4iI6ISW1k0mTTrJwIFNZdtzAtbGjZuipCQtn/vvv5vMnSsN4Nq2\n/QUfn6W5xm4GQJUqJujplcLY2OTNe2OioyOpVs20mM76j09UVCRjx46gRg1rbt68gbm5Je3bd2Dd\nOl9evYpnxgypmbyX10Jev85AWVmZyZNnULFipTxG8GvWrOT582iioiJ5/jyabt160rVrj3zjde/+\nJ927/5lnfHl5eVxcpOPkNpWuVs20wOy7t/dK2WsdHR2CgnYWy7nIuQ8Ly4aLRCJBxVRAoBgRgjkB\nAQGBHwAlJUXZa+n6lwzc3Wczb95CTEyqsn//Hq5duwrAuHGT+e+/W5w/f5YBA/qwZs0GtLSKR3r+\nW+bq1SuEht5h8eK/UVNT4+zZ04SHP2LwYCdiYl5w9OgR1NTUqF+/IXPnLgSgR48/6NXLEYlEzMSJ\nf+Hv/y8nTlzG3z8GUCAmZhqQRv36v3Lt2jbZWM7Ow94oXUrQ0dFl166DJCTE4+zcL8/6JRUVlSLP\nf/XqCCIiHABITKyJn99DBg7M305ZOW+fubOSuVFUlN4zcnJy79w/JaOQCTBkiBM+PgWv3/reiYh4\nxpw5nkyePJ2BAx05evQQPj5rOXPmJP7+63Bxmc3ff69CXl6ey5cv4uv7N3PmeObr5+nTJ3h7ryQl\nJZlevbrwxx8OyMvLf3D8DwVI69ev5tCh/WhpaRMZmU1mZkVMTKqgqHiVxMREVFRUmDhxKhUrVsbN\nbSbq6hrcvfsfL1++ZOjQkTRr1hKAgAB/jh8/wuvXmTRp0owBA/5HVFQkY8YMp3p1K+7evcP8+UvZ\nuHE9oaH/kZGRTrNmLRkw4H+fdmIFBATei1BmKSAgIPCDkpaWip5eKbKysjh4cJ/s84iIZ1ha1mDA\ngP+ho6PDixcvvuIsvwwikQhDQ0PS0lJ58uSx7PPateuxbl0AZcqUZcWKNXTv3ou7d0MBuHs3lKio\nyHx9NW1amz//PIpEIkJO7jbt22+ga9cGedqIxdlcunSfxYtPk5qaSteuHRk2zJm+fQfw8uXLfH0W\nhezsvA/rWVkffsCvUcOao0elapiHDu3PY4L+NfhRAzmQZseNjU0QiURUqWJM7dpSBdAqVUyIjo4k\nOTmJadMm4ujYnWXLFhMW9ihfHyKRiIYN7VFQUEBbWwddXT1evYorwtjl8fPbVOj2O3duc/LkMfz8\nNiGRtCY6OplHj6w5ezaYlJSarFmzgaFDR7FwoYdsn7i4l/j4rMXTcwkrViwD4NKlCzx79pRVq/xZ\nt+4f7t4N5caNa4D070rnzg5s2LAZfX19nJ2Hsnq1P+vXB3L9ejAPHz74qPMpICBQNITMnICAgMAP\nQEG/yg8c+D+cnfuho6ND9eo1SE1NBWD5ci+ePXuKRCKhdu26stLAHxmJRIK+vgHDho1iypQJuLrO\nw9KyBosWeRAR8QwQkZ6egYlJNQ4c2EufPt2wtKxBhQqVZH3knGORSMSCBV2YO/c/goOHY2Jig6Ji\nM9l2iURCUFAIoaGWxMU5YGAAlSptJjs7nYCADbRq1UZ2zj+m3MzBQZsrV64SH18LZeUndOr0OtfW\nt/3k7nL06AnMnTuLgIAN6Orq5hE2yT32u/MoqTK4HKXR4OArrF3ri46OLmFhDzEzs2D6dNcSGfNL\n8W52M3fmMzs7m9WrV1C7dh3mzl1AdHQUI0YUnKlSUMjbT1bW52dJb968QePGzVBUVOThwzIkJ7dA\nJMpAVfU6oaGP6d//GACZmVmA9Po3biwt4a1cuQpxcdKA8tKlC1y+fJH+/XsBkJaWzrNnTylbthzl\nyhlgaVlDNuaxY4fYtWsH2dnZvHwZS3h4GCYmVT/7WAQEBPIiBHMCAgICH8GnlonlXhdTVNasWYma\nmjo9e/Z+b7t3f5XP3b5Tp6752ru5zS/yHL5HCgpSctbpVKxYmRkzXHFxmYSn52KmTp3JzJlTUFNT\nY8KE0Tg7D2XRomUF9vtu5mPyZJcCt0dHRxEcPIj09DoAREU5oKsrYsGCtoDU0y409C5jx07Ko5z5\nIf74oz76+rc5fz6IatW06djxF9m2nPVOTk7OefbR19fHy8snX19TpsyQratKTX1N375/kZycjIaG\nRgkrWb69Ng8e3GPjxiBKlSrNkCEDCAm5jrW1bQmO/fWQSCSkpCTLrCP27t1VaLuSQSTr28AgmchI\nADFisSbGxgNYt65Tvj1ygtF359W7dz9+/z2vbUVUVCSqqm/LeyMjI9i06R9Wr96AhoYG7u6zeP06\no3gPSUBAABCCOQEBAYGPojjLxD7kfVbc2ZGnT6M5ePA6lSrp0br1j2sCfejQSSBvkNu+fQfat+8A\nQLVqZmzcuBmA8uUNWbXKv1jHV1FRQUXlGenpOZ9IUFTMBCAo6AKzZ2fz4kUVrKwO4utrh7GxUZH7\nbtCgOg0aVC+2uS5bdoRFiwxJTrbB0vII69fXpHJlw2Lr/32Ymprj4TGHmJgYXryI5ujRQwQHX+Hs\n2VNkZGRQo4Y1EyZMBaQKiGZm5ty4cZ20tFSmTZuFv/86wsIe0bJlawYNGgLAwYP72LLlX7KyMrG0\nrMHYsZOQk/syK0rel92Uk5OjZ09H3Nxm4Oe3hgYN7Ckomyr90aH452ZtbYOnpzt9+vTHxcUGZ+fl\nZGQ0QFVVmQ4dpJk/iUTCw4cP3pupr1evPqtWraBNm/aoqqoSE/MiTyYxh5SUFFRUVFFXVycu7iUX\nLpyjZs1axX9gAgICQjAnICAg8DEUpUzszp3bLF26kLS0dBQVFfNlRnIybjo6OgD06dON+fOXoq+v\nj5/fGg4c2Iuurh5ly5bDzMwCkK5HWbTIk/j4V3mECopKSMh9BgyI4PHjrigpPWXgwN3MnNmxeE7K\nd0ZmZiZz5hzg4UNlKlRIZ/r01qiqqhZb/7q6ejg5vWT58uukpxthbb2PUaPskUgkLF4cx/PnUruE\nkBAzFiwIYPnyogdzxUlGRgarVsmRnCwN7P/7rydeXptYvPjLBHMpKSkYGlZg/nwvFi/2pEoVY1q0\naEO/flJVF1fX6Zw9e5pGjRojEolQVFRi9Wp/goI2MWnSWNat+wdNTS26d+9E9+5/Ehf3kmPHDrNi\nxVrk5eVZsGAehw7tp127X0v8WN7NjufObubelmNGD8gC0Nzege9mVv39/y2W+ZmbW2Jv34S+fXug\np1cKe3tb6tevSa1a/2PBgnns2bOVrKysQkuAc17XqVOf8PBwBg/uD4CamhouLq75FCqrVTPF1NSM\nXr26ULasPtbWNsVyHAICAvkRgjkBAQGBjyJvmdjChctwc5vBpUsX6Nz5V6ysbLh27Sq6unpkZGQw\natRYHj16yKJFnsTEPGfIECdMTc1RU1N/26NIxNWrl9m8+R+ys7MZPnw0fn5rOHnyGOHhj+jUqQue\nnm6MHz8FI6MK3L59i4ULPQosnyuMNWse8PhxNwBev65IUJAuEyakoqamVnyn5jth6tS9rF/vAKgA\nmSQl/cOyZV2KdYxJk9rz++/3iYi4RoMGbVBXVyc7O5uUlLxKk6mpRS+zLG4yMzNJT1fP89nr1/mz\nLCWFmpo6V65cxMfHm9jYGMzNLQkOvkxAwAYyMtJJTEzE2NiERo0aA2Bv3wQAY2MTjI2ldgogza4+\nfx5NSMg17t4NZeDAPoA0WC1VqtQXO55PRSKR4OGxj1OnlNDQyGDcuKrUrWte7OP07NkHJydn0tPT\n32Q6LTAwKM/ChUvztX231DYn2w3g4NADB4f8dgnvliEXVq6b2xJBQEDg8xGCOQEBAYFPxMKiOnp6\nekREPKNp0xY0atSYDRvWI5FI8PML5MyZk2zeHIiLy2xGjx7H5s2BODj0wMtrAb/++rtsHUpKSjI7\ndmyhVau2JCYmEhi4EW/vlfj6+vDkSTgbN67n5s0QXFwmysbOESooKhKJ6J33ciW4PqdgPmW94enT\nJ6hQoRKVK1cptnncvq2BNJADUOT27ZKxZbCwqIaFxduSNXl5eeztXxIUlAqooaZ2l9atiy8j+LFo\naGjQokU4W7cmAxro6V2gU6cyJTpm7uyNmpoqa9f+w/nzZzh4cB8SiYRbt26yZs0GypQpy9q1vrx+\n/VbkRVFRSdZHzuuc9zlWCu3bd+B//xtWosdQ3KxdewIvrxZkZ5cFIDIyiMOHKxVrthjA09ON8PBH\nvH79mvbtO1Ctmlmx9l8QZ8/e5syZpxgbq9O1q73gLycgUAIIwZyAgMA3QXJyMocPH+CPP/ILduQQ\nFRUp8/r6Fsh5oDQwMERXVxexWIyhoRHZ2dJAK7ck+dq1K3nw4D7Pn0cRHx+PRCIGpN5nr169YsEC\nby5fvkhMzP1c3mcxyMmJ0NHRQVNTk3XrAgqdy4dwdKzC2bMHefq0LQoK0XTq9AJ1dfUP70jxnfdP\nWW946tQJGjVqXKzBXNmyKe+8Ty22vj+El9cfVKu2j+fPRdSvr83vvzf+YmMXxLJlXbGxOUhMjJhW\nrSrRoEHJWhfkZHjs7GpTsWJllJSUaNOmPRoamuzevQORCLS0tElNTeX48SO0aNG6SP2KRCJq1arL\npElj6datF7q6uiQmJpCamoa+vn5JHtJnc+fOa1kgB/DggSVRUZEyE/fiYsaMOcXa34fYseMCEybo\nER/vgIJCNDdv7mb27N++6BwEBH4GhGBOQEDgmyApKZHt24PeG8x9q+SWJNfU1CQ5OZnQ0P/Q1tYh\nMzMTX9/lmJqao6GhxZgxExg4sA9374ZSv35DtLW1CQ9/RGRkJLa2Ndm8OQA7uzpMmjQNJ6c+dOrU\nmR49ejNkiBPHjx+hefNWRRIqeJfatc3YtOkJhw5txshIk99++70kTsV7ad26MZ6eSwgM3ChT9Vy0\nyAMLi+q0b98BHx9vzp49jby8PHXr1qdp0+acPXua69ev4ee3hjlzPDE0/Pz1ZTNn1iUhwY9Hj7Sp\nWDGJ2bO/nPeagoICo0e3/WLjfQh5eXkGD27zxcZLSkoiIOAsCgpymJur4Ovrg5ycCAUFRcaNm8yp\nU8dxdOyOnl6pPDL3uSlIJGTHjq0yIZQxY4YhFktQUFBg7NiJ30QwFxS0iZ07t2JmZo6LS14LhmrV\n5BGJ4pBI9ACoUuUe+voNAdi8OYDff++czwj+e2DbtkTi46XBeFaWPvv3qzNrlkTIzgkIFDNCMCcg\nIPBNsGKFNxERz+jfvxd2drV58OABSUmJZGdnMWjQEOztm+ZpHxHxDBeXiUyYMA1NTU2ZOIiioiJ1\n6tRjwICCPZzeR1HsA/KKAuTfLicnR48ef7J48XySk5OJjo7EyKgihoZGREVFsnfvLlRUVElKSmTl\nyr9RV9fA0NAIb+9FzJ27gNat2xEQ4P/G2Ls6mZmZPH36hOnT57BgwTz8/NbmEyooKtWqVaRatYof\ntU8OYrEYDw83bt26QZkyZZk7dyEHD+5j9+7tZGZmYWRkhIvLbDIzs+jXrydbtuwGIC0tjT//7EpQ\n0C4kEgnLly/lyZPHDBs2iIkTp8rOZ2JiAqdPnyAgYCsgLT1VV9fA3r4JjRo1pmnTFp8074KoVMmA\nbds6I5EID5ZfksTERBwcDnLtWj8gi8aN1xEY6IeS0tuSSTMzc5kwSG5yr7OqWbNWHmXEd9dgtWxZ\ntGzel2THji14efnIrAly4+zcksjI3Zw9q4aGRjpjx1aRrWUNCtpE27a/fJfBnKJi9nvfCwgIFA9C\nMCcgIPBNMGTISMLCHrFuXQDZ2dlkZKSjpqZOfHw8gwf3zxPMPXkSzsyZU5k6dRYmJlUZNWqITBzk\n5MnjuLpO/6RgrijkLhOzs6tNVFQkIpFIZi9w7dpVjIwqsHLlOqKiIpk0aQy9e/fDzW0GqqqqVK1q\nikgkx6JFy9i/fw93795h9Ojx3L9/V+Z9VqdOPXx8lvLw4QMePnyAsXFVGjVqXKBQQVH53FLJ8PAw\nZs50Z+LEqUyfPpmTJ4/RrFkLfvvtDwBWrfJhz56ddOnSnWrVTAkOvoKdXW3OnTtNvXoNkZeX5/Xr\n1zg49ODIkUP07TuAhQs9ZOWT6uoaKCkpM3fubBo2bCwTvYCS894SArkvi7//2TeBnBygxOnTf7J7\n93G6dGn2Uf2sX7+aQ4f2o6OjK1N8ffDgHklJWmRlKZOdfQ8vL28g7w80ly5dkK3DMzQ0YsoU6Xey\na9eOtGrVlu3bg8jMzKRcOX0GDhyCoaERy5YtJi0tDW1tHaZOnUGpUqULVZZ1c5uJuroGd+/+x8uX\nLxk6dCTNmrVk/nx3IiMjGDt2BG3atOf06ZO8fp2BsrIykyfPoGLFSkyf/is+Pt5cunSe1avlePGi\nExKJhNjYGEaOHIyOju5HCR59CwweXIWQkD08ftwCLa3bODkpCd85AYESQAjmBAQEvglyP7BLJBJW\nrFjGjRvXkZMTERsbw6tXcQC8evWKyZPH4e6+gEqVKpOamsqtW2/FQaKiosjISKd//17UqVMPiQQu\nXjyHSCTC0XEALVu2lmWI3v08N3fu3Gb+fHfmzPGkfPnCpdo/R5K8IO+z8PDHZGTI4+3ti4qKCsHB\n99iy5REHD+5hxIgGlCnzddT5RCKRLBNoZmZOVFQkDx8+YNUqH1JSkklNTaNevQYAtGjRmmPHDmNn\nV5sjRw7RpUs3UlNTEYvFrF3rS1xcHDExz8nMzJKdW3l5eVat8uPKlUucOHGUbds2yx5ei/IA+LHB\n6v79e6hTpz6lS5f+lNMh8AnIyYmA3IF5NvLy7/eACw29w4EDexk9ehxr1qwkOTmJ69eD8fPbRGZm\nJk5OvdHXN+DQoaNERMwjObktVas24sqV29SuXZ1jxw7TqlVb4uPj8fdfi5fXcpSVVdi4cT3//vsP\n/foNRCQSER//ihYt2mBqasa9e6HUr9+AceNGMm/eIrS1dTh69BC+vsuZPHn6e5Vl4+Je4uOzlvDw\nMCZNGkOzZi0ZP34Kly5dwNt7JQoKCvTo0Rt5eXkuX76Ir+/fzJnjya5d23n+PJr16wORk5MjMTER\nLS0t/v03AG/vlWhplYxIT0lSp445e/aU5syZI1hYVMDSstnXnpKAwA+JEMwJCAh8cxw6tJ+EhHjW\nrt2IvLw8Dg6/kZEhVbXT0NCgXDkDbty4RqVKlZFIxGhovBUHiY6OYsKE0axbF8CJE0fZZKTsEgAA\nIABJREFUuXMbfn6biI9/xcCBjtja1uTmzRs8eHAv3+c53Lx5gyVLFjBv3iLKli33xY570aJDeHsb\nkZJiQs2ae5k6tRKjRmUSEeEASLhwYT07dvzyyXYCRS2VVFZWITIyguHDZ5CUlIyNjV2efuTk5MnO\nzsDdfTbz5i3ExKQq+/fv4dq1qwA0atQEX9/lJCYmcu9eKLVq1SE1NQUQsXTpCoYNG4Svrx/p6ek4\nOfXG2tqWtLQ00tPTaNCgEVZWNnTvLl3Tp6amRkpKyruH8tns27ebKlVMhGDuC9K3b2P27VvHpUuO\nQCatWgXSoUP39+5jbm6BubnUa1EkEhEVFUnjxs1QVFREUVGRRo0aExf3iqwsBaSPNPIkJrbB13cf\ntrZmnD9/lmHDRhMcfEUmLARSNVgrK2vZOL/88huuri68fp1BeHgYz59H8+jRQ0aPHgpIvzulSpUh\nLS2tUGVZkUhE48bSCoLKlasQFxeX73iSkpJwdZ1BRMTTPCqcV69eolOnrjKDcy0trY8/wd8g5cqV\npkuX5l97GgICPzRCMCcgIPBNoKamRmqqVFUwOTkZXV095OXlCQ6+QnR0lKydoqIi7u7zGTNmOKqq\nqrRu3Y7y5cvLxEHEYrFMzjwk5DqtW7dDJBKhq6uHra0dd+78x82bNwr8XF1dnfDwR8yf787ixX9T\nqtSXe9BPSIhn1SpNUlLqAXDtWl9cXecRETH5TQsR16//xrlz12jVqt4njfH06ZMil0p6eS2gV69e\nNGzYgvXrVxfYX1paKnp6pcjKyuLgwX2ywFdNTQ1zc0u8vObLDJ/V1TWQkxNx+/ZNmjdvRZ8+3dHR\n0cHMTCqPnpqawqRJY99cOwkjRowBoGXLNnh4uLFly7+4us57rwBKdnY2s2e7cO9eKJUrG+PiMouw\nsLB8pXIhIdcJDb3D7NnTUFZWZvToCWze/A9ubvM5ffoEM2dO5eDBk2RnZ9OnTzc2b95ZaGndq1ev\nWLhwLs+fRwMwcuRYrKxsWLNmJc+fRxMVFcnz59F069aTrl3ze3P9KERFRTJ27AjM/8/eWYdFlbZx\n+B6GlBIUMQETkEZsbF111bWwXQEDYy1s7Mbe1V0DXUEUY0WxVtfuTsDCVhqR7piZ749ZRhAwcY3v\n3Nfl5cw5b533zDDvc57n/T1mtQvM/+3bwaxZsxKJRIKZWW22bRvL/v1/c+3aEeLiXjBo0N/Ur9+A\nESPGcPLkcTZt2oCSkhgtLS3++GN9oX2sr1694sGDvRw9eph+/QYAoKKijNzjJwMkKCkl8fDhafr2\nPY+urq5C4t/BoT6zZy8ocvwmJiZ4e29l9+6/uHDhLKdPn6Rq1eqsW1dQgTUtLfWtyrIqKq/FkN4M\nD5bJZPz55zocHOri6bmMqKhIRo8eVmx5AQEBgfdBMOYEBAS+CnR1S2NlZcOAAb0wM6tNaOgLnJ17\nY2pqjrHxa1l6kUiEuro6S5b8hrv7CEqV0iwgDpKRkfGvF0hetrgF0pvH80L5ypY1ICcnm4cPQ2jY\n0PEzXW1h5OMunX9EiMXqQCZ5OdHU1aMwNCxdVPX3okKFSu8dKnnnTjAbNngRH59OkybN2bixcKLf\nwYOH4ubmQunSpbGwsFQY4yAXoZg500MhTpGUlEiZMmX5++/9xMW9QllZmQYNGuHiMlhRZ8MG30J9\nWFnZ4Oe3872uLzT0BR4eM7G0tMbTcy67d+/k3LnTeHquoHTpgqFyAQH+jBzpjqmpGbm5uTx69BCA\noKBAqlWrwf37d8nNzcXCwgqg2NC6lSuX0bNnX6ytbYmOjmbChFH4+fkDcuP599+9SEtLpW/f7nTt\n2gOxWPxe1/ItEhYWytSpsxTzv327H/v372HVqnVUrlyF+fNncfjwQX766UcOHVpXQOwGwNf3T1as\nWE3ZsmUVx/Ijk8lIS0tFV7c0S5euxM3NGRUVFVq1+gE1NSnKyuHo6m6ibNlUSpcuTc2apjx+/JCo\nqEhq17ZkxYrFRESEU6lSZTIyMnj1KpYqVeSCQPHxcVSoUIkGDRpx8uQx7t+/S2JiInfu3MbS0orc\n3FzCwkKpWrVagYdHH6osm5aWphBBOXTogOK4g0N99u0LwN7eAbFYrAizzPNMf4thlgICAv8NgjEn\nICDw1fA+eZDy9qBpaWmxYcNmxfE8cZCkpEQGDfoZAGtrW/bt20P79h1JSkoiKOgWI0eORSKRsG9f\nQKHjz549RUtLGw+PGYwd+wvq6hoFVPM+J4aG5Wne/DT//GMDqGFgcJ7Jkx3w9vbl5MmGqKkl4+IS\nhpVVx4/uI38KhXeFSuanfPnyqKu/TmDcp09/xesuXQqmkli8eD69evWjefNWnD17FYBXr2IZNWoo\n/fu70L17z7eOUSKRsHz5VqKjE3F2bo+NTU3Onz/L8+dP6d/fhY0bvShVSrPAGPIoV84QS0t56Fzb\ntj/i6+vN06dPcHcvGCqXR55Br6ysTKVKlXnx4jkhIffo3bsfgYG3kEol2NjYvjW07vr1q7x48Uxx\nPD09nYyMDEQiEY0aOaKsrIyubmn09PRJSIgvUs3we+HN+d+06U8qVqxE5cpVAPke0YCAnXTv3rNI\nsRsrKxsWLJhFy5ZtaNascGieSCSideu2iEQiRo8eSm5uLoaGhmhqaqKursK0aZmcP3+WlJQ4UlIy\nOXv2NOXLlyc8PIy6deszbdpsZs+eSnZ2DgBubiMUxtzz58+YNWsa2dnZxMW9Ytq0OSgpKbFy5TJS\nU1ORSHLp1asvVatWe6uybEG12/x7PUWIRCL69h3AggWz8PXd+O/DInmZTp26EBYWirNzH5SVlfnp\np65069aDn37qyvjxozAwKPfNCaAICAj8NwjGnICAwDfNzp0X2bUrBbFYypAhFWnZ0kbh4WvQoBE1\natTAxaUPIpGIESPGoKenT7NmLbh7N7jQ8efPnyESgZ6ePkuW/MqECaOZOnUW5uYWn/06RCIRGzZ0\nZ+3a/SQkQPv2xtSvb06zZtaEhoaioVEeQ0ObEu+3uFBJKysbDh48SMOGLTh69PB7tzd58vRCx3R0\ndLG1Hcy5c2Kys8/Tp0/RHk+ZTMYvv+zi+HE91NTiOX48mXXr7uHo2BRHx6bA28VQ8p+TyWRoamoW\nGSpXVHkbGzsuXTqPWKxMnTr1OHx4FlKpjF9+GYNUKnlLaJ2M9et9C4TX5aGsnN94ViI39/uWZn9z\n/rW0tElOTipwDIoXu5kwwYN79+5w6dIFBg36mY0btxTZT58+PzNwoBtz5kzn3r27VK9eg3LlyuHs\nPIBHj+7g5jaYunUbFKpnb+9Q4AEQyI3vKVPmU7myIb6+2wvV+eOP9YWOVahQsUhlWQ+PmQXmIE/5\nFsDffx8AlpZWRYohicViRo1yZ9Qod0D+4EEmk9G9ey+6d3/7vkIBAYH/bwRjTkBA4Jvl/Pk7TJtW\nnqQkeRLm+/dPsG9fZCEP34gRYwrVHTFiTKHj+fNXGRqWZ8uW9wvvKylUVVUZM6ZdgWNKSkqYmJiU\nSPtFGULFhUqOGTOBhQtnsW6dF46OzYqsm5GRwcyZU4iNjUUqleDsPJg9e/wZNWocpqZmtGnThB49\n+rBjxz4yM9N49uwku3encOGCB/Hxj4iNjUFNTZ3SpfWQSHJp2NCRmzcvYmgYjkwmJjv7Bl5e1iQm\nPuHBg/uK9A/FERMTrQiLO3bsMBYWlhw4sLfIUDl5+NrrUD4bGzvmzZvJjz92onTp0iQlJZGYmEC1\natUBig2tq1u3Af7+O+jbV+4NfvToITVr1vroe/Qt8+b8m5mZs29fgCK08ciRQ9jZ1SlW7EaeW9GS\n2rUtuXz5Ai9fvizQvkwm4/z5M4SGvuDZsye8ePGcfv0GYGJSTVGmXr2GBATsws7OAWVlZUJDX1Cu\nnCHq6oXztD19Gs6gQbe4e9cRff3HTJ36kAEDmhQq9y4OHbrB0qXRJCerU69ePKtWdSnSuC+O/AnF\np0+fy+TJezh+XBdV1RyGDtXA1bXZuxt5C5+alkRAQODrRjDmBAQEvlkuXw4nKamH4n1kZFPOnz+A\nsXHFj2rv2LFb7N37ElXVHMaOrYOxcYWSGuoX580UCm8Llcwrv2PHDmJjUwCKTOR85cpFypYtx9Kl\nKwH53qe9e3cpzmdmZmJhYUliogGqquvR1d1JfPxw7t27jZ1dNcqUKYOpqTmuroM5fvwoXl6rSUmZ\nQ05OJnp63iQkuFCuXCYi0buFIUQiEUZGxuzZs5NFi+ZiYlINJ6fe1KvXsMhQuR9/7MSyZZ6oq6uz\nbp0PtWtbkJiYgI2NXNW0Ro2ainQYQLGhdWPHTmDFisU4O/dBIpFga2vPhAlT/h3TO4f9XfHm/Pfq\n1Q8LCytmzJiMRCLB3NyCLl2cSExMxMOjsNjNmjUrCQ8PQyaT4eBQjxo1anLr1g3FPIpEIqpXr0l4\neBjZ2TlMnOhBx45dFLkeQR6uGBUVyaBB/ZHJZOjp6bNw4dIix/vrr4HcvdsXgPh4I1av3kX//lKF\nouT7kJGRwaxZibx4IRe3CQvLxMRkH5Mn//jebeRPKO7jcxJf307IZPoAeHpeoGXLMIyNq7x3ewIC\nAv9fiGRfiXxS3oJB4PvDwEBbuL/fMV/y/v7992WGD69FVpYxALq6V9m7VwULixof3NbFi/cYNAji\n4uRKkZaWWzlwoBWampolOuavHX//S5w7l4yeXg5Ll/5Eerq02LJhYaGMGzeSli3b0KhRE2xsbBk1\naqhCWKRly0acPHmRJk38yM7+i/R0R2Ji5mNqaomzszNBQbcYOvQXLC2t2bzZmz//9EJLqxzx8dmI\nRNmoqNTBz288d+/eICTkHu7uk/D2Xo+GRqki98wJfBgl+d39Fr0/Q4YcZd++7or3hoaHuHGjPqqq\nqu/dRkREOA0aZJKV9Tq1Sb9+u/j117bvVX/p0oUcOnQAIyNj2rfvyM6dRwgLkyKVahATM5fs7LIM\nGTIPS0tTxWf+5597snTpKmQyKRMmjMba2q5AuhE1NTViYl4wadIURCIR9erV5/Lli9/UvRF4O8K6\n6vvFwED7g+u8/+MnAQEBga+Mjh0bMGbMVczMArCw8GfGjNiPMuQAjh8PVRhyAHfutOLWrfslNdRv\ngh07LjBhggk7djixdm1Pevb0f2v5KlWM8PbeSvXqNdiwYQ0+PhsKnBeL5cEfw4YZIhanIxa/xN7e\nF1XV1z89efvKlJREaGhocOjQAVxdu1O3ri2HDs3CyOjb8o7GxSUwbNgefvrpGO7ue8nIyPiodiZO\nHENaWiqpqans2fPa23nz5nUmTXIvkbFevXqVO3eCS6QteL/k7p+TR49CWb36Hw4cuPBe5du310ZH\nJ+/602jaNOqDDDmQh2PXrv16DlVVX+Dg8P55ICdOnErZsgb8/rsXUVGRWFmZkpg4l1ev3ClffjI1\napylcuWCojn55zk8PIzu3XuyZctOtLS0OXPmJAAeHh6MGzeZTZuKTqEgICDw/SCEWQoICHzTTJjQ\njgkTPr0dAwMlIB2QL8S0tZ9TuXK5T2/4G+L06TQyMvL2e4m5fNmYlJRktLWLTmD86tUrtLW1+eGH\n9mhqavH33/sKnM/KygSgV68W+PrOw9FRyuzZ7XByWs39+3cBkEolpKXJE5Nv2LCOhIQEVFVFhIbe\nJzU1DS0t7QJpJIoLJsmvcrlxoxc2NnY4ONT7xBn5cMaNO8k//zgDIi5fzkUk2s6KFV0+uJ280NWo\nqEj27PGna1d5KGx8fByBgYUVRz+GK1euIJMpKxQoP4U3w3j/ay5fvsfw4clERPRERSWSa9f2M3fu\nT2+t061bQ7S1b3H2rD+GhiKGD+/+1vJFoayszLp19Vm8eBupqeo0bSqmX7+WH9yOTCbj9u0gFixY\nio3NC/bvT+H580iWLDHkzp2nxdYrKt1Iaqr8IYCNjS0Abdt24PLlix88JgEBgW8DwTMnICAgAAwZ\n0pKuXbehp3eCChX2MW5cNCYmRl96WP8pOjpZyBMvy9HTS6BUqeLDTJ8+fYybmwuurn3ZtOlPnJ0H\nFTifl85AWVmZFi1aExh4g0mTxlKvXgOioiK5f/8e8+bN5Pnz51SpYoyOjg7jxv3CwYP7iY+Px919\nBCdOHEMkEim8EfLXhceS31sxaNDQL2LIATx9qkue3Dwo8/hx0fO3bdtmdu2SGz+rVi1nzBj5nsQb\nN64xZ850evT4iaSkRNat+52IiHBcXfuyZs1KQIRUKmX69Mn06+fE3LkzFG1ev36VgQP74ezcG0/P\nueTkyCX4nZw6KVQlQ0LuMWrUUKKjo/jrr7/YuXMbrq59CQoKLHKc/v476N+/B/PmzSjy/KFDB/j1\n1yWA3KDevt3vQ6arEHv37ubw4YMfXG/z5lAiItoAkJNTkYAAXbKyst5Zr00bO+bNa8fIkW0/Ogdg\n1aqVWLeuE35+bXBz+3BDLj8ymYxu3RqyadMP6OurY2lZDbFYjEz2OtxZvtdQTuF0I4UVU7+S3TQC\nAgKfCcEzJyAgIIDc4PDy6kVKSjIqKqpFqt9970yZ4sjDh94EBlpQpkw0c+YYvnWBW69eA+rVKygB\nn5ckHFAsQG/evE5ERDj16jXk2bMnlCtnqEgYff/+XVauXE5qaiqGhhVYtWodISH32LFjK0uW/Mqq\nVctRU1NnzBi5+/XUqeMsXSqXhff13cjhwwfR09OnXDlDzMzMAViwYDaNGzehefNWODl1on37jly4\ncA6JJJd58xZhZGRCQkICc+ZMIy7uFZaW1ly7dgVvb79PTs5cqVIKDx4oZoBKlQonvwawsbFnxw4/\nnJx6ExJyn9zcXHJzcwkODsTW1p47d4IRiUQMHz6aZ8+eKtIiHD9+hKysLKRS+dxevnyR7dv9CAy8\nwaNHD1m1ah1RURF4es5nz55d9OzZp8jwx/LlK9C7d29kMjG9exe//zC/OEdRFJ9X7ePo0uXDvWPy\nvgu+V1KSffGwzw/F2tqOo0f/wcVlMDdvXqd0aT1KldKkQoWKXLhwDoAHD0KIiop8aztaWlpoa2sT\nHByItbUtR4/+818MX0BA4AsheOYEBAQE8qGtrfNVG3Il4f0oDn19PQICnLhypSwXLjSmX7/Gn9ji\n68X048cPGTt2An5+/kRGRnD7dhA5OTlMnTqJJ0/qcOHCTEJCunL16pN/a8iYPHkPGzaks3JlFr/8\nshOpVKpYoIeE3OfkyWNs2rSdZctWEhJy73Wvb3jySpfWw9vbjy5dnBRz5+OzHgeHemzZspPmzVsR\nExP9idcqZ/HiBrRqtQVz87106LAZT8+iPTWmpmY8eHCf9PQ0VFVVsbS0IiTkPkFBtxSKmlC0V0Um\nk9G3789s3bqL0qX1ePDgPk+fyo3kypWrcPDgAbp06UZQ0M13jvdtTpulSxcSGRnB+PGj2LHDDw+P\n8Tg792HoUFeePHn81nYfPXqAm5sLzs59mDp1IikpKSQkxDNo0OsUDk2a1OXlyxgAevXqQlZWZoHP\n98iRbqxd+ztDhjjTp083hfcwMzOTGTOm0L9/T6ZOnYibmwutW0OVKv8AMtTUXtCzZ9oH73/7csg/\nrwMHuvHgQQjOzn1Yv34N06fPBqBZs5akpCTz8889CQjYSZUqxq9rvmGw5r339PRkxYoluLr2LbKc\ngIDA94PgmRMQEBD4hvjcizIlJSUMDQ1LvF1zcwuFd6dGjVpERUVSqpQmKSmqBAfLpfwfPmzIkiXb\nmT+/PK9eJXL4cEt0dJKRyUqxa1d3Gjc+9W9rMoKDb9G0aQvU1NQANRo3blps382ayQ2qWrXMFAIR\nt28H4em5HID69RsWuy/wQzE2rsD27e/eI6esrEyFCpU4dOgAVlY2VK9eg5s3rxEREYGJSdW31lVV\nVVPsczMxMSE09AWNGzfh4sXzpKSkcPfuHTp06MTDhyGAPCG1VCq32rKysott900mTpzK1auX+f13\nLzZu9MLU1BxPz+XcvHmd+fNn4uOzrZCxmffxnD9/FuPGTcbGxo6NG73w8VnP6NHjyc7OIj09jeDg\nW5iZ1SYw8BbW1jbo6emjpqZeIIxWJJKHlG7Y4MulSxfw8VnPb7+tISDAH11dXfz8dvL06RNcXfsy\nfrwJu3frcOzYLkxM9GnTpsN7X+eXJi+hOICn57JC59XU1Fix4o8i6xaXbsTCwqKA+MmIEaNLYqgC\nAgJfIYJnTkBAQOArx9d3I336dGPEiMGEhr4AYNSooYSEyNU2ExMT6dFDLvYgkUhYvXolQ4YMwNm5\nD/v2BXyxcedHReW1l0QsVkIikSASgURS8GcoIUG+zy4zM4fc3PKAGJACusTF5eTbL/SmUVu8iylv\nX1Fev4oaX3gvkY2NLdu3+2Fra4+NjR179+6mVq2CCcdLlSqlSOSeR357XiaTGz29evXj5csYdu/e\nQcuWrTl69DC2tvaAPKQyz3N55swJRV1NTU3S09PeOc48cY62beW50+ztHUhKSiq2bp4KZ56HsV27\nDgQG3gLA0tKG4OAggoIC+flnV4KCbhIcHFjAG5mfZs1aAHJPZnR0FCA3xFu1+gGAatWqU726XADE\nxKQiQ4a0o02bL7Nf8mtAJpNx9ux1AgJOv9eeQQEBgW8fwZgTEBAQ+Ip5Vzjhm/z99z60tLTYsGEz\nGzb4cuDA3nfusflSGBmZoKKSjIbGWQBEojgcHOSJug0N9TA3DyAnpxJqavcwMTmAlVWpf69FhK2t\nHWfPyhes6elpXLhw/oP6trKy4eTJYwBcvXqZlJTkEr2298HGxo74+DgsLa3+9UypFTJqdHVLY2Vl\nw4ABvVizZhUgIisrizt3bgMQFvaCKlWMqFChIqam5mzatJGzZ08hFosVyeBdXd1YuXIZgwcPQCxW\nVnxuWrRowdmzp3F17UtwcNECKPkpbPx+uJfY1taOoKBbxMRE06RJMx49evhWYy7vIcCb4h5f2hD/\nGpHJZIwe7U/PntXp3t2WHj32kppa9J5NAQGB7wchzFJAQEDgK+ZDwgkBrl27zJMnjzl9Wu6BSUtL\nIzw8jAoVKv4Hoy1IQXGMwueVlZVZufI3PDxmkJqag7q6MgsW+PLkySNUVVXw9bVh3bqr3LnzgFKl\ngrl82U6xX6hWLTNatWqDi0sf9PT0qV3b4n1GpBiTq6sbs2dP48iRQ1hYWKOvX+atyp2fgzp16nLq\n1CXF++3bX3tR/f33K17PmjVf8To6OgpjYxP27NnJokVzMTGphofHTAB69OjNrl1/sW6dd4F+5B7A\nwh5aExMTfH23v9dYixbnKJhPTSaTIZOBpqYW2to6BAUFYmNjy+HDB7Gzq/PvWOzw8lqNnV0dRCIR\nOjo6XLp0gWHDRuVr5+1jkRvix7G3d+DZs6c8ffr2/XtfA6mpqRw7dliRYuJzcPVqMP7+LZBK5Sq8\nly+7sn79LsaN+/Gz9SkgIPDlEYw5AQEBga+aor0f8n1Qck9FdnbBcKpx4yZRt26Doqr9pxw9egaQ\nh+XZ2zsojru7T1K8Nje3YO/egoaGnV0dxeJ/0aIuQNF70AYMGMiAAQMLHZ86dZbidX6jyMzMnFWr\n1gFyxb8VK35HLBZz504wDx7cQ1n56/9JLF++Alu37ipwLCbmJbdvP+XKlct06vT2/Xo5OTns2XMO\niUTK0KHvs8h/Lc7h6TkXZ+c+aGhoKMQ5iksbMW3abJYt8yQyMgI9PT3WrNmoGD+gCAG1sbHj1atX\naGlpve6xWIefiI0bvVBVVSUxMYH+/XtibGxM1arVCtT/GKRSKUpK8mClkSPdGDnSXaGOWhKkpCQX\nyBf4OUhPz0Qqzf9AQkx2tiB8IiDwvSOSfWSswuLFizl9+jQqKioYGRnh6emJtrY2AF5eXuzevRsl\nJSWmT5+Oo6PjO9uLjU35mGEIfAMYGGgL9/c7Rri/n5eHD0NYsGAO69dvQiLJZeDAn+ncuRuhoc8x\nNTWjSxcndu7chr//Dvz997N//x4uXbrAvHmLUFZWJjT0BeXKGX6UQuf3eG/T0tJYuvQUL1+mEB29\nEx0dDVRUlBk/3qNEF+//FYcO3WDKlBxUVX9HRSWXuXMn0aZNnSLL5uTk0L+/P6dO9QfEtGixHV/f\njp9VvdXbez0aGqUKiHN8anvq6ho4OfVCVVWViIhwxo79he3bdxdrjEdFRTJ+/CjMzGrz8GEIJibV\nmDFjDv369aBVqx+4du0K/foNQFtbB2/v9Tx58hgLC0s8PZejoaHB2rW/c+HCOcRiMfXqNeCXX8aQ\nkJDA8uWeChXU0aPHY2Vlw8aNXsTERBMVFUlMTDQ9e/bByak3s2Z5cP78WYyMjKlbt8FnESTJycmh\nT59dnD3rCqhQs+Yutm+3xsioQon3JfBl+R7/NgvIMTDQ/uA6H/0Y0tHRkYkTJ6KkpMSyZcvw8vJi\nwoQJPH78mEOHDnHw4EFiYmJwdXXlyJEjiideAgICAv/PtGnThGPHzr13+XPnzmBgYFAgnFAkkivX\nzZjhwf79e2jY0JE8D16nTl2Iiopk0KD+yGQy9PT0Wbhw6We6mm8LmUzGwIEHOHVqICBGS6sRy5dH\n0bXrl/difixr1sQQHd0LkCfMXrfuL9q0Kbrs7t1nOXXqZ0AeHnnqVH/8/PYyeHC7Eh3Tm/n/TE3N\niYgIZ8WKJSQmJqCurs7kydPQ1y+Li0sfdu06AEBGRgb9+jnh77+f6OioQuWNjEzIzs4mKOgZ/v49\nUFMTExv7En19fWbO9MDDYyba2tqMHOlGzZqmBAbeQCKRMGTIcMLCQhk/fgrKyspcuHCOXr26IpFI\n0NUtzdq1fzJ79jSuXr2Cg0M9qlathrFxVf76ayvduvXg3LnTiryIaWnyPWgrVy6jZ8++WFvbEh0d\nzYQJo/Dz8wcgLCyUqVNnMWXKOHx8NtC1a49C+QJLkvyeRD+/rmzYsAdlZXU6drShSpXyJdZPVFQk\nkye7s3nzXyXWpoCAwKfz0cZc48av8w/Z2Nhw5MgRAE6cOEGHDh1QUVGhcuXKGBntZbufAAAgAElE\nQVQZERwcjK2t7aePVkBAQOCb58PCnkQiEXXq1GPZslWFzuXf7zRkyHBAvtjs3Lkbbm4jhNxSbxAX\nF8e1axbIFTIhNdWSkycf0LXrlx3Xp5CZqVLgfVaWSjElITdXSt61y1FCIilZIZH8gj1yT3J/TE3N\nWbJkIRMnelC5chXu3r3D8uWLWblyLTVr1uLmzevY2ztw8eI56tdvhFgsZsmSBUycOLVA+XnzFrNz\n5yPCwxuRmLgUC4vWLF/+G/b2DgXSH4hEIrKyMvHx2UZQ0C0WLZpHuXKGXL9+FQeHerRr14Ht27dw\n9eplHB2bsmfPLjIzM9HQUCcsLJTQ0OckJiZQp05dNDW1UFVVw9NzLo0aNaFx4yYAXL9+lRcvnimu\nOz09nYyMDEQiEY0aOaKsrIxYLEZPT5+EhPjPKtiSP9RVXV2dUaPaC54bAYH/I0pkg8Du3bvp0EGe\n0+Xly5fY2NgozpUvX56YmJiS6EZAQEDgu2Lbts2cOnWc7OwcmjZtzqBBQ4GiPRvvw9q1J/njD1VS\nU8vQqNEpvL27oqGh8Tkv4ZtCS0sLXd2XvBb4k6Kt/W3Jtw8fPpC1a18LnLRrJyEkJJzs7Mqoqz+j\nfXvYuXMbnTt3Q02tYPikk1MT/P03c+mSKyCiQYOt9OtXjBvvIylKsCc7O4s7d4KYMWOyolxOTi4A\nLVu24eTJY9jbO3D8+FG6d+9Jeno6t28HFyq/adNFIiPtADFKShLS05WJjMzE3l6e/mDGjCmK8q1b\ntwXke/IyMtJRUhJz9eplLlw4S1ZWFomJiYB8L1tQUCB2dnXQ1S3N7NkLGDiwP5MnT8fU1AyADRt8\nuX79KqdPnyAgYCcrV64FZKxf74uKSmHjWVlZfkwikRAX94qRI92oVKkKMpkMH58NXLx4jqysLCwt\nrZk0aRoA/v472LcvALFYjIlJVebMWUhGRga//rqEZ8+eIpHkYmtbh9u3g0hLSyUyMgIDg3IkJydh\nZGRCZmYmP//ck7lzF1G+fAVcXEYRF5eARJLLkCHDcXRspgg3tbS05vbtIMzMatO+fUd8fNaTkJDI\nrFnzMDe3YONGLyIjw4mIiCAxMZF+/QYU2ospkUhYt+4PAgNvkJ2dQ7duPejcudunfXgEBAQ+irca\nc66urrx69arQcXd3d1q2lCdhXbt2LSoqKnTq1KnYdoSnwwICAgIFuXr1MuHhYWzYsBmpVMqUKeMJ\nCrqFmpp6Ic/G++zlio2N5bfftElIkP9tPnHCjpUrdzNlSuHkyYcOHeDBg/u4u0+id++utG37I66u\nQ0r8Gr821NXVGT9enWXLDhAfX4E6dQKZPLlkQww/N/kNOYAJE9phYnKB+/cvYW1dms6d29Cjx0+0\nbftjIWNOXV2dHTs6s3nzHqRSGePGdSMjo6Q9RoV/72UyGVpa2kWGGDZu3JT169eQnJzMw4ch1KlT\nl/T0NLS1C5dfterwR48qNvYl6uoaLF68gq1bfTExqcru3TupUkWu/GhsXJV9+wKIiAgHICsrk7Cw\nUMqWNSAzMwMTk6rcvRtMQkICAHXrNsDffwd9+/4MwKNHD6lZ83WOwJ07t/HixXMqVqzEb7+txcvr\nD+7du42jYzNOnTrO5s1/MW/eTC5cOEfjxk3YutWXXbsOoKysrAjl3LzZGweHekydOou7d+8wZsxw\n9u07zNatm9i+3Y9Bg4YSHBzIgQN72bVrB23b/kjVqtWQSCT88ccfZGTISExMZNgwVxwdmwEQHh7G\n/PlL8PCYyeDBAzhx4ihr13pz/vwZNm/2USQtf/r0CV5em8jISMfVtR+NGhXUPsifAiU7O5sRIwZT\nr16DL6KaKyDw/85bjTkfH5+3Vg4ICODMmTP4+voqjhkaGhIdHa14Hx0djaGh4TsH8jEb/gS+HYT7\n+30j3N/3RySSz9edOze5ceMqQ4bIF4MZGRkkJr4kLS2N9u3bUblyWQDatGmNpqbaO+c4NjaSpKRK\n+Y6okJ1dCgMD7QJKfQDa2upoaKhiYKBNxYoV6NChbbHtl9S9bdmyJQEBcs/DgQMH6Nu3LwBXrlzB\nx8eHdevWlUg/RREeHs7w4cM5cOAA7u7tcHNLIzExkQoV7L+5/dx2dnbcunWLK1eu8Mcff6Cnp8ej\nR4+wsLBg8OBlbN68mVevYnF3H4G+vj6+vr78/fffeHl5AdCsWTOmT5+gaO8TRSAL0aKFI1OmTMHd\nfRQ5OTlcuXKBXr16YWRUhRs3LtCuXTtkMhkPHjzAzMwM0MbGxpp1636jdetWlCunA+gUWX7ChLbs\n3z+OsLAGSKXKaGpKqV1bHwMDbXbsOE7jxg0xMNBGRUXMxYunadu2BdevX0dHRwcdHR3EYjHDhrnS\noEEDhgxxZefObZQpo4WjY0MCA6+yZMlipk+fyKNHj1i8eB4eHh5UqVKO8eMnkJqaSmRkJPPmzcPA\nQJt582Yzd+5cBg3qh0QioW7dujRqNBtNTTU0NdVJTVVDR0cHLS1NypTRpH//Pty+HcjkyWOJi4tj\n4MC+JCUlYWVVGwMDbczNzfD0nEXr1q1p3bo1pUqV4ubNq1y5cgF//23Ex8eTnZ3F8OGuREdHI5VK\n8fffRk5ODiKRiNDQZwwY0A83twHk5OQglUoRi8WIxWIiIsJZt+43rly5QpkyZfDwGEfXrl2Jjo4k\nOTmRlJRYHBxs8PX9EwMDbbS01Gnb9gcqVSoDlKFRo4aEhz/BzMwMZWUxBgbaBAff4MGDB5w/fxrI\nSxQfh4GBacl+oASKRfjdFcjjo8Msz549y8aNG9myZcu/4RRyWrZsyfjx43FxcSEmJoYXL15gbW39\nzvaE2O7vFyF2//tGuL8fhkwm/3uXnp5N377OXL58kZcvYxCJlEhKSiczM4sHDx7TqVNnpFIpKSlJ\nODn14cWLGBYunMPFi+eoUsWYgQPdiIgI5+7d29y5E0xychI1ayqTlNSC6OhfqVHDmsDAslhbz6Bc\nOQPq12/ElSuX0NTUJDk5mZSUFEJDI3j69Bnbt/szZowRI0e6YWFhxc2b10lNTWHRIk+MjU3JzMxk\nwYLZPHv2FCMjY169imXcuMkfpP4olcqIi0slLS2NLVv8aNNGHs2RmJhOVlbuZ/0MxcenkZsrKdCH\nqqoOcXFpn63P9+FjJPDzPj+Jiencu3cPPz9/ypQpy/Dhgzh58jzt23fF29uH335bi46OLvfvP2XJ\nkqV4e/uhpaXNuHEjCQg4QJMmzT/Ld9fAoArNmrWiQ4eO6OnpU6uWOWlpWUydOodlyxbx+++ryc3N\npXXrHyhTRv7wwdGxBTNnevD7716K8RRV3sVlME5O1Xnw4A729gdxcFjG4sVLC6Q/iI1NISdHglQq\nol279kREhDN3rie///4r9eo1RCqVcOdOMF26dKVmTVNycsS0bt2RI0fGMGzYMOrVa4Cqqjrjxk1W\nhFmuWeNNVFQkEyeO4fz5y6xb54WBQTk8PZfz6lUsK1Ys4cqVa9jY2ODt7YeRkQmrVi1HJpPh7b2N\nkJD7zJw5lZSUVCSSXCpVqoy39za8vdcTH59MbGwKCxYsJzDwJhcunGP16jX4+u4gN1fKnDmLqFLF\niN27/+LVq1cMHfoL7u6/cP36VdzdJ1O+fEW6dm3Py5cvmTRpMr//7kVwcCC+vn/SrVtPevXqR7Nm\n9RGJVFm4cDmTJ7uTkZGBikopGjduilgsZs0aLwYMGEhWVjaxsSmkpWUhk8kU9yIzM4eUlKwC36Os\nrBzGjJlQKAWK8Fvw3yD87n6//KdqlvPnzycnJ4eBA+U5fmxtbZk9ezY1atSgffv2dOjQAbFYzKxZ\ns4QwSwEBAYE3qF+/ARs2rGP+/CWUK1eO8PAwJk92x919ImvWrGTz5r8oW7YsLi79EIlg06Y/0dTU\nonLlKvj6biclJYVHjx5w/fpV1NTUOHz4NO7uI8nOVkdHZxdXr2bRtKkjY8dO5MWL5wwY0IudO/dz\n/PhhduzYStu27enUqSsuLn0K5AmTSqVs2ODLpUsXWL16NUuWrCIgwB9dXV38/Hby9OkTXF37vvXv\nuofHBF6+jCE7O4sePfrw009yhRGZTMa6db8TERGOq2tf6tatT8OGjmRkpDN9+mSePXuCqak5M2fO\nA+QiE2vWrEQikWBmVpsJEzxQUVHByakT3t5+6OjoEhJyj9WrV/L7714kJCQwZ8404uJeYWlpzbVr\nV/D29gPkecQWL17AnTtBioV4/geRxfGmV7MkyS9c8TGYm1tQtqwBADVq1CIqKgorK5sCZe7fv4u9\nvQO6uqUBaNOmHYGBt2jSpPlH9/suisv/t3x5YREfgObNW3H27NUCxypUqFhk+WHDRhZ47+Xlo0h/\nkD/XXNu2HejRow+TJ7tTvXrNf0NsJ7/ZHABqamq4uAxmx46tLFhQvPJrWFgos2cvZPLkacyc6cGZ\nMyc5ePAAEyd6IBaLGTNmuELYRSaDlJQUxo3bwPPnf1OjRlXs7R348891iMVi0tPTOXXqOC1btkEm\nkxETE429vQPW1racOHGUjIwM6tVrwK5dO3B3n0SdOvUYN24UPXv2pXZtC27fDqJsWQNmz54KyENo\nZTIZlStX4dKlC5ibmxMcHEjNmqZIJBKFcEsezZq15MGD+1SsWIkbN64VOCeTyTh//gw//+xKRkY6\nt27dYPjwUWRnZyvK1KvXkICAXdjZOXxyChQBAYFP46ONuaNHjxZ7btiwYQwbNuxjmxYQEBD4bslb\nvNet24Dnz58zaFA/0tLSUFJSQklJzJ07tzExqcbkye7o6eljaWkFwI0b1xg5ciz3798BQFtbm5iY\nGCpUqEiZMmWZN28mxsbGqKqq4O7eFkfHady4cQ1X176kpqaioqJKZmYGd+7cViwgq1evgb5+mQLj\na9asBQCmpmZEREQAcPt2ED179gGgWrXqVK9e863X6OExEx0dHbKyMhkyxJnmzVsqrv1NifabN6/z\n6NGDAh6m27eDqFXLjIUL57Bq1ToqV67C/Pmz2LNnFz179inWAPLxWY+DQz3693fhypVL/P33PsW5\nohbiP/zQvkjDs02bJnTu3J3r168ybtwk7t27w6FDcvn8jh270LNnn0Iy7du2bSEzM4OBA90KeTin\nTJmJjY0tWVmZLFw4hydPHmNkZEJWVtYnqRyqqKgqXovFSkgkuYXKiESiN/r4fKqKJUVReeGmT59D\n//49ijTiAR4/fsiwYQNJTExESang56NChYqMGTOBSZPcWbLkV27duvGv5wzi4lKwsBiMiUlasQ8V\nQkLus3z5IpSUxKxZs4pp02ZhampGcHAQN29eY8CA3mhqliItLQ1VVfkDgkuXnpCbq8fx46Foa0ej\npVWWrl2dCA19waFDBxg/fhS1a1sCcjGRefNmkpaWikwmo0eP3mhpaeHiMphVq5bj7NwbqVSKnp4e\n48b9QkZGJllZWQwePABlZWWMjEzQ19fnwYP73Lx5nR9+aMfBg3uJiopCU1MLZWVlxf7JvO+Oqqpc\npEVJSQmJRFLgnEgkonr1mowePYzExERcXQdTpkxZoqIiFWWEFCgCAl8PJaJmKSAgICDwfhw9ekbx\nunr1GlSpYsyvv65GTU2NUaOGUrOmKaGhLxQLyTyOHZPn65RKXy/Gc3NzABnLlq3k1q0bbNniw4MH\n9xk9ehwikRILFy6jShUjzp07zZkzpzA2Nvm3ZvEL+jwDQUlJTG7ua+PgQ4wOf//tnDsnv86XL18S\nFhb21nYKe5giUVfXoGLFSlSuXAWA9u07EhCwU2FUFsXt20F4ei4HoH79hmhr6yjOVahQiRo15Eao\nqakZUVGRQNGGZ2ZmJhYWlowcOZaQkPv888/fbNjgi1Qqw83NGTs7e7S0CobC5Peyvenh9PFZz2+/\nrWHPnl1oaJTCz8+fJ08eM3Bgv88SuVKqlNyw0NHRxczMgt9+W0ZSUiJaWtocP34UJ6feJd5nSZOX\nq83S0hpPz7kEBPgXO1cymYwnTx6zfv1rwY6yZcsW8CTlZ8cOP8aPn4KX10P++acTV67ooa+/i4oV\n77FzZ4DioUJwcCC1a1vy229LmTjRg/nzZ9GhQyfWr1+DiUk1Tp06jo6ODgcPnmDNmpVcvnxRYdy/\neKFDfPxQkpOd0NAIIienF2pq6nTr1pM7d4JZu3ZjgTGtWfNnoXGqqakxceLUQsejoiLp2bMzixat\nwNLSikWL5lGxYiUiIyMwNCyPrm5prKys6NixC05Ovbl16waGhuXQ0dHF13cHPXr8BMDUqbMICbnH\n5csXqVChIr6+OxR9VK9ek+nT5xToN38ZqVSKm9sIhg79pbhbKCAg8B/xbe38FhAQEPiOyFPtU1NT\n4/nzZ9y+HcyxY1e5deuGwthITk4CoG7d+pw6dYLExHiSk5OIj4/jxYtnREdH8fjxQ2xs7JBKpchk\ncjEVsViJXbvkCy9zc0uuXbtCcnISVlbWnDp1ApFIxNOnj4mPj3vnOK2sbDh58jgAz5495enTx8WW\nvXnzOjduXMPLy4dNm7ZRs2YtsrPfLv9f2MMkKbRwl8lkimNisVhh1GZlZRcqVxR5ngiQG6p53gh/\n/+24uPRl6NCBCsNTSUmJ5s1bARAcHPiv1L46GhoaNGvWkqCgW0UaFvn7zu/hjI6OAiAoKJAffmgP\nyA35d3k4iyJ/v8XZgT/91JXx40cxZsxwypYty7BhIxk9ehiurn0xM6uNo2PTD+73v6ZcOUMsLeX7\n7du2/ZHbtwOLLSsSiWjSpBmqqqro6pbG3t6Be/fuFFveysqGlSuXc+nSfcRiCSAmI8MEZeVKlC1r\ngEgkokaNWkRHRxEa+pxnz54wd+4MwsPD2LzZm9jYWLKzs8jNzcXIyIRTp47Ttm0HZDIZjx8/AkBZ\nWYJIJEMq1f733xMAjh7955Pm5dGjF+zZc5by5SuyZ89O+vfvQWpqKr169WPq1FnMmDEZZ+feiMVi\nunRxypuhN2eswOuiPsvFfbYyMjJwdd2Jnd05mjc/xOHDtz7pegQEBD4dwTMnICAg8IWoX78Re/fu\npl+/HiQkKJOcbIWPTzuqVoVJk9wRi8Xo6+uzYsUfODsPYsWKxYjFynTu3I5KlapQu7YFhoYVGD58\nEFKplFKlStG/vzNaWlqoqqqSm5ubL0RLn6FDXdHU1EJDQ4MjR/4hNvalwiNWFHmLvG7dejB//iz6\n9++JsbExVatWK7A/KT9vGqh37xZcVJcqVYr09PR3zo2RkTFRUZFERIRTqVJljhw5hK2tPQDly1cg\nJOQeM2ZMLpD/Sm50HqNfP2euXr1MSkryW/vIb3jmeUazs7NQVVUr4GXLT55Rmd+gBLmUff6y+T2c\neYZjSZDn2bW3d8De3kFx3N19kuJ19+696N69l+J969ZtFXnXvhXyz6V8zpXeasQXrl/8s+r+/V1o\n1MiRfv18qFKlD+Hhcq+YsvLrOnkPFQCqVq3OrFnzmTJlnMIztWmT3LM2c+Y8li1bRGRkBNHRkZw/\nf4YaNWpSt646p08/ISHhJWJxW2Syvbi6nqNu3QYf7Y3dv/8qHh6qxMa6UqaMBb17pzJjxmsPfp06\ndfH23goUFMjw938dbpybm4uXl7fCa21mZs6qVQWVZAcOdCt2DIsWneDgQWdAmehomDPHn9atc1FW\nFpaTAgJfCuHbJyAgIPCFUFFRYdmyVdy//5BWrTTIza0NwL179WnV6i9mzHidI05DQ4Np02a/d9tH\nj5794PHk7T8CKF26NCdOnCA2NgWRSMT06XNQV1cnIiKcsWN/wdCwfJFt5Bmo/fv3oEoVY8Wevzxv\ngDwEzIYBA3rRoEFjGjZsXKQXQFVVVeFpkEgkmJtbKDwNrq5uLFo0l8zMLMRiZcXi2NXVjdmzp3Hk\nyCEsLKzR1y9DqVKapKWlFWmUvcvwBLCxsWXBgjn07++MVCrj3LnTzJgxDz09fYWXVF1dg4sXz9Ow\nYeO3zq+trR3Hjh3G3t6Bp08f8+TJo7eW/1SysrLw8TlFVhb07l0XQ8My7670lRATE82dO7extLTi\n2LHDWFvbkJ6eRkjIPRo0aMSZMycUZd9HsCM/ERHhVKtWg19+ac+qVS9RVb2CkdFzqlbVKVTWyMiE\nxMQE4uLi/lWYzCUsLBQXl0GcOnWc2NiXLF++ijVrVnH58gVcXAYDsGLFPCIjo3jwIBh7+5/Q1R2g\naHPEiNEfNScbN8YRG9sTgLi4Rnh776R79/evf/jwLebMiSE21pDatU+wYUNLDA3LftAYXr1SJf/S\n8eXL8iQlJVGmzLfz2RIQ+N4QjDkBAQGBL0xurgSpNP+fYxFSacnupfL3v8SmTUlIJCK6d1dlyJAW\n76wjkUgYPXoXp07poK29mrJlZejpaTJhwpRin8TnGaiF+3/tHZg1a36Bc3Z2dRSv83uYHjy4z48/\ndsLJqTerVi1n/PhRrFy5ltzcHMzMavPq1StUVFRITk5m6FBX5s1bxIoVv5OcnMzMmVNITU1l+PCB\njB49Hl/fHWzc6EVkZDiRkZGUL1+Bn37qxpIlC2nZshGqqmqYmFQFCnqFatUy48cfOzJkiDMAnTp1\nVSSHdnEZTIcOrbGxsVPULRp5e126OLFwoVzIw9jYBDOz2m+p82nk5OTQv38AZ864ACoEBGxn586G\nH7x4/1IYGRmzZ89OFi2ai4lJNbp27YG5uSWLFs3lzz+1sLOr80GCHfJy8v/9/bdz8+Z1RCIlWreu\nRLdulcjN1WfPnieFxqGsrMy8eYtZuXIZqany1AK9evWlatVqTJ06C0/PuYhEFOlxe/z4FTduJJCV\n9Yh27ep+8pxIJOIC73NzxcWULIxMJsPTM4InT+R7Ti9fbsKCBVtZtarzB42hbl019u4NJyenMiDD\nwuIR+vo276wnICDw+RDJPkVKqwQR8mV8vwj5UL5vhPv76UilUgYP/ou//+4HlKJWLX/8/GwwMalY\nIu3fu/eEbt0yiI9vCICm5gO8vV/SooXtW+v5+Z1j3LgmgFzso3Tps5w+bUjFiiUzrndx9+4dduzw\nY968RYwYMZjc3FzWrPmTLVt80Ncvw7Jlnixe/CuNGjmyZs0qcnNzCQy8QWRkJGXKlGHSpOn8+WcQ\nt2/vwMFhKDVrRnDt2hXWrPkTVVVVZs+eRrduPbC2tiU6OpoJE0bh5+f/QWNs06Ypx459uBf0c3P0\n6CX697cH8ow3GRMn+jNxYntFma/1u/umUui3yNat55g1y4jkZEvU1Z8yfvwtxoz54ZPa9PE5w9y5\nNUhLM6NUqYdMmXKPYcNaFVn2zXsrkUiwsztHdHQnxbH27Xfj6/vhY/LyOsHFixJ0dTOZNq3RN/OA\n4Hvia/3uCnw6/2meOQEBAQGBkkFJSYkNG3qybdsxkpNz6NbNgQoVit/L9qFcu/aI+PjX8VhpaaYE\nBd2mxTuccxERueQZcgCJiTV4/vzRf2bMmZqa8eDBfdLT01BVVcXMzJyQkPsEBd1i7NiJqKio0KiR\n479lzbl+/Qre3lvp2LENqqqqTJgwjYQEPcRiMVu2dKZJk3F07NgUVVX5frbr16/y4sUzRX/p6elk\nZmYWyJW1bdtmVFVVFd7BJ08es3LlWm7cuKZIfbB+/RouXjyPmpoaixYtR09Pn4SEBJYv9yQmJhoA\nS8sfiI8vS2rqecqUUSEqKpKYmGh69uzzWdQl1dSUEYkyef24Voqy8lfx7Pa9+Jrz0z56FMbs2bd4\n9UqT2rWTWLy4o+Izlcfu3RkkJ8tTD2RmVmPfvkDGjPm0fl1dm2FsHMitW7extS1Hq1ZFG3JFIRaL\nsbd/yaFDuYAyKirhNG78cUvAoUNbMXToR1UVEBD4DAjGnICAgMBXgFgs5uef339x9iE0aGBK2bKX\nePVKvqdLS+s+dnZF73nLT5s2lfnzz0CSkuQePHPzc1hb/3dKiMrKylSoUIlDhw5gZWVD9eo1uHnz\nGhEREZiYVEUsfv0TpqQkyic0ImP9el86dDhDaGhXRZm4ODVFvq385VRUVCgOGxt7duzww8mpNyEh\n98nNzSU3N5fg4EBsbe05fvwIlpbWuLmNYM2aVezfvwdn50GsXLmMnj37Ym1ty/z5f7F16188f36M\ncuUeUr36GXbv/ou0tFT69u1O1649EIvfP2TufWja1IHOnf9i797OgBb16m1nyJAfS7SPz8WbMvlf\nG+PHX+fyZfkeuFu3stDW3s3cuZ0KlJGrZL5GWblkRHBatrSlZcuPq7t2bScWLfInNlaVevXUcHH5\nyIYEBAS+KgRjTkBAQOA7x9S0KgsWXMbHxx+JRISTkzrNmjV7Z722be1ZuvQ4Bw/uRlU1m7FjrYtV\nsfxc2NjYsn27H1OnzqJateqsWrUCc/O37zWrW7cB/v47KF9e7lVUVQ0hO9sMLa3sIsv17fszAI8e\nPaBmTdMCZT7GOwgFvX5PnqQgEskQidLJzdUlJcUMZWVldHVL/+vFi3+rqujHIBKJWLeuJ926XSY1\nNYsOHTqhoaFRon38PyKVSnnxIr9QihrPnqkVKjd4sCEhIaeJiWmMnt4NXFw+PHSqpNHQ0GDOnI5f\nehgCAgIljGDMCQgICPwf0LVrA7p2fXe5N+nSpT5dury73OfCxsaOLVt8sLS0Qk1NHTU1NWxs7IA3\nc669fj127ARWrFhMbu4jatdeR1ZWDapUaUXDhpULKGfmlXN27oNEIsHW1p4JE6YU6P9TvYMqKip0\n6XKIixd75WuTfHWUyM0tudQF+VFSUqJdu0afpe3/V5SUlDA2TiYqKu9IFlWrFs6j2LatPaam4Vy4\ncAB7+2qYm79d6VRAQEDgYxGMOQEBAQGBr5Y6depy6tQlxfvt2wMUr/NyrgE0b95KkehbV7c0c+Z4\nvrPt9y33Kd7Bvn1/ZtSoSoSFrScsrBM6Og9xdCwsgS/w7bB8uQOzZ28lNrYUlpYpTJ/eochyJiaV\nMTGp/B+PTkBA4P8NwZgTEBAQEPi/4+nTcDZtCkYkkuHm5kClSobFlv0U7/xS3VsAACAASURBVGCe\n169bt9o0b16LwMByQk6ub5yaNauwdWuVLz0MAQEBAUBITSDwHyBI6H7fCPf3++VrubcfKlX/4sVz\nZs2aipKSEvPmLaJSpYLekcjIl/ToEcijR90BGbVrbycgwBF9fb3PMPqvl6/l/gqUPMK9/b4R7u/3\ny8ekJlD6DOMQEBAQEBD4Ypw9e5oWLVrh7e1XyJAD2LPnxr+GHICIe/d6sn//1c8+rri4eHbtOsWt\nW/ffu87IkW6EhLx/+fdh4sQxpKWlkpKSwp49uxTHb968zqRJ7iXal4CAgIDA50UIsxQQEBAQ+OqR\nSCTMnTuDhw9DMDGpxowZc3j27Bl//PErGRkZ6OqWZtq0WTx8GMKuXdtRUhJz8+Z1Vq5cy44dfhw6\ndACAjh27ULp0OZSVQ6hceQwZGbaoqwehojKAbds2c+rUcbKzc2jatDmDBpVcMq17954xePATHj9u\nj4bGY8aMOcq4ce9O2CwSiT4o55pUKkVJ6e3PaZcuXQlAUlISe/b407Wr03u3/zYkEkmJp1h4kzZt\nmnDs2LnP2oeAgIDAt4RgzAkICAgIfPWEhr7Aw2MmlpbWeHrOZffunZw7dxpPzxWULl2aEyeOsn79\nGjw8ZtK5c3dKlSpF7979CQm5zz///M2GDb5IpTLc3JyZPn0ubdse5OHDUGJj3WjZ0pQaNcpy5kww\nGzZsRiqVMmXKeIKCbin2xn0seSGiOjoDePy4N3p6GxGJMti58yCqqvcICrpFamoKU6bMxMbGlqys\nTBYunMOTJ48xMjIhK+u1UuLVq5fx9l5PdnY2lSpVZurUWWhoaODk1IlWrX7g2rUr9OvnTKtWbRR1\njhw5xK5df5Gbm0Pt2paMGzeZXr26sHHjFlavXkFERDiurn2pW7c+DRs6kpGRzvTpk3n27AmmpubM\nnDkPgJCQ+4UM5zJlyjJypBu1apkSHBxEmzZt6dWr3yfN17v5epOJCwgICHwJBGNOQEBAQOCz4+TU\nCW9vP3R0dD+qfrlyhlhaWgPQtu2P+Pp68/TpE9zdRwByj1SZMvJcbTKZjLzd4MHBgTRt2kKRLLxZ\ns5bcvh3IwoUdGT58L1u21KBq1aqsXr2Sa9eu4OraF4CMjEzCw8Pe25g7f/4sz58/pX9/lyLPSyR5\nP7eif8eohESSy4YNvsyfPwsfn/X89tsa9uzZhYZGKf7H3n0GNHW1ARz/BwhhJYg4UARFRBxMte5t\naaWOalUcxYWr1FG34sCtddVVd0VxK65XrVqte9Sq4N4DZYsDgQgEEvJ+SEmhYB1FcZzfp+Tm3nvO\nvWHkyTnnedauDeHu3Tv4+emCo2fPnrF6dRDz5i1CJjNh7dpVbNq0jm7deiKRSLC0LERQ0Nocbd6/\nH86hQwdYsiQIQ0NDZs+ezv79e/WjfUOHDuXGjZusXLke0E2zvH37JmvXhmBtXQR//x5cunSBSpVc\nmDt3JtOn/4SlZc7AWSKRoFar+eWX1a90nwACAoYSH/+Q9HQV7dp1pGXL1nh51aNdu46cOnUCmUzG\njz/OxsqqMDEx0UyYMIa0tFTq1Hl3BesFQRA+FCKYEwRB+Mj988Nz8+ZfM23aRG7evI5EIqFZs5b4\n+HRCqVRy4MA+WrduS1jYObZv38SkSTNfuZ29e3fz2Wc1KVKkSK7XXmeqYF6yH6/VajE3N8fBwZEl\nS4L+dd9/tqvVavXBjEIhp2zZsvrXfH278fXX37xR/+rWrU/dui8ONtq3L8Hx4yfIyACJJJXChdNp\n0kQ3zfLo0UNYW+vu2cWLF2jXrgMAjo7lcHR0AuDq1cvcv3+P777zAyAjQ42rq5v+/NlH47KEhp7h\n5s0b9OypK4qenp6OldXfSV7yyn9WsWJlfQHzcuXKExcXi4WFBeHhdxk4MHfgrGv75dNFswsICESh\nUKBSpdGrV1caNmxMWloaLi5u9O79PYsWzWfnzu107dqDefNm8c037fjyy6/Yti3ktdoRBEH4FIhg\nThAE4SP3zw/Pzs4Vefz4kT47pFKpBCA5Oek/raHas2cXDg6OzJ79Y66RlyxeXvXo0aNPjjVsPj4d\nCQ5ewbZtIdSuXY/Dh3/HxsaGpUtXIZPJuHPnNnFxsXTs+A116zZg9+4d+Pp2Y9euHVy5chkXF1fU\najWRkRE4OJTN0Sd3dw+mTJmAr29XMjO1HD9+hLFjJ+UIZAIChhIefpdHj+JRqzNo06Y9GzasYceO\nrSgUlpQr54SxsTGDBg3nxIljrF4dhFqdgUJhybhxk7GyKsyePbu4efM6gwYNZ8qU8ZibW3Dz5jXi\n4+PJzMykYUM3Fi48w+TJSwENGRkZhIff4/jxo6hUKuLiYpk0aWye9zWrr9Wq1WD8+Cl57mNqaprn\ndm/v5vTp0zfHtr17d7/wPZRKjfWPDQ0N9EXQXxQ4A5iY5N32i4SEbOD4cV2NwPj4eCIjI5FKpdSu\nXRcAZ+eKnDv3JwBXrlxi6tRZAHz5pTeLFy94rbYEQRA+diKYEwRB+Mj988NzRkYGMTHRzJ07k1q1\n6lK9ek0AlixZoF9DZWRkhFxukef6qVWrfuHkyWOoVCpcXNwYPnw0hw//zo0b15k4cQxSqZRly4IB\nrX7kJUtmpjbXGjZPzyp88YU3QUHLaNPGB41GTWTkA44ePcQXX3izaNE8bGxKUKlSZfbs2Ulmppa2\nbTtQvXot5s2bhVKpRKNR0759J30wlzUgV758Bb76qjm9enUFoEWL1jg5lSc2NkY/apcV7G7YsIaF\nC+exbVsIMTHRLFu2CgcHR374wR8np/KArubcsmWrANi1awfr1q2mX7+BuUYAnz59wuLFQdy9e5vu\n3b8lKSmRyMhryOUymjf/mrCwc9jZlaZFi1Zs27aZQoWsGDt2Eps2rePAgX1UqVKNe/fucPfubSQS\nCZUru/LTT9OJjo7C1rYUqampPH78CDs7+xe+71WrVmfkyCH4+HTCysqKpKREUlJS9K+bm5vneP4i\n9vZlePYs4aWB86sICztHaOhZli5diUwmo3//PqSnqzA0/PvjiIGBRB9ECoIgCP9OBHOCIAgfsbw+\nPKvVGQQHb+TPP0+xY8dWDh06QEBAIP7+AwgPv8fKles5fz6UUaOGsmbN5hzrp9zcPPjmGx+6desJ\nwKRJgZw8eZxGjT5n27YQypVzIiLiAX36dOfx43iSk5OJjIxEpVIxffoUMjM1mJtb0KePHzKZjOrV\na3Hx4nmio6OwsJBTrpxuWmHJkrbExsYQFhZKXFwcZcs6kpDwjIkTf2TevFnIZDKcnMrz88/Lcl2z\nn1/vHM/bt/82V2KOEiVKEhy8EcgKdo8AEoyNjfH2bk5ExAOcnJwBaNSoCZGREQDExz8kMHAkT58+\nISMjg5IlbYGcUxYlEgn16jUAwNHRCSMjI3r16oqpqRlKpZLz50NJS0v7x2iaLhhs1aotU6dOwNe3\nHaVLl6FChUoAFCpUiNGjxzN+/CjS0zMA6N37+38N5sqUcaBXL38GD+5LZqYWqVTKoEHD9W1ZWVnh\n6upOly7tqVmzDrVq1SGv2bBGRkZMmjT9hYHz60hJeY5cLkcmk3H/fjhXr1751/1dXd05eHA/X3zh\nzf79+167PUEQhI+dCOYEQRA+Ytk/PD94cJ+rV6/w7FkCGo2aBg0aY2dnz6RJgUDOgESr1eLm5pZr\n/ZSbmwdhYWdZv34NKlUaSUlJlC3rSJ069QAwNpZx48Z1tm37lUGD+nLnzm1SU1NIT0/H1dWNo0cP\nUaxYccaPn8KiRfO5fv0qJUuWRCKR5Ehrb2BgQEZGBosXz8fKyooVK9Zw8OB+tmzZmK/358cfV7Jr\n137S0nrx+eepyOX7KF26DA8e3M92L/7ef86cGXTs2Jk6depx/nwoQUG5g0kAqVSqf2xoaMSmTTsA\nePLkMadOnWDbts1/jXhWACSEhPwPAJlMxoQJU/M8Z5Uq1Vi+PHeikZCQnS+8viZNvHKtp8tqC2Dc\nuMk5XvP0rKp/rAv8dF4UOC9YsPSFbeelRo3a7NixFV/fdtjZlcbFxRV48TrHH34YyoQJY1i3Lpi6\ndRv857WXgiAIHxsRzAmCIHzE8vrw/OjRI/r3/w6tNhOA777rn+exxsa510+pVCp++mkGK1asoWjR\nYvpU+VksLQuRlpaGRqP+a/80IiIekJ6um5JpZGREePg9VKo0HBwc2bVrBwMGDCEqKipH21otJCY+\nIyLiPhkZGXTs2BpjYxkpKamYmprky72JjIxm7VoJRkZliYlpx7p1YTg6TqdFi9ZcuBBGcnIypqam\nHD16SD9imJLyXB/g/tvas7zExcVRtGhRWrRoRXq6itu3b9K0aTOMjIxQq9UYGb36v+RLl25z8eI9\n6tVzoUwZ29fqx3+lUqmYM+cgjx4ZUq9eIVq1qvHKx0qlUmbNmp9r+/79R/WPGzZsQsOGTQDdCGr2\ntXq9evn/h54LgiB8fEQwJwiC8BF70YfnrIyJ2ZmZmb10DVVW4KZQWJKSksLhw7/TuLGX/vhy5ZyQ\nyWR06NAaCws59vZluHXrBhqNBnv70kilxvo1bEqlEjs7O/16tH+OukgkEhwcHBkwYDDTp0/BwEBC\n3br1uXHj2hvdi3+6dSuK+Pi22NpeonTpr8jIcMDS0p5ixYrRuXN3evXqikKhoHTpMpibWwC6KZxj\nx45ALldQtWo14uJi9X190ehS1uPz58+xYcMajIyMMDMzZ8yYCQC0bNmabt064uxcgbFjJ7203ytX\nHmXq1BIkJraiZMkjzJnzmEaN3PPlnryK77/fwa5dXQBjtm69SVraSTp0qJOvbSQlJbFlyx/I5ca0\nadPgpYXQBUEQPlUimBMEQfhEbN9+mjVrEtFqoVMnOe3a1c7xuqVlIf0aKplMho1N8VznkMvltGjR\nii5d2lO4sDWVKrnoX/vqqxbMnTsTqdQIQ0MjhgwZSdmyjvTo0Zm6devra8xlrWE7fPh3/vjjJAAW\nFhZ06OCrP1e9eg2oU6c+vr7tSE1NIzh4A2q1mkWL5lOxYqV8uR+ffVYBR8fT3L27HACF4jIDBybi\n4eGOs3NFWrZsjVqtZvToYdSv3xCAunUbULdug1zn8vZujrd3cwBGjRqX47WsUafs+2Tn798ff/+8\nR0fzsmpVKomJuumQMTGf88svm99ZMKdSqTh92hbQjdqmpDhz8OAVOuT+buCNPXnylPbtj3Dpki+g\nZN++TSxf3v6FAV3W9GAxBVMQhE+RCOYEQRDekL+/H4sXB/H48SPmzp3F5MnTC7pLL3Tp0m1GjbLk\nyRPdKNrVq6E4OFynWrWKOfbLvoaqaFE5jx4lAznXT/Xq5Z/ndLcGDRrToEFjQkPPMnToAFxcXJHJ\nTJDJZPri2/82evXPz+KGhoa0adONiRPHkZycgFarxd6+DPPnL37Du5CTQmHJ0qVlmD9/I+npUlq0\nsKBxY12AGxS0jHPn/iQ9PZ3q1WtRr17DfGkzy5495zh58jG2tgZ8993nrzXypFYb5niu0by7USup\nVIpcruTRo6wtWszN0/K1jRUr/uTSpS7oErVYsmvXl8yYMZNr18IAXTmL+vUbMmhQXypXduXmzevM\nmjWf4sVt8rUfgiAIHwKJNq+qoQUg6wOD8PHJ/oFQ+PiI9/fDsHTpXsaO9cmxbdy4zfTt6/3CY17l\nvX306AlLlpxGozHg228r4+T04uyKr0Or1TJgwBZCQpqQmSmnVq2trF/fAnNz83w5f0Fat+44Y8aU\n5fnzCkASnTptZe7cV6/tN2PGXhYsqIFKVZpChcKYNu0RbdrUfvmB//Cmv7ubN//B1Kkq4uNL4+ER\nxi+/1KNkyWKvfZ4XmT59L7NntyMr66ZMdpAaNaawbt0mfTmLwMBJ9OjRmSVLgnKMDgs64u/yx028\nvx+vokXlr32MmIQuCILwhry8dBkcY2Nj6NKl/Ttt+3Xb9PCwQ6G4pH9uYXENd/eS/6kPSqWSTp2O\nsGBBexYt8qFz59uEh0f/p3Nm2bBhL5s2NSQzszRQmD/+6M7y5cfy5dwF7bffUv8K5AAUHDtmRWZm\n5isfP3y4N0uW3CIgYAvBwelvFMj9Fz4+tThxoip//CFh586v8zWQA+jWrTqVK68HtEAKVapspmlT\nb2QyE0xNTWnQoDEXL56nePESIpATBOGTJ6ZZCoIgvLEPZ41OjRoujBlzlHXrbqHVSujQQUrduo3+\n0zn37j3DxYvtyboP9+61Yvv2EAYP/m/ZFR8/fsKPP0YATbJtNSI9/cO53//G1DQjx3Mzs/TXTvDR\nrFlNmjXLz169HgsLORYWr/8N8qsoXtyarVvrsWlTCBYWRhgbe6JUKnPtl19ZTQVBED5kYmROEATh\nA6XRaJg4cSy+vu0YM2YEKlUaN25cp1+/3vTo0ZnBg/vz5MljAK5fv8rhw4spVSqY1q2vc+zYEkA3\nwte3by/8/Hzx8/PlyhXd6F1Y2Dk6d+7MmDEj+PbbtkycODZX+0WLyjE0fJRtSypy+X//t3L06CXi\n4noDuwA1AIULr6RDh3eXsfFtGjy4MpUqbQLuU6zYAfr3L1TQXXrvFC5shb+/N507e+HpWZVjx46g\nUqWRmprKsWOH9WswBUEQPnViZE4QBOEDFRHxgICAQFxc3Jg2bSJbt27m+PEjTJv2E4UKFeLgwf0s\nW7aIgIBApk6dwMiRgVSu7MKSJT/rk48ULlyYOXMWYmxsTGRkBBMmjOGXX3SFqa9fv86aNZuxti6C\nv38PLl26gJubh779Bg2q4eu7nQ0bPFCrTfjiiyN07+6TV1dfi5OTLebm4Tx/3gH4FXhO376G2NuX\n+M/nfh84O5dhz55i3LhxF3v7chQpUqSgu/ReK1++gr6cBUCLFq2RyxUie6UgCAIimBMEQfhgFStW\nHBcXNwC+/PIrgoODuHfvLoMGfQ9AZmYm1tZFUSqVpKamUrmybn2Rl1dTTp06DkBGhpo5c6Zz585t\nDAwMiIqK1J/fzc1NXyC7XLnyxMXF5gjmJBIJM2d+Q58+d1GpkqhYsUO+1ANzcyvPoEEHWLUqnIwM\nKd7eGfTr1/o/n/d9YmZmRpUqrgXdjQ9GVjmL7IKDNxZQbwRBEN4fIpgTBEF4Qy9Ks18Q7Wu1WszN\nzXFwcGTJkqAc+yUn58x6lj2J8aZN67C2LsLYsZPQaDT61PwAxsbG+seGhgZoNJo8+1GunON/uo68\nDBjgRd++GjQaTY5+CJ+uGzfuM2PGFZRKYxo0kNC3r1dBd0kQBKHAiTVzgiAIb8jRURfElChRskBG\nCR4+jOPKlcsAHDiwj8qVXXj2LEG/Ta1WEx5+D7lcjpmZGdeuXQHg4MH9+kAwJeU5hQtbA7Bv36+v\nlVXxbTM0NBSBnABAeno6ffteZvfujhw50oZp0z5j3brjBd0tQRCEAieCOUEQhNdw4sRVOnTYQ6tW\n+/Hw+PblB7wlEokEe/vSbN++GV/fdiiVStq27cCkSdNZsmQB3bp1onv3Tly9qktoMnLkWKZPn0L3\n7p1IS0vDzExXr61163bs3fsr3bp1IiLiAaamZgV2Te+T9etXs2WLLkCfP382P/ygK5IeGnqWiRPH\ncvbsab77zg8/P1/Gjh1JampqQXb3vfcqXxIolUq2b98C6BLwDB8+SP9adHQU16//PS01Pd2OsLCU\n/O+oIAjCB0ZMsxQEQXhFCQlPGTToEQ8e6Oq7xce7U6KEBS1b1njnfbGxKcG6dVtybXdyKs/PPy/L\ntd3BwZHg4A0ArFmziooVKwFQqpSdfjuAv39/AKpUqcaXXzbSF6YdNGh4vl/D+8zdvQobN66lbdsO\n3LhxnQcP7nPw4H4ePLiPo2M5goODmDt3ESYmJqxdu4pNm9bRrVvPgu52gQkIGEp8/EPS01W0a9eR\nli1b4+VVj6+/bsO5c2cYPHg4sbExbNmyCbU6g0qVXBgyZGSONZbJyUls3x5C69a5C6gXK1YcW9vT\nPHiQFdA9p1Qpba79BEEQPjUimBMEQXhFFy/e4cGD6tm2GBAWlkDLlgXWpVd26tQJ1q5diUajwcam\nJKNHj8tzv4iIOMaN+5OHD82pUkVFYKDXJznV0dm5AjdvXicl5TnGxsZYWVkRExPNpUsXqFu3Pvfv\n38Pf3w/QJZFxdXUr4B4XrICAQBQKBSpVGr16daVhw8akpaVRubIL/foN5P79cNatC2bJkiAMDQ2Z\nNetH9u/fS9OmfxfLW7JkAdHRUXTv3gkjIyNMTEwZM2YE4eF3cXauyMSJrfnpp40olSeQy68QFmbG\njBmhDB8+GoB+/XpTubIrYWHnUCqTGTkyEHd3jxd1WRAE4aMggjlBeAdiY2MYMWIQq1dveqX9z58P\nRSqV6jMVCu+HihXLUKzYZeLji/+1RUv58h/GtMQmTbxo0uTlCSMGDTrF8eO6FPDnzqWj1W5hypQW\nb7t7BWLjxrXs2bMLgObNW1G/fkOGDOmPm5snV65cRKlMZufO7bi6unPhQhh3797h3r27pKSkUK1a\nDcaPn8LZs6fZvn0rI0aMKeCrKVghIRs4fvwoAPHx8URGRmJgYEDDhrrC76GhZ7h58wY9e3YGQKVS\nYW1tneMc/v4DCA+/x8qV6zl/PpSAgCGsXRuiL41ha2vAgQPNSEqqh0KhAGDSpEBOnjxOnTr1kEgk\nZGZmsnx5MH/8cZKVK5cxd+6id3gXBEEQ3j0RzAnCeygs7BxmZuYimHvPFC9ejKlTH7Bw4SZUKmO0\nWg0dO9Yr6G7lG61WS3i4ZbYtxty7Jyuw/rxNN25cZ+/e3SxfHkxmppbevbvi6VmFqKhIJkyYxogR\no+nc2Yc1a1YyceKPREQ84OzZP/Hw8OTu3Ts8ehRPdHQUv/66iy++aEpkZAR2dvYFfVkFIizsHKGh\nZ1m6dCUymYz+/fuQnq7C2FiWI+Oqt3dz+vTp+8LzZM+yqtVqqVixcp6lMcLCzrJ+/RpUqjSSkpIo\nW9aROnV0v4cNGjQCdCOrcXGxb+NyBUEQ3isimBOEd0Sj0TBx4lhu3bpBmTJlGTNmAr6+7QgKWotC\nYcmNG9dYuHAeo0ePZ+fObRgYGLJ//x4GDhwupgq9R1q2/Ew/rdLLa+JHVbhYl1QliaiorC1q7Ow+\nzsQely5doH79RshkJgA0aNCYixfPU6KELeXKOQHg4uLGr7/uxMXFld9+24NUaoS7uyfOzhV59Cie\nsWNHcu/eHcLD79K7d98PMpjbu3c3GzeuQyKR4OhYjsaNvQgOXoFanYFCYcm4cZOxsirMihVLefgw\njtjYGB4+jMPHpyNt23YAdBlR5XI5MpmM+/fDuXr1Sq52qlatzsiRQ/Dx6YSVlRVJSYmkpKRiY2Pz\nwr5JpblLY6hUKn76aQYrVqyhaNFiBAUtIz09PdcxBgaGLyylIQiC8DERwZwgvCMREQ8ICAjExcWN\nadMmsm1bSJ6BgI1NCb7+ug1mZmZ06OBbAD0VXtXHFMhlmTmzGoGB63j40AxPz1QmTPiioLv0Vrzo\nvTM2luof29uXoVu3nvqAb+DAYTRs2ITY2BiGDx9IixatefLksT5pzIfm9u3brF4dxNKlK1EoLElK\nSkIikbBs2SoAdu3awbp1q+nXbyAAkZERLFiwlOfPlXTq1IbWrdthaGhIjRq12bFjK76+7bCzK42L\niy5JSfZ7XKaMA716+TN4cF8yM7UYGRkxZMiIHMGcmZkZKSn/nqEyK3BTKCxJSUnh8OHfadxY1JsT\nBOHTJYI5QXhHihUrrp82+eWXXxESsuFf99eKRG3vvf37jxZ0F/Kdk5MdGzbYAVC0qFyfzfJj4+7u\nwZQpE/D17UpmppZjxw4zduxEdu7c/q/HXb16j/79r5GQYMW9e8sZMGDEO+px/jt9+jSNG3uhUOim\n1ioUCu7evUNg4EiePn1CRkYGJUvaArrArHbtuhgZGWFpWQgrq8IkJDylSJGiSKVSZs2an+v8//z9\neNm6TUvLQri6utOlS3tkMpm+/mF2crmcFi1a0aVLewoXtqZSJZd/ucK392XL666DfpEVK5bi7u5J\ntWrVX76zIAhCHkQwJwjvSPZvqbVaLRKJAYaGhmRm6qI2lSr9RYcKBUypVDJ//lFSUw35+msHqlVz\nfittHDiwL8+07EL+K1++Al991ZxevXTJXlq0aI1crsg1Ypf9uUQiYebMq1y50gm5XIGBwRpWrsyg\nfft32vV8I5FIcqxTA5gzZwYdO3amTp16nD8fSlDQ32UujIz+HrU0MDBArX61aYz79oUxb14cqanG\nNGyYyrhxzV84Mjpu3OQ8t2cvjdGrlz+9evnn2mfMmAlkBXCFChUiJOR/r9S/gtSjR5+C7oIgCB84\nUTRcEN6Rhw/juHLlMgAHDuzDzc0dG5sS3LhxDYCjRw/q99VNN3peIP0UcsrIyMDXdzdz57Zj6dJ2\n+Pklce7czXxvJ6vG1vvg34o3vw2xsTF06fLuI6L27b9l9epNrF69iXbtOmBjU4Lg4I361zt29KV7\n914AjBo1jgYNGpOcrJtyaWoaSmJiO/3zD1HNmjU5fPh3kpISAf5ax/Zcn3Rk797d+n3/GfS9qmfP\nEhg1SkloaHuuXWvNkiVerFp15D/3PTutVsvAgVuoUeMxNWvGM2zYtjfu7+vIzMxk+vQpdO7sw+DB\n/VCpVOzcuZ1evbrQrVsnxowZjkqVhlKppG3bvzPCpqam8s03zVCr1UyZMp4jR3R/+9u2bcGKFUvx\n8/Ola9cORETcByAhIYGBA7+nc2cfpk+fTNu2LfTvmSAIggjmBOEd0CWWKM327Zvx9W2HUqmkdet2\ndO/em3nzZtGzZxcMDY3031bXqVOfY8eO0L17Jy5dulDAvf+0Xb16i1OnGgOGAMTFNWbnzvB8byd7\nja1Fi3JPWXuX3qfA8m04dOh3fH3b8cMP/pw/H8qVK5de6bgDBy4QHn4de/vmmJkdx8pqGUWLrn3L\nvX17ypUrR5cufvTr15tu3Trx889z8fPrzdixI+jRozOFChXS/02ShAqJvAAAIABJREFUSCS8yRLR\nu3cjiYr6eypkZmZR7txR5dclALBt23E2bmxJSkotnj+vzdq1Tdm9+1S+tpGXyMgI2rTxYc2azVhY\nyDl69BANGzZm+fLVrFq1ntKlHdi9+39YWFjg5FSesLBzAJw6dZwaNWpjZGT01339+x4XKmRFUNBa\nWrVqy4YNup+tlSuXUa1addas2UzDhk14+DDurV+bIAgfDjHNUhDeARubEqxbtyXXdnd3DzZs2AZA\nQsJT7tyJJDk5CTs7e4KD/31NnfBuWFnJMTN7QkqK419bNJiZ5X+WvOw1tgpaVmDZqlUrQJKreHNg\n4CQAzp07w6JF89BoNFSoUImhQwOQSqW0bdsiV5bWBQuWkpCQwIQJo3ny5DEuLm6cPfsnQUG6D6xZ\noxxXrlykaNFiTJs2G5ns7ZRF2L37f4wYMQZXV3dWrFj6SmVAEhOfMXJkIlFRo4H9lC49gXLlPmft\n2pePWqrVaoyM3s9/t97ezfH2bp5jW926DXI812g0tGnjo19bB7zyWrHy5cvg6HiWu3dLAyCTReDu\nLv+Pvc4pPv45mZmFs/W3GHFxb3etZ3z8QwwMDPSZT52dKxAbG8Pdu3dYvnwxz58rSUlJpUaNWoBu\nWurGjeuoUqUav/++nzZtfPI8b4MGjQHdNOCjRw8BcPnyRaZNmw1AjRq1kMsVb/XaBEH4sLyf/10E\n4ROzZ08oo0alEBPjgqPjWebNs6V69QoF3S0BKF3anj599rJ0aSapqdbUrXuE/v3zv4j2u5gW9qqy\nAssdO3awf/+RXMWbL1++SPnyFZg6dQLz5y+hVCk7Jk8ex/btW/Dx6fjC9VBZIwy+vt34888/2L37\n7zVNkZERjB8/lREjRhMYGMDRo4f44gvv/3wtAQFDiY9/SHq6inbtOvL06ZO/PhxPxNHRiUuXzuvL\ngAwaNBw7u9LMnj1NP/oxYMAQXF3d+fnnBWRkKLGzW4eh4WOMjBJ5+vQwISE2XLx4npiYGExMTBg+\nfDSOjuVYsWIpMTFRxMTEYGNT4oVrwd53e/eGMWlSHI8eFcPF5R7Ll39OkSKFX37gX+RyBXPnlmTe\nvE2kpEhp0kSLj0/+Zkht0aIKwcH/4969VgCUK7edFi2q5msbefv751xXCkHF1KkT+fHH2Tg6lmPv\n3t2cPx8KwOjRE+jatQNJSUncunWDqlU/y/OMWdlUs0oxZHmf/j4IgvB+EcGcILwH5s+PIyZGV7Pp\n7l175s7dyPr1Iph7XwQEeNOlSzTPnj3D2bntezvKkl9eVrw5NjYGExNTSpa0pVQpXeZLb+/mbNu2\nGR+fji8877+NMGSv75Y1ypEfAgICUSgUqFRp9OrVlZ9/XkZo6Fn69RvEiRNHSUl5zmef1aBDB1+W\nLl3I3LmzsLcvjUqlQq3WEBg4ku3b95KRkYZcfpI7d86i1Rrj6OhJ1ap1iY2Nwdm5ItOmzSYs7ByT\nJwfqR1cfPHjAokW/YGxs/JJevp+0Wi3TpsVy547ub9PJkw2ZMmU9c+a0fK3z1KhRkfXrK76NLgJQ\nqlRxgoNTCQrajESSSY8ertjYFH1r7f1Nq68damhoSN269VEqk5g5cwrp6RnExcXqs1TOmTMDa2tr\n5s2bSXJyEkFByzh58jixsdGUL69LqKTRZDJq1DASE59RqpQdV69eJikpEVdXdw4dOsC333blzJnT\nJCcnvYNrEwThQyHWzAnCeyA11fhfnwsFz9bWlsqVK7y1QO5VamwVlLyKN/9z9E2XoVXy1z4vztL6\nohGG7PXd8rPgc0jIBrp160SfPn7Ex8cTGRmpf61Zs5bcuXMbrVY3zfPQoQNERUVy6tRxDAwMMDQ0\n4MmTJ0RHRyGVSilatBANG26nZs1tyGQaqlZ15PLli3z55VcAVKlSjcREXRIRiURC3br1P9hADnTJ\nf54+zT4lUkJiommB9effODuXYfp0b378sRlOTu+meHtGRgbffNOOtWtDMDY25tq1q8jlCh49eoSh\noSEVK1bi1q0bgG49nKurBwcO/Iapqal+bZy9fRlOnDgGgFKZhIdHFdas2UzVqtX1NfW6d+/NmTN/\n0qVLew4fPkjhwtaYmZm/k2sUBOH9J4I5QXgPNGyYioHBYwBksvt4eX18xaiFf5e9xlZBJ0B5lcDS\n3r40sbExREdHAfDbb3vw8KgC8MIsrVkjDMA7GWEICztHaOhZli5dyapV63FyKk96+t/JN2xsSiCT\nyXj0KJ4zZ07j5OSMRqOmf//BrFq1gTVrNuPl1ZTw8HsAWFiYsmnTV+zc6YWx8d9B/YsC1Kxi4x8q\nY2NjqlSJA3SBtVQaRa1aH/eo9KsqVqw4xYvb6Nda+vsPIDNTS2LiMxQKBWp1Bo8fP6JkyVL6Y1xc\nXDl27AzGxjL92rgBA4boX7e1LUXz5l8D0LZte/0aRQsLC376aQGrV2+iWbMWWFtbf/SzAwRBeHXi\nr4EgvAfGj29BmTJHuHtXhaengjZtPi/oLgkF4H1ZV5UVWLZo0QJDQ6M8izcbGxszatQ4xo4dgUaj\noWLFyrRqpauR1717b378cSK//GKBp2dV/Yhd9+69GT9+NL/9tofKld30IwzPnz//1/pubyol5Tly\nuRyZTMaDB/e5evVKrn1cXd25fPkiT548olmzlty7d4czZ07TooVu/VVychISiQQDA4Nc008B3Nw8\n2b9/L9269SQs7ByFCllhZmb+0axxWry4GVOnbuLJExnVqxvj59eooLtUoPz9/Vi8OAjIXTvU3Nwc\nBwdHliwJeul5XmVtXHq6mhYtDpCWpqFQodWUKKFAKpUyfPiY/LocQRA+AiKYE4T3gEQioXv3T/tD\n0qdoxYojnDiRjkKRyujRdSlWLHfQVFDGjZtM0aJyHj3KmRUwe/HmqlU/IyhoXa5js2dpzS5rhMHQ\n0JArVy5x8+Y1jIyMKFGiZK76bvmhRo3a7NixFV/fdtjZlcbFxTXXPr6+3fDz+5Y7d27xzTc+dO7c\nncWLF9ClSwcyMnSjKwEBgYSGnuXp06dkZGSQlpZGeroKAwMJfn69mTZtIl27dsTU1JQxY8YDb57K\n/31jbm7OlCn5n/DnQ5UVyMHftUNdXFw5cGAflSu7sGvXDv02tVpNZGQEDg5lX+nc2dfGHTy4n9TU\nFO7ebU1mZiGgHa1aHcTf3+stXZkgCB8qEcwJgiAUgNWrjzJ+vBsqVWlAy/37QezY0S5fRqTeVw8f\nxhEYOJLMTC1SqRHDh49h4cIDHDmixcwsnSFDKuDmVi7f2pNKpcyalXvK6oIFS/WPHRzK0qxZS+Ry\nBe7unri7exIefpfTp09hbCwlICAQK6vCDBgwGCMjIzp3bk/JkiWpV68BJiamKBQKpk2blasNP7/e\n+XYdwvvDy6seBw4cJyEhAWNjY4YNG0BaWhouLm4MGjSc6tVrMW/eLJRKJRqNmvbtO70kmJPkOXJd\nokQpNBorMjOz1sZZEhWV/yVRBEH48Em078lckH9++yt8PPL6dl/4eIj3983067efzZvb6J/L5Sc5\nc8YWa+v3Z3Qu672NjY1hxIhBr1xb7FVt3HiCoUMrk56uS1hRocImfvutEaam7y7JRmZmJj16+DJ5\n8gxsbUvleO3WrQjmz79MWpoRDRtqqVu3Avb29hgY5L3cPCkpifHjD/PokSmurmqGDm36wn3fhdTU\nVAIDR/Lo0SMyMzV07doTS0tLfW1ADw93+vUbilQqffnJBAC8vOpz4MAxNmxYS0ZGOl26+KHVaklN\nTcXMzOyNzxsdHUto6C2qVStPyZIlOHv2TwYNmsytW0cAMDG5w/z592nVqsYrnU/8Xf64iff341W0\n6OvX4RQjc4IgCAXA2jodUJP1Z7hIkVgUireXvv1VZBXQTkl5jru7J97eTXK8HhZ2jo0b1zFjxpx8\nae/8+ef6QA7g5k0PIiOjKF/e6bXP9SaFucPD7zFixCAaNGicK5BTKpX07HmFGzc6AP9j5045RkYa\nGjXaSFBQmzwLmn///W/s398NMOC33xLQavcxYsRXr30t+eXPP09RpEgxZs6cB+iuqUuX9vragLNm\nTdbXBhReT6VKlZk2bSJqtZp69Rri5FT+jc/1v/+dYfRoCQkJpbG398fWVoKVlZyAgAFs3bqBtDRj\nvLyMadWqYf5dgCAIHw2RzVIQBKEAjBzZBG/vYIoV+xVn5w0EBhYp8BGSrOlePXr00dfHypKZmcmG\nDWs5fz6UwYP7oVKpuH37Jr17d6Nr146MGjWM5ORkEhKe0qNHZwBu375FvXqfER//EAAfn69RqVQk\nJCQwZsxwrl9fjL19a0xMwoBMHB27olD8nXK9Q4fWJCQk6Pfv1asLvXp14fLli4Au+Jw0aSz+/j2Y\nMmX8a1+vg0NZNm/+H337/pDrtbCw69y40QAIB2yBxqjVHhw40J2FCw/l2l+r1XLtWmH+/rdqxaVL\nBft+Ojo6ce7cnyxevICLFy8QGxuTozZgq1atuHgxrED7+KFyd/dk4cLlFC1ajKlTx7Nv369vfK6l\nS58QH9+YjAxX7t49iETSm+XLV9OsmRdBQc1Zv/4LundvmH+dFwThoyJG5gRBEAqAqakpwcE+pKen\nI5VKC2ytXHDwCvbt+xUrq8IUK1YcZ+eKTJ06gdq169KuXStOnz7FnDkziI6OwsnJGU/PqpiYmHD0\n6CHWrVvN4MHDcXf3ZMWKpaxcuYwBA4aQnq4iJeU5ly6dp0KFSly4cB43N3cKF7ZGJpMxbdpEfHw6\nMXGiG4MGrebcuR8wN+9L5cpVCAsL5auvSnL16hVKlCiJlZUV48ePxsenE25uHsTFxTF0aH/Wrg0B\n3l5hbgeHElha3vmrrlqJbK8Yk5yc+72SSCQUK/acqKisLVqKFHmer316XXZ29gQFreOPP06wfPki\nqlb9rED78zGJi4ujaNGitGjRivT0dG7fvknTps3e6Fzp6TmDfpVKfDQTBOHVib8YgiAIBaggi0rf\nuHGdQ4cOsGrVBjQaNX5+viQmPiM5OZk6deqhUqmYMWMKY8dOZPr0KX8VCwdn5wpER0ehVCbj7u4J\nQNOmzRg7diQALi7uXLp0kYsXL9C5c3f+/PMUoNXve+7cGR48CNf3o3hxCevXN+HOHTtWrvyFr75q\nwcGDv9GkiVee+6ekpJCamvpWC3Pb2ZVixIi7LFkSRWzsCTIyBgASihc/SrNmDnkeM2GCM2PHruPh\nQ3MqVkxg3Lgmee73rjx+/Bi5XM4XX3hjbm7Btm0hxMXFEh0dha1tKf73v//h6Vm1QPv4ocn60uX8\n+XNs2LAGIyMjzMzMGTNmwhuf09tbzc2bEahU9pia3qF5c8P86q4gCJ8AEcwJgiB8oi5dOk/9+o3+\nWv8lo06d+ty7dxfQTRu8d+8eJUvaYmNTAmNjKV984c3OndsxMDBEqXzx4nsPD08uXjzPw4dx1KvX\ngLVrVyGRSKhdu95fe2hZtiw417TS3bv/x/3793j27BnHjx+jW7deufbv1683I0cGYmpqyubN62nf\nPn/KGOSlZ88G+PllEh//mMWLN5KWJqVVK3uqVXPOc/8aNZzZv9+ZzMzMAk18kuXevTssXDgPAwMJ\nRkZShg4NQKlM1tcG9PT00NcGFF7N/v1HAfD2bo63d/N8OeeQIU1xcDjF9et/4ulpzVdfNc6X8wqC\n8GkQwZwgCMInSzfKkDXVMjU1FSurwhgaGhIbG8Pq1SuIiIhk5sypfxU2/jv5sbm5BQqFgosXL+Du\n7sG+fb/qR3nc3T1ZunShvmC4QqHgjz9O8t13/QH47LOahIRspFOnrLV1N3FycmbkyLEsWjSPBQtm\n4+DggEKhyLW/RCIhIuIBzs4V9P3PT1lJYLJq3RkYGGBjU4wJE/L+4P748SPmzp3F5MnT9dveh0AO\noHr1mlSvXjPX9qzagCIj3uvJzMwkMHAX586ZUahQGqNGVcLNzTFfzv3NN7Xz5TyCIHx63o//OIIg\nCMI75+HhyYED+/j9999YtOgXZDIZ8fFxAGzZspmGDRuiVqu5fv0asbEx7N+/j9u3b7Jhwxq2b99C\ntWo1WLRoHp9/Xo/9+/dy7tyfdOnSnoSEpwBUquTC1KkTuHfvDs+eJXDhQigA/fsPYvfuHTRuXJtG\njWozZ85MAPr1642jY3n279+HSqWiZ88udO7sQ9GiRbl58xpdu3bk+vWrHD2aPQGJlhUrlrJ58wb9\nlqVLFxISspE38TprF9VqNUWKFM0RyL2vjh27Qo8eO2jXbgJ//HEdgIcPHzJmzIgC7tn7Yf361WzZ\novuZmT9/Nj/84A9AaOhZJk4cy6xZP9KyZWt++20dDx5Ec+hQJ4YMucKiRfPx9fWha9eOLFw4ryAv\nQRCET5QYmRMEQfhElS9fATs7e65evcLo0cOpXNmVhw8fkpKi5PlzJbdv32batFnMmTOT58+VxMXF\nkpGRzu7dvwPw/LkSc3ML+vfvg52dPcOHj+bixfNMmzaRbdt+ZenShVSrVp1Ro8aRnJxM795dqVat\nBkePHsbR0Ym1a0MwMDAgKSkJ0AVSZco4cPz4WZKSklAoFGg0GgYO/J6BA4fh6FiO/v374OZWk6NH\nz2JhYUGbNj6kpKQwatQwfHw6kpmZyaFDB1i+fPUr34eskUmFwhKNRkOTJl/QrVsnzMzMWLToF549\ne0avXl0ICdnJnj27OHr0EGlpaWRmZjJ69HiGDfuBNWs2s2fPLk6cOIZKpSI6Oor69Rvy/fcDANi9\newfr1q3GwkJOuXJOGBsbM2jQ8Px/U9GVIDhwYB+tW7clLOwcv/yynJMne/HoUSNsbTfTt+8ztmyJ\nokaNih9EIPouuLtXYePGtbRt24EbN66jVqtRq9VcvHgeD48qNGzYhHv3qnDmTCtKleqGsfFN7t+3\n5ujRlWzatAPQ/T4IgiC8ayKYEwRB+IR99llNKlSoRI8efQBYsGAOFhYWbN68nqtXrxIVFY2xsRQj\nIyMqV3YlMfEZc+fOpFatujmm8H3++ZeAborl8+fPUSqVnDlzmpMnj7FhwxoAMjIyePgwjtDQM7Rq\n1VY/HTFrOmV2hw7tZ+fOHWg0Gp48ecz9++GUKePAjRvx7NhRCpWqIpUqPUetVmNjUwJLS0tu377J\nkydPKF++Qp7nzEv2JDDR0ZH4+XWmSZMv/no171G627dvERy8EblcTmxsTI7RvDt3brFq1XokEgM6\nd/ahXbsOSCQSgoODCApah6mpKT/84J+jLtnLintXqFCJoUMDkEqltG3bAi+vppw+fRIDA0OGDx/N\nkiULiImJpmPHzrRq1Ybk5CRWrlzOnj07SUxMJDk5jdjYRtjYDEIqjUCrXcSMGUWYP38CPXv2YvXq\nTezZs4vjx4+QlpZGVFQkHTp8i0qVzu+/70MqNWbmzHkoFAqio6P46acZPHuWgImJCSNGjMbevgyH\nDv3OqlXLMTAwxMLCgp9/XvZK9/994excgZs3r5OS8hxjY2MqVKjIjRvXuXTpAgMHDuPQof08eLCa\n0qVXYmj4BGPju9jZPcHU1JRp0yZSu3Y96tSp9/KGBEEQ8pkI5gRBED5hHh6eTJkyAV/fbmg0ak6e\nPM7XX3+DTGaCoWEJYmM7YGCwlwYNKvPDD0Po06cvf/55ih07tnLo0AECAgLzPG9WfDNlykzs7Oxz\nva7VanNtyxITE83Gjev45Zc1WFhYMHXqBNLTVWzbdownT4oBxYESpKZaEBJygj59vqZ581b8+usu\nEhKe0KxZy1e+/uxJYIKDV6DVZrJp01pSUlKwsyvNmDEjuHPnFgkJCfpjypd3JiBgCKmpqZiYmPy1\nnhDWrFmFiYkJAwb44+X1JUWKFGXYsIGkpKSQkZFBeroKuVxOo0ZNiIyM0J/vZcW9J08epy/uLZFI\nKF7chpUr17NgwU9MnTqeJUtWolKp6NKlPa1atWHKlPEkJj7D2toahcKShIRn2Nn5YGiYgFYrJT7+\nJ9q3j6Bjx46YmJgCEBsbw5kzp9m9+3fOnTvD6NHDKFKkKIUKFcLZuQL79v2Kj09HZsyYwrBhoyhV\nyo6rV68we/Z05s1bTHDwL/z000KKFCnyQY5QGRkZUaKELXv27MLV1R1Hx3KEhZ0lOjoKmUzGxo3r\nWL9+DdOmHeaPP/ZSseIRpkzpQOXKqzl37gxHjhxk27bNzJu3uKAvRRCET4xYMycIgvAJK1++Ak2a\neNGtW0eGDv2BSpUqI5FAmTJNiI6+zpMnvxAdLePkSTvi4mLRaNQ0aNCYXr2+4/btm4AuMDt06AAA\nFy9ewMJCjrm5BdWr19SvQwK4desGANWq1eB//9umD4Kypllmef78OSYmppibm/P06RNOnz711/YM\ncv7bkpCaqgagQYNG/PnnKW7cuE6NGrVe4w78Parm7z8ACwsL2rf3xc6uNBER9xk4cCjz5i1Go1Fz\n6dIFNBoN165dZcqUGaxYsYZGjT7n6dMnujNJdOf75ZfVtGnTngcPwunZsw/9+w+kVCk7li1b9Nf9\nytmDlxX39vZunqO4d926DQAoW7YclSu7YmpqSqFChZBKpSiVSuzs7PWjhcnJSaSlpeDhURy1uiMG\nBml07LiNRo2q5lofaGEhx9TUlN27d2BpWYhly4JZtGgFTk7OxMXFkJqayuXLlxg7dgTdu3di1qyp\nPHmiu3ZXV3emTBnHrl079O/rh8bd3YMNG9bi4VEFd3dPduzYSvnyzvqfR4VCwfDh9bC0vE+/fp44\nO5dCqUymVq069O8/mDt3bhX0JQiC8AkSI3OCIAgfqX9mZnyRLl386NLFL8e2gwf3ExdXg8KFl2Fs\nHEFi4k3u36/IsmWL0GozAfTZKSUSCcbGxvj5fYtGo9GP1nXr1pP582fTtWsHMjMzKVnSlunT59Ci\nRSsiIyPo2rUjRkZGtGzZmm++aadv28mpPOXLO9OpUxuKFbPBzc0dgDZtarFixWwMDIYDUqTSR1hY\nPGbRonl8//0PVK36GfHxD5k7dyaDBg3nt9/2sGXLJtTqDCpVcmHIkJEYGBjg5VWPdu06curUCbTa\nTNRqDb6+3UhJeU5KSgoAhQsXJi0tlSJFirJ583qkUilxcbE8ffqYpKREBg78HgCVSoVardb33c5O\nF4BFRNwnJSWFn3+eg1RqTGRkBAYGhqjVao4ePUS5ck7Zjvn34t5arTZH4GVsrCvpYGBgkKO8g4GB\nARqNGq0WChWyYuXK9YSFnWPNmpXMmTOVqKhIevUypUmT0nn+HBgY6NpwdXXnzJnT7Nu3my+//Aoj\nIyM0Gg1abSZyuZyVK9fnOnbo0ACuXbvCH3+cpEePzqxYsQaFwjLPdt5X7u6erFmzEhcXV2QyE2Qy\nGe7unpQr55Tnz2NKynNGjhxCeno6oKV//8EFewGCIHySRDAnCILwkXqdzIxZTp++xoYNEdy5cxOl\ncghK5VcAeHqupkaNWtSsmXcK9S+/bMaAAUNybJPJZAwbNirXvoaGhvTvP4j+/Qfl2L5gwVL941Gj\nxuU67v79cD77zAkbm6aAIenpZ7C1tSU4eAXffdefq1cvY25uweeff8n9++EcOnSAJUuCMDQ0ZNas\nH9m/fy9NmzYjLS0NFxc3evf+nkWL5nPr1g26deuIubkFMpkMiQQaN/ZizpyZ+Pl9S61adQHJXyNO\nEhQKS31AExsbw8iRWR/idfXcQDf6ZmZmxsiRgXh4VGHnzu2sX7+G77/vSenSZTAzM9df18uKe//2\n2x48PKrkuh95TVWVSCR4enpy4MBeUlNT9fslJCQgl8vRaNRoNGr9+5Ale0Dq69uNLVs2oVKp8Pfv\nwddffwOAmZk5JUuW5PDh32nU6HO0Wi13796hXDknoqOjqFTJhUqVXDh9+iTx8fEfXDBXtepnHD78\nh/75hg3b9I//+fOYnJxEYmKi/udLEAShoIhgTsg3/v5+LF4cBMDChfM4ffoktWrVZdy40QXcM0H4\ndGRlZrSyKkyxYsVxdq7I7ds3mTlzGiqVClvbUgQEBCKXy3Mls2jbtiuDBklJSrLA2vo0Dg6NMTZW\nULJkV8aOdX+j4DA/hYae4d69uyQk6AKp9PR0Hj1K59EjCY0bN6F+/Tpcv34ZV1d3tm7dxM2bN+jZ\nU1fLTqVSYW1tDYBUKqV27boAODtXJDk5iblzF5GY+IwePTrToYMvYWHn8PCowowZcwD0RdK//bYr\ne/fu5sqVy7i4uFK0aDHGj58KgLW1NR076tqzty+NpWUhjIykaLVaGjRojKurO3Z29owePYz69Rvq\nr+tlxb0rVqycrbj33++BRCL5x3uie1yzZh2MjWV89113UlNTSE5OJjU1hZIlbbG2LsKyZYsID7+H\njY0NMTExANy8eV1/fHR0FFKpMe3adSA8/B5Pnz7RtxMYOJlZs34kODgItVrN559/QblyTixaNI+o\nqEi0Wi3VqlXPMfL4sQkKOsqcOYY8e2bDZ59tYdUq71dOuCMIgpDfRDAn5JusQA5g167t7N17uMA/\n/AnCpyR7ZkaNRo2fny/OzhWZPHk8gwcPx93dkxUrlrJy5TIGDBiSK5nFmDETiYnZS+nSLYiKCkKj\nseLHH0Pw82vxr+1mH1F727y9m9OnT18Adu48w4ABpTAyuoKx8W2OHn1M69b18tw3O0PDv//1GRhI\n9Gu8LC0L4erqTpcu7ZHJZBQubK3fLyMjg9DQs3h7N+fbb7syfPgPFCtmg0ajpn37Tjg4lAX+Hg2V\nSqVMmjSdsWMDiYpSkpmZhExmSIkShalRozb16jXUn/tlxb2zCwn5X47r8/ZunudrNWvW5u7d21ha\nFsLBwZGSJW31bVWoUAlv7+Y8eHCTkSMD6NmzC56eVfWjcyEhGzA1NaF//+8oW9aRvn0HYmSku2cl\nSpRk9uz5ufo1ZcrMXNs+RkqlkjlzJDx86A3AiRPuzJy5iUmT8i4qLwiC8LaJYE7IN15e9Thw4Dgj\nRgwiNTUVP79v8fXtTocO3xR01wThk5A9MyPIqFOnPmlpqSjHQyKVAAAgAElEQVSVybi7ewLQtGkz\nxo4dmSOZRRa1+jkSyVNSU6tgYzOStLSq2NuXLaCrya1q1eqMHDkEH59OWFlZcfx4FOnpFUlL88Le\nfjHJyVaUK/dNnvsmJSWSkpKKjY3Nv7YxbtzkPLd37tydESN000JtbUvh4uKuH7XL8s+g1sbGhhs3\nviMmJisYTqV589388EPTN7j61/Oi68he265atWo5phJmGThw2Cu3o9VqOX48lMTEVLy8PsPExOT1\nO/sBUSqTSUwslm2LAUql9IX7C4IgvG0imBPyke4b6enT5+DlVT/PRfKCILxNrz4SnlcyC61Wy5Ah\nW9m9uz4SyR3q1LnI0qVbqF7d9b1Y/1SmjAO9evkzeHBfMjO1PH2agpGRM2lpNUlPL4ep6WVq166V\n575GRkYMGTICGxubHDMGXnX2wJIlC4iOjqJ7904YGRlhYmLKmDEjCA+/i7NzRQIDJwG60dGff57D\n06fPSExU8/BhIFJpBCVKDCQiYhtxcRIiIyMYN24UQUFr8/8m/Qdbt/7B8eNJWFllMHx4E0xNTf91\nf61Wy8CBW9m0qQmZmYWoXj2EDRu8kcvl76jH716xYsWpWfMYR45UAQxRKC7g5VWkoLslCMInTARz\ngiAIH4kX1YyTyxVcvHgBd3cP9u37FU/Pqi9MZvHTT23p0+c6pUp9TZkyfWjVqvV7lcyiSRMvmjTx\nAkCj0TB48HaOH3+IuXljBgxok2NqZPZ9s9u//6j+ccOGTWjYsMlL2/X3H0B4+D1WrlzP+fOhBAQM\nYe3aEKyti+Dv34NLly5QqZILc+fOpFu3AfTtqyQhIYMiRX7m4cNNZGZaIJcfoGZNBXv27HqtWnjv\nwqZNpxg+vAypqc6Amtu3V7J2bYd/PSYs7CqbN9clM1NXR/DMme4sWRLCsGFfvYMeFwwDAwOCgpox\ne/ZmkpKkeHkVpWnTqgXdLUEQPmEimBMEQfhIZK8ZZ2VVWF8zbvTo8cyaNY20tDRsbUvpM/P9n737\nDIji6ho4/l+WooA0ARHsiqCiYDeW2KKxPyZ2LIAtajRqSGLvsWM3KhZQsPfXxB5iN5ZY0BixYqHY\nkN7Z3fcDYZWIHUTw/L64M3tn7p0dBA537jkvS2bh5+dDSMh9lEodXFyqf7TJLJRKJQsWdEStVqOj\n8/qyqXfuhPPjj6e5d68QpUvHMHduPWxtrV97HGTOHKnRaKhQoRKWllYAlCtXngcPwjE2NiY4+BYT\nJ45DoTCjcGEVaWmmgC/W1kWoVWsTX301h27dZrJihd87XXNOOXw4/t9ADkCXs2fLEBcXh7Gx8UuP\nSUxMQqVKz8ppZuaHqelGzp414tgxQ4oXL0mpUqXfe1zh4WGMGDEcP79N732u7GJsbMyECbJGTgjx\ncZBgTggh8pGsasYBeHv7vrDvdcksrKwK8fhxbPYPMpu9SSAHMGbMGY4cSc82GRwMY8b44+vb/p36\n1NPT175WKnW0SVRKly5LyZIdmDevMxkFzgsUOM/8+ZWZNGkUJ08ew9GxwkeX/dDYOAnQkPGorqlp\n5Gsfs6xTx4WGDbdw5Ig7pqYb0NPrzKxZn7Fu3Qrq1WuQLcGcEEKIV5NgTmSbd1mHIoT4OERGRjFs\nWAA3b5pRtGgc06dXw8qqYm4PK1s9eGD0yu1XMTQ01BYUf5kSJUoRFRVJ796W/PmnD6dOfYmR0WV6\n9ozC0bEttWt/hpfXDG1R9Y/JiBH1uH7dhwsXqmBpGYanp8lL66dt3LiWPXt+BeCrr1pjZNSH27fv\nYme3kaNHYzhx4hgXL15gzZpVTJ06G41Gk6kExogRYyhRohRTp07EyMiYa9f+ISIigkGDvsvykVeV\nSsXkyeO4fj2IUqXKMG7cJIKDg1m8eB6JiYmYmpoxZswEChe2JCTkPrNnTyc6OgodHR1+/nkm5uYW\njBzpSWxsDCpVGv36DaR+/YaEh4fh6TkEJ6cqXL4cqM3y6eu7nMjIKCZMmEKFCpVITExk3rxZBAff\n/jdLbH/q12+Yo/dDCCHelARzIlukpaXh7e3L06cRWFgUzrQmRQjx8Rs79hB797oBCm7cgJEj/Tl6\nNH8Fc+XLR3P5sgpQAmmUL//ms46vKluQQVdXlylTZrJggRfm5jE0aLCOL79sTf/+3wDwxRctOHr0\ncJZlCHKbpaUFO3Z05OHDB5ialsDQ0DDLdkFBV9m79zdWrFiDWq2hf383xo+fwujRP+LtvQoTE1NC\nQu5Tr14DGjZsAsDQoQMzlcCYM2cmCxYsBeDp0wiWLvXhzp1gRo78Pstg7t69u4waNR4npypMnz6Z\nbds2c+zYYaZPn4uZmRkBAQdYvnwJo0aNZ9KksfTq5UGDBo1ITU1FrVahq6vH9OmzMTQ0IioqigED\nPLTBWGhoCD//PItRo8bTt28vAgIOsHSpD8ePH8HPz5fp073w8/OhRo1ajB49gdjYWPr3d6NGjdr5\nPnOnECJvkGBOvLeYmBh69drLmTN1MDW9wdChlxgwoHFuD0sI8RbCw415PhtmWFj+y0jo5dWCggXX\nc/++IaVLJzBpUsu3Ov5N0v3b25dn8eLlmd6PjY3hzJmrBAWdpnXrdh/tkws6OjoULWr7yjaXLl38\nt/xFeiDTsGETLl688EK7jDWGCQkJ/P135hIYqanp9ewUCgUNGqQHVaVKlebp06dZ9mltXQQnpyoA\nfPllK9as8eH27VsMHz4IALVaTeHCViQkJBAR8URbw09PTw/QIy0tjWXLFhMYeBEdHQVPnjwmMjK9\nr6JF7ShTpiwApUuXoUaNWv++LsuDB+kF1c+cOcWJE0fZsMH/3/Gn8ujRA0qUKPXKz0oIIT4ECebE\ne/PyOsrJk70BHSIinFi0aB+urtEfTfY7IcTr2dsncPx4CqAPaLC3j3rnc/3441AmTpyKkZGxtv7k\nx5DIwsjIiLlz322N3Lu6du0uffv+Q2zsAQwM7tCzZ78P2n92yyoQzSo2zWin0agxNi700lI16QEX\n/7bVZNnm+T41Gg1GRkaULl2WZct8MrVLSIjP8vgDB/YSHR2Fj89alEolnTq1Izk5BQB9/Wf96+jo\naMejo/NsHSSkryMtXrxElucXQojc9GarxoV4hYQEfZ7/UoqNtSIuLi73BiSEeGtTprSkd+8t1Ku3\nnY4d/Zk/v8k7n2v27AUYGWVkQfw4Z6E+lIULL3PtWmfCwlYSHPw7q1frolarc3tY78zZ2YWjRw+T\nnJxEYmIiR48e0hakz2BoaEh8fHpgZWRkrC2BAenB2M2bN96qz4cPH/D335cBOHhwH5UqOREVFand\nl5aWRnDwbQwNjbCysubYscMApKSkkJycRHx8PObmFiiVSs6f/4sHD8Lfqv9ateqwdetG7fb160Fv\ndbwQQuQkCebEe/vySyvMzM7+u5VGnTrnsbEpmqtjEkK8HX19fWbMaMeOHc1YsuQrLCzMX9p2/Xo/\n7S+3CxfOYejQgQCcO3eWSZPG0qlTO2Jioj/IuD92KSn6mbaTkwuQlpaWS6N5f+XLO9KqVRv69XPj\nm2/cadv2K+ztHTK1adq0OevX+9O7dw/CwkIZP/5nfvttF+7urvTs2YXjx5+tqX5d4iyFQkGJEiXZ\nsWMzPXp0Ii4ujo4duzJlykyWLVuEu7srHh6uXLlyCYBx4yazdesm3Ny6MXBgH54+fUrz5i0ICrqK\nm1tX9u3bTcmSpV/aZ1bjcXfvS1paGm5uXenZszOrVnm/xycohBDZS6F52XMNH1heSH8tXi4g4CIH\nDjzE2DgVT88mmRbP55X05uLdyP3Nv152b69c+ZuNG9cyZcoMBg1K/0V3yZKV+Pv7YmFRmLVrV7Nq\nlT8mJqY0a/Y5Bw8e/Sges8wNv/56Bk9PM6KiqgPRuLpuZ/78jrk9LCD//9/9VL/mIP/f20+d3N/8\ny8rq7dery5o5kS2aNnWh6YtJyIQQ+ZCDgyPXrl0lISEefX19HB0rEBR0lcDACwwb9iNr167O7SF+\nNNq2rYWp6WWOHNlC0aK69O79dW4P6aPwf/93mv37oylYMJkff6yDjY1Vbg/pBcnJyXh6/sqlS+YU\nLpzAuHGOVKtmT3h4GN9/PwQ9Pd1PMlAUQnxcJJgTQgjxVnR1dSla1I49e36lcmVnypYtx/nzZwkN\nDZVC0Vn4/PPKfP555dwexkdj//7zeHpaExPzBaDhypXV7NrVDn19/dce+7bep0adpWVzNm/uh6Xl\nPBITjzN0aBQTJw6jYkUnkpKSePw4mlGjPLl16yaNG39B6dJl2LZtEykpKUyb5oWdXTEiIyOZM2c6\nDx8+AOC77zypXNk5269TCPHpkjVzQggh3pqzswsbNqzFxaUazs5V2blzG+XLl8/tYYk84NChx8TE\nVPl3S8GFC3W5fftOjvR1795dvv66E2vXbsHIyIht2zazYMFsfv55FqtW+dO6dVuWL18CwKRJY+nY\nsTOrV6/H29uXx48LY2x8CAODa9y9u4unT7/jl18WEBkZiUajIikpiXPnzhIZ+ZQtWzZw4cJfqFRq\n7t27S/fuHRk8+Btmz55K48bNMDExIzk5hWHDvuXevfRrnTp1IvPnezFwYG86d/4fhw8H5MhnIITI\n3ySYE0II8dacnavy9GkETk6VMTe3wMDA4IWshvD6BBfi02NpqQaStdsWFvewtn6xCHt2+G+NutOn\nT2lr1Hl4uOLn58Pjx4+zrFFXoYIOBQueIja2DaCgTJkEqlatzq1bN3jy5AkAc+cupkmTZiiVuvz5\n50mUSh0mTpxGuXLlUSjg1KmTzJgxhYcPw1EqdTA0NGT27Gna8WUUTZ81az7Lli3Okc9ACJG/yWOW\nQggh3lr16jU5dOhP7faGDdu1r7ds2UViYiIpKSkcOJCeubBoUVvWrNn4wnnEp2Hw4P4MGfI9Dg6O\n/PnnL7Ro8ZDTpytibBzDkCH6WFjkTDD3PjXqPD2bc/Hibp4+TcbWNpHx4+vg738RhUKBqakpiYlJ\nODlVISUlhT/++J3IyEiioiKZOHE0aWlpFChQELVajUaTpq1fZ2lpSWRklHZsb1I0XQghXkVm5oQQ\nQmQbjUaDp+dWatQ4T82ax5k790BuD0l8ABqN5qVFvyFzUKWjo8PixV9x7lwFTp1qiLv75zk2rvep\nUZeWlso333SgYsUwVq5sg6lpQQIDL1CunD2g0BZL12g06OjoYGhYkIoVnZgzZxGffVafgweP0qBB\nI/T0dPH1XY+v73pGj57A2rWbteN7k6LpQgjxKjIzJ4QQItusXXuYtWv/h0ZjAcCCBZdo0iQIFxfH\nXB7Zp6lRozrY2tphZmaOtXURHBwq8PnnjZg7dxZxcdHo6urj7FyVo0cPkZKSQqlSpXn8+DHx8XEM\nGvQdjRqlpylev96PQ4d+JyUllc8/b0SfPt/8m9VxMJUqVebatavMnr2QtWtXExT0D8nJSTRq1JQ+\nfb7JclwajYZNm9ZTqJAJnTt3A8Db+xcsLArTqVPXbLn252vUzZgxmVKlytCxY1dq1fqMBQu8iIuL\nQ6VKo0sXV0qXLsO4cZOZPXsaK1d6o6ury88/z6Rhw8ZcuXIJd/duKBQKBg0aiqmpGdHR6bNrf/99\nmYMH96HRqNHR0eHhwwfcuRMMpBdH79SpG+fPn6VDhzYULGiIi0tV2rfv+G9AKIQQ70+COSGEENkm\nPDxZG8gBJCaW49at3yWYywVXr15BpVKxZs1GUlNT6d27Bw4OFZg1axo//jiKqlUrcvjwnwwdOoCN\nG3fg7f0LFy6cY/DgYZQqVYaRI7+nUaOmnDlzipCQ+6xY4YdarWbkSE8CAy9gbV2E0NAQxo2bTMWK\nTgD07z8IExMTVCoVw4YN4tatm5QtW+6FsSkUClq3bsfo0T/SuXM31Go1f/xxkBUr/LLt+m1sirJu\n3dYX9tvbl2fx4uUv7C9WrDgLFix9Yf+gQUMZNGiodvvBg3Ds7IoRFRWJp+dgNBoN1avXomdPd+bM\nmcGSJQtRq1Vcvx5E374DWLnSHy+vGUREPOHixQtYWlppgzlZUyqEeF8SzAkhhMg2zZqVxc/vOI8e\n1QfA3n4vjRrVyOVRfZouXw5EqdRFT08PPT09ChcuzObN63jy5AmDBvWlSBFrwsLCSEpKwtNzCEql\nLtHRUfzyy0KMjY2IiEhP8nHmzCnOnj2Nh4crAImJSYSE3MfaughFihTVBnIAf/xxgF27dqJSqYiI\neMKdO8FZBnOQHmyZmppy48Y1IiIiKF/eERMTk5z/YN6TjU1RNm3a+cL+tLQ0Vq70R6FQsHfveRYu\nfICXlz6NGp3Dy2vBC8Ha6NETMm1nrC8VQoi3IcGcEEKIbFO1qj2LF19i8+Zt6OqmMXBgBQoXtnj9\nge8oLi6Ogwf38dVXHTl//i82blzHrFnzcqy/vEUBpK/DOnPmFLGxsfzvfx3YsWMrDg6OfPvtQEqW\ndKBTp3YsWuTN4sXzMTIyomPHLjRs2IRmzZ6tZevRw53//S9zwfPw8DAKFiyg3Q4LC2XjxnWsXOmP\nsbEx06ZNIiUlmVdp06Y9u3f/SmRkBK1bt8u+S/+A0tLS+O67HZw4YYmRUSJ9+ypZuNCQsLAuAAQF\nPaZkySN4eDQCID4+nsmTAwgPL0ClSmn8+GMLdHQkhYEQ4t3Idw8hhMiHwsPD6NWrS5bvDR7cn6Cg\nqznWd6NGVViypDkLF7aiQoWcLSIeGxvDjh1bcrSPvKpKFWdUKhUpKSmcOHGMu3eD2blzK/HxcQQF\nBXH37l00Gg2pqamZjvtvIo7ateuwe3d6hlKAx48fERkZ+UJ/8fHxFChQECMjI54+jeDUqZOvHWPD\nho05ffokQUFXqV37s/e42tyzeHEAW7d2Izy8HTdvdmHmzEeEhT2brVSrrbh1K0m7PWTIXnx9u7Jv\nXwfmzGnB9Ol7c2PYQoh8QmbmhBDiE6NQKPLN+pxlyxYRGhqCh4crurq6FChQkLFjRxAcfAsHhwqM\nHz8FgKCgqyxePI/ExERMTc0YM2YChQtbMnhwfypVqsz5838RFxfLyJHjcXZ2yeWryh6OjhVRKnVx\nc+tKUlISZcuW4+uvO1G9ei28vGbg5+fH8uUrSUp6Fmg8/7WR8W/NmnW4c+cOAwZ4AGBoaMi4cVNe\n+Dqyty9P+fIOuLp2wNrahipVnF87Rl1dXapXr0mhQiZ59mvywQOAgtrtyMjaFCv2JyEhJQAwMLiL\ns3Mh7ftXrpgDyn+3TAkMfJbRUggh3pYEc0II8RHau/c3Nm5ch0KhoFw5e/r2HcC0aZOIjo7GzMyc\n0aPHU6SIDVOnTqRevQbarIPNmjXg4MFjmc6VnJzEtGmTuHXrJiVKlCI5OTnfpEEfOPA7goNv4+u7\nngsXzjFqlCdr126hcGFLBg7sw6VLF6lY0Yn582czc+ZcTE3NCAg4wPLlSxg1ajwKhQK1Ws2KFWv4\n888T+PouZ/78Jbl9WdlGV1eXDRu2c+LEUSZMGEPJkmUoWtSWkSPHYmNjjkqlR6dO6Y83jh49gfnz\nZxMfn15z7fk1XJ06dc0yy+R/awf+dx1YhkWLvLWvt2zZpX2tVqu5cuUyP/88690vMpfVrWvOxo3X\nSEhwAKBKlSAmTizFkiWbSEzUo0kT6NSpmba9lVU8wcEZWxoKF0748IMWQuQbEswJIcRH5vbtW/j5\n+eDt7YuJiSkxMTH8/PMEWrVqS4sWrdm9exfz53sxfbpXFrMZL85u7NixlYIFDVm7dgu3bt2kd+/u\nH80syKpV3hgaGtGtW49M+8PDwxgxYjh+fpteefzzQalGo6FChUpYWloBUK5ceR48CMfY2Jjg4FsM\nGzYISA8gChe20h7XsGFjABwcHHnwIDxbrutjkZqagoeHKykpKVSvXgMvr2kAFCxoyPz5cylQwIzn\nv2aaNm3OzJlT2bp1E1OmzMDOrliOjGv16iNs336P6Gg/Pvusdo718yG0a1eLuLjjHDz4N4aGyXh6\nVqNMmWLUr18ly/YTJzoyZsxawsNNcHB4ysSJDT/wiIUQ+YkEc0II8ZE5f/4sTZo0w8TEFAATExP+\n+ecy06d7AfDll61YunThG58vMPCidlalbNlylC378dS4yu6gUk9PX/taqdRBpVIBULp0WZYt83nl\nMTo6Sm37DyWrmdTsdOTI6Ze+Z2VViEePYli6dJX2PlSu7JypqHVOOHDgPJMmlSM+vg0wiLi4vQwf\n/pgiRaxee+zHytW1Pq6ub9a2Ro3y7N9fHpVKhVKpfP0BQgjxCpIARQghPjIKhSLLxyCz2qdUKlGr\n0/er1WrS0lJfaJOd1q/3Y+vW9EfrFi6cw9ChAwE4d+4skyeP4+DBfbi5daVXry4sXbpIe1yzZg20\nrw8d+p1p0ya9cO6goKu4uXXD3d31jZOaGBoakpDw6sfUSpQoRVRUJH//fRlIzz4YHHz7jc6f83Jv\nhlSlUjFgwCZq1w6lVq2/mTVr3wfp9+zZR8THP6s7eP9+Xc6evf5B+v6YSCAnhMgOMjMnhBAfmWrV\najJ69A907dr938cso3FyqkJAwAG+/LIVBw7sxdm5KpBe8+ratas0afIFx48fJS0t7YXzubhU5eDB\nfVSrVoPbt29y69aNF9qEh4fh6TkEJ6cqXL4ciKNjRbp27cT8+QuIjIxiwoT0RCL79u3h0aOHBAQc\nICUlFaVSybff9qNUqTIUL16CZcsWY2FRmJ9+GsPixfM4duwwDRo04vmg5b+zcRmb06dP4vvvR+Ls\n7MKSJQve6LMyNTWjcmVnevXqgoGBARYWhV9oo6ury5QpM1mwwIu4uDhUqjS6dHGldOkyWZwxe4Or\n9ev90NfXp2PHrixcOIdbt26yYMFSzp07y2+//R8Ay5cv4eTJ4xgYGDBjxhzMzS0IDw9j+vTJL6yR\nzE6LF+9jxw5XwAiAX365SOvWN6hUKWdnbh0cCqGvH0pKih0AlpYXqVKlVI72KYQQ+ZXMzAkhxEem\ndOky9OrVm8GD++Pu7srixfMZNuwn9uz5FTe3bhw4sJehQ38AoF27r7h48Tzu7q5cuXKZggUNtefJ\nCJrat+9IQkICPXp0YtUqbxwdKwLQsWNbYmKite1DQ0Po2rUH69dv4969u+zZs4elS30YPHgofn6+\nlCxZmhUr1mBiYoKrqxuPHj3AyakyVatWY9eu7RgbF8LBwRGNRoO9fXmaNWuBt/cSDh8OeO01x8XF\nERcXp80k+eWXrd/485ow4Wf8/DaxYoUfM2c+qzE3fPhPtGzZBkjPtLh48XJWr16Pv/9m2rRpD6Qn\n5nBwSJ8lMjMzY8uW/3vjft+Es3M1AgMvAukzj4mJiaSlpXHp0kVcXKqRlJSIk1MVVq9ej7NzVXbt\n2gHAvHmzadWqLWvWbKB58xbMn+/10j727v2NJ0+evPXYHj9WkRHIASQmluT+/cdvfZ7nhYeH0b17\nR2bOnErPnp35/vvBJCcnc+PGNfr3d8fNrRvnz+/km28O4Ojoh4NDYyZNSiE5OZ4GDWry6NFDADp3\n/h/Jya+uUSeEEEJm5oQQ4qPUsmUbbSCSYcGCpS+0Mze3wNvbV7s9cOAQAIoWtdVmGjQwMGDSpGkv\nHPvfxzmLFrWjTJmyQHpAWbdu3X9fl+XBgzDi4mKZN282kZFPmTNnOmq1mipVXLh9+xYajQZra2vu\n37/PV191/PeMGhSKF0shvMkv6R8i2+bOnae4eDGKChWM6dKlfo704eDgyLVrV0lIiEdfXx9HxwoE\nBV0lMPACw4b9iJ6eHnXr1v+3bQX++it9jdvbrJHcs+dXSpcui6Wl5VuN7X//c2DFiqM8epReHNzJ\naS/16zd+l8vMJCTkPpMmTWfEiDGMHz+KI0f+YN06P77//iecnauyapU38fF3OXrUk549N9C6dWX2\n7v0NR8eKXLx4gSpVnLGwKIyBgcFL++jYsS0+PmsxMTHN8XWHQgjxMZNgTggh8qm4uHh++mk/N2+a\nYmMTganpIWJjo1GrVbi59QVg69ZNnDhxjKSkRCA9gIqJiebChb+4dOkC5uar8fDoh0ql4qefhmNr\na0u3bj3ZtWsHcXFxFC1qx8KFc1EoFERHR3P3bjBXrlxm69aNREZGYmtrh0ajwcLCgrt371C8eAmO\nHj2EkZExkB60aTRgbGyMsXEhLl26SJUqLhw4kLOFlH/55XdmzHAhObk0enphBAfvZuTIN58NfFO6\nuroULWrHnj2/UrmyM2XLluP8+bOEhoZSqlRplMpnP4Z1dBSoVCrCw8OIiYlh1qxp/PPPZQoXtkSj\ngRs3rjF79nSSk5OxsyvGqFHj+euv0wQFXWXy5LEUKFCApUt9XhkEPa9mTQe8vSPZsmUL+voqhgyp\nibGx8Xtfc9GidpQrl/6opoODI6GhIcTFxWofDW7RojXjxo0EwMnJmUuXAgkMvEjPnh6cPn0S0FCl\nyqtr/WV+VPfjyMwqhBC5QR6zFEKIfGrMmANs3dqDixfbc/x4Ma5fT2X16vX4+W2iTp3PADAzM8fH\nZy3Nm7ckOjoKSC8XYGJixsiRI/nmm29ZvHgeGo2G1NQUjIyMcHauytOnESgUCkxNzTAwMECpVLJq\nlTd2dsU4evQQSqWSZs1aEBoagkKhYMCAwfz00zAGDuyjLR0AGbN26a9Hj57A3Lmz8PBw1b6XU/bt\nU5OcXBqA1FRbDh58swDoXTg7u7Bhw1pcXKrh7FyVnTu3Ub58+Vceo1arsbOzw99/M/Hx8RQtasvP\nP0/k22+HsmbNBsqWLYev73IaN/4CR8cKTJgwFR+fdW8cyGWoV68S8+e3YNas1hQvnj1r8vT19QgP\nD6NXry7o6CiJi4slPj4eH5/lbNmyEU/PIdy5E8zEiWNwcamKn58PV65cpkGDhty4cZ1582ZTsmT6\nvRk16gf69OlJz56dtY+gvsyUKeM5duywdnvSpLEcP37k5QcIIUQ+IDNzQgiRT927ZwykZ8xLTnYg\nLu4uS5cuom7dBly79g8ajYaGDZsAUKZMWW3ylMuXA/EeK58AACAASURBVLGzK4ZCoaBq1RrExsZi\nYmJC5crOHDt2hFu3btKzpwfr1q0BYMOG7TRr9jnGxsaUKFGKnj09aNWqLQAREelrsBo1aqotbP68\n3r37a187ODiyevV67fagQd9l/4fyLwODzIliChRIybG+nJ2r4u/vi5NTZQwMCmBgYKCdpXo+YH3+\ntY2NLefOnSUg4CDJyUnUr/85hw4FZDm7BR/msdR3ZWRkTIECBjx48IBdu3bQunU7kpKS6N27H7Gx\nscydO5NixYqjUCgwMTEhMTGBChXS13WOGjUeExMTkpOT6NfPjUaNmmJiYpJlP23btmfTpvU0aNCI\nuLg4/v77MuPGTf6QlyqEEB+cBHNCCJFPlSwZz4kTKkBJamopihXrTdmyZqxYsYSbN29gZGSEvr4e\nANbWRbSJUSA9kHJ2duTx41iUSiXe3r5s2bKR7t174eraC4CAgAPa9hqNBrVaTdGiRd86sEhMTGTj\nxmPo6kKXLo3Q19d//UHvaciQ4gQH/8b9+zWxsQlk0CDrHOurevWaHDr0p3Z7w4bt2tcHDjybOcoI\neENDQyhQwEC7RnLDhrU8efLolX18LEXgIatspQqaNv2SP/44SHx8PLt376J37/7o6CixsSkKgK1t\netFwZ+eqnD//F4aG6YlZtmzZwLFj6Z/Ro0cPCQm5R8WKTln26+JSjTlzZhAVFcXhw7/TuHETdHTk\nASQhRP4m3+WEEOIjFx4ehqtrB6ZNm0S3bl8zadJYzpw5xYABvena9WuuXr3CqlXebNiwVntMz56d\nGTq0Ch06+FKhQjsqVaqHQrEVpVKXkiVLER8fR0TEE0aN+uGF/qpUqapds3b+/F+YmZljaGhE0aK2\nXLsWBMC1a0GEhYUyePBeatWaRVJSIq1adcLZuRoBAQdRq9U8efKE8+fPvfLaEhIS6Nx5FyNGtMPT\nsw3du28jJSXnZskyNGxYmd9/r8yWLVf4/fdytG5dI8f7fBP791+gc+fD3LyZTMeOm3n6NBJIn90y\nMTHRZsbct283VatWB9Jr7cXHx+XamJ+XkXgno/5ht2498PDoR6FChWjbtj0HDhxh/Pgp3L17h379\neqFSqXB17aWdievZ0wNr6yJA+tfeuXNn8fb2ZfXq9djbO7z2a6NFi9bs37+bPXt+o3Xr/+X49Qoh\nRG6TYE4IIfKA/5YNCAg4wLJlz8oGZDUbUrBgQbp0saRVq4rMnDkRAwN9/PxWcf36NQoXLkzhwlba\njInwLONk7979uXYtiHbt2rF8+RLGjp0IQMOGTYiNjaFnz85s374ZPT0LTp7swJ07U1CpjNi504iG\nDRtTvHhxevToxNSpE6hcucorr8vf/yinT7sDeoABR470YNu2o9n62b2MubkFDRvWxNra6vWNPwCN\nRsPPP4cSHNwWlcqYo0d7M3VqepZGhULB6NETWbJkAW5u3bh16yYeHv0AaNWqLV5e0+ndu/tHk87f\nwqIwUVFPiYmJJiUlhZMnj6PRaHj48AHVqtVg4MAhxMXFERMTQ0hINIcOHUOlUnHtWhDh4WEAJCTE\nU6hQIQwMDLh79w5Xrvz92n5btWrL5s0bUCgUlCxZKoevUgghcp88ZimEEHnAf8sG1KhR69/X6WUD\n7O2zSqihoGxZe375ZQEmJiZ8//0IbR23Tp3asWqVPyYmpgA4OlZg4cJlAJiYmDB9uhdWVoV4/DhW\nezYDAwPmzl2s3T5z5iBpaemFn2/dOo+Ozg4iIiLo0cOD4cN/eourk8yEACkpKTx9akpaWjHu3v0V\ngKioAnTr1k7b5vkyFBkaNmyiXfv4sdDV1cXdvS/9+rlhZWVNqVKlUalUTJ48jvj4ODQaDV991ZE+\nffZz4sRgbG2H88UXrWjWrC7Fi5cEoHbtuuzcuY0ePTpRvHhJnJwqZ9nX83/IMDe3oFSpMnz+eaMP\ncZlCCJHrJJgTQog8IGNtG4COjg56enra1yqVCqVSiUaj1rbJeBytePES+Pis488/j7NixRJq1KiF\nu3vfbBlTxYoJnDiRCBQEVKSmXqR2bXPUaj3atTvCvHkdXruWq0ePBuzatZqzZ90ANZ9/7k+HDh2y\nZXx5jYGBAS4uYRw8mL7OUU8vlNq1X/wxvX79cQICEjAySmLEiNrY2RV56742b15Pnz5u2u0ffxzK\nxIlTMTIy1tZtCw8PY8SI4fj5bXqn6+nYsSsdO3Z96fve3vs4frw9oEdoqB+hoVEMHXqc0aMnaNt4\neWVdX2/Lll3a18+vO0xKSiIk5B7Nmn35TmMWQoi8RoI5IYTIB4oWteXEifRH8p5/VO3JkycUKlSI\n5s1bYmRkzO7d6b8Ep6+zitfOzL2LiRNboau7k2vX9FGp/uHEiX6kpaUnstiwoQJ16x6hc+dGrzyH\nkZERW7a0Yf36Hejq6tCt29cfJAHKx8rbuzVTp24iIsKA2rX16d07cxHvHTtOMWpUGRITHQANN26s\nYdeudtrg/k1t2bIRV9fOZPwaMHv2AgDi4uK0WU3f1NSpE6lXr0GW2UpfJTVVQ+ZfQwxISnq7vjNc\nuHCD5cv3c+PGDnr27K5NoCKEEPmdBHNCCJEHZLUm7vnXDRs2Yd++3fTs2ZmKFZ20j6rdvn2TX35Z\ngI6OAl1dXX74YTQA7dp9hafnEKysrLVZE9+Wnp4ekya1AcDHR8ORI7ba9zQaCx4+THyj8xgaGtK3\nb4t3GkN+Y2xszPTpbV/6/okTMf8GcgAKAgOrERoaQqlSpV96TGJiIuPHj+Tx48eo1SoaN/6CJ08e\n06tXLwoVMmXBgqV07NgWH5+1xMfHv3Uwl14r8O0fj+3e/TN27vTj0qVegIrPPltL+/bt3/o8ly/f\nonfvJ4SGjgJGsnGjL126JFGgQIG3PpcQQuQ1EswJIcRHLiNDYIbnH0N7/r3n17NlsLGxoVatOi/s\n79ChCx06dMm2MbZuXZ1Vq3Zw40b6I5IlS/5GmzavTn4i3p6VVRqQDKQXB7e2vkfhwlVfeczp0yex\ntLTWzr7Fx8exZ8+v+Pv7k5qaXocwIxhbtmwRGo0GDw9XKlSoRETEE3r16oJCoaBXrz40bdoMjUbD\nvHmz+OuvM1hbF8k0K+jru4KTJ4+RnJyMk1MVfvppDKGhIYwbNxIfn/Rsq/fv32PChNH4+Kxl8+bG\n+PtvQVcXPDzavVMAtmvXDUJDO/27peDcuTacOnWJRo1qvfW5hBAir5FslkII8QlITk5m7NhduLoe\nYNSoXSQlJWXr+YsUsWT1akfc3TfRq9dmfHzsKF3aLlv7EDB8+Be0beuPtfUeypTZzJgxBhQqlHUR\n7Qxly9rz11+nWbp0EYGBFzEyMn5p24EDv0OhUODr+6wUwJo1G5k/fwlLliwgIuIJR48e4v79e6xb\nt5WxYydz+fIl7fEdOnRhxQo//Pw2kZyczIkTx7CzK4axsTE3blwHYM+eX2ndOj2pi4WFOUOHtuTb\nb1tiaGj4Tp+JsTHAs5IFBQo8wMrK7J3OJYQQeY3MzAkhxCdg9Og9+Pt3BfSBVOLi1rNo0dfZ2oe9\nfQlmzSqRrecUmenr67NqVReSk5PR19d/o8cb/5sEp3r1mi9t+3zB96CgfzA2NkahUGBuboGLSzWu\nXv2HwMALNGvWAoVCgaWlJdWrP6vRd/78Wdav9yc5OYmYmBjKlClLvXoNaNOmPXv2/MqQIcP544+D\nrFjh934fxHMGDGjMmTO+/PFHAwwMound+w6VKrXJtvMLIcTHTII5IYT4BFy5Ykx6IAegxz//vHo2\nR3zcDAwM3rjtf5Pg/Pbb/2FoaERcXBwGBq9KgPPyQPH5oC9DcnIyc+fOYtUqf6ysrPHxWa6te9ew\nYWN8fZdTvXoNHB0rYGKSfV9/BgYG+Pt35dat2xgZmWNr65Rt5xZCiI+dPGYphBCfgCJFEjJtW1sn\nvKSlyG9u375J//7ueHi4snr1Stzd+9KuXXv69u3L0KEDM7V9/lHHChUqEBcXj1qtJjIyksDAC1Sq\n5ISzczUCAg6iVqt58uQJ58+fA56VwzAxMSUhIYFDh37XzhwaGBhQu/ZneHnNoFWrdmQ3HR0d7O3L\nYWsrj/YKIT4tMjMnhBCfgEmTahIb60dwsAklS8YyeXL13B6S+EBq1arzQhIcBwdHBgzoqy0Kv2XL\nLu1s2xdffEmvXl2oU6cuX33VAXf3bigUCgYNGoq5uQUNGzbm/Pmz9OjRiSJFbKhcOT3RTaFChWjb\ntj29enXBwqIwFStmniH74osWHD16OMuEPEIIId6NQpPVsxK5IOMHish/rKwKyf3Nx+T+5i0ajeaN\n08jLvc3fnr+/06fvYft2fZRKNd276zBkyBfZ2ldsbAxr165GV1ePfv0Gvv4A8V7k/27+Jvc3/7Ky\nKvTWx8jMnBBCfELepR6YyN927z7FkiWfkZycnrxmzpyr1Kx5mTp1KmfL+VevPsrSpb5oNDHY2LSj\nU6dozMzevVi9EEKIZ2TNnBBCCPEJu3kzShvIASQkOPDPP6HZcu6EhATmz1cRHLyVO3cOcOrUIGbN\nOpYt5xZCCCHBnBBCCPFJa9SoLFZWJ7XbdnZ/0KRJ9szKxcfHEx1t9dweHeLi9F7aXgghxNuRYE4I\nIYT4hDk72zNvXiotW26hdevNLFxoRKlS2ZMV0tLSklq1/gZUAJiYXOKLL8yz5dxCCCFkzZwQQog8\nKjw8jBEjhuPntym3h5LnNW9ejebNs/+8CoUCH5+2eHltJiZGj6ZNC9OqVa3s70gIIT5REswJIYQQ\nIscYGRkxYUKb3B6GEELkS/KYpRBCiDxLrVYzc+ZUevbszPffDyY5OZnQ0BA8Pb+jT5+efPttP+7d\nu5PpmIEDewPw4EE4Bw/uy4VRCyGEENlDgjkhhBDZIi4ujh07tn7QPu/fv0eHDp3x99+MsXEhjhz5\ng1mzpjF8+I+sWuXPoEFDmTNnZqZjli71ASAsLJSDB/fn6PiaNWuQ5f6dO7exb9/ulx53/vxf/PTT\n8JwalhBCiHxCgjkhhBDZIjY2hh07tnzQPosWtaNcOXsAHBwcCQ8P4++/Axk3bgQeHq54eU0jIiIi\n0zEZAdayZYu5dOkCHh6ubN68IYdGmHVdv/btO9CiResc6vPVOnZsS0xMdK70LYQQInvJmjkhhBDZ\nYtmyRYSGhuDh4UrNmrXRaOD06ZMoFAp69epD06bNsr1Pff1nae51dJTExDzF2LgQvr7rX3FUeoA1\ncOAQNmxYy6xZ8965//Xr/dDX16djx64sXDiHW7dusmDBUs6dO8tvv/0fAMuXL+HkyeMYGBgwY8Yc\nzM0tWLXKG0NDI7p160FIyH1mz55OdHQUOjo6TJkyA4VCQWJiAmPHjiA4+BYODhUYP37KO48z09VL\n4XghhMg3ZGZOCCFEthg48Dvs7Irh67ueihWduHnzOmvWbGT+/CUsWbKAiIgnOT4GIyMjbG3tOHTo\ndwA0Gg03b97Isq1Go3nv/pydqxEYeBGAoKCrJCYmkpaWxqVLF3FxqUZSUiJOTlVYvXo9zs5V2bVr\nB5AeUGXEVJMmjaVjx86sXr0eb29fLC0t0Wg03LhxjWHDfmDt2i2EhYVy6dLFtx7fqFE/0KdPT3r2\n7KztO0NCQgI//jgUd3dXevXqQkDAQQD++usMvXt3x82tK9OnTyY1NfU9PiEhhBA5SYI5IYQQ2eL5\n4OjSpYs0a9YChUKBubkFLi7VuHr1n2zv87+zTAqFgvHjp/Dbb7twd3elZ88uHD9+JNv7zeDg4Mi1\na1dJSIhHX18fJ6fKBAVdJTDwAs7OVdHT06Nu3fr/tq3AgwfhmY5PSEggIuIJDRo0AkBPTw8DgwKo\n1WoqVKiEpaUVCoWCcuXKv3Dsmxg1ajyrVvmzcqUfW7du1D5eqdFoOHbsGJaW1qxevR4/v03UqfMZ\nycnJTJs2icmTZ7BmzUZUKtUHXwcphBDizcljlkIIIbKdQqF4YeYrux/vK1rUljVrNmq3u3XroX09\nZ87C1x5vaGhEQkL8G/cXHh7GDz98R5UqVfn770CsrKyZPn0OFhaF6dfPjbi4OB4/fgzA/fv3+eGH\n71Aq03/MJiYmMnfuDOrWbUBoaAj79+8lJSWZw4f/IC0tDYCpUyeir6/PjRvXsbGxQU9PX9u3UqmD\nSqV647Fm2LJlA8eOpQezjx494v79+0D6vXBwcGD69BksXbqIunUb4Ozswo0b17G1taNYseIAtGzZ\nhu3bN9O5c7e37lsIIUTOk5k5IYQQ2cLQ0JCEhAQAqlRxISDgIGq1msjISAIDL1CxYqUc7T8tLY2d\nO4+ybdthUlJSXtouI6gsV84epVKJu/ubJ0AJCbn/QvbMiIgI4uLiGD9+CkOGDGPHjm04Ojpib19e\nG4CdPHkMe3sHFAoFs2ZNpU6dz+jc2ZUhQ74nOTmJY8cOA+kB18KFS2nfvuP7fRikZ8Q8d+4s3t6+\nrF69Hnv78qSkJGvfL1WqFD4+6yhbthwrVixh9eqVLwTc2fEoqhBCiJzz3jNzPj4+zJo1i1OnTmFm\nZgaAt7c327ZtQ0dHh7Fjx1K/fv33HqgQQoiPm6mpGZUrO9OrVxfq1KlLuXLlcHfvhkKhYNCgoZib\nW+RY32lpabi5bebgwa6Akg0bNrBu3VcYGBi80PbAgfSZKl1dXRYsWPpW/WSVPfPJk0ekpqayaNFc\n7Yyks3NVzM0t+PPPEwD8/vsBKld2JjQ0hMuXLxEcfBsdHR0OHNiDubkFW7du4vr1IIyNC/H06dNM\na+reVUJCPIUKFcLAwIA7d4K5cuXvTO8/evQIfX19mjdviZGRMbt378LVtRfh4WGEhoZgZ1eM/fv3\nULVq9fcbiBBCiBzzXsFceHg4J06cwNbWVrvv5s2b7Nmzh927d/Pw4UM8PDzYv38/OjoyCSiEEPnd\nhAk/A+nFvNPS0hg0aOgH6Xf79qMcPNgdMAbg6FE3/P130bfvl9o2cXFxzJp1mOhoPRo3NqN9+9pv\n3U9W2TNNTEz5v/97sfh4QkICVlbWxMTEcP16ENOmzSYhIZ5z585m2X7atEnUrVsfW1s7LCwKM27c\ns+yVw4f/9NZjrV27Ljt3bqNHj04UL14SJ6fK/76THiVev36dadNmoKOjQFdXlx9+GI2+vj6jR09g\n3LgRqFQqKlSolC2zhEIIIXLGewVz06dP58cff2TQoEHafQEBAbRu3Ro9PT2KFStGiRIluHTpEi4u\nLu89WCGEEB+/detOsGhRLHFxRtSrF8Yvv3RAVzdnl2inpKgAvef26JKaqtZuaTQaevfezeHDHoCS\nXbv+QaM5xVdf1Xmvfp/Pntm48Rfa7Jn29uUxNDTE0bEiCxbMpl69BigUCoyMjLG1tc3U/tatm9rZ\nPgAvr/2sWVOA1FQDvvwyhHnzvn6nP4jq6enh5fXi2sEtW9JLJpQtW581a549XhoTE83hw2ewty+G\nj8+6d/g0hBBCfGjvPF32+++/Y2Njg6OjY6b9jx49wsbGRrttY2PDw4cP332EQggh8oynTyOYPl2H\n27c78ehRK3bs6M6iRb/neL8dOtSnVi1/QAWocXFZQ/fu9bTvN2vWgL/+qggoAYiPr8gff7x94ew3\nyZ554sRR7ftNmzbj4MH9NG3aXLtv/PifX5pt886dMBYtcuDhwzY8fdqMDRu+Yu3anMvGmeHSpZu0\nbHmazp0r07TpQ9auPZ7jfQohhHh/r/xTqYeHB0+evFgXaNiwYSxfvhwfHx/tvlctkn6TDGZWVoVe\n20bkXXJ/8ze5v/nX297b8PD7PHpU+rk9BYmNNfgAXyOF+OOPbixbtgeVSsM333TA1NRE+66Ojg4W\nFhHExWXsUVOkyMuvLzY2ll9//RVXV1dOnz6Nr68vy5YtY8+e3do23303kLFjx2JkpIufn2+W5+nU\nqT2dOrXPtM/KyiHL9vPmebFxYwCJiWWe22tGbGzO/R/LOK+3921u3OgAwNOn1qxYsY3hw+X/dV4m\n35fzN7m/IsMrgzlf36x/OF2/fp2QkBDatWsHwMOHD+nQoQObN2+mSJEiPHjwQNv2wYMHFClS5LUD\nefw49m3GLfIQK6tCcn/zMbm/+de73FsLC2ucnfcRGJj+2KCR0T/UqPHhvkZ69WoEQEpK5p8rGg0M\nH66Hl9dmlMoNGBtHEBRkxI4dBahfv+ELZQdMTEyJjo6iWbO2BAb+w+nTp2nTpi01atTm9OmT+Plt\nYs+eX1GrFZiYWPP4cSw//TSMbt16UrVqdby8ZhAU9A/JyUk0atSUPn2+AeDPP4+zePF8ChQoiJNT\nFS5c+JsaNbrx+ecl2bNnMzdv3qB8+SmEho4jPr4pRYoco169Yjny+T1/f2NiMv9BNi5OyaNHMdle\nTkJ8GPJ9OX+T+5t/vUuQ/k6LGMqXL8/Jkye1202aNGH79u2YmZnRpEkTPD09cXd35+HDh9y9e5cq\nVaq8SzdCCCHyGAMDA1aurMWcORtISNDnyy+NadWqbm4PC4Du3evRrl0sERGOlChRkpiYGAYM8KB+\n/YZAetmBSZOmM2LEGL7+ujVPn0bg4eHKvXt3KVmyNLa2duzevQu1+tlavCNHDtGqVTvs7ctz48Z1\npk2bhKGhIU2bNueHH0aiUqkYNmwQt27dpFix4syePZ0lS1ZiY1OUr792IzjYlH37OlGq1FB69SqF\nj88ELlz4hx9+GE758g/p1q0ULi72L7ukbNOmjTEnT/5NbKwTCsVTmjaNlkBOCCHygGxZkf78N/xy\n5crRsmVLWrdujVKpZMKECfIDQQghPiElSxZl4cI2uT2MLBUsWJDt2zcTGHgRHR0FT548JjLyKZC5\n7EDz5i3ZvXsXixYtx9W1A2FhIcyaNY+oqCi++caDy5cDM533+vVrpKSkMGHCz7i4VGPTpnX07t0D\nlUpFRMQT7ty5jVqtwtbWDhuboiQnJ3P7dh3gNgBq9X127LjAuXN/AGBurs+oUZUpUaLUB/lcunSp\nR+HCFzh5cgvFiunj4fHVB+lXCCHE+8mWYC4gICDT9oABAxgwYEB2nFoIIYTINgcO7CU6Ogofn7Uo\nlUo6dWpHcnJ6gfHMZQcUQMajhxoqVKiEpaUVUVFRGBjoEx4ejlKp1La3sytGUlIiW7ZsICwslB07\ntrJypT/GxsZMmzbp3yLmz/6wqVAo0NFR89wkH6VLd2Plyh45ePWv9sUXVfnii1zrXgghxDuQ4m9C\nCCE+GfHx8ZibW6BUKjl//i8ePAh/ZXtjY2MMDAqQlJQMQEDAAUCBSpWGjY0tiYkJaDQaEhLiUSp1\nsbd3YN++3cTERGNkZMTTpxGcOpW+LKFEiZKEhYXy4EE4+vr6lCt3Dh2dBECNnp4N1tb/aPu9fj0o\npz4CIYQQ+UjOFv4RQgghPgIZj/s3b96CESO+x82tKw4OFShZsvQLbQD09PRJTU0FwNW1J0uXLsbD\nwxUXl+ro6aXP4Dk7u6Cvb8DYsSMoXboM9vblcXGpxuefN+Lbb/vj6toBa2sbqlRxBtLXE3p6jsTT\ncwgFChSkVq2KWFndp0aN7TRqNJitW/1xc+uKWq3G1taOmTPnfaiPRwghRB6l0LyqpsAHJFl58i/J\nupS/yf3Nvz71eztp0lhu3bqBnp4elpZWzJw5D3//1QQE7KdLl+60bNmGIUO+YfDg4SiVSqZNm4RG\nk/7c5IABQ6hd+7MXzpmYmEjBggUBmDNnJsWLl+DzzxsTFHSPqlXLY2pq9sGu71O/v/mZ3Nv8Te5v\n/vUu2SwlmBM5Tr7p5G9yf/MvubfpAgIOsnatLyqVChsbW8aMmZAp6Lp3L4Rr10KoUcMBc3PzV55r\n8+b17N37G6mpaTg4OFCuXHOmTCnAkyeVKFPmTxYvLkaNGg45fUmA3N/8TO5t/ib3N/+SYE58lOSb\nTv4m9zf/ys/3tmPHtvj4rMXExPS9zrNu3XEmTzYiMtKJMmWOvnUw1rjxPq5c6aTdbtlyE2vWtHqv\nMb2p/Hx/P3Vyb/M3ub/517sEc5IARQghxCdHoVCQHX/L9PaOJTLyc8CC27fb88svN9/q+KQkvUzb\nycmylF0IIcSbk58aQggh8rXExETGjx/J48ePUatVuLn1BWDr1k2cOHEMlSqNKVNmUKJEKRITE5k3\nbxbBwbdRqdLo3bu/tqh4VpKTMwdjKSl6L2mZtaZN4wgOfoJabYmh4TVatDB4+wsUQgjxyZJgTggh\nRL52+vRJLC2tmT17AQDx8XEsW7YIMzNzfHzWsmPHVjZsWMuIEWPx8/OhRo1ajB49gdjYWPr3d6NG\njdoUKFAgy3M3axbPypWPUautKFToCm3bGr7V2KZMaYe9/RHu3EmiZk1LWrV6eeAohBBC/JcEc0II\nIfK1smXt+eWXBSxduoi6dRvg7OwCQMOGTQAoX96RI0f+AODMmVOcOHGUDRv8AUhNTeXRoweUKFEq\ny3NPmdIOR8ejBAcnUq+eDU2a1H+rsSkUCtzcGr3bhQkhhPjkSTAnhBAiXytevAQ+Puv488/jrFix\nhOrVawKgr5/+SKRSqYNKpdK2nzp1NsWLl3ijcysUCnr0kNk0IYQQuUMSoAghhMjXnjx5gr6+Ps2b\nt8TVtRfXr197adtateqwdetG7fb160EfYohCCCHEO5FgTgghRL52+/ZN+vd3x8PDFV/fFbi59QEU\nz7VQoFCkb7u79yUtLQ03t6707NmZVau8c2XMQgghxJuQOnMix0k9lPxN7m/+Jfc2f5P7m3/Jvc3f\n5P7mX1JnTgghhHgHarWaESO2U69eAM2a7WH37nO5PSQhhBDitSQBihBCiE+et3cAvr7/A8wAGDv2\nN+rXj8LU1Cx3ByaEEEK8gszMCSGE+OTdu6cmI5ADCA2tQEhIeO4NSAghhHgDEswJIYT45FWrVggD\ngzvabUfH85QuXTLXxiOEEEK8CXnMUgghxCevU6e6REQEEBBwDkPDFDw9HTA0NMztYQkhhBCvJMGc\nEEIIAQwY0JQBA3J7FEIIIcSbk8cshRBCCCGE/MFDnAAADGJJREFUECIPkmBOCCGEEEIIIfIgCeaE\nEEIIIYQQIg+SYE4IIYQQQggh8iAJ5oQQQgghhBAiD5JgTgghhBBCCCHyIAnmhBBCCCGEECIPkmBO\nCCGEEEIIIfIgCeaEEEIIIYQQIg+SYE4IIYQQQggh8iAJ5oQQQgghhBAiD5JgTgghhBBCCCHyIAnm\nhBBCCCGEECIPkmBOCCGEEEIIIfIgCeaEEEIIIYQQIg+SYE4IIYQQQggh8iAJ5oQQQgghhBAiD5Jg\nTgghhBBCCCHyIAnmhBBCCCGEECIPkmBOCCGEEEIIIfIgCeaEEEIIIYQQIg+SYE4IIYQQQggh8iAJ\n5oQQQgghhBAiD5JgTgghhBBCCCHyIAnmhBBCCCGEECIPkmBOCCGEEEIIIfIgCeaEEEIIIYQQIg+S\nYE4IIYQQQggh8iAJ5oQQQgghhBAiD5JgTgghhBBCCCHyIAnmhBBCCCGEECIPkmBOCCGEEEIIIfIg\nCeaEEEIIIYQQIg+SYE4IIYQQQggh8iAJ5oQQQgghhBAiD5JgTgghhBBCCCHyIAnmhBBCCCGEECIP\nkmBOCCGEEEIIIfIgCeaEEEIIIYQQIg+SYE4IIYQQQggh8iAJ5oQQQgghhBAiD5JgTgghhBBCCCHy\nIAnmhBBCCCGEECIPkmBOCCGEEEIIIfIgCeaEEEIIIYQQIg+SYE6I/2/v7kKzrB8/jn98uPkF1cl0\nbJJYoJRFrA6DDkpbc2s6FM0jBTWwDkKWppAPGPYgaxAdFQpp5YFgaCFoBLpSpFYY0QSDEmQo6UzN\npzrYXNf/IBr/KP3lw4953bxeZ7vu2/GVD0Pe933NGwAASkjMAQAAlJCYAwAAKCExBwAAUEJiDgAA\noITEHAAAQAmJOQAAgBIScwAAACUk5gAAAEpIzAEAAJSQmAMAACghMQcAAFBCYg4AAKCExBwAAEAJ\niTkAAIASEnMAAAAlJOYAAABKSMwBAACUkJgDAAAoITEHAABQQmIOAACghMQcAABACYk5AACAEhJz\nAAAAJSTmAAAASkjMAQAAlJCYAwAAKCExBwAAUEJiDgAAoITEHAAAQAmJOQAAgBIScwAAACUk5gAA\nAEpIzAEAAJSQmAMAACghMQcAAFBCYg4AAKCExBwAAEAJiTkAAIASEnMAAAAlJOYAAABKSMwBAACU\nkJgDAAAoITEHAABQQmIOAACghMQcAABACYk5AACAEhJzAAAAJSTmAAAASkjMAQAAlJCYAwAAKCEx\nBwAAUEJiDgAAoITEHAAAQAmJOQAAgBIScwAAACUk5gAAAEpIzAEAAJSQmAMAACghMQcAAFBCYg4A\nAKCExBwAAEAJiTkAAIASEnMAAAAlJOYAAABKSMwBAACU0A3F3JYtW9LS0pLp06ens7Nz6PqGDRvS\n1NSU5ubmHDhw4IYPCQAAwF+Nvt4/2N3dna6uruzcuTOVSiVnz55Nkhw5ciS7d+/Orl270tfXl4UL\nF+bTTz/NyJHeBAQAALhZrruwtm7dmsWLF6dSqSRJampqkiR79+5Na2trKpVKxo8fnwkTJqSnp+fm\nnBYAAIAkNxBzvb29OXjwYObOnZv58+fn0KFDSZJTp06lvr5+6Hn19fXp6+u78ZMCAAAw5Kq3WS5c\nuDCnT5/+2/X29vYMDg7m/Pnz2bZtW3p6etLe3p69e/f+4/cZMWLEzTktAAAASf5LzG3evPmKj23d\nujVNTU1JkoaGhowcOTJnz55NXV1dTp48OfS8kydPpq6u7r8epLb2zn97ZkrIvtXNvtXLttXNvtXL\nttXNvvzpum+zbGxsTHd3d5Lk6NGjGRgYSE1NTaZOnZpdu3alv78/x44dS29vbxoaGm7agQEAALiB\n/81y9uzZWblyZWbMmJFKpZKOjo4kyaRJk9LS0pLW1taMGjUqa9eudZslAADATTaiKIpiuA8BAADA\ntfHhbwAAACUk5gAAAEpIzAEAAJTQsMZcT09P5syZk5kzZ2b27Nnp6ekZemzDhg1pampKc3NzDhw4\nMIyn5Hpt2bIlLS0tmT59ejo7O4eu27Z6bNq0KZMnT865c+eGrtm3/Do6OtLS0pK2trY8//zzuXjx\n4tBj9i2//fv3p7m5OU1NTdm4ceNwH4cbdOLEicyfPz+tra2ZPn16PvjggyTJuXPnsnDhwkybNi2L\nFi3KhQsXhvmkXK/BwcHMnDkzzz33XBLbVpMLFy5kyZIlaWlpyVNPPZXvvvvu2vcthtG8efOK/fv3\nF0VRFJ9//nkxb968oiiK4scffyza2tqK/v7+4tixY0VjY2MxODg4nEflGn355ZfFggULiv7+/qIo\niuLMmTNFUdi2mvz000/FokWLiilTphS//PJLURT2rRYHDhwY2q2zs7Po7OwsisK+1eDy5ctFY2Nj\ncezYsaK/v79oa2srjhw5MtzH4gacOnWqOHz4cFEURXHp0qWiqampOHLkSNHR0VFs3LixKIqi2LBh\nw9DPMeWzadOmYunSpcWzzz5bFEVh2yqyYsWK4sMPPyyKoigGBgaKCxcuXPO+w/rOXG1t7dArvhcv\nXhz6cPG9e/emtbU1lUol48ePz4QJE/7yrh23vq1bt2bx4sWpVCpJkpqamiS2rSbr16/P8uXL/3LN\nvtXh0UcfzciRf/zz8NBDD+XkyZNJ7FsNenp6MmHChIwfPz6VSiWtra3Zu3fvcB+LG1BbW5v7778/\nSXL77bdn4sSJ6evrS1dXV2bNmpUkmTVrVvbs2TOcx+Q6nTx5Mvv27cvTTz89dM221eHixYs5ePBg\n5syZkyQZPXp07rzzzmved1hjbtmyZeno6Mjjjz+eN954I8uWLUuSnDp1KvX19UPPq6+vT19f33Ad\nk+vQ29ubgwcPZu7cuZk/f34OHTqUxLbVYs+ePamvr8/kyZP/ct2+1Wf79u157LHHkti3GvT19WXc\nuHFDX9fV1dmwihw/fjzff/99GhoacubMmYwdOzZJMnbs2Jw5c2aYT8f1eP3117NixYqhF9iS2LZK\nHD9+PDU1NXnppZcya9asrF69Or/99ts173vdHxr+by1cuDCnT5/+2/X29vZs2bIlq1evzpNPPplP\nPvkkK1euzObNm//x+/jg8VvP1bYdHBzM+fPns23btvT09KS9vf2Kr/7a9tZ0tX03btyYTZs2DV0r\nrvJxlfa9NV1p3xdeeCFTp05NkrzzzjupVCqZMWPGFb+PfcvFXtXr119/zZIlS7Jq1arccccdf3ls\nxIgRti+hzz77LGPGjMkDDzyQr7766h+fY9vyunz5cg4fPpw1a9akoaEhr7322t9+j/nf7Ps/j7kr\nxVmSLF++PO+9916SpLm5OatXr07yxyuFf97Wk/zxFvOft2By67jatlu3bk1TU1OSpKGhISNHjszZ\ns2dtWyJX2veHH37I8ePH09bWluSPV/pnz56dbdu22bdErvbzmyQ7duzIvn378v777w9ds2/51dXV\n5cSJE0Nf27A6DAwMZMmSJWlra0tjY2OSZMyYMfn5559TW1ubU6dODf26A+Xx7bffpqurK/v27Ut/\nf38uXbqU5cuX27ZK1NfXp66uLg0NDUmSadOmZePGjRk7duw17Tust1nefffd+frrr5Mk3d3dueee\ne5IkU6dOza5du9Lf359jx46lt7d36C9KOTQ2Nqa7uztJcvTo0QwMDKSmpsa2VeDee+/NF198ka6u\nrnR1daWuri47duzI2LFj7Vsl9u/fn3fffTdvv/12/vOf/wxdt2/5Pfjgg+nt7c3x48fT39+f3bt3\n54knnhjuY3EDiqLIqlWrMnHixCxYsGDo+tSpU/PRRx8lST7++OOhyKM8li5dmn379qWrqytvvvlm\nHnnkkXR2dtq2StTW1mbcuHE5evRokuTLL7/MpEmTMmXKlGva93/+ztzVrFu3LuvWrUt/f39uu+22\nvPLKK0mSSZMmpaWlJa2trRk1alTWrl3rLeSSmT17dlauXJkZM2akUqmko6MjiW2r0f/fz77V4dVX\nX83AwEAWLVqUJHn44Yfz8ssv27cKjB49OmvWrMkzzzyT33//PXPmzMnEiROH+1jcgG+++SY7d+7M\nfffdl5kzZyb5IwIWL16c9vb2bN++PXfddVfeeuutYT4pN4ttq8eaNWvy4osvZmBgIBMmTMj69esz\nODh4TfuOKK72yy4AAADckob1NksAAACuj5gDAAAoITEHAABQQmIOAACghMQcAABACYk5AACAEhJz\nAAAAJSTmAAAASuj/AKSSWUR2kw4CAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - } - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "QB5EFrBnpNnc", - "colab_type": "text" + "id": "QB5EFrBnpNnc" }, "source": [ "---\n", @@ -893,5 +673,17 @@ "---" ] } - ] + ], + "metadata": { + "colab": { + "name": "5_word2vec.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/courses/udacity_deep_learning/6_lstm.ipynb b/courses/udacity_deep_learning/6_lstm.ipynb index 0fcf9c5b6d5..8c3286b6673 100644 --- a/courses/udacity_deep_learning/6_lstm.ipynb +++ b/courses/udacity_deep_learning/6_lstm.ipynb @@ -1,32 +1,9 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "version": "0.3.2", - "views": {}, - "default_view": {}, - "name": "6_lstm.ipynb", - "provenance": [], - "toc_visible": true - } - }, "cells": [ { "cell_type": "markdown", "metadata": { - "id": "8tQJd2YSCfWR", - "colab_type": "text" - }, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "D7tqLMoKF6uq", - "colab_type": "text" + "id": "D7tqLMoKF6uq" }, "source": [ "Deep Learning\n", @@ -40,17 +17,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "MvEblsgEXxrd", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "MvEblsgEXxrd" }, + "outputs": [], "source": [ "# These are all the modules we'll be using later. Make sure you can import them\n", "# before proceeding further.\n", @@ -63,45 +35,24 @@ "import zipfile\n", "from six.moves import range\n", "from six.moves.urllib.request import urlretrieve" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "RJ-o3UBUFtCw", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 5993, - "status": "ok", - "timestamp": 1445965582896, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "6f6f07b359200c46", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "d530534e-0791-4a94-ca6d-1c8f1b908a9e" + "id": "RJ-o3UBUFtCw" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found and verified text8.zip\n" + ] + } + ], "source": [ "url = 'http://mattmahoney.net/dc/'\n", "\n", @@ -119,53 +70,24 @@ " return filename\n", "\n", "filename = maybe_download('text8.zip', 31344016)" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Found and verified text8.zip\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "Mvf09fjugFU_", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 5982, - "status": "ok", - "timestamp": 1445965582916, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "6f6f07b359200c46", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "8f75db58-3862-404b-a0c3-799380597390" + "id": "Mvf09fjugFU_" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data size 100000000\n" + ] + } + ], "source": [ "def read_data(filename):\n", " with zipfile.ZipFile(filename) as f:\n", @@ -175,23 +97,12 @@ " \n", "text = read_data(filename)\n", "print('Data size %d' % len(text))" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "Data size 100000000\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "ga2CYACE-ghb", - "colab_type": "text" + "id": "ga2CYACE-ghb" }, "source": [ "Create a small validation set." @@ -199,64 +110,34 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "w-oBpfFG-j43", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 6184, - "status": "ok", - "timestamp": 1445965583138, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "6f6f07b359200c46", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "bdb96002-d021-4379-f6de-a977924f0d02" + "id": "w-oBpfFG-j43" }, - "source": [ - "valid_size = 1000\n", - "valid_text = text[:valid_size]\n", - "train_text = text[valid_size:]\n", - "train_size = len(train_text)\n", - "print(train_size, train_text[:64])\n", - "print(valid_size, valid_text[:64])" - ], "outputs": [ { + "name": "stdout", "output_type": "stream", "text": [ "99999000 ons anarchists advocate social relations based upon voluntary as\n", "1000 anarchism originated as a term of abuse first used against earl\n" - ], - "name": "stdout" + ] } ], - "execution_count": 0 + "source": [ + "valid_size = 1000\n", + "valid_text = text[:valid_size]\n", + "train_text = text[valid_size:]\n", + "train_size = len(train_text)\n", + "print(train_size, train_text[:64])\n", + "print(valid_size, valid_text[:64])" + ] }, { "cell_type": "markdown", "metadata": { - "id": "Zdw6i4F8glpp", - "colab_type": "text" + "id": "Zdw6i4F8glpp" }, "source": [ "Utility functions to map characters to vocabulary IDs and back." @@ -264,39 +145,22 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "gAL1EECXeZsD", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 6276, - "status": "ok", - "timestamp": 1445965583249, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "6f6f07b359200c46", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "88fc9032-feb9-45ff-a9a0-a26759cc1f2e" + "id": "gAL1EECXeZsD" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 26 0 Unexpected character: ï\n", + "0\n", + "a z \n" + ] + } + ], "source": [ "vocabulary_size = len(string.ascii_lowercase) + 1 # [a-z] + ' '\n", "first_letter = ord(string.ascii_lowercase[0])\n", @@ -311,32 +175,19 @@ " return 0\n", " \n", "def id2char(dictid):\n", - " if dictid > 0:\n", + " if dictid \u003e 0:\n", " return chr(dictid + first_letter - 1)\n", " else:\n", " return ' '\n", "\n", - "print(char2id('a'), char2id('z'), char2id(' '), char2id('\u00ef'))\n", + "print(char2id('a'), char2id('z'), char2id(' '), char2id('ï'))\n", "print(id2char(1), id2char(26), id2char(0))" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "1 26 0 Unexpected character: \u00ef\n", - "0\n", - "a z \n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "lFwoyygOmWsL", - "colab_type": "text" + "id": "lFwoyygOmWsL" }, "source": [ "Function to generate a training batch for the LSTM model." @@ -344,39 +195,23 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "d9wMtjy5hCj9", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 1 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 6473, - "status": "ok", - "timestamp": 1445965583467, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "6f6f07b359200c46", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "3dd79c80-454a-4be0-8b71-4a4a357b3367" + "id": "d9wMtjy5hCj9" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['ons anarchi', 'when milita', 'lleria arch', ' abbeys and', 'married urr', 'hel and ric', 'y and litur', 'ay opened f', 'tion from t', 'migration t', 'new york ot', 'he boeing s', 'e listed wi', 'eber has pr', 'o be made t', 'yer who rec', 'ore signifi', 'a fierce cr', ' two six ei', 'aristotle s', 'ity can be ', ' and intrac', 'tion of the', 'dy to pass ', 'f certain d', 'at it will ', 'e convince ', 'ent told hi', 'ampaign and', 'rver side s', 'ious texts ', 'o capitaliz', 'a duplicate', 'gh ann es d', 'ine january', 'ross zero t', 'cal theorie', 'ast instanc', ' dimensiona', 'most holy m', 't s support', 'u is still ', 'e oscillati', 'o eight sub', 'of italy la', 's the tower', 'klahoma pre', 'erprise lin', 'ws becomes ', 'et in a naz', 'the fabian ', 'etchy to re', ' sharman ne', 'ised empero', 'ting in pol', 'd neo latin', 'th risky ri', 'encyclopedi', 'fense the a', 'duating fro', 'treet grid ', 'ations more', 'appeal of d', 'si have mad']\n", + "['ists advoca', 'ary governm', 'hes nationa', 'd monasteri', 'raca prince', 'chard baer ', 'rgical lang', 'for passeng', 'the nationa', 'took place ', 'ther well k', 'seven six s', 'ith a gloss', 'robably bee', 'to recogniz', 'ceived the ', 'icant than ', 'ritic of th', 'ight in sig', 's uncaused ', ' lost as in', 'cellular ic', 'e size of t', ' him a stic', 'drugs confu', ' take to co', ' the priest', 'im to name ', 'd barred at', 'standard fo', ' such as es', 'ze on the g', 'e of the or', 'd hiver one', 'y eight mar', 'the lead ch', 'es classica', 'ce the non ', 'al analysis', 'mormons bel', 't or at lea', ' disagreed ', 'ing system ', 'btypes base', 'anguages th', 'r commissio', 'ess one nin', 'nux suse li', ' the first ', 'zi concentr', ' society ne', 'elatively s', 'etworks sha', 'or hirohito', 'litical ini', 'n most of t', 'iskerdoo ri', 'ic overview', 'air compone', 'om acnm acc', ' centerline', 'e than any ', 'devotional ', 'de such dev']\n", + "[' a']\n", + "['an']\n" + ] + } + ], "source": [ "batch_size=64\n", "num_unrollings=10\n", @@ -429,38 +264,20 @@ "print(batches2string(train_batches.next()))\n", "print(batches2string(valid_batches.next()))\n", "print(batches2string(valid_batches.next()))" - ], - "outputs": [ - { - "output_type": "stream", - "text": [ - "['ons anarchi', 'when milita', 'lleria arch', ' abbeys and', 'married urr', 'hel and ric', 'y and litur', 'ay opened f', 'tion from t', 'migration t', 'new york ot', 'he boeing s', 'e listed wi', 'eber has pr', 'o be made t', 'yer who rec', 'ore signifi', 'a fierce cr', ' two six ei', 'aristotle s', 'ity can be ', ' and intrac', 'tion of the', 'dy to pass ', 'f certain d', 'at it will ', 'e convince ', 'ent told hi', 'ampaign and', 'rver side s', 'ious texts ', 'o capitaliz', 'a duplicate', 'gh ann es d', 'ine january', 'ross zero t', 'cal theorie', 'ast instanc', ' dimensiona', 'most holy m', 't s support', 'u is still ', 'e oscillati', 'o eight sub', 'of italy la', 's the tower', 'klahoma pre', 'erprise lin', 'ws becomes ', 'et in a naz', 'the fabian ', 'etchy to re', ' sharman ne', 'ised empero', 'ting in pol', 'd neo latin', 'th risky ri', 'encyclopedi', 'fense the a', 'duating fro', 'treet grid ', 'ations more', 'appeal of d', 'si have mad']\n", - "['ists advoca', 'ary governm', 'hes nationa', 'd monasteri', 'raca prince', 'chard baer ', 'rgical lang', 'for passeng', 'the nationa', 'took place ', 'ther well k', 'seven six s', 'ith a gloss', 'robably bee', 'to recogniz', 'ceived the ', 'icant than ', 'ritic of th', 'ight in sig', 's uncaused ', ' lost as in', 'cellular ic', 'e size of t', ' him a stic', 'drugs confu', ' take to co', ' the priest', 'im to name ', 'd barred at', 'standard fo', ' such as es', 'ze on the g', 'e of the or', 'd hiver one', 'y eight mar', 'the lead ch', 'es classica', 'ce the non ', 'al analysis', 'mormons bel', 't or at lea', ' disagreed ', 'ing system ', 'btypes base', 'anguages th', 'r commissio', 'ess one nin', 'nux suse li', ' the first ', 'zi concentr', ' society ne', 'elatively s', 'etworks sha', 'or hirohito', 'litical ini', 'n most of t', 'iskerdoo ri', 'ic overview', 'air compone', 'om acnm acc', ' centerline', 'e than any ', 'devotional ', 'de such dev']\n", - "[' a']\n", - "['an']\n" - ], - "name": "stdout" - } - ], - "execution_count": 0 + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "KyVd8FxT5QBc", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "KyVd8FxT5QBc" }, + "outputs": [], "source": [ "def logprob(predictions, labels):\n", " \"\"\"Log-probability of the true labels in a predicted batch.\"\"\"\n", - " predictions[predictions < 1e-10] = 1e-10\n", + " predictions[predictions \u003c 1e-10] = 1e-10\n", " return np.sum(np.multiply(labels, -np.log(predictions))) / labels.shape[0]\n", "\n", "def sample_distribution(distribution):\n", @@ -471,7 +288,7 @@ " s = 0\n", " for i in range(len(distribution)):\n", " s += distribution[i]\n", - " if s >= r:\n", + " if s \u003e= r:\n", " return i\n", " return len(distribution) - 1\n", "\n", @@ -485,15 +302,12 @@ " \"\"\"Generate a random column of probabilities.\"\"\"\n", " b = np.random.uniform(0.0, 1.0, size=[1, vocabulary_size])\n", " return b/np.sum(b, 1)[:,None]" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "markdown", "metadata": { - "id": "K8f67YXaDr4C", - "colab_type": "text" + "id": "K8f67YXaDr4C" }, "source": [ "Simple LSTM Model." @@ -501,17 +315,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "Q5rxZK6RDuGe", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - } - }, - "cellView": "both" + "cellView": "both", + "id": "Q5rxZK6RDuGe" }, + "outputs": [], "source": [ "num_nodes = 64\n", "\n", @@ -604,105 +413,18 @@ " with tf.control_dependencies([saved_sample_output.assign(sample_output),\n", " saved_sample_state.assign(sample_state)]):\n", " sample_prediction = tf.nn.softmax(tf.nn.xw_plus_b(sample_output, w, b))" - ], - "outputs": [], - "execution_count": 0 + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "id": "RD9zQCZTEaEm", - "colab_type": "code", - "colab": { - "autoexec": { - "startup": false, - "wait_interval": 0 - }, - "output_extras": [ - { - "item_id": 41 - }, - { - "item_id": 80 - }, - { - "item_id": 126 - }, - { - "item_id": 144 - } - ] - }, "cellView": "both", - "executionInfo": { - "elapsed": 199909, - "status": "ok", - "timestamp": 1445965877333, - "user": { - "color": "#1FA15D", - "displayName": "Vincent Vanhoucke", - "isAnonymous": false, - "isMe": true, - "permissionId": "05076109866853157986", - "photoUrl": "//lh6.googleusercontent.com/-cCJa7dTDcgQ/AAAAAAAAAAI/AAAAAAAACgw/r2EZ_8oYer4/s50-c-k-no/photo.jpg", - "sessionId": "6f6f07b359200c46", - "userId": "102167687554210253930" - }, - "user_tz": 420 - }, - "outputId": "5e868466-2532-4545-ce35-b403cf5d9de6" + "id": "RD9zQCZTEaEm" }, - "source": [ - "num_steps = 7001\n", - "summary_frequency = 100\n", - "\n", - "with tf.Session(graph=graph) as session:\n", - " tf.global_variables_initializer().run()\n", - " print('Initialized')\n", - " mean_loss = 0\n", - " for step in range(num_steps):\n", - " batches = train_batches.next()\n", - " feed_dict = dict()\n", - " for i in range(num_unrollings + 1):\n", - " feed_dict[train_data[i]] = batches[i]\n", - " _, l, predictions, lr = session.run(\n", - " [optimizer, loss, train_prediction, learning_rate], feed_dict=feed_dict)\n", - " mean_loss += l\n", - " if step % summary_frequency == 0:\n", - " if step > 0:\n", - " mean_loss = mean_loss / summary_frequency\n", - " # The mean loss is an estimate of the loss over the last few batches.\n", - " print(\n", - " 'Average loss at step %d: %f learning rate: %f' % (step, mean_loss, lr))\n", - " mean_loss = 0\n", - " labels = np.concatenate(list(batches)[1:])\n", - " print('Minibatch perplexity: %.2f' % float(\n", - " np.exp(logprob(predictions, labels))))\n", - " if step % (summary_frequency * 10) == 0:\n", - " # Generate some samples.\n", - " print('=' * 80)\n", - " for _ in range(5):\n", - " feed = sample(random_distribution())\n", - " sentence = characters(feed)[0]\n", - " reset_sample_state.run()\n", - " for _ in range(79):\n", - " prediction = sample_prediction.eval({sample_input: feed})\n", - " feed = sample(prediction)\n", - " sentence += characters(feed)[0]\n", - " print(sentence)\n", - " print('=' * 80)\n", - " # Measure validation set perplexity.\n", - " reset_sample_state.run()\n", - " valid_logprob = 0\n", - " for _ in range(valid_size):\n", - " b = valid_batches.next()\n", - " predictions = sample_prediction.eval({sample_input: b[0]})\n", - " valid_logprob = valid_logprob + logprob(predictions, b[1])\n", - " print('Validation set perplexity: %.2f' % float(np.exp(\n", - " valid_logprob / valid_size)))" - ], "outputs": [ { + "name": "stdout", "output_type": "stream", "text": [ "Initialized\n", @@ -781,10 +503,10 @@ "Minibatch perplexity: 5.29\n", "Validation set perplexity: 5.15\n", "Average loss at step" - ], - "name": "stdout" + ] }, { + "name": "stdout", "output_type": "stream", "text": [ " 2000 : 1.69528644681 learning rate: 10.0\n", @@ -867,10 +589,10 @@ "k s rasbonish roctes the nignese at heacle was sito of beho anarchys and with ro\n", "jusar two sue wletaus of chistical in causations d ow trancic bruthing ha laters\n", "de and speacy pulted yoftret worksy zeatlating to eight d had to ie bue seven si" - ], - "name": "stdout" + ] }, { + "name": "stdout", "output_type": "stream", "text": [ "\n", @@ -955,10 +677,10 @@ "Average loss at step 6100 : 1.56450940847 learning rate: 1.0\n", "Minibatch perplexity: 4.77\n", "Validation set perplexity: 4.27" - ], - "name": "stdout" + ] }, { + "name": "stdout", "output_type": "stream", "text": [ "\n", @@ -996,17 +718,63 @@ " one son vit even an conderouss to person romer i a lebapter at obiding are iuse\n", "================================================================================\n", "Validation set perplexity: 4.25\n" - ], - "name": "stdout" + ] } ], - "execution_count": 0 + "source": [ + "num_steps = 7001\n", + "summary_frequency = 100\n", + "\n", + "with tf.Session(graph=graph) as session:\n", + " tf.global_variables_initializer().run()\n", + " print('Initialized')\n", + " mean_loss = 0\n", + " for step in range(num_steps):\n", + " batches = train_batches.next()\n", + " feed_dict = dict()\n", + " for i in range(num_unrollings + 1):\n", + " feed_dict[train_data[i]] = batches[i]\n", + " _, l, predictions, lr = session.run(\n", + " [optimizer, loss, train_prediction, learning_rate], feed_dict=feed_dict)\n", + " mean_loss += l\n", + " if step % summary_frequency == 0:\n", + " if step \u003e 0:\n", + " mean_loss = mean_loss / summary_frequency\n", + " # The mean loss is an estimate of the loss over the last few batches.\n", + " print(\n", + " 'Average loss at step %d: %f learning rate: %f' % (step, mean_loss, lr))\n", + " mean_loss = 0\n", + " labels = np.concatenate(list(batches)[1:])\n", + " print('Minibatch perplexity: %.2f' % float(\n", + " np.exp(logprob(predictions, labels))))\n", + " if step % (summary_frequency * 10) == 0:\n", + " # Generate some samples.\n", + " print('=' * 80)\n", + " for _ in range(5):\n", + " feed = sample(random_distribution())\n", + " sentence = characters(feed)[0]\n", + " reset_sample_state.run()\n", + " for _ in range(79):\n", + " prediction = sample_prediction.eval({sample_input: feed})\n", + " feed = sample(prediction)\n", + " sentence += characters(feed)[0]\n", + " print(sentence)\n", + " print('=' * 80)\n", + " # Measure validation set perplexity.\n", + " reset_sample_state.run()\n", + " valid_logprob = 0\n", + " for _ in range(valid_size):\n", + " b = valid_batches.next()\n", + " predictions = sample_prediction.eval({sample_input: b[0]})\n", + " valid_logprob = valid_logprob + logprob(predictions, b[1])\n", + " print('Validation set perplexity: %.2f' % float(np.exp(\n", + " valid_logprob / valid_size)))" + ] }, { "cell_type": "markdown", "metadata": { - "id": "pl4vtmFfa5nn", - "colab_type": "text" + "id": "pl4vtmFfa5nn" }, "source": [ "---\n", @@ -1021,8 +789,7 @@ { "cell_type": "markdown", "metadata": { - "id": "4eErTCTybtph", - "colab_type": "text" + "id": "4eErTCTybtph" }, "source": [ "---\n", @@ -1043,8 +810,7 @@ { "cell_type": "markdown", "metadata": { - "id": "Y5tapX3kpcqZ", - "colab_type": "text" + "id": "Y5tapX3kpcqZ" }, "source": [ "---\n", @@ -1066,5 +832,17 @@ "---" ] } - ] + ], + "metadata": { + "colab": { + "name": "6_lstm.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l01c01_introduction_to_colab_and_python.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l01c01_introduction_to_colab_and_python.ipynb index b3fa08cd357..600a66f227a 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l01c01_introduction_to_colab_and_python.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l01c01_introduction_to_colab_and_python.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YHI3vyhv5p85" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "OVi775ZJ2bsy" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "F8YVA_634OFk" }, "source": [ @@ -77,10 +71,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "X9uIpOS2zx7k" }, "outputs": [], @@ -91,7 +83,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "wwJGmDrQ0EoB" }, "source": [ @@ -101,10 +92,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "pRllo2HLfXiu" }, "outputs": [], @@ -126,10 +115,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "lHNmDCh0JpVP" }, "outputs": [], @@ -140,7 +127,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kiZG7uhm8qCF" }, "source": [ @@ -151,10 +137,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "m8YQN1H41L-Y" }, "outputs": [], @@ -176,10 +160,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "vIgmFZq4zszl" }, "outputs": [], @@ -193,7 +175,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "5QyOUhFw1OUX" }, "source": [ @@ -207,10 +188,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "4Dxk4q-jzEy4" }, "outputs": [], @@ -232,10 +211,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "RTa8_9G3LV03" }, "outputs": [], @@ -249,10 +226,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "9YaGj5n4LW7P" }, "outputs": [], @@ -263,10 +238,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "V6ilVhi9LXn_" }, "outputs": [], @@ -278,10 +251,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "W_Q-DkFCLYGA" }, "outputs": [], @@ -296,7 +267,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "c-Jk4dG91dvD" }, "source": [ @@ -306,7 +276,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "G0cGd8sHEmKi" }, "source": [ @@ -315,10 +284,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cLkfhyzq0W2y" }, "outputs": [], @@ -330,10 +297,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gR2WTN1cOZ1n" }, "outputs": [], @@ -345,7 +310,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "QuWRpQdatAIU" }, "source": [ @@ -360,10 +324,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "xU-cJbMCR61P" }, "outputs": [], @@ -377,7 +339,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "7b5jv0ouFREV" }, "source": [ @@ -387,7 +348,7 @@ "* Many of the exercises in the course executes more quickly by using GPU runtime: Runtime | Change runtime type | Hardware accelerator | GPU\n", "\n", "**Some final words on Colab**\n", - "* You execute each cell in order, you can edit & re-execute cells if you want\n", + "* You execute each cell in order, you can edit \u0026 re-execute cells if you want\n", "* Sometimes, this could have unintended consequences. For example, if you add a dimension to an array and execute the cell multiple times, then the cells after may not work. If you encounter problem reset your environment:\n", " * Runtime -> Restart runtime... Resets your Python shell\n", " * Runtime -> Restart all runtimes... Will reset the Colab image, and get you back to a 100% clean environment\n", @@ -395,7 +356,7 @@ "* Colabs in this course are loaded from GitHub. Save to your Google Drive if you want a copy with your code/output: File -> Save a copy in Drive...\n", "\n", "**Learn More**\n", - "* Check out [this](https://www.youtube.com/watch?v=inN8seMm7UI&list=PLQY2H8rRoyvwLbzbnKJ59NkZvQAW9wLbx&index=3) episode of #CodingTensorFlow, and don't forget to subscribe to the YouTube channel ;)\n" + "* Check out [this](https://www.youtube.com/watch?v=inN8seMm7UI\u0026list=PLQY2H8rRoyvwLbzbnKJ59NkZvQAW9wLbx\u0026index=3) episode of #CodingTensorFlow, and don't forget to subscribe to the YouTube channel ;)\n" ] } ], @@ -404,10 +365,7 @@ "colab": { "collapsed_sections": [], "name": "l01c01_introduction_to_colab_and_python.ipynb", - "private_outputs": true, - "provenance": [], - "toc_visible": true, - "version": "0.3.2" + "toc_visible": true }, "kernelspec": { "display_name": "Python 3", diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l02c01_celsius_to_fahrenheit.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l02c01_celsius_to_fahrenheit.ipynb index 098efc476ea..7f8ecb29336 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l02c01_celsius_to_fahrenheit.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l02c01_celsius_to_fahrenheit.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "HnKx50tv5aZD" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "IwtS_OXU5cWG" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YHI3vyhv5p85" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_wJ2E7jV5tN5" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "F8YVA_634OFk" }, "source": [ @@ -87,7 +81,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "fA93WUy1zzWf" }, "source": [ @@ -100,10 +93,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "-ZMgCvSRFqxE" }, "outputs": [], @@ -113,10 +104,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "y_WQEM5MGmg3" }, "outputs": [], @@ -130,7 +119,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "AC3EQFi20buB" }, "source": [ @@ -141,10 +129,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gg4pn6aI1vms" }, "outputs": [], @@ -159,7 +145,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "wwJGmDrQ0EoB" }, "source": [ @@ -175,7 +160,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "VM7_9Klvq7MO" }, "source": [ @@ -194,10 +178,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "pRllo2HLfXiu" }, "outputs": [], @@ -208,7 +190,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_F00_J9duLBD" }, "source": [ @@ -221,10 +202,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cSp-GpLSuMRq" }, "outputs": [], @@ -235,7 +214,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "t7pfHfWxust0" }, "source": [ @@ -253,7 +231,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kiZG7uhm8qCF" }, "source": [ @@ -268,10 +245,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "m8YQN1H41L-Y" }, "outputs": [], @@ -283,7 +258,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "17M3Pqv4P52R" }, "source": [ @@ -301,7 +275,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "c-Jk4dG91dvD" }, "source": [ @@ -316,10 +289,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "lpRrl7WK10Pq" }, "outputs": [], @@ -331,7 +302,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "GFcIU2-SdCrI" }, "source": [ @@ -341,7 +311,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "0-QsNCLD4MJZ" }, "source": [ @@ -354,10 +323,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "IeK6BzfbdO6_" }, "outputs": [], @@ -371,7 +338,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "LtQGDMob5LOD" }, "source": [ @@ -384,10 +350,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "oxNzL4lS2Gui" }, "outputs": [], @@ -398,7 +362,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "jApk6tZ1fBg1" }, "source": [ @@ -416,7 +379,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "zRrOky5gm20Z" }, "source": [ @@ -427,10 +389,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kmIkVdkbnZJI" }, "outputs": [], @@ -441,7 +401,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RSplSnMvnWC-" }, "source": [ @@ -460,10 +419,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Y2zTA-rDS5Xk" }, "outputs": [], @@ -485,7 +442,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "xrpFFlgYhCty" }, "source": [ @@ -499,8 +455,6 @@ "colab": { "collapsed_sections": [], "name": "l02c01_celsius_to_fahrenheit.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l03c01_classifying_images_of_clothing.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l03c01_classifying_images_of_clothing.ipynb index 754eff8b484..8922b1ef638 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l03c01_classifying_images_of_clothing.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l03c01_classifying_images_of_clothing.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "punL79CN7Ox6" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -36,11 +33,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "vasWnqRgy1H4" }, "outputs": [], @@ -71,7 +66,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "jYysdyb-CaWM" }, "source": [ @@ -81,7 +75,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -98,7 +91,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "FbVhjPpzn6BM" }, "source": [ @@ -112,7 +104,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "H0tMfX2vR0uD" }, "source": [ @@ -123,10 +114,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "P7mUJVqcINSM" }, "outputs": [], @@ -136,10 +125,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "_FxXYSCXGQqQ" }, "outputs": [], @@ -149,10 +136,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "1UbK0Uq7GWaO" }, "outputs": [], @@ -169,10 +154,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "590z76KRGtKk" }, "outputs": [], @@ -185,7 +168,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "yR0EdgrLCaWR" }, "source": [ @@ -195,7 +177,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "DLdCchMdCaWQ" }, "source": [ @@ -220,10 +201,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "7MqDQO0KCaWS" }, "outputs": [], @@ -235,7 +214,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "t9FDsUlxCaWW" }, "source": [ @@ -298,10 +276,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "IjnLH5S2CaWx" }, "outputs": [], @@ -313,7 +289,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Brm0b_KACaWX" }, "source": [ @@ -324,10 +299,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "MaOTZxFzi48X" }, "outputs": [], @@ -341,7 +314,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ES6uQoLKCaWr" }, "source": [ @@ -352,10 +324,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nAsH3Zm-76pB" }, "outputs": [], @@ -379,7 +349,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "lIQbEiJGXM-q" }, "source": [ @@ -390,10 +359,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "oSzE9l7PjHx0" }, "outputs": [], @@ -414,7 +381,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Ee638AlnCaWz" }, "source": [ @@ -423,10 +389,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "oZTImqg_CaW1" }, "outputs": [], @@ -448,7 +412,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "59veuiEZCaW4" }, "source": [ @@ -460,7 +423,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Gxg1XGm0eOBy" }, "source": [ @@ -473,10 +435,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "9ODch-OFCaW4" }, "outputs": [], @@ -491,7 +451,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "gut8A_7rCaW6" }, "source": [ @@ -518,10 +477,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Lhan11blCaW7" }, "outputs": [], @@ -534,7 +491,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "qKF6uW-BCaW-" }, "source": [ @@ -555,10 +511,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "o_Dp8971McQ1" }, "outputs": [], @@ -570,10 +524,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "xvwvpA64CaW_" }, "outputs": [], @@ -584,7 +536,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "W3ZVOhugCaXA" }, "source": [ @@ -594,7 +545,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "oEw4bZgGCaXB" }, "source": [ @@ -605,10 +555,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "VflXLEeECaXC" }, "outputs": [], @@ -620,7 +568,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "yWfgsmVXCaXG" }, "source": [ @@ -630,7 +577,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "xsoS7CPDCaXH" }, "source": [ @@ -641,10 +587,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Ccoz4conNCpl" }, "outputs": [], @@ -657,10 +601,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Gl91RPhdCaXI" }, "outputs": [], @@ -671,7 +613,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "x9Kk1voUCaXJ" }, "source": [ @@ -680,10 +621,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3DmJEUinCaXK" }, "outputs": [], @@ -694,7 +633,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "-hw1hgeSCaXN" }, "source": [ @@ -703,10 +641,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "qsqenuPnCaXO" }, "outputs": [], @@ -717,7 +653,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "E51yS7iCCaXO" }, "source": [ @@ -726,10 +661,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Sd7Pgsu6CaXP" }, "outputs": [], @@ -740,7 +673,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ygh2yYC972ne" }, "source": [ @@ -749,10 +681,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "DvYmmrpIy6Y1" }, "outputs": [], @@ -792,7 +722,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "d4Ov9OFDMmOD" }, "source": [ @@ -801,10 +730,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "HV5jw-5HwSmO" }, "outputs": [], @@ -819,10 +746,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Ko-uzOufSCSe" }, "outputs": [], @@ -838,7 +763,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kgdvGD52CaXR" }, "source": [ @@ -847,10 +771,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "hQlnbqaw2Qu_" }, "outputs": [], @@ -871,7 +793,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "R32zteKHCaXT" }, "source": [ @@ -880,10 +801,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "yRJ7JU7JCaXT" }, "outputs": [], @@ -897,7 +816,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vz3bVp21CaXV" }, "source": [ @@ -906,10 +824,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "lDFh5yF_CaXW" }, "outputs": [], @@ -923,7 +839,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "EQ5wLTkcCaXY" }, "source": [ @@ -932,10 +847,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "o_rzNSdrCaXY" }, "outputs": [], @@ -947,10 +860,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "6Ai-cpLjO-3A" }, "outputs": [], @@ -962,7 +873,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "cU1Y2OAMCaXb" }, "source": [ @@ -971,10 +881,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "2tRmdq_8CaXb" }, "outputs": [], @@ -985,7 +893,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YFc2HbEVCaXd" }, "source": [ @@ -995,7 +902,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "-KtnHECKZni_" }, "source": [ @@ -1020,8 +926,6 @@ "colab": { "collapsed_sections": [], "name": "l03c01_classifying_images_of_clothing.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l04c01_image_classification_with_cnns.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l04c01_image_classification_with_cnns.ipynb index e37b573b681..d66c9dbcd8d 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l04c01_image_classification_with_cnns.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l04c01_image_classification_with_cnns.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "6uQP3ZbC8J5o" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -36,11 +33,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "vasWnqRgy1H4" }, "outputs": [], @@ -71,7 +66,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "jYysdyb-CaWM" }, "source": [ @@ -81,7 +75,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -98,7 +91,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "FbVhjPpzn6BM" }, "source": [ @@ -112,7 +104,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "H0tMfX2vR0uD" }, "source": [ @@ -123,10 +114,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "5HDhfftMGc_i" }, "outputs": [], @@ -136,10 +125,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "uusvhUp9Gg37" }, "outputs": [], @@ -156,10 +143,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "UXZ44qIaG0Ru" }, "outputs": [], @@ -172,7 +157,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "yR0EdgrLCaWR" }, "source": [ @@ -182,7 +166,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "DLdCchMdCaWQ" }, "source": [ @@ -207,10 +190,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "7MqDQO0KCaWS" }, "outputs": [], @@ -222,7 +203,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "t9FDsUlxCaWW" }, "source": [ @@ -285,10 +265,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "IjnLH5S2CaWx" }, "outputs": [], @@ -300,7 +278,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Brm0b_KACaWX" }, "source": [ @@ -311,10 +288,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "MaOTZxFzi48X" }, "outputs": [], @@ -328,7 +303,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ES6uQoLKCaWr" }, "source": [ @@ -339,10 +313,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nAsH3Zm-76pB" }, "outputs": [], @@ -366,7 +338,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "lIQbEiJGXM-q" }, "source": [ @@ -377,10 +348,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "oSzE9l7PjHx0" }, "outputs": [], @@ -401,7 +370,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Ee638AlnCaWz" }, "source": [ @@ -410,10 +378,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "oZTImqg_CaW1" }, "outputs": [], @@ -435,7 +401,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "59veuiEZCaW4" }, "source": [ @@ -447,7 +412,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Gxg1XGm0eOBy" }, "source": [ @@ -460,10 +424,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "9ODch-OFCaW4" }, "outputs": [], @@ -483,7 +445,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "gut8A_7rCaW6" }, "source": [ @@ -508,10 +469,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Lhan11blCaW7" }, "outputs": [], @@ -524,7 +483,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "qKF6uW-BCaW-" }, "source": [ @@ -545,10 +503,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "o_Dp8971McQ1" }, "outputs": [], @@ -560,10 +516,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "xvwvpA64CaW_" }, "outputs": [], @@ -574,7 +528,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "W3ZVOhugCaXA" }, "source": [ @@ -584,7 +537,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "oEw4bZgGCaXB" }, "source": [ @@ -595,10 +547,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "VflXLEeECaXC" }, "outputs": [], @@ -610,7 +560,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "yWfgsmVXCaXG" }, "source": [ @@ -620,7 +569,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "xsoS7CPDCaXH" }, "source": [ @@ -631,10 +579,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Ccoz4conNCpl" }, "outputs": [], @@ -647,10 +593,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Gl91RPhdCaXI" }, "outputs": [], @@ -661,7 +605,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "x9Kk1voUCaXJ" }, "source": [ @@ -670,10 +613,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3DmJEUinCaXK" }, "outputs": [], @@ -684,7 +625,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "-hw1hgeSCaXN" }, "source": [ @@ -693,10 +633,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "qsqenuPnCaXO" }, "outputs": [], @@ -707,7 +645,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "E51yS7iCCaXO" }, "source": [ @@ -716,10 +653,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Sd7Pgsu6CaXP" }, "outputs": [], @@ -730,7 +665,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ygh2yYC972ne" }, "source": [ @@ -739,10 +673,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "DvYmmrpIy6Y1" }, "outputs": [], @@ -782,7 +714,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "d4Ov9OFDMmOD" }, "source": [ @@ -791,10 +722,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "HV5jw-5HwSmO" }, "outputs": [], @@ -809,10 +738,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Ko-uzOufSCSe" }, "outputs": [], @@ -828,7 +755,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kgdvGD52CaXR" }, "source": [ @@ -837,10 +763,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "hQlnbqaw2Qu_" }, "outputs": [], @@ -861,7 +785,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "R32zteKHCaXT" }, "source": [ @@ -870,10 +793,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "yRJ7JU7JCaXT" }, "outputs": [], @@ -887,7 +808,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vz3bVp21CaXV" }, "source": [ @@ -896,10 +816,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "lDFh5yF_CaXW" }, "outputs": [], @@ -913,7 +831,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "EQ5wLTkcCaXY" }, "source": [ @@ -922,10 +839,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "o_rzNSdrCaXY" }, "outputs": [], @@ -937,10 +852,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "6Ai-cpLjO-3A" }, "outputs": [], @@ -952,7 +865,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "cU1Y2OAMCaXb" }, "source": [ @@ -961,10 +873,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "2tRmdq_8CaXb" }, "outputs": [], @@ -975,7 +885,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YFc2HbEVCaXd" }, "source": [ @@ -985,7 +894,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "-KtnHECKZni_" }, "source": [ @@ -1010,8 +918,6 @@ "colab": { "collapsed_sections": [], "name": "l04c01_image_classification_with_cnns.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c01_dogs_vs_cats_without_augmentation.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c01_dogs_vs_cats_without_augmentation.ipynb index 209bbb884a5..24503553d88 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c01_dogs_vs_cats_without_augmentation.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c01_dogs_vs_cats_without_augmentation.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "TBFXQGKYUc4X" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "1z4xy2gTUc4a" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "FE7KNzPPVrVV" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "KwQtSOz0VrVX" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "gN7G9GFmVrVY" }, "source": [ @@ -87,7 +81,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "zF9uvbXNVrVY" }, "source": [ @@ -97,7 +90,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "VddxeYBEVrVZ" }, "source": [ @@ -110,10 +102,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "oSdjGwVWGshH" }, "outputs": [], @@ -123,10 +113,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nlORkUyFGxWH" }, "outputs": [], @@ -136,10 +124,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "wqtiIPRbG4FA" }, "outputs": [], @@ -151,10 +137,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "GHHqtPisG3R1" }, "outputs": [], @@ -167,7 +151,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UZZI6lNkVrVm" }, "source": [ @@ -177,7 +160,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "DPHx8-t-VrVo" }, "source": [ @@ -188,10 +170,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "rpUSoFjuVrVp" }, "outputs": [], @@ -203,7 +183,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Giv0wMQzVrVw" }, "source": [ @@ -224,10 +203,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ssD23VbTZeVA" }, "outputs": [], @@ -239,7 +216,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "VpmywIlsVrVx" }, "source": [ @@ -248,10 +224,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "sRucI3QqVrVy" }, "outputs": [], @@ -269,7 +243,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ZdrHHTy2VrV3" }, "source": [ @@ -279,7 +252,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "LblUYjl-VrV3" }, "source": [ @@ -288,10 +260,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "vc4u8e9hVrV4" }, "outputs": [], @@ -308,10 +278,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "g4GGzGt0VrV7" }, "outputs": [], @@ -329,7 +297,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "tdsI_L-NVrV_" }, "source": [ @@ -339,7 +306,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "8Lp-0ejxOtP1" }, "source": [ @@ -348,10 +314,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3NqNselLVrWA" }, "outputs": [], @@ -363,7 +327,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "INn-cOn1VrWC" }, "source": [ @@ -373,7 +336,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "5Jfk6aSAVrWD" }, "source": [ @@ -391,10 +353,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "syDdF_LWVrWE" }, "outputs": [], @@ -406,7 +366,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RLciCR_FVrWH" }, "source": [ @@ -415,10 +374,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Pw94ajOOVrWI" }, "outputs": [], @@ -432,10 +389,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "2oUoKUzRVrWM" }, "outputs": [], @@ -450,7 +405,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "hyexPJ8CVrWP" }, "source": [ @@ -460,7 +414,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "60CnhEL4VrWQ" }, "source": [ @@ -469,10 +422,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3f0Z7NZgVrWQ" }, "outputs": [], @@ -483,7 +434,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "49weMt5YVrWT" }, "source": [ @@ -492,10 +442,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "JMt2RES_VrWU" }, "outputs": [], @@ -512,10 +460,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "d_VVg_gEVrWW" }, "outputs": [], @@ -526,7 +472,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "b5Ej-HLGVrWZ" }, "source": [ @@ -536,7 +481,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "wEgW4i18VrWZ" }, "source": [ @@ -547,10 +491,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "F15-uwLPVrWa" }, "outputs": [], @@ -577,7 +519,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "PI5cdkMQVrWc" }, "source": [ @@ -588,10 +529,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "6Mg7_TXOVrWd" }, "outputs": [], @@ -604,7 +543,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "2YmQZ3TAVrWg" }, "source": [ @@ -615,10 +553,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Vtny8hmBVrWh" }, "outputs": [], @@ -629,7 +565,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "N06iqE8VVrWj" }, "source": [ @@ -639,7 +574,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "oub9RtoFVrWk" }, "source": [ @@ -650,10 +584,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "KSF2HqhDVrWk" }, "outputs": [], @@ -671,7 +603,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ojJNteAGVrWo" }, "source": [ @@ -681,7 +612,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "LZPYT-EmVrWo" }, "source": [ @@ -690,10 +620,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "K6oA77ADVrWp" }, "outputs": [], @@ -725,7 +653,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kDnr50l2VrWu" }, "source": [ @@ -740,8 +667,6 @@ "colab": { "collapsed_sections": [], "name": "l05c01_dogs_vs_cats_without_augmentation.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c02_dogs_vs_cats_with_augmentation.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c02_dogs_vs_cats_with_augmentation.ipynb index 94b32df02bf..54a2fd55f62 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c02_dogs_vs_cats_with_augmentation.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c02_dogs_vs_cats_with_augmentation.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "TBFXQGKYUc4X" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "1z4xy2gTUc4a" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "FE7KNzPPVrVV" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "KwQtSOz0VrVX" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "gN7G9GFmVrVY" }, "source": [ @@ -96,7 +90,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "zF9uvbXNVrVY" }, "source": [ @@ -106,7 +99,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "VddxeYBEVrVZ" }, "source": [ @@ -119,10 +111,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "in3OdvpUG_9_" }, "outputs": [], @@ -132,10 +122,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "L1WtoaOHVrVh" }, "outputs": [], @@ -145,10 +133,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ede3_kbeHOjR" }, "outputs": [], @@ -161,7 +147,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UZZI6lNkVrVm" }, "source": [ @@ -171,7 +156,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "DPHx8-t-VrVo" }, "source": [ @@ -182,10 +166,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "OYmOylPlVrVt" }, "outputs": [], @@ -198,7 +180,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Giv0wMQzVrVw" }, "source": [ @@ -218,7 +199,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "VpmywIlsVrVx" }, "source": [ @@ -227,10 +207,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "sRucI3QqVrVy" }, "outputs": [], @@ -242,10 +220,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Utv3nryxVrV0" }, "outputs": [], @@ -259,7 +235,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ZdrHHTy2VrV3" }, "source": [ @@ -269,7 +244,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "LblUYjl-VrV3" }, "source": [ @@ -278,10 +252,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "vc4u8e9hVrV4" }, "outputs": [], @@ -298,10 +270,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "g4GGzGt0VrV7" }, "outputs": [], @@ -319,7 +289,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "tdsI_L-NVrV_" }, "source": [ @@ -329,7 +298,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "8Lp-0ejxOtP1" }, "source": [ @@ -338,10 +306,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3NqNselLVrWA" }, "outputs": [], @@ -353,7 +319,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RLciCR_FVrWH" }, "source": [ @@ -363,7 +328,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UOoVpxFwVrWy" }, "source": [ @@ -373,7 +337,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Wn_QLciWVrWy" }, "source": [ @@ -386,10 +349,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "GBYLOFgOXPJ9" }, "outputs": [], @@ -407,7 +368,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "rlVj6VqaVrW0" }, "source": [ @@ -417,7 +377,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "xcdvx4TVVrW1" }, "source": [ @@ -426,10 +385,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Bi1_vHyBVrW2" }, "outputs": [], @@ -445,7 +402,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "zJpRSxJ-VrW7" }, "source": [ @@ -454,10 +410,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "RrKGd_jjVrW7" }, "outputs": [], @@ -469,7 +423,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "i7n9xcqCVrXB" }, "source": [ @@ -479,7 +432,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "qXnwkzFuVrXB" }, "source": [ @@ -488,10 +440,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "1zip35pDVrXB" }, "outputs": [], @@ -507,7 +457,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "deaqZLsfcZ15" }, "source": [ @@ -516,10 +465,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kVoWh4OIVrXD" }, "outputs": [], @@ -531,7 +478,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "FOqGPL76VrXM" }, "source": [ @@ -541,7 +487,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "NvqXaD8BVrXN" }, "source": [ @@ -550,10 +495,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tGNKLa_YVrXR" }, "outputs": [], @@ -569,7 +512,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "WgPWieSZcctO" }, "source": [ @@ -578,10 +520,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "VOvTs32FVrXU" }, "outputs": [], @@ -593,7 +533,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "usS13KCNVrXd" }, "source": [ @@ -603,7 +542,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "OC8fIsalVrXd" }, "source": [ @@ -614,10 +552,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gnr2xujaVrXe" }, "outputs": [], @@ -642,7 +578,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "AW-pV5awVrXl" }, "source": [ @@ -651,10 +586,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "z2m68eMhVrXm" }, "outputs": [], @@ -666,7 +599,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "J8cUd7FXVrXq" }, "source": [ @@ -676,7 +608,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "a99fDBt7VrXr" }, "source": [ @@ -685,10 +616,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "54x0aNbKVrXr" }, "outputs": [], @@ -704,7 +633,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "b5Ej-HLGVrWZ" }, "source": [ @@ -714,7 +642,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "wEgW4i18VrWZ" }, "source": [ @@ -729,11 +656,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "both", - "colab": {}, - "colab_type": "code", "id": "Evjf8jZk2zi-" }, "outputs": [], @@ -761,7 +686,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "DADWLqMSJcH3" }, "source": [ @@ -772,10 +696,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "08rRJ0sn3Tb1" }, "outputs": [], @@ -788,7 +710,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "uurnCp_H4Hj9" }, "source": [ @@ -799,10 +720,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "b66qAJF_4Jnw" }, "outputs": [], @@ -813,7 +732,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "N06iqE8VVrWj" }, "source": [ @@ -823,7 +741,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "oub9RtoFVrWk" }, "source": [ @@ -834,10 +751,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tk5NT1PW3j_P" }, "outputs": [], @@ -855,7 +770,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ojJNteAGVrWo" }, "source": [ @@ -865,7 +779,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "LZPYT-EmVrWo" }, "source": [ @@ -874,10 +787,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "8CfngybnFHQR" }, "outputs": [], @@ -911,8 +822,6 @@ "colab": { "collapsed_sections": [], "name": "l05c02_dogs_vs_cats_with_augmentation.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c03_exercise_flowers_with_data_augmentation.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c03_exercise_flowers_with_data_augmentation.ipynb index b0e07521ff2..89087fbfc28 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c03_exercise_flowers_with_data_augmentation.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c03_exercise_flowers_with_data_augmentation.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "TBFXQGKYUc4X" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "1z4xy2gTUc4a" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "FE7KNzPPVrVV" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "KwQtSOz0VrVX" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "gN7G9GFmVrVY" }, "source": [ @@ -74,7 +68,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "zF9uvbXNVrVY" }, "source": [ @@ -84,7 +77,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "VddxeYBEVrVZ" }, "source": [ @@ -93,10 +85,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "rtPGh2MAVrVa" }, "outputs": [], @@ -114,7 +104,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Jlchl4x2VrVg" }, "source": [ @@ -125,10 +114,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "L1WtoaOHVrVh" }, "outputs": [], @@ -139,7 +126,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UZZI6lNkVrVm" }, "source": [ @@ -149,7 +135,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "DPHx8-t-VrVo" }, "source": [ @@ -159,7 +144,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_lPjfOmNVrVs" }, "source": [ @@ -168,10 +152,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "OYmOylPlVrVt" }, "outputs": [], @@ -188,7 +170,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "2yge5MKnnjMd" }, "source": [ @@ -205,10 +186,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FiYVs1MEmNHf" }, "outputs": [], @@ -219,7 +198,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "G1ymuCPS0_eu" }, "source": [ @@ -266,10 +244,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "a-AL030LmcdD" }, "outputs": [], @@ -294,7 +270,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "8Lp-0ejxOtP1" }, "source": [ @@ -303,10 +278,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "uh68rmWspp0U" }, "outputs": [], @@ -318,7 +291,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UOoVpxFwVrWy" }, "source": [ @@ -328,7 +300,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Wn_QLciWVrWy" }, "source": [ @@ -340,7 +311,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "2uJ1G030VrWz" }, "source": [ @@ -355,10 +325,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "QyPkET61yMMX" }, "outputs": [], @@ -370,7 +338,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "rlVj6VqaVrW0" }, "source": [ @@ -381,10 +348,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Bi1_vHyBVrW2" }, "outputs": [], @@ -397,7 +362,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "zJpRSxJ-VrW7" }, "source": [ @@ -406,10 +370,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "jqb9OGoVKIOi" }, "outputs": [], @@ -431,7 +393,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "qXnwkzFuVrXB" }, "source": [ @@ -442,10 +403,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "1zip35pDVrXB" }, "outputs": [], @@ -458,7 +417,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "m2lNPWFc3Bre" }, "source": [ @@ -467,10 +425,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "wmBx8NhrVrXK" }, "outputs": [], @@ -482,7 +438,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "NvqXaD8BVrXN" }, "source": [ @@ -493,10 +448,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tGNKLa_YVrXR" }, "outputs": [], @@ -509,7 +462,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "XuoAX0Za4zTk" }, "source": [ @@ -518,10 +470,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "-KQWw8IZVrXZ" }, "outputs": [], @@ -533,7 +483,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "OC8fIsalVrXd" }, "source": [ @@ -552,10 +501,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gnr2xujaVrXe" }, "outputs": [], @@ -569,7 +516,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "AW-pV5awVrXl" }, "source": [ @@ -578,10 +524,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "z2m68eMhVrXm" }, "outputs": [], @@ -593,7 +537,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "a99fDBt7VrXr" }, "source": [ @@ -604,10 +547,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "54x0aNbKVrXr" }, "outputs": [], @@ -619,7 +560,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "wEgW4i18VrWZ" }, "source": [ @@ -632,10 +572,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Evjf8jZk2zi-" }, "outputs": [], @@ -646,7 +584,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "DADWLqMSJcH3" }, "source": [ @@ -657,10 +594,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "08rRJ0sn3Tb1" }, "outputs": [], @@ -671,7 +606,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "oub9RtoFVrWk" }, "source": [ @@ -682,10 +616,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tk5NT1PW3j_P" }, "outputs": [], @@ -698,7 +630,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "LZPYT-EmVrWo" }, "source": [ @@ -709,10 +640,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "8CfngybnFHQR" }, "outputs": [], @@ -729,7 +658,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "E9FROGm-KGEG" }, "source": [ @@ -744,8 +672,6 @@ "colab": { "collapsed_sections": [], "name": "l05c03_exercise_flowers_with_data_augmentation.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c04_exercise_flowers_with_data_augmentation_solution.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c04_exercise_flowers_with_data_augmentation_solution.ipynb index 434e396bdc7..d0a7d3c1877 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c04_exercise_flowers_with_data_augmentation_solution.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l05c04_exercise_flowers_with_data_augmentation_solution.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "TBFXQGKYUc4X" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "1z4xy2gTUc4a" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "FE7KNzPPVrVV" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "KwQtSOz0VrVX" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "gN7G9GFmVrVY" }, "source": [ @@ -74,7 +68,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "zF9uvbXNVrVY" }, "source": [ @@ -84,7 +77,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "VddxeYBEVrVZ" }, "source": [ @@ -93,10 +85,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "rtPGh2MAVrVa" }, "outputs": [], @@ -111,7 +101,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Jlchl4x2VrVg" }, "source": [ @@ -122,10 +111,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "KzKpWdemHbC_" }, "outputs": [], @@ -135,10 +122,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "L1WtoaOHVrVh" }, "outputs": [], @@ -151,7 +136,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UZZI6lNkVrVm" }, "source": [ @@ -161,7 +145,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "DPHx8-t-VrVo" }, "source": [ @@ -171,7 +154,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_lPjfOmNVrVs" }, "source": [ @@ -180,10 +162,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "OYmOylPlVrVt" }, "outputs": [], @@ -200,7 +180,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "2yge5MKnnjMd" }, "source": [ @@ -217,10 +196,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FiYVs1MEmNHf" }, "outputs": [], @@ -231,7 +208,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "G1ymuCPS0_eu" }, "source": [ @@ -277,10 +253,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "a-AL030LmcdD" }, "outputs": [], @@ -305,10 +279,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "yP85YhYol8ER" }, "outputs": [], @@ -319,7 +291,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "8Lp-0ejxOtP1" }, "source": [ @@ -328,10 +299,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "uh68rmWspp0U" }, "outputs": [], @@ -343,7 +312,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UOoVpxFwVrWy" }, "source": [ @@ -353,7 +321,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Wn_QLciWVrWy" }, "source": [ @@ -365,7 +332,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "2uJ1G030VrWz" }, "source": [ @@ -380,10 +346,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "QyPkET61yMMX" }, "outputs": [], @@ -395,7 +359,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "rlVj6VqaVrW0" }, "source": [ @@ -406,10 +369,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Bi1_vHyBVrW2" }, "outputs": [], @@ -427,7 +388,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "zJpRSxJ-VrW7" }, "source": [ @@ -436,10 +396,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "jqb9OGoVKIOi" }, "outputs": [], @@ -461,7 +419,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "qXnwkzFuVrXB" }, "source": [ @@ -472,10 +429,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "1zip35pDVrXB" }, "outputs": [], @@ -491,7 +446,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "m2lNPWFc3Bre" }, "source": [ @@ -500,10 +454,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "wmBx8NhrVrXK" }, "outputs": [], @@ -515,7 +467,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "NvqXaD8BVrXN" }, "source": [ @@ -526,10 +477,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tGNKLa_YVrXR" }, "outputs": [], @@ -547,7 +496,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "XuoAX0Za4zTk" }, "source": [ @@ -556,10 +504,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "-KQWw8IZVrXZ" }, "outputs": [], @@ -571,7 +517,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "OC8fIsalVrXd" }, "source": [ @@ -590,10 +535,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gnr2xujaVrXe" }, "outputs": [], @@ -620,7 +563,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "AW-pV5awVrXl" }, "source": [ @@ -629,10 +571,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "z2m68eMhVrXm" }, "outputs": [], @@ -644,7 +584,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "a99fDBt7VrXr" }, "source": [ @@ -655,10 +594,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "54x0aNbKVrXr" }, "outputs": [], @@ -674,7 +611,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "wEgW4i18VrWZ" }, "source": [ @@ -687,10 +623,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Evjf8jZk2zi-" }, "outputs": [], @@ -717,7 +651,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "DADWLqMSJcH3" }, "source": [ @@ -728,10 +661,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "08rRJ0sn3Tb1" }, "outputs": [], @@ -744,7 +675,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "oub9RtoFVrWk" }, "source": [ @@ -755,10 +685,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tk5NT1PW3j_P" }, "outputs": [], @@ -777,7 +705,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "LZPYT-EmVrWo" }, "source": [ @@ -788,10 +715,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "8CfngybnFHQR" }, "outputs": [], @@ -825,8 +750,6 @@ "colab": { "collapsed_sections": [], "name": "l05c04_exercise_flowers_with_data_augmentation_solution.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c01_tensorflow_hub_and_transfer_learning.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c01_tensorflow_hub_and_transfer_learning.ipynb index f103558217e..37de225560a 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c01_tensorflow_hub_and_transfer_learning.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c01_tensorflow_hub_and_transfer_learning.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "W_tvPdyfA-BL" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "0O_LFhwSBCjm" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "9-3Pry4jh1-E" }, "source": [ @@ -54,7 +50,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "NxjpzKTvg_dd" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "crU-iluJIEzw" }, "source": [ @@ -89,7 +83,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "7RVsYZLEpEWs" }, "source": [ @@ -99,7 +92,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ZUCEcRdhnyWn" }, "source": [ @@ -108,10 +100,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "8z5hqr0hHtLv" }, "outputs": [], @@ -121,10 +111,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "WZnAHGETHu7e" }, "outputs": [], @@ -139,10 +127,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FVM2fKGEHIJN" }, "outputs": [], @@ -155,7 +141,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "s4YuF5HvpM1W" }, "source": [ @@ -165,19 +150,17 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "4Sh2sPc10V0b" }, "source": [ "In this part of the Colab, we'll take a trained model, load it into to Keras, and try it out.\n", "\n", - "The model that we'll use is MobileNet v2 (but any model from [tf2 compatible image classifier URL from tfhub.dev](https://tfhub.dev/s?q=tf2&module-type=image-classification) would work)." + "The model that we'll use is MobileNet v2 (but any model from [tf2 compatible image classifier URL from tfhub.dev](https://tfhub.dev/s?q=tf2\u0026module-type=image-classification) would work)." ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "xEY_Ow5loN6q" }, "source": [ @@ -189,10 +172,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "y_6bGjoPtzau" }, "outputs": [], @@ -208,7 +189,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "pwZXaoV0uXp2" }, "source": [ @@ -218,7 +198,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "TQItP1i55-di" }, "source": [ @@ -228,10 +207,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "w5wDjXNjuXGD" }, "outputs": [], @@ -246,10 +223,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "BEmmBnGbLxPp" }, "outputs": [], @@ -261,7 +236,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "0Ic8OEEo2b73" }, "source": [ @@ -270,10 +244,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "EMquyn29v8q3" }, "outputs": [], @@ -285,7 +257,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "NKzjqENF6jDF" }, "source": [ @@ -296,10 +267,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "rgXb44vt6goJ" }, "outputs": [], @@ -311,7 +280,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YrxLMajMoxkf" }, "source": [ @@ -322,10 +290,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ij6SrDxcxzry" }, "outputs": [], @@ -342,7 +308,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "a6TNYYAM4u2-" }, "source": [ @@ -352,7 +317,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "amfzqn1Oo7Om" }, "source": [ @@ -362,7 +326,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "K-nIpVJ94xrw" }, "source": [ @@ -372,7 +335,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Z93vvAdGxDMD" }, "source": [ @@ -383,10 +345,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "DrIUV3V0xDL_" }, "outputs": [], @@ -405,7 +365,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UlFZ_hwjCLgS" }, "source": [ @@ -414,10 +373,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "W4lDPkn2cpWZ" }, "outputs": [], @@ -429,7 +386,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "mbgpD3E6gM2P" }, "source": [ @@ -440,10 +396,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "we_ftzQxNf7e" }, "outputs": [], @@ -461,7 +415,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "0gTN7M_GxDLx" }, "source": [ @@ -471,7 +424,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "O3fvrZR8xDLv" }, "source": [ @@ -481,10 +433,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kii_jWZYOn0B" }, "outputs": [], @@ -502,7 +452,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "QmvSWg9nxDLa" }, "source": [ @@ -511,10 +460,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "IXTB22SpxDLP" }, "outputs": [], @@ -532,7 +479,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "JzV457OXreQP" }, "source": [ @@ -542,7 +488,7 @@ "\n", "With transfer learning we reuse parts of an already trained model and change the final layer, or several layers, of the model, and then retrain those layers on our own dataset.\n", "\n", - "In addition to complete models, TensorFlow Hub also distributes models without the last classification layer. These can be used to easily do transfer learning. We will continue using MobileNet v2 because in later parts of this course, we will take this model and deploy it on a mobile device using [TensorFlow Lite](https://www.tensorflow.org/lite). Any [image feature vector URL from tfhub.dev](https://tfhub.dev/s?module-type=image-feature-vector&q=tf2) would work here.\n", + "In addition to complete models, TensorFlow Hub also distributes models without the last classification layer. These can be used to easily do transfer learning. We will continue using MobileNet v2 because in later parts of this course, we will take this model and deploy it on a mobile device using [TensorFlow Lite](https://www.tensorflow.org/lite). Any [image feature vector URL from tfhub.dev](https://tfhub.dev/s?module-type=image-feature-vector\u0026q=tf2) would work here.\n", "\n", "We'll also continue to use the Dogs vs Cats dataset, so we will be able to compare the performance of this model against the ones we created from scratch earlier.\n", "\n", @@ -551,10 +497,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "5wB030nezBwI" }, "outputs": [], @@ -567,7 +511,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "pkSvAPvKOWg2" }, "source": [ @@ -576,10 +519,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Of7i-35F09ls" }, "outputs": [], @@ -591,7 +532,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "CtFmF7A5E4tk" }, "source": [ @@ -600,10 +540,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Jg5ar6rcE4H-" }, "outputs": [], @@ -614,7 +552,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RPVeouTksO9q" }, "source": [ @@ -625,10 +562,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "mGcY27fY1q3Q" }, "outputs": [], @@ -644,7 +579,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "OHbXQqIquFxQ" }, "source": [ @@ -655,10 +589,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3n0Wb9ylKd8R" }, "outputs": [], @@ -677,7 +609,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "76as-K8-vFQJ" }, "source": [ @@ -690,10 +621,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "d28dhbFpr98b" }, "outputs": [], @@ -724,7 +653,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "5zmoDisGvNye" }, "source": [ @@ -738,7 +666,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kb__ZN8uFn-D" }, "source": [ @@ -749,10 +676,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "W_Zvg2i0fzJu" }, "outputs": [], @@ -764,7 +689,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "4Olg6MsNGJTL" }, "source": [ @@ -773,10 +697,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "fCLVCpEjJ_VP" }, "outputs": [], @@ -791,7 +713,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "CkGbZxl9GZs-" }, "source": [ @@ -800,10 +721,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nL9IhOmGI5dJ" }, "outputs": [], @@ -814,10 +733,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "wC_AYRJU9NQe" }, "outputs": [], @@ -839,8 +756,6 @@ "colab": { "collapsed_sections": [], "name": "l06c01_tensorflow_hub_and_transfer_learning.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c02_exercise_flowers_with_transfer_learning.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c02_exercise_flowers_with_transfer_learning.ipynb index 0f3e3e4c962..626b31ea497 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c02_exercise_flowers_with_transfer_learning.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c02_exercise_flowers_with_transfer_learning.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "W_tvPdyfA-BL" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "0O_LFhwSBCjm" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "9-3Pry4jh1-E" }, "source": [ @@ -54,7 +50,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "NxjpzKTvg_dd" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "crU-iluJIEzw" }, "source": [ @@ -81,7 +75,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "7RVsYZLEpEWs" }, "source": [ @@ -91,7 +84,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ZUCEcRdhnyWn" }, "source": [ @@ -100,10 +92,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "zIuDCLW_IAG_" }, "outputs": [], @@ -113,10 +103,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "dHenfza_ICJL" }, "outputs": [], @@ -132,10 +120,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gEsgwsqbHFn2" }, "outputs": [], @@ -148,7 +134,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "amfzqn1Oo7Om" }, "source": [ @@ -158,7 +143,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Z93vvAdGxDMD" }, "source": [ @@ -167,10 +151,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "oXiJjX0jfx1o" }, "outputs": [], @@ -183,7 +165,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "X0p1sOEHf0JF" }, "source": [ @@ -194,10 +175,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "DrIUV3V0xDL_" }, "outputs": [], @@ -210,7 +189,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UlFZ_hwjCLgS" }, "source": [ @@ -219,10 +197,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "W4lDPkn2cpWZ" }, "outputs": [], @@ -234,7 +210,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "mbgpD3E6gM2P" }, "source": [ @@ -245,10 +220,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "we_ftzQxNf7e" }, "outputs": [], @@ -269,7 +242,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "JzV457OXreQP" }, "source": [ @@ -278,15 +250,13 @@ "Let's now use TensorFlow Hub to do Transfer Learning. Remember, in transfer learning we reuse parts of an already trained model and change the final layer, or several layers, of the model, and then retrain those layers on our own dataset.\n", "\n", "### TODO: Create a Feature Extractor\n", - "In the cell below create a `feature_extractor` using MobileNet v2. Remember that the partial model from TensorFlow Hub (without the final classification layer) is called a feature vector. Go to the [TensorFlow Hub documentation](https://tfhub.dev/s?module-type=image-feature-vector&q=tf2) to see a list of available feature vectors. Click on the `tf2-preview/mobilenet_v2/feature_vector`. Read the documentation and get the corresponding `URL` to get the MobileNet v2 feature vector. Finally, create a `feature_extractor` by using `hub.KerasLayer` with the correct `input_shape` parameter." + "In the cell below create a `feature_extractor` using MobileNet v2. Remember that the partial model from TensorFlow Hub (without the final classification layer) is called a feature vector. Go to the [TensorFlow Hub documentation](https://tfhub.dev/s?module-type=image-feature-vector\u0026q=tf2) to see a list of available feature vectors. Click on the `tf2-preview/mobilenet_v2/feature_vector`. Read the documentation and get the corresponding `URL` to get the MobileNet v2 feature vector. Finally, create a `feature_extractor` by using `hub.KerasLayer` with the correct `input_shape` parameter." ] }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "5wB030nezBwI" }, "outputs": [], @@ -298,7 +268,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "CtFmF7A5E4tk" }, "source": [ @@ -309,10 +278,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Jg5ar6rcE4H-" }, "outputs": [], @@ -323,7 +290,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RPVeouTksO9q" }, "source": [ @@ -334,10 +300,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "mGcY27fY1q3Q" }, "outputs": [], @@ -348,7 +312,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "OHbXQqIquFxQ" }, "source": [ @@ -359,10 +322,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3n0Wb9ylKd8R" }, "outputs": [], @@ -375,7 +336,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "76as-K8-vFQJ" }, "source": [ @@ -385,7 +345,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "SLxTcprUqJaq" }, "source": [ @@ -396,10 +355,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "d28dhbFpr98b" }, "outputs": [], @@ -416,7 +373,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "5zmoDisGvNye" }, "source": [ @@ -430,7 +386,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kb__ZN8uFn-D" }, "source": [ @@ -441,10 +396,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "W_Zvg2i0fzJu" }, "outputs": [], @@ -455,7 +408,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "4Olg6MsNGJTL" }, "source": [ @@ -466,10 +418,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "fCLVCpEjJ_VP" }, "outputs": [], @@ -488,7 +438,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "CkGbZxl9GZs-" }, "source": [ @@ -499,10 +448,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nL9IhOmGI5dJ" }, "outputs": [], @@ -513,7 +460,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "gJDyzEfYuFcW" }, "source": [ @@ -522,10 +468,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "wC_AYRJU9NQe" }, "outputs": [], @@ -544,13 +488,12 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "7QBKxS5CuKhc" }, "source": [ "# TODO: Perform Transfer Learning with the Inception Model\n", "\n", - "Go to the [TensorFlow Hub documentation](https://tfhub.dev/s?module-type=image-feature-vector&q=tf2) and click on `tf2-preview/inception_v3/feature_vector`. This feature vector corresponds to the Inception v3 model. In the cells below, use transfer learning to create a CNN that uses Inception v3 as the pretrained model to classify the images from the Flowers dataset. Note that Inception, takes as input, images that are 299 x 299 pixels. Compare the accuracy you get with Inception v3 to the accuracy you got with MobileNet v2." + "Go to the [TensorFlow Hub documentation](https://tfhub.dev/s?module-type=image-feature-vector\u0026q=tf2) and click on `tf2-preview/inception_v3/feature_vector`. This feature vector corresponds to the Inception v3 model. In the cells below, use transfer learning to create a CNN that uses Inception v3 as the pretrained model to classify the images from the Flowers dataset. Note that Inception, takes as input, images that are 299 x 299 pixels. Compare the accuracy you get with Inception v3 to the accuracy you got with MobileNet v2." ] } ], @@ -559,8 +502,6 @@ "colab": { "collapsed_sections": [], "name": "l06c02_exercise_flowers_with_transfer_learning.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c03_exercise_flowers_with_transfer_learning_solution.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c03_exercise_flowers_with_transfer_learning_solution.ipynb index 535b7d59228..cb777c1ff83 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c03_exercise_flowers_with_transfer_learning_solution.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l06c03_exercise_flowers_with_transfer_learning_solution.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "W_tvPdyfA-BL" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "0O_LFhwSBCjm" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "9-3Pry4jh1-E" }, "source": [ @@ -54,7 +50,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "NxjpzKTvg_dd" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "crU-iluJIEzw" }, "source": [ @@ -81,7 +75,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "7RVsYZLEpEWs" }, "source": [ @@ -91,7 +84,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ZUCEcRdhnyWn" }, "source": [ @@ -100,10 +92,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "RxwCQNZWIL8y" }, "outputs": [], @@ -113,10 +103,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ivDUkUNdINH2" }, "outputs": [], @@ -132,10 +120,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "NU3IAZ02G6VA" }, "outputs": [], @@ -148,7 +134,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "amfzqn1Oo7Om" }, "source": [ @@ -158,7 +143,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Z93vvAdGxDMD" }, "source": [ @@ -167,10 +151,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "oXiJjX0jfx1o" }, "outputs": [], @@ -186,7 +168,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "X0p1sOEHf0JF" }, "source": [ @@ -197,10 +178,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "DrIUV3V0xDL_" }, "outputs": [], @@ -224,7 +203,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UlFZ_hwjCLgS" }, "source": [ @@ -233,10 +211,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "W4lDPkn2cpWZ" }, "outputs": [], @@ -248,7 +224,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "mbgpD3E6gM2P" }, "source": [ @@ -259,10 +234,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "we_ftzQxNf7e" }, "outputs": [], @@ -283,7 +256,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "JzV457OXreQP" }, "source": [ @@ -292,15 +264,13 @@ "Let's now use TensorFlow Hub to do Transfer Learning. Remember, in transfer learning we reuse parts of an already trained model and change the final layer, or several layers, of the model, and then retrain those layers on our own dataset.\n", "\n", "### TODO: Create a Feature Extractor\n", - "In the cell below create a `feature_extractor` using MobileNet v2. Remember that the partial model from TensorFlow Hub (without the final classification layer) is called a feature vector. Go to the [TensorFlow Hub documentation](https://tfhub.dev/s?module-type=image-feature-vector&q=tf2) to see a list of available feature vectors. Click on the `tf2-preview/mobilenet_v2/feature_vector`. Read the documentation and get the corresponding `URL` to get the MobileNet v2 feature vector. Finally, create a `feature_extractor` by using `hub.KerasLayer` with the correct `input_shape` parameter." + "In the cell below create a `feature_extractor` using MobileNet v2. Remember that the partial model from TensorFlow Hub (without the final classification layer) is called a feature vector. Go to the [TensorFlow Hub documentation](https://tfhub.dev/s?module-type=image-feature-vector\u0026q=tf2) to see a list of available feature vectors. Click on the `tf2-preview/mobilenet_v2/feature_vector`. Read the documentation and get the corresponding `URL` to get the MobileNet v2 feature vector. Finally, create a `feature_extractor` by using `hub.KerasLayer` with the correct `input_shape` parameter." ] }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "5wB030nezBwI" }, "outputs": [], @@ -313,7 +283,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "CtFmF7A5E4tk" }, "source": [ @@ -324,10 +293,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Jg5ar6rcE4H-" }, "outputs": [], @@ -338,7 +305,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RPVeouTksO9q" }, "source": [ @@ -349,10 +315,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "mGcY27fY1q3Q" }, "outputs": [], @@ -368,7 +332,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "OHbXQqIquFxQ" }, "source": [ @@ -379,10 +342,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3n0Wb9ylKd8R" }, "outputs": [], @@ -402,7 +363,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "76as-K8-vFQJ" }, "source": [ @@ -412,7 +372,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "SLxTcprUqJaq" }, "source": [ @@ -423,10 +382,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "d28dhbFpr98b" }, "outputs": [], @@ -457,7 +414,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "5zmoDisGvNye" }, "source": [ @@ -471,7 +427,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kb__ZN8uFn-D" }, "source": [ @@ -482,10 +437,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "W_Zvg2i0fzJu" }, "outputs": [], @@ -498,7 +451,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "4Olg6MsNGJTL" }, "source": [ @@ -509,10 +461,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "fCLVCpEjJ_VP" }, "outputs": [], @@ -535,7 +485,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "CkGbZxl9GZs-" }, "source": [ @@ -546,10 +495,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nL9IhOmGI5dJ" }, "outputs": [], @@ -561,7 +508,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "gJDyzEfYuFcW" }, "source": [ @@ -570,10 +516,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "wC_AYRJU9NQe" }, "outputs": [], @@ -592,21 +536,18 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "7QBKxS5CuKhc" }, "source": [ "# TODO: Perform Transfer Learning with the Inception Model\n", "\n", - "Go to the [TensorFlow Hub documentation](https://tfhub.dev/s?module-type=image-feature-vector&q=tf2) and click on `tf2-preview/inception_v3/feature_vector`. This feature vector corresponds to the Inception v3 model. In the cells below, use transfer learning to create a CNN that uses Inception v3 as the pretrained model to classify the images from the Flowers dataset. Note that Inception, takes as input, images that are 299 x 299 pixels. Compare the accuracy you get with Inception v3 to the accuracy you got with MobileNet v2." + "Go to the [TensorFlow Hub documentation](https://tfhub.dev/s?module-type=image-feature-vector\u0026q=tf2) and click on `tf2-preview/inception_v3/feature_vector`. This feature vector corresponds to the Inception v3 model. In the cells below, use transfer learning to create a CNN that uses Inception v3 as the pretrained model to classify the images from the Flowers dataset. Note that Inception, takes as input, images that are 299 x 299 pixels. Compare the accuracy you get with Inception v3 to the accuracy you got with MobileNet v2." ] }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "wVII2H9ZNNQf" }, "outputs": [], @@ -637,10 +578,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "idcaQKWAPgL0" }, "outputs": [], @@ -663,8 +602,6 @@ "colab": { "collapsed_sections": [], "name": "l06c03_exercise_flowers_with_transfer_learning_solution.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l07c01_saving_and_loading_models.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l07c01_saving_and_loading_models.ipynb index aa0f92c4de4..f57670e5db5 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l07c01_saving_and_loading_models.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l07c01_saving_and_loading_models.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "W_tvPdyfA-BL" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "0O_LFhwSBCjm" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "9-3Pry4jh1-E" }, "source": [ @@ -54,7 +50,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "NxjpzKTvg_dd" }, "source": [ @@ -66,7 +61,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "crU-iluJIEzw" }, "source": [ @@ -83,7 +77,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "7RVsYZLEpEWs" }, "source": [ @@ -94,10 +87,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "e3BXzUGabcI9" }, "outputs": [], @@ -109,7 +100,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "a28UtPNlizGI" }, "source": [ @@ -118,10 +108,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "OGNpmn43C0O6" }, "outputs": [], @@ -141,7 +129,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "amfzqn1Oo7Om" }, "source": [ @@ -151,7 +138,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Z93vvAdGxDMD" }, "source": [ @@ -160,10 +146,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "DrIUV3V0xDL_" }, "outputs": [], @@ -179,7 +163,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "mbgpD3E6gM2P" }, "source": [ @@ -188,10 +171,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "we_ftzQxNf7e" }, "outputs": [], @@ -213,7 +194,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "JzV457OXreQP" }, "source": [ @@ -224,10 +204,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "5wB030nezBwI" }, "outputs": [], @@ -240,7 +218,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "CtFmF7A5E4tk" }, "source": [ @@ -249,10 +226,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Jg5ar6rcE4H-" }, "outputs": [], @@ -263,7 +238,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RPVeouTksO9q" }, "source": [ @@ -274,10 +248,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "mGcY27fY1q3Q" }, "outputs": [], @@ -293,7 +265,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "OHbXQqIquFxQ" }, "source": [ @@ -304,10 +275,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3n0Wb9ylKd8R" }, "outputs": [], @@ -326,7 +295,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kb__ZN8uFn-D" }, "source": [ @@ -337,10 +305,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "W_Zvg2i0fzJu" }, "outputs": [], @@ -352,7 +318,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "4Olg6MsNGJTL" }, "source": [ @@ -361,10 +326,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "fCLVCpEjJ_VP" }, "outputs": [], @@ -383,7 +346,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "CkGbZxl9GZs-" }, "source": [ @@ -392,10 +354,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nL9IhOmGI5dJ" }, "outputs": [], @@ -406,10 +366,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "wC_AYRJU9NQe" }, "outputs": [], @@ -427,7 +385,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "mmPQYQLx3cYq" }, "source": [ @@ -438,10 +395,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tCnNWTkZ3Ckz" }, "outputs": [], @@ -456,10 +411,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "9tdJWVHmnKxJ" }, "outputs": [], @@ -470,7 +423,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "JgqmH1WVUKli" }, "source": [ @@ -487,7 +439,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "yXole25Z799G" }, "source": [ @@ -498,10 +449,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Rx-z3Qwx5RnB" }, "outputs": [], @@ -517,7 +466,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "XxDl2vPkf2ST" }, "source": [ @@ -526,10 +474,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "MFljA-Hd85Tu" }, "outputs": [], @@ -541,7 +487,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YeCZUUJK9Svv" }, "source": [ @@ -550,10 +495,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "S3p5-uD39PC1" }, "outputs": [], @@ -564,7 +507,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "KqU79kKFo7S2" }, "source": [ @@ -574,7 +516,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "nKunO4soA4Dm" }, "source": [ @@ -585,10 +526,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "NEv-fnHEAplx" }, "outputs": [], @@ -602,7 +541,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "5OKoZaAHFH_s" }, "source": [ @@ -612,7 +550,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "3V47IwQbFTYT" }, "source": [ @@ -632,10 +569,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "LtpeKMfoGXrj" }, "outputs": [], @@ -650,10 +585,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "5h6B1wITlu-9" }, "outputs": [], @@ -664,7 +597,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ktpsqHxJPIQW" }, "source": [ @@ -674,7 +606,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "v0FDcCn9ncDb" }, "source": [ @@ -683,10 +614,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "c7_PM7lofG2V" }, "outputs": [], @@ -697,7 +626,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "esEODdtM0kHB" }, "source": [ @@ -706,10 +634,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "lpQldy_bm3Ty" }, "outputs": [], @@ -720,7 +646,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "65upCyVN0u3Q" }, "source": [ @@ -729,10 +654,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "hoCwmkGznR_0" }, "outputs": [], @@ -743,7 +666,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "wxuETjjs01pL" }, "source": [ @@ -753,7 +675,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "7Nom-ka0yuqB" }, "source": [ @@ -764,10 +685,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Vi1jaqh8yvt6" }, "outputs": [], @@ -781,10 +700,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "1VPE2_QQGmAP" }, "outputs": [], @@ -799,7 +716,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "thTbiHE72GL4" }, "source": [ @@ -808,10 +724,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "-0oCJrNLKdKj" }, "outputs": [], @@ -823,7 +737,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "jUQaxzFj2Q8k" }, "source": [ @@ -832,10 +745,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "DJCD9JJxKg9F" }, "outputs": [], @@ -846,7 +757,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "NFa6jNc4PW9F" }, "source": [ @@ -856,7 +766,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "2W_y1qMVQeCm" }, "source": [ @@ -865,10 +774,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "WPRFoU1xPCGF" }, "outputs": [], @@ -879,7 +786,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "MBZL85RsQBTj" }, "source": [ @@ -888,10 +794,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ALP-DfwSQRL8" }, "outputs": [], @@ -902,7 +806,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "IR89aU-SRmsL" }, "source": [ @@ -911,10 +814,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "lOXYrlDkNjKQ" }, "outputs": [], @@ -929,7 +830,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RzLutxq_SeLQ" }, "source": [ @@ -941,10 +841,7 @@ "accelerator": "GPU", "colab": { "collapsed_sections": [], - "machine_shape": "hm", "name": "l07c01_saving_and_loading_models.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c01_common_patterns.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c01_common_patterns.ipynb index d8b6c461493..015a5274d90 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c01_common_patterns.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c01_common_patterns.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Ivi7Bm7thgCT" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "tFYaTP1Shi91" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vidayERjaO5q" }, "source": [ @@ -73,10 +67,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gqWabzlJ63nL" }, "outputs": [], @@ -87,10 +79,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "sJwA96JU00pW" }, "outputs": [], @@ -107,7 +97,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "yVo6CcpRaW7u" }, "source": [ @@ -116,10 +105,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "t30Ts2KjiOIY" }, "outputs": [], @@ -131,7 +118,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "iJjc3G1Maefn" }, "source": [ @@ -140,10 +126,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "BLt-pLiZ0nfB" }, "outputs": [], @@ -159,10 +143,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3-4hV2WHTC_F" }, "outputs": [], @@ -172,10 +154,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "eOK7NnaOTGa7" }, "outputs": [], @@ -186,7 +166,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "WKD4nh9sauBf" }, "source": [ @@ -195,10 +174,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "89gdEnPY1Niy" }, "outputs": [], @@ -217,10 +194,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "7kaNezUk1S9l" }, "outputs": [], @@ -236,7 +211,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "-Vo433h0bDLD" }, "source": [ @@ -245,10 +219,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "AyqFdaIN1oy5" }, "outputs": [], @@ -264,7 +236,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YVdJ2jNN8OHk" }, "source": [ @@ -274,7 +245,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "V4taP424sces" }, "source": [ @@ -283,10 +253,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3kD3_zjVscBH" }, "outputs": [], @@ -298,10 +266,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "aLvBwrKrtDzo" }, "outputs": [], @@ -317,7 +283,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "GHa6gicgbL74" }, "source": [ @@ -326,10 +291,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "2bRDx8K816N9" }, "outputs": [], @@ -346,8 +309,6 @@ "colab": { "collapsed_sections": [], "name": "l08c01_common_patterns.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c02_naive_forecasting.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c02_naive_forecasting.ipynb index 2cf49cb70ca..2d2a21cb74f 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c02_naive_forecasting.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c02_naive_forecasting.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_3bi1D2IiCyW" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "m_6H00ELiA57" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vidayERjaO5q" }, "source": [ @@ -73,10 +67,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gqWabzlJ63nL" }, "outputs": [], @@ -87,10 +79,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "sJwA96JU00pW" }, "outputs": [], @@ -125,7 +115,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "yVo6CcpRaW7u" }, "source": [ @@ -134,10 +123,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "BLt-pLiZ0nfB" }, "outputs": [], @@ -162,7 +149,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "a1sQpPjhtj0G" }, "source": [ @@ -171,10 +157,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "_w0eKap5uFNP" }, "outputs": [], @@ -189,7 +173,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "bjD8ncEZbjEW" }, "source": [ @@ -198,10 +181,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Pj_-uCeYxcAb" }, "outputs": [], @@ -211,10 +192,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "JtxwHj9Ig0jT" }, "outputs": [], @@ -227,7 +206,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "fw1SP5WeuixH" }, "source": [ @@ -236,10 +214,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "D0MKg7FNug9V" }, "outputs": [], @@ -252,7 +228,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "35gIlQLfu0TT" }, "source": [ @@ -262,7 +237,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Uh_7244Gsxfx" }, "source": [ @@ -271,10 +245,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "LjpLQeWY11H8" }, "outputs": [], @@ -288,7 +260,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "WGPBC9QttI1u" }, "source": [ @@ -300,8 +271,6 @@ "colab": { "collapsed_sections": [], "name": "l08c02_naive_forecasting.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c03_moving_average.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c03_moving_average.ipynb index c7aa2c25f24..3226f2639e8 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c03_moving_average.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c03_moving_average.ipynb @@ -1,24 +1,8 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "name": "l08c03_moving average.ipynb", - "provenance": [], - "private_outputs": true, - "collapsed_sections": [], - "toc_visible": true - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - } - }, "cells": [ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -27,12 +11,12 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { "cellView": "form", - "colab_type": "code", - "id": "Eq10uEbw0E4l", - "colab": {} + "id": "Eq10uEbw0E4l" }, + "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", @@ -45,14 +29,11 @@ "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Nm71sonIiJjH" }, "source": [ @@ -62,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "C34f-r1Mhzkj" }, "source": [ @@ -79,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vidayERjaO5q" }, "source": [ @@ -88,27 +67,26 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", "id": "gqWabzlJ63nL" }, + "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import tensorflow as tf\n", "\n", "keras = tf.keras" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "sJwA96JU00pW", - "colab": {} + "id": "sJwA96JU00pW" }, + "outputs": [], "source": [ "def plot_series(time, series, format=\"-\", start=0, end=None, label=None):\n", " plt.plot(time[start:end], series[start:end], format, label=label)\n", @@ -135,14 +113,11 @@ "def white_noise(time, noise_level=1, seed=None):\n", " rnd = np.random.RandomState(seed)\n", " return rnd.randn(len(time)) * noise_level" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "yVo6CcpRaW7u" }, "source": [ @@ -151,11 +126,11 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "BLt-pLiZ0nfB", - "colab": {} + "id": "BLt-pLiZ0nfB" }, + "outputs": [], "source": [ "time = np.arange(4 * 365 + 1)\n", "\n", @@ -172,14 +147,11 @@ "plt.figure(figsize=(10, 6))\n", "plot_series(time, series)\n", "plt.show()" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "bjD8ncEZbjEW" }, "source": [ @@ -188,11 +160,11 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "Pj_-uCeYxcAb", - "colab": {} + "id": "Pj_-uCeYxcAb" }, + "outputs": [], "source": [ "split_time = 1000\n", "time_train = time[:split_time]\n", @@ -205,14 +177,11 @@ "plt.figure(figsize=(10, 6))\n", "plot_series(time_valid, x_valid, start=0, end=150, label=\"Series\")\n", "plot_series(time_valid, naive_forecast, start=1, end=151, label=\"Forecast\")" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Uh_7244Gsxfx" }, "source": [ @@ -221,21 +190,18 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "byNnC7IbsnMZ", - "colab": {} + "id": "byNnC7IbsnMZ" }, + "outputs": [], "source": [ "keras.metrics.mean_absolute_error(x_valid, naive_forecast).numpy()" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "WGPBC9QttI1u" }, "source": [ @@ -245,7 +211,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "MLtZbFoU8OH-" }, "source": [ @@ -254,11 +219,11 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "YGz5UsUdf2tV", - "colab": {} + "id": "YGz5UsUdf2tV" }, + "outputs": [], "source": [ "def moving_average_forecast(series, window_size):\n", " \"\"\"Forecasts the mean of the last few values.\n", @@ -267,17 +232,15 @@ " for time in range(len(series) - window_size):\n", " forecast.append(series[time:time + window_size].mean())\n", " return np.array(forecast)" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "Le2gNBthBWPN", - "colab": {} + "id": "Le2gNBthBWPN" }, + "outputs": [], "source": [ "def moving_average_forecast(series, window_size):\n", " \"\"\"Forecasts the mean of the last few values.\n", @@ -286,44 +249,37 @@ " mov = np.cumsum(series)\n", " mov[window_size:] = mov[window_size:] - mov[:-window_size]\n", " return mov[window_size - 1:-1] / window_size" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "F50zyJGoDNJl", - "colab": {} + "id": "F50zyJGoDNJl" }, + "outputs": [], "source": [ "moving_avg = moving_average_forecast(series, 30)[split_time - 30:]\n", "\n", "plt.figure(figsize=(10, 6))\n", "plot_series(time_valid, x_valid, label=\"Series\")\n", "plot_series(time_valid, moving_avg, label=\"Moving average (30 days)\")" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "wG7pTAd7z0e8", - "colab": {} + "id": "wG7pTAd7z0e8" }, + "outputs": [], "source": [ "keras.metrics.mean_absolute_error(x_valid, moving_avg).numpy()" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "JMYPnJqwz8nS" }, "source": [ @@ -332,11 +288,11 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "5pqySF7-rJR4", - "colab": {} + "id": "5pqySF7-rJR4" }, + "outputs": [], "source": [ "diff_series = (series[365:] - series[:-365])\n", "diff_time = time[365:]\n", @@ -344,14 +300,11 @@ "plt.figure(figsize=(10, 6))\n", "plot_series(diff_time, diff_series, label=\"Series(t) – Series(t–365)\")\n", "plt.show()" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "WDNer84g8OIF" }, "source": [ @@ -360,23 +313,20 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "-O21jlnA8OIG", - "colab": {} + "id": "-O21jlnA8OIG" }, + "outputs": [], "source": [ "plt.figure(figsize=(10, 6))\n", "plot_series(time_valid, diff_series[split_time - 365:], label=\"Series(t) – Series(t–365)\")\n", "plt.show()" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "xPlPlS7DskWg" }, "source": [ @@ -385,11 +335,11 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "QmZpz7arsjbb", - "colab": {} + "id": "QmZpz7arsjbb" }, + "outputs": [], "source": [ "diff_moving_avg = moving_average_forecast(diff_series, 50)[split_time - 365 - 50:]\n", "\n", @@ -397,14 +347,11 @@ "plot_series(time_valid, diff_series[split_time - 365:], label=\"Series(t) – Series(t–365)\")\n", "plot_series(time_valid, diff_moving_avg, label=\"Moving Average of Diff\")\n", "plt.show()" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Gno9S2lyecnc" }, "source": [ @@ -413,11 +360,11 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "Dv6RWFq7TFGB", - "colab": {} + "id": "Dv6RWFq7TFGB" }, + "outputs": [], "source": [ "diff_moving_avg_plus_past = series[split_time - 365:-365] + diff_moving_avg\n", "\n", @@ -425,27 +372,22 @@ "plot_series(time_valid, x_valid, label=\"Series\")\n", "plot_series(time_valid, diff_moving_avg_plus_past, label=\"Forecasts\")\n", "plt.show()" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "59jmBrwcTFCx", - "colab": {} + "id": "59jmBrwcTFCx" }, + "outputs": [], "source": [ "keras.metrics.mean_absolute_error(x_valid, diff_moving_avg_plus_past).numpy()" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vx9Et1Hkeusl" }, "source": [ @@ -454,11 +396,11 @@ }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "K81dtROoTE_r", - "colab": {} + "id": "K81dtROoTE_r" }, + "outputs": [], "source": [ "diff_moving_avg_plus_smooth_past = moving_average_forecast(series[split_time - 370:-359], 11) + diff_moving_avg\n", "\n", @@ -466,27 +408,22 @@ "plot_series(time_valid, x_valid, label=\"Series\")\n", "plot_series(time_valid, diff_moving_avg_plus_smooth_past, label=\"Forecasts\")\n", "plt.show()" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, "metadata": { - "colab_type": "code", - "id": "iN2MsBxWTE3m", - "colab": {} + "id": "iN2MsBxWTE3m" }, + "outputs": [], "source": [ "keras.metrics.mean_absolute_error(x_valid, diff_moving_avg_plus_smooth_past).numpy()" - ], - "execution_count": 0, - "outputs": [] + ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "WKnmJisHcvTW" }, "source": [ @@ -498,8 +435,6 @@ "colab": { "collapsed_sections": [], "name": "l08c03_moving_average.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c04_time_windows.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c04_time_windows.ipynb index 586a41ad669..aa647e27e21 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c04_time_windows.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c04_time_windows.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Ou0PGp_4icRo" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "93b0GzKph0jK" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vidayERjaO5q" }, "source": [ @@ -73,10 +67,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gqWabzlJ63nL" }, "outputs": [], @@ -87,7 +79,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ViWVB9qd8OIR" }, "source": [ @@ -98,10 +89,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "bgJkwtq88OIS" }, "outputs": [], @@ -113,10 +102,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ad8C65JV8OIT" }, "outputs": [], @@ -131,10 +118,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "AQtmODsi8OIU" }, "outputs": [], @@ -149,10 +134,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kTRHiWxi8OIW" }, "outputs": [], @@ -166,10 +149,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "iPsQbWHb8OIX" }, "outputs": [], @@ -184,10 +165,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "hzp7RD6_8OIY" }, "outputs": [], @@ -203,10 +182,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "y70nV0EI8OIZ" }, "outputs": [], @@ -224,10 +201,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "1tl-0BOKkEtk" }, "outputs": [], @@ -248,8 +223,6 @@ "colab": { "collapsed_sections": [], "name": "l08c04_time_windows.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c05_forecasting_with_machine_learning.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c05_forecasting_with_machine_learning.ipynb index b21ba2249bd..388329c85b5 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c05_forecasting_with_machine_learning.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c05_forecasting_with_machine_learning.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "yHG6wUbvifuX" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "bQNmSYMPh1TB" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vidayERjaO5q" }, "source": [ @@ -73,10 +67,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gqWabzlJ63nL" }, "outputs": [], @@ -90,10 +82,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cg1hfKCPldZG" }, "outputs": [], @@ -130,10 +120,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "iL2DDjV3lel6" }, "outputs": [], @@ -158,7 +146,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ViWVB9qd8OIR" }, "source": [ @@ -169,10 +156,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "1tl-0BOKkEtk" }, "outputs": [], @@ -190,10 +175,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Zmp1JXKxk9Vb" }, "outputs": [], @@ -208,7 +191,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "T1IvwAFn8OIc" }, "source": [ @@ -217,10 +199,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ieOKdcEQ0A6k" }, "outputs": [], @@ -245,10 +225,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "N3N8AGRM8OIc" }, "outputs": [], @@ -275,10 +253,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "PF9e7IDm8OId" }, "outputs": [], @@ -289,10 +265,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "uMNwyIFE8OIf" }, "outputs": [], @@ -320,10 +294,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "_eaAX9g_jS5W" }, "outputs": [], @@ -339,10 +311,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FnIWROQ08OIj" }, "outputs": [], @@ -352,10 +322,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "xd7Tj_fA8OIk" }, "outputs": [], @@ -365,10 +333,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "F-nftslfgQJs" }, "outputs": [], @@ -380,10 +346,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "W4E_jXktf7iv" }, "outputs": [], @@ -394,7 +358,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "9nEM33dZ8OIp" }, "source": [ @@ -403,10 +366,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "RhGTv4G_8OIp" }, "outputs": [], @@ -435,10 +396,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "5g-nC_em8OIq" }, "outputs": [], @@ -449,10 +408,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "B7t0VrCH8OIr" }, "outputs": [], @@ -483,10 +440,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "RqQbX6DZ8OIu" }, "outputs": [], @@ -499,10 +454,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "98zwAuIo8OIv" }, "outputs": [], @@ -514,10 +467,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "EgkELN-58OIw" }, "outputs": [], @@ -532,8 +483,6 @@ "vidayERjaO5q" ], "name": "l08c05_forecasting_with_machine_learning.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c06_forecasting_with_rnn.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c06_forecasting_with_rnn.ipynb index 63704626bf8..962046f7237 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c06_forecasting_with_rnn.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c06_forecasting_with_rnn.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "nuRx7K-sirJr" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "97jsq1rHh2Ds" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vidayERjaO5q" }, "source": [ @@ -73,10 +67,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gqWabzlJ63nL" }, "outputs": [], @@ -90,10 +82,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cg1hfKCPldZG" }, "outputs": [], @@ -149,10 +139,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "iL2DDjV3lel6" }, "outputs": [], @@ -176,10 +164,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Zmp1JXKxk9Vb" }, "outputs": [], @@ -194,7 +180,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vDs_w3kZ8OIw" }, "source": [ @@ -203,10 +188,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "YU4xRp9G8OIx" }, "outputs": [], @@ -237,10 +220,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "YJTlFAXF8OIy" }, "outputs": [], @@ -251,10 +232,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "T3yNjxWE8OIz" }, "outputs": [], @@ -289,10 +268,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "4KuPtKFe8OI0" }, "outputs": [], @@ -302,10 +279,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cxq09qOg8OI1" }, "outputs": [], @@ -318,10 +293,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "PkC_JssS8OI2" }, "outputs": [], @@ -333,10 +306,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "1mwfgEK08OI3" }, "outputs": [], @@ -347,7 +318,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "KNG7s8jt8OI4" }, "source": [ @@ -356,10 +326,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "bsKGxfiE8OI4" }, "outputs": [], @@ -377,10 +345,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "5Nk2C7WP8OI5" }, "outputs": [], @@ -393,10 +359,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "4JSc-Btk8OI7" }, "outputs": [], @@ -427,10 +391,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "YGNsWceq8OI8" }, "outputs": [], @@ -441,10 +403,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "G9lDnb0X8OI9" }, "outputs": [], @@ -478,10 +438,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "4mglBRex8OI_" }, "outputs": [], @@ -492,10 +450,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Zl_FkcdI8OJA" }, "outputs": [], @@ -507,10 +463,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cznEtSVK8OJB" }, "outputs": [], @@ -525,8 +479,6 @@ "vidayERjaO5q" ], "name": "l08c06_forecasting_with_rnn.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c07_forecasting_with_stateful_rnn.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c07_forecasting_with_stateful_rnn.ipynb index 74f4c346f89..b12d836eae8 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c07_forecasting_with_stateful_rnn.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c07_forecasting_with_stateful_rnn.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "eJoEl2FhixRp" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "w3Hibo73h236" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vidayERjaO5q" }, "source": [ @@ -73,10 +67,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gqWabzlJ63nL" }, "outputs": [], @@ -90,10 +82,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cg1hfKCPldZG" }, "outputs": [], @@ -130,10 +120,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "iL2DDjV3lel6" }, "outputs": [], @@ -157,10 +145,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Zmp1JXKxk9Vb" }, "outputs": [], @@ -175,7 +161,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "43Entmgk8OJC" }, "source": [ @@ -184,10 +169,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ezzIGpsq8OJC" }, "outputs": [], @@ -203,10 +186,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cC2hh-Dn8OJD" }, "outputs": [], @@ -217,10 +198,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "CHCYhVvl8OJE" }, "outputs": [], @@ -232,10 +211,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "g03h-KGJ8OJF" }, "outputs": [], @@ -267,10 +244,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "rl_s5X448OJG" }, "outputs": [], @@ -281,10 +256,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Gi3suj8F8OJH" }, "outputs": [], @@ -319,10 +292,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "lfW42jg-8OJI" }, "outputs": [], @@ -332,10 +303,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "JC3XHLxd8OJJ" }, "outputs": [], @@ -347,10 +316,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Cwsvi0cxmwBZ" }, "outputs": [], @@ -360,10 +327,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "s6eZmrn48OJK" }, "outputs": [], @@ -375,10 +340,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "8z6Py2Lx8OJL" }, "outputs": [], @@ -393,8 +356,6 @@ "vidayERjaO5q" ], "name": "l08c07_forecasting_with_stateful_rnn.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c08_forecasting_with_lstm.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c08_forecasting_with_lstm.ipynb index 25897ad4b2e..e8dfba8208a 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c08_forecasting_with_lstm.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c08_forecasting_with_lstm.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "E5VI4y76i14x" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "-Da7hZzJh3mg" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vidayERjaO5q" }, "source": [ @@ -73,10 +67,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gqWabzlJ63nL" }, "outputs": [], @@ -90,10 +82,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cg1hfKCPldZG" }, "outputs": [], @@ -139,10 +129,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "iL2DDjV3lel6" }, "outputs": [], @@ -166,10 +154,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Zmp1JXKxk9Vb" }, "outputs": [], @@ -183,10 +169,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "9fPenJpTtuDE" }, "outputs": [], @@ -199,7 +183,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "EPjK0l9P8OJM" }, "source": [ @@ -208,10 +191,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cSoUmW-x8OJN" }, "outputs": [], @@ -243,10 +224,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "KA0GM9sQ8OJO" }, "outputs": [], @@ -257,10 +236,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "hiHR5pPL8OJP" }, "outputs": [], @@ -295,10 +272,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nPeZUfQy8OJQ" }, "outputs": [], @@ -308,10 +283,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "4tFrq5uW8OJR" }, "outputs": [], @@ -322,10 +295,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ZfaR6nqj8OJT" }, "outputs": [], @@ -337,10 +308,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Wgf2u2Tp8OJV" }, "outputs": [], @@ -356,8 +325,6 @@ "vidayERjaO5q" ], "name": "l08c08_forecasting_with_lstm.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c09_forecasting_with_cnn.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c09_forecasting_with_cnn.ipynb index 3cef64eec68..fc72b7a9ef0 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c09_forecasting_with_cnn.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l08c09_forecasting_with_cnn.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Tt5S6SiPi7ze" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "W2iENc3Nh6g7" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "vidayERjaO5q" }, "source": [ @@ -73,10 +67,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gqWabzlJ63nL" }, "outputs": [], @@ -90,10 +82,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cg1hfKCPldZG" }, "outputs": [], @@ -151,10 +141,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "iL2DDjV3lel6" }, "outputs": [], @@ -178,10 +166,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Zmp1JXKxk9Vb" }, "outputs": [], @@ -196,7 +182,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "DI2GlupZ8OJW" }, "source": [ @@ -205,10 +190,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "6GFE82ci8OJW" }, "outputs": [], @@ -242,10 +225,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Uungw0H58OJX" }, "outputs": [], @@ -256,10 +237,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "UG7cO0yr8OJY" }, "outputs": [], @@ -299,10 +278,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "BlqzLwfn8OJa" }, "outputs": [], @@ -312,10 +289,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Pj0rpT-48OJc" }, "outputs": [], @@ -326,10 +301,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3vnDU8wm8OJd" }, "outputs": [], @@ -341,10 +314,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "W6tWOoE88OJe" }, "outputs": [], @@ -355,7 +326,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kfPTmghd8OJe" }, "source": [ @@ -364,10 +334,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "4-cPF5CX8OJf" }, "outputs": [], @@ -403,10 +371,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "GfWVZ8k-8OJf" }, "outputs": [], @@ -417,10 +383,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "WVrxlzbk8OJg" }, "outputs": [], @@ -462,10 +426,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "eNwWZB0d8OJh" }, "outputs": [], @@ -475,10 +437,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "PgYwn9VM8OJi" }, "outputs": [], @@ -489,10 +449,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "MCgshNPx8OJi" }, "outputs": [], @@ -504,10 +462,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "epK1gFEN8OJj" }, "outputs": [], @@ -523,8 +479,6 @@ "vidayERjaO5q" ], "name": "l08c09_forecasting_with_cnn.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c01_nlp_turn_words_into_tokens.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c01_nlp_turn_words_into_tokens.ipynb index b3d2a01dbed..7df6640a4ab 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c01_nlp_turn_words_into_tokens.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c01_nlp_turn_words_into_tokens.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "punL79CN7Ox6" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "fFv-USWkhQKA" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "7hMGfCIDPnm8" }, "source": [ @@ -74,7 +68,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "4mGaRDFcSamt" }, "source": [ @@ -83,10 +76,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "EN1-FZodOuPl" }, "outputs": [], @@ -98,7 +89,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "C5Qwn_7FSXW-" }, "source": [ @@ -109,10 +99,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "RMiq8BpWVVRa" }, "outputs": [], @@ -130,7 +118,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "wz845OtfRBCM" }, "source": [ @@ -141,10 +128,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ZHTK1DAlQ1zO" }, "outputs": [], @@ -159,7 +144,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Mylv-WuiRzd0" }, "source": [ @@ -168,16 +152,13 @@ "\n", "The word is the key, and the number is the value.\n", "\n", - "Notice that the OOV token is the first entry.\n", - "\n" + "Notice that the OOV token is the first entry.\n" ] }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kX4VvsLySC7Z" }, "outputs": [], @@ -189,10 +170,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "JXKrGxsIVtLo" }, "outputs": [], @@ -204,7 +183,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kcN_yM8O1oSX" }, "source": [ @@ -215,10 +193,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "QlUL6Ybf1sso" }, "outputs": [], @@ -230,7 +206,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "AswZPbuW8f-f" }, "source": [ @@ -243,10 +218,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Fir7qd6X8eZc" }, "outputs": [], @@ -262,13 +235,6 @@ "colab": { "collapsed_sections": [], "name": "l09c01_nlp_turn_words_into_tokens.ipynb", - "private_outputs": true, - "provenance": [ - { - "file_id": "1f3hkIExbdCeswqKEw22sAe__Q9WzMeOt", - "timestamp": 1585784795392 - } - ], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c02_nlp_padding.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c02_nlp_padding.ipynb index 5d3a2947e53..73a7765b5b0 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c02_nlp_padding.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c02_nlp_padding.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "punL79CN7Ox6" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -37,19 +34,15 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RX9Yx50TUies" }, "source": [ - "# Preparing text to use with TensorFlow models\n", - "\n", - "\n" + "# Preparing text to use with TensorFlow models\n" ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -66,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "5_MCdtjT-bly" }, "source": [ @@ -82,7 +74,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "qJsd8KslUn7j" }, "source": [ @@ -91,10 +82,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "_ZxQf11OUtQI" }, "outputs": [], @@ -107,22 +96,18 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "1MeEgRq4WX0v" }, "source": [ "## Write some sentences\n", "\n", - "Feel free to write your own sentences here.\n", - "\n" + "Feel free to write your own sentences here.\n" ] }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "PwM7IP2lTr7T" }, "outputs": [], @@ -141,7 +126,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "jaRa9opNWmA7" }, "source": [ @@ -151,10 +135,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "P7wuOJaBWiHZ" }, "outputs": [], @@ -165,7 +147,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "r7nILrhKXPge" }, "source": [ @@ -174,10 +155,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "YXooiuwrXROU" }, "outputs": [], @@ -190,7 +169,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "0U-oe201Xm7T" }, "source": [ @@ -207,10 +185,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "70l5x1XRXoV4" }, "outputs": [], @@ -222,7 +198,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "tcFghvQ34cZK" }, "source": [ @@ -243,10 +218,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "r0m_nqHg4gqu" }, "outputs": [], @@ -255,16 +228,13 @@ "print(\"\\nWord Index = \" , word_index)\n", "print(\"\\nSequences = \" , sequences)\n", "print(\"\\nPadded Sequences:\")\n", - "print(padded)\n", - "\n" + "print(padded)\n" ] }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "VzbGtYWQ6Ofo" }, "outputs": [], @@ -276,10 +246,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "HzkbHi0B64w8" }, "outputs": [], @@ -291,10 +259,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "OLHheI477okX" }, "outputs": [], @@ -307,7 +273,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "OnRKDsR197-J" }, "source": [ @@ -318,10 +283,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "iqodOpn64c2U" }, "outputs": [], @@ -357,13 +320,6 @@ "colab": { "collapsed_sections": [], "name": "l09c02_nlp_padding.ipynb", - "private_outputs": true, - "provenance": [ - { - "file_id": "1YLdGAnWeaiTM7d2fT6kDHJ3e2LkmndWQ", - "timestamp": 1585785688931 - } - ], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c03_nlp_prepare_larger_text_corpus.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c03_nlp_prepare_larger_text_corpus.ipynb index 371f72fc77d..c835759bee2 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c03_nlp_prepare_larger_text_corpus.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c03_nlp_prepare_larger_text_corpus.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "punL79CN7Ox6" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "qzwilbae73N4" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "VcB-N6WrAT9q" }, "source": [ @@ -94,10 +88,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "wr21SvWhQhvN" }, "outputs": [], @@ -115,7 +107,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "cJOCSbdERsdc" }, "source": [ @@ -126,10 +117,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kBpFip-X69Hf" }, "outputs": [], @@ -142,7 +131,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ZCT57MVGTENX" }, "source": [ @@ -158,10 +146,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "TlyreClyS7H3" }, "outputs": [], @@ -176,7 +162,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Fk5uzq4Oco7h" }, "source": [ @@ -185,10 +170,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "u7uCBlAqdEzK" }, "outputs": [], @@ -200,7 +183,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "OS0mg5yoVzQL" }, "source": [ @@ -210,10 +192,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "atgLJzAiVwqB" }, "outputs": [], @@ -223,14 +203,12 @@ "\n", "word_index = tokenizer.word_index\n", "print(len(word_index))\n", - "print(word_index)\n", - "\n" + "print(word_index)\n" ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Vfh0WGmKWyjI" }, "source": [ @@ -240,10 +218,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "VwyqBS2nV53o" }, "outputs": [], @@ -268,13 +244,6 @@ "metadata": { "colab": { "name": "l09c03_nlp_prepare_larger_text_corpus.ipynb", - "private_outputs": true, - "provenance": [ - { - "file_id": "1qEuXiuPcmwhNnuUWvcumtLsWP5e80dt4", - "timestamp": 1586392846237 - } - ], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c04_nlp_embeddings_and_sentiment.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c04_nlp_embeddings_and_sentiment.ipynb index 7462a2214de..bb1798a2ea9 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c04_nlp_embeddings_and_sentiment.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c04_nlp_embeddings_and_sentiment.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "punL79CN7Ox6" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "9uBA1i1BbiJn" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "1iLe4E0dB7tj" }, "source": [ @@ -74,7 +68,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "wqvz1jVgbwIN" }, "source": [ @@ -83,10 +76,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "XIG52aKPdpux" }, "outputs": [], @@ -100,7 +91,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "pazU5OmxehIA" }, "source": [ @@ -111,10 +101,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "qpwQT2E9ez5B" }, "outputs": [], @@ -125,10 +113,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "6Zvp9NScfMnw" }, "outputs": [], @@ -157,7 +143,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "NHpvqaSigcST" }, "source": [ @@ -168,10 +153,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "78icewYRgfxh" }, "outputs": [], @@ -202,7 +185,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "q4yIEk_8kszh" }, "source": [ @@ -213,10 +195,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "JTU3FmVGk100" }, "outputs": [], @@ -233,7 +213,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RI91liJnlA92" }, "source": [ @@ -242,10 +221,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "bBMgzp-_lMTp" }, "outputs": [], @@ -265,10 +242,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Pfl1W-zVldpn" }, "outputs": [], @@ -280,7 +255,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "GjMZ4ZFQl_48" }, "source": [ @@ -291,10 +265,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "S2lB46FirAVx" }, "outputs": [], @@ -307,10 +279,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Xcha0oGemHX2" }, "outputs": [], @@ -331,10 +301,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "g-Q6ALywmWVz" }, "outputs": [], @@ -352,7 +320,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "GNoxfY-i3Ir1" }, "source": [ @@ -363,10 +330,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "QXtfw-OY3WoZ" }, "outputs": [], @@ -411,13 +376,6 @@ "colab": { "collapsed_sections": [], "name": "l09c04_nlp_embeddings_and_sentiment.ipynb", - "private_outputs": true, - "provenance": [ - { - "file_id": "1iq_tSJPWWfj2tCp3Z3ovpcFT9QuUlwgr", - "timestamp": 1585785880918 - } - ], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c05_nlp_tweaking_the_model.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c05_nlp_tweaking_the_model.ipynb index 2930bd05313..9ba37742588 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c05_nlp_tweaking_the_model.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c05_nlp_tweaking_the_model.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "punL79CN7Ox6" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "QrxSyyyhygUR" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "xiWacy71Cu54" }, "source": [ @@ -74,7 +68,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "hY-fjvwfy2P9" }, "source": [ @@ -83,10 +76,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "drsUfVVXyxJl" }, "outputs": [], @@ -100,7 +91,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ZIf1N46jy6Ed" }, "source": [ @@ -111,10 +101,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "m83g42sJzGO0" }, "outputs": [], @@ -126,10 +114,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "y4e6GG2CzJUq" }, "outputs": [], @@ -158,7 +144,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "drDkTFMuzW6N" }, "source": [ @@ -178,10 +163,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "hjPUJFhQzuee" }, "outputs": [], @@ -206,7 +189,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "FwFjO1kg0UUK" }, "source": [ @@ -217,10 +199,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ectP92fl0dFO" }, "outputs": [], @@ -237,10 +217,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "7TQIaGjs073w" }, "outputs": [], @@ -252,7 +230,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "alAlYort7gWV" }, "source": [ @@ -263,10 +240,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "o9l5vBeU71vH" }, "outputs": [], @@ -289,7 +264,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "SZzXE-pT8K57" }, "source": [ @@ -302,10 +276,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "2Ex4o7Lc8Njl" }, "outputs": [], @@ -318,10 +290,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "bUL1zk5p8WIV" }, "outputs": [], @@ -345,10 +315,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "lqyV8QYnD46U" }, "outputs": [], @@ -366,7 +334,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "XUXAlNNk59gG" }, "source": [ @@ -377,10 +344,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "JbFTTcaK6Dan" }, "outputs": [], @@ -425,13 +390,6 @@ "colab": { "collapsed_sections": [], "name": "l09c05_nlp_tweaking_the_model.ipynb", - "private_outputs": true, - "provenance": [ - { - "file_id": "1C0zoO8Q3QRxWeHX0RQBSkPyqhe-RN3Hg", - "timestamp": 1585785927302 - } - ], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c06_nlp_subwords.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c06_nlp_subwords.ipynb index 2f28b2dc318..e5e7b52a395 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c06_nlp_subwords.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l09c06_nlp_subwords.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "punL79CN7Ox6" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "CH5gnvxl-N3U" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ykxAKKa1Dl0s" }, "source": [ @@ -74,7 +68,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "QQCr_NAT-g5w" }, "source": [ @@ -83,10 +76,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Q8Wa_ZlX-mPH" }, "outputs": [], @@ -99,7 +90,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "MRHk-4Te-yLJ" }, "source": [ @@ -110,10 +100,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "XJAxrOLi-02C" }, "outputs": [], @@ -125,10 +113,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Dr-EDUKP_HBl" }, "outputs": [], @@ -145,7 +131,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "8zut9Wng_R3B" }, "source": [ @@ -160,10 +145,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "aElsgxia_43g" }, "outputs": [], @@ -176,10 +159,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "0XNZWGKqBDc3" }, "outputs": [], @@ -197,7 +178,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "gYnbqctXGKcC" }, "source": [ @@ -208,10 +188,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "rAmql34aGfeV" }, "outputs": [], @@ -222,10 +200,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "jNnee_csG5Iz" }, "outputs": [], @@ -237,7 +213,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "zpIigjecHVkF" }, "source": [ @@ -248,10 +223,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "INIFSAcEHool" }, "outputs": [], @@ -282,7 +255,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "QC9A-sTpPPiL" }, "source": [ @@ -291,10 +263,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "eDKcL64IPcfy" }, "outputs": [], @@ -312,10 +282,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "VqkMNtIeP3oz" }, "outputs": [], @@ -329,7 +297,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "sj18M42kQkCi" }, "source": [ @@ -340,10 +307,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "uy8KIMPIQlvH" }, "outputs": [], @@ -366,7 +331,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_m7QzouQQ1Rs" }, "source": [ @@ -381,10 +345,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "dezs4wE5RMQu" }, "outputs": [], @@ -397,10 +359,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "LXKqy9Z1RSmt" }, "outputs": [], @@ -421,10 +381,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "v04wBMybRoGx" }, "outputs": [], @@ -445,13 +403,6 @@ "colab": { "collapsed_sections": [], "name": "l09c06_nlp_subwords.ipynb", - "private_outputs": true, - "provenance": [ - { - "file_id": "1m7j8diYG7Y8V761tIkA6SQ6RveNyZJCy", - "timestamp": 1585785987189 - } - ], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c01_nlp_lstms_with_reviews_subwords_dataset.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c01_nlp_lstms_with_reviews_subwords_dataset.ipynb index bbf8e89d665..a7c4ba52a16 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c01_nlp_lstms_with_reviews_subwords_dataset.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c01_nlp_lstms_with_reviews_subwords_dataset.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "punL79CN7Ox6" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -37,25 +34,15 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "hAclqSm3OOml" }, "source": [ - "# Using LSTMs with the subwords dataset\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "# Using LSTMs with the subwords dataset\n" ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -72,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "KTVx8__oGR9J" }, "source": [ @@ -85,10 +71,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "L62G7LTwNzoD" }, "outputs": [], @@ -101,7 +85,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "hLcl0QHvDjTV" }, "source": [ @@ -112,10 +95,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nCOtiRJZbxCH" }, "outputs": [], @@ -126,10 +107,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "XuqER_KMD-xS" }, "outputs": [], @@ -145,10 +124,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Tbsx1T2CXPNO" }, "outputs": [], @@ -163,7 +140,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "33AthPiALFZK" }, "source": [ @@ -180,10 +156,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "6NaicNCcLYyf" }, "outputs": [], @@ -199,10 +173,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "xvRVoeIVLevh" }, "outputs": [], @@ -216,10 +188,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "G_vacTCifklV" }, "outputs": [], @@ -232,7 +202,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "cT528cptLupl" }, "source": [ @@ -243,10 +212,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "lkseMhxjL09F" }, "outputs": [], @@ -257,10 +224,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "y21yRuzmL43U" }, "outputs": [], @@ -272,7 +237,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "8HrcPHESMBMs" }, "source": [ @@ -283,10 +247,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "50-hTsogLSL-" }, "outputs": [], @@ -317,7 +279,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "PahZm7YEQ8EI" }, "source": [ @@ -326,10 +287,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "c_nyQeI0RCCv" }, "outputs": [], @@ -349,7 +308,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "3WRXrx8BRO2L" }, "source": [ @@ -358,10 +316,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "oBKyVYvxRQ_9" }, "outputs": [], @@ -374,7 +330,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "HhLPbUl2AZ0y" }, "source": [ @@ -383,10 +338,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "jzBM1PpJAYfD" }, "outputs": [], @@ -409,7 +362,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Fwr5inBiWffb" }, "source": [ @@ -424,10 +376,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "aPNOYiiaha2y" }, "outputs": [], @@ -471,10 +421,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Qg-maex27KPW" }, "outputs": [], @@ -495,7 +443,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ycJKbMq3K4iy" }, "source": [ @@ -508,10 +455,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "PevUcINXK3gn" }, "outputs": [], @@ -536,7 +481,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "U13JBiJUG1oq" }, "source": [ @@ -549,10 +493,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "scTUsFPAG4zP" }, "outputs": [], @@ -572,7 +514,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "QsxKPbCnPJTj" }, "source": [ @@ -585,10 +526,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3N6Zul47PMED" }, "outputs": [], @@ -608,7 +547,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ABVYYPwba8Hx" }, "source": [ @@ -627,22 +565,13 @@ "\n", "Feel free to add more reviews of your own, or change the reviews. The results will depend on the combination of words in the reviews, and how well they match to reviews in the training set. \n", "\n", - "How do the different models handle things like \"wasn't good\" which contains a positive word (good) but is a poor review?\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "How do the different models handle things like \"wasn't good\" which contains a positive word (good) but is a poor review?\n" ] }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "6XebrXt0jtOy" }, "outputs": [], @@ -660,10 +589,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tRWGjkJLkY2y" }, "outputs": [], @@ -674,10 +601,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "G2FJR3IVBt30" }, "outputs": [], @@ -688,10 +613,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "81v1r3Y2BwvC" }, "outputs": [], @@ -704,18 +627,7 @@ "metadata": { "accelerator": "GPU", "colab": { - "name": "l10c01_nlp_lstms_with_reviews_subwords_dataset.ipnyb", - "private_outputs": true, - "provenance": [ - { - "file_id": "1A057p80x3tYZMU8p3CTzpiwnneZdZX2K", - "timestamp": 1586388082411 - }, - { - "file_id": "1iUYtdBJvQoltT5SVF4pb0cXFlGjyhuco", - "timestamp": 1582662548362 - } - ], + "name": "l10c01_nlp_lstms_with_reviews_subwords_dataset.ipynb", "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c02_nlp_multiple_models_for_predicting_sentiment.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c02_nlp_multiple_models_for_predicting_sentiment.ipynb index e6019811d6c..c28112c6f79 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c02_nlp_multiple_models_for_predicting_sentiment.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c02_nlp_multiple_models_for_predicting_sentiment.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "punL79CN7Ox6" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "hAclqSm3OOml" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "fentd-GnIj-j" }, "source": [ @@ -93,10 +87,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "L62G7LTwNzoD" }, "outputs": [], @@ -110,7 +102,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "o2P6xdtIJMyc" }, "source": [ @@ -119,10 +110,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nCOtiRJZbxCH" }, "outputs": [], @@ -137,10 +126,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "yBMPhIdStAe2" }, "outputs": [], @@ -152,10 +139,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "jbZ-faiNWu1U" }, "outputs": [], @@ -169,10 +154,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "_fVZItTeZSbL" }, "outputs": [], @@ -221,7 +204,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "BY4ZoptJO55o" }, "source": [ @@ -230,10 +212,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "0TWLvXA1Oa_W" }, "outputs": [], @@ -264,7 +244,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "JV-Ff5N0ryWv" }, "source": [ @@ -273,10 +252,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "B-3scEznH2Va" }, "outputs": [], @@ -296,7 +273,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "PahZm7YEQ8EI" }, "source": [ @@ -305,10 +281,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "c_nyQeI0RCCv" }, "outputs": [], @@ -325,7 +299,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "3WRXrx8BRO2L" }, "source": [ @@ -334,10 +307,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "oBKyVYvxRQ_9" }, "outputs": [], @@ -350,7 +321,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "HhLPbUl2AZ0y" }, "source": [ @@ -359,10 +329,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "jzBM1PpJAYfD" }, "outputs": [], @@ -385,7 +353,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "HEbcMCVEKToB" }, "source": [ @@ -394,10 +361,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "K0nKY9M4xzWE" }, "outputs": [], @@ -417,10 +382,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Qg-maex27KPW" }, "outputs": [], @@ -446,7 +409,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ycJKbMq3K4iy" }, "source": [ @@ -455,10 +417,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "PevUcINXK3gn" }, "outputs": [], @@ -475,7 +435,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "W8jW-OLfTrDM" }, "source": [ @@ -484,10 +443,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "merAu9T3TtmQ" }, "outputs": [], @@ -514,7 +471,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "tXnoq0zITmSM" }, "source": [ @@ -523,10 +479,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "6jP6KAzZTpQ6" }, "outputs": [], @@ -550,7 +504,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "U13JBiJUG1oq" }, "source": [ @@ -559,10 +512,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "scTUsFPAG4zP" }, "outputs": [], @@ -585,7 +536,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "QsxKPbCnPJTj" }, "source": [ @@ -594,10 +544,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3N6Zul47PMED" }, "outputs": [], @@ -622,7 +570,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "gdN2tdW4YYJ1" }, "source": [ @@ -631,10 +578,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "e45UQxQl_QAI" }, "outputs": [], @@ -674,10 +619,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "cQ4YZHOjYXQ2" }, "outputs": [], @@ -688,10 +631,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "NI04noTAHK5t" }, "outputs": [], @@ -702,10 +643,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "vGJ32sRUHNu6" }, "outputs": [], @@ -716,10 +655,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "IFw9Q0iQHP2P" }, "outputs": [], @@ -730,10 +667,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "zaw7fEVQHSWK" }, "outputs": [], @@ -746,18 +681,7 @@ "metadata": { "accelerator": "GPU", "colab": { - "name": "l10c02_nlp_multiple_models_for_predicting_sentiment", - "private_outputs": true, - "provenance": [ - { - "file_id": "1K5sDWalpavGmQiyKcf-JgDVjDOeul-hP", - "timestamp": 1586388997930 - }, - { - "file_id": "1iUYtdBJvQoltT5SVF4pb0cXFlGjyhuco", - "timestamp": 1583097592946 - } - ], + "name": "l10c02_nlp_multiple_models_for_predicting_sentiment.ipynb", "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c03_nlp_constructing_text_generation_model.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c03_nlp_constructing_text_generation_model.ipynb index 083dd6d9a27..7ec49562d88 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c03_nlp_constructing_text_generation_model.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c03_nlp_constructing_text_generation_model.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "punL79CN7Ox6" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -37,18 +34,15 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Ph5eir3Pf-3z" }, "source": [ - "# Constructing a Text Generation Model\n", - "\n" + "# Constructing a Text Generation Model\n" ] }, { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -65,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "7GbGfr_oLCat" }, "source": [ @@ -75,7 +68,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "4aHK2CYygXom" }, "source": [ @@ -84,10 +76,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "2LmLTREBf5ng" }, "outputs": [], @@ -106,7 +96,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "GmLTO_dpgge9" }, "source": [ @@ -117,10 +106,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "4Bf5FVHfganK" }, "outputs": [], @@ -133,7 +120,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "gu1BTzMIS1oy" }, "source": [ @@ -145,7 +131,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "fmb9rGaAUDO-" }, "source": [ @@ -156,10 +141,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "2AVAvyF_Vuh5" }, "outputs": [], @@ -192,10 +175,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "apcEXp7WhVBs" }, "outputs": [], @@ -216,7 +197,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "v9x68iN_X6FK" }, "source": [ @@ -227,10 +207,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "QmlTsUqfikVO" }, "outputs": [], @@ -254,10 +232,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Zsmu3aEId49i" }, "outputs": [], @@ -277,7 +253,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "-1TAJMlmfO8r" }, "source": [ @@ -290,10 +265,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "G1YXuxIqfygN" }, "outputs": [], @@ -312,7 +285,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "AXVFpoREhV6Y" }, "source": [ @@ -321,10 +293,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "aeSNfS7uhch0" }, "outputs": [], @@ -343,7 +313,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "1rAgRpxYhjpB" }, "source": [ @@ -354,10 +323,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "DC7zfcgviDTp" }, "outputs": [], @@ -383,15 +350,7 @@ "accelerator": "GPU", "colab": { "collapsed_sections": [], - "machine_shape": "hm", "name": "l10c03_nlp_constructing_text_generation_model.ipynb", - "private_outputs": true, - "provenance": [ - { - "file_id": "1_08R0eJLNBvyfAnkQ6DW8hEPESpeqhSU", - "timestamp": 1586478923659 - } - ], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c04_nlp_optimizing_the_text_generation_model.ipynb b/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c04_nlp_optimizing_the_text_generation_model.ipynb index efb756a32ee..63cc6df59fe 100644 --- a/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c04_nlp_optimizing_the_text_generation_model.ipynb +++ b/courses/udacity_intro_to_tensorflow_for_deep_learning/l10c04_nlp_optimizing_the_text_generation_model.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "punL79CN7Ox6" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "_ckMIh7O7s6D" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Ph5eir3Pf-3z" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "S5Uhzt6vVIB2" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "dCxhW3mtLmfb" }, "source": [ @@ -74,7 +68,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "4aHK2CYygXom" }, "source": [ @@ -83,10 +76,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "2LmLTREBf5ng" }, "outputs": [], @@ -105,7 +96,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "GmLTO_dpgge9" }, "source": [ @@ -116,10 +106,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "4Bf5FVHfganK" }, "outputs": [], @@ -132,7 +120,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Jz9x-7dWihxx" }, "source": [ @@ -146,7 +133,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "nWbMN_19jfRT" }, "source": [ @@ -155,10 +141,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "LRmPPJegovBe" }, "outputs": [], @@ -191,10 +175,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kIGedF3XjHj4" }, "outputs": [], @@ -223,7 +205,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "quoDmw_FkNBA" }, "source": [ @@ -232,10 +213,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kkLAf3HmkPSo" }, "outputs": [], @@ -260,7 +239,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "cECbqT-blMk-" }, "source": [ @@ -271,10 +249,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "7nHOp6uWlP_P" }, "outputs": [], @@ -293,7 +269,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "MgvIz20nlQcq" }, "source": [ @@ -302,10 +277,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "rOqmmarvlSLh" }, "outputs": [], @@ -324,7 +297,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ISLZZGlQlSxh" }, "source": [ @@ -335,10 +307,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "P96oVMk3lU7y" }, "outputs": [], @@ -362,7 +332,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "upgJKV8_oRU9" }, "source": [ @@ -375,10 +344,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "lZe9gaJeoGVP" }, "outputs": [], @@ -398,10 +365,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ee7WKgRGrJy1" }, "outputs": [], @@ -431,13 +396,6 @@ "colab": { "collapsed_sections": [], "name": "l10c04_nlp_optimizing_the_text_generation_model.ipynb", - "private_outputs": true, - "provenance": [ - { - "file_id": "1l5jAJ3ByHzk2G5aMUjeNPo0SV7ZiZ554", - "timestamp": 1586479234766 - } - ], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_lite/tflite_c01_linear_regression.ipynb b/courses/udacity_intro_to_tensorflow_lite/tflite_c01_linear_regression.ipynb index 1504e119bb8..6a3836a52b6 100644 --- a/courses/udacity_intro_to_tensorflow_lite/tflite_c01_linear_regression.ipynb +++ b/courses/udacity_intro_to_tensorflow_lite/tflite_c01_linear_regression.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -15,8 +14,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UysiGN3tGQHY" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "2hOrvdmswy5O" }, "source": [ @@ -68,7 +63,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "W-VhTkyTGcaQ" }, "source": [ @@ -79,8 +73,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "dy4BcTjBFTWx" }, "outputs": [], @@ -98,7 +90,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ceibQLDeGhI4" }, "source": [ @@ -109,8 +100,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "YIBCsjQNF46Z" }, "outputs": [], @@ -129,7 +118,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "EjsB-QICGt6L" }, "source": [ @@ -140,8 +128,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "a9xcbK7QHOfm" }, "outputs": [], @@ -153,7 +139,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RRtsNwkiGxcO" }, "source": [ @@ -164,8 +149,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "TtM8yKTVTpD3" }, "outputs": [], @@ -179,8 +162,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "4idYulcNHTdO" }, "outputs": [], @@ -192,7 +173,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "HgGvp2yBG25Q" }, "source": [ @@ -203,8 +183,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "DOt94wIWF8m7" }, "outputs": [], @@ -222,8 +200,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "JGYkEK08F8qK" }, "outputs": [], @@ -249,7 +225,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "t1gQGH1KWAgW" }, "source": [ @@ -260,8 +235,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ccvQ1mEJVrqo" }, "outputs": [], @@ -273,7 +246,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "WbugMH6yKvtd" }, "source": [ @@ -284,8 +256,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FOAIMETeJmkc" }, "outputs": [], @@ -303,7 +273,6 @@ "colab": { "collapsed_sections": [], "name": "tflite_c01_linear_regression.ipynb", - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_lite/tflite_c02_transfer_learning.ipynb b/courses/udacity_intro_to_tensorflow_lite/tflite_c02_transfer_learning.ipynb index 3802b7ff418..b7a28918879 100644 --- a/courses/udacity_intro_to_tensorflow_lite/tflite_c02_transfer_learning.ipynb +++ b/courses/udacity_intro_to_tensorflow_lite/tflite_c02_transfer_learning.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -15,8 +14,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "oYM61xrTsP5d" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "aFNhz34Svuhe" }, "source": [ @@ -68,7 +63,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "bL54LWCHt5q5" }, "source": [ @@ -79,8 +73,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "dlauq-4FWGZM" }, "outputs": [], @@ -102,7 +94,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "mmaHHH7Pvmth" }, "source": [ @@ -116,8 +107,6 @@ "execution_count": null, "metadata": { "cellView": "both", - "colab": {}, - "colab_type": "code", "id": "FlsEcKVeuCnf" }, "outputs": [], @@ -133,7 +122,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "sYUsgwCBv87A" }, "source": [ @@ -143,7 +131,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "8nqVX3KYwGPh" }, "source": [ @@ -156,8 +143,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "jGvpkDj4wBup" }, "outputs": [], @@ -169,7 +154,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YkF4Boe5wN7N" }, "source": [ @@ -182,8 +166,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "SQ9xK9F2wGD8" }, "outputs": [], @@ -202,7 +184,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "pmXQYXNWwf19" }, "source": [ @@ -217,8 +198,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "y7UyXblSwkUS" }, "outputs": [], @@ -231,7 +210,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "1nrDR8CnwrVk" }, "source": [ @@ -243,8 +221,6 @@ "execution_count": null, "metadata": { "cellView": "both", - "colab": {}, - "colab_type": "code", "id": "zAEUG7vawxLm" }, "outputs": [], @@ -256,8 +232,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "fHEC9mbswxvM" }, "outputs": [], @@ -270,7 +244,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ghQhZjgEw1cK" }, "source": [ @@ -281,8 +254,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gz0xsMCjwx54" }, "outputs": [], @@ -296,7 +267,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "FS_gVStowW3G" }, "source": [ @@ -312,8 +282,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "RaJW3XrPyFiF" }, "outputs": [], @@ -324,7 +292,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "wd0KfstqaUmE" }, "source": [ @@ -335,8 +302,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "svvDrt3WUrrm" }, "outputs": [], @@ -351,8 +316,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "50FYNIb1dmJH" }, "outputs": [], @@ -370,8 +333,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "1PzLoQK0Zadv" }, "outputs": [], @@ -392,7 +353,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "u2e5WupIw2N2" }, "source": [ @@ -403,8 +363,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "9f3yBUvkd_VJ" }, "outputs": [], @@ -425,8 +383,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "w_YKX2Qnfg6x" }, "outputs": [], @@ -440,7 +396,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "u_psFoTeLpHU" }, "source": [ @@ -451,8 +406,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "XaSb5nVzHcVv" }, "outputs": [], @@ -463,7 +416,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "fZqRAg1uz1Nu" }, "source": [ @@ -474,8 +426,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "yJMue5YgnwtN" }, "outputs": [], @@ -487,8 +437,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "SOQF4cOan0SY" }, "outputs": [], @@ -501,8 +449,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FY7QGBgBytwX" }, "outputs": [], @@ -514,8 +460,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tIhPyMISz952" }, "outputs": [], @@ -529,7 +473,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "XxLiLC8n0H16" }, "source": [ @@ -539,7 +482,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "1aUYvCpfWmrQ" }, "source": [ @@ -550,8 +492,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "dqJRyIg8Wl1n" }, "outputs": [], @@ -562,7 +502,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "AudcNjT0UtfF" }, "source": [ @@ -576,8 +515,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "WmSr2-yZoUhz" }, "outputs": [], @@ -588,7 +525,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YpCijI08UxP0" }, "source": [ @@ -600,8 +536,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "clM_dTIkWdIa" }, "outputs": [], @@ -615,8 +549,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "0oPkAxDvUias" }, "outputs": [], @@ -627,7 +559,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "IGUAVTqXVfnu" }, "source": [ @@ -639,7 +570,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "cPVdjaEJVkHy" }, "source": [ @@ -652,8 +582,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "eQi1aO2cVhoL" }, "outputs": [], @@ -664,7 +592,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "snwssESbVtFw" }, "source": [ @@ -675,8 +602,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tUEgr46WVsqd" }, "outputs": [], @@ -691,7 +616,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "BbTF6nd1KG2o" }, "source": [ @@ -702,8 +626,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "dg2NkVTmLUdJ" }, "outputs": [], @@ -721,8 +643,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "snJQVs9JNglv" }, "outputs": [], @@ -747,8 +667,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "YMTWNqPpNiAI" }, "outputs": [], @@ -783,7 +701,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "fK_CTyL3XQt1" }, "source": [ @@ -795,8 +712,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "1-lbnicPNkZs" }, "outputs": [], @@ -812,7 +727,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "PmZRieHmKLY5" }, "source": [ @@ -825,8 +739,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "0jJAxrQB2VFw" }, "outputs": [], @@ -847,7 +759,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "BDlmpjC6VnFZ" }, "source": [ @@ -857,7 +768,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_1ja_WA0WZOH" }, "source": [ @@ -868,8 +778,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "fzLKEBrfTREA" }, "outputs": [], @@ -881,8 +789,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Qn7ukNQCSewb" }, "outputs": [], @@ -900,8 +806,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "xVKKWUG8UMO5" }, "outputs": [], @@ -913,8 +817,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "l_w_-UdlS9Vi" }, "outputs": [], @@ -926,8 +828,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Giva6EHwWm6Y" }, "outputs": [], @@ -944,7 +844,6 @@ "colab": { "collapsed_sections": [], "name": "tflite_c02_transfer_learning.ipynb", - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_lite/tflite_c03_exercise_convert_model_to_tflite.ipynb b/courses/udacity_intro_to_tensorflow_lite/tflite_c03_exercise_convert_model_to_tflite.ipynb index 84f5b11d683..167a801f30d 100644 --- a/courses/udacity_intro_to_tensorflow_lite/tflite_c03_exercise_convert_model_to_tflite.ipynb +++ b/courses/udacity_intro_to_tensorflow_lite/tflite_c03_exercise_convert_model_to_tflite.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -15,8 +14,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "KlUrRaN4w3ct" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "H3UojxdNw8J1" }, "source": [ @@ -68,7 +63,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "pXX-pi1r6NfG" }, "source": [ @@ -94,7 +88,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "rjOAfhgd__Sp" }, "source": [ @@ -105,8 +98,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "pfyZKowNAQ4j" }, "outputs": [], @@ -129,7 +120,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "tadPBTEiAprt" }, "source": [ @@ -140,8 +130,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Ds9gfZKzAnkX" }, "outputs": [], @@ -160,8 +148,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "-eAv71FRm4JE" }, "outputs": [], @@ -174,8 +160,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "hXe6jNokqX3_" }, "outputs": [], @@ -188,8 +172,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "q0RxpwTmQN-y" }, "outputs": [], @@ -200,7 +182,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ZAkuq0V0Aw2X" }, "source": [ @@ -210,7 +191,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_5SIivkunKCC" }, "source": [ @@ -221,8 +201,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nQMIkJf9AvJ4" }, "outputs": [], @@ -243,8 +221,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "oEQP743aMv4C" }, "outputs": [], @@ -257,7 +233,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "JM4HfIJtnNEk" }, "source": [ @@ -268,8 +243,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "zOL4gSUARFjM" }, "outputs": [], @@ -286,7 +259,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "M-topQaOm_LM" }, "source": [ @@ -297,8 +269,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "4gsYqdIlEFVg" }, "outputs": [], @@ -330,8 +300,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kDqcwksFB1bh" }, "outputs": [], @@ -363,7 +331,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "zEMOz-LDnxgD" }, "source": [ @@ -374,8 +341,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "JGlNoRtzCP4_" }, "outputs": [], @@ -388,7 +353,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "TZT9-7w9n4YO" }, "source": [ @@ -399,8 +363,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "9dq78KBkCV2_" }, "outputs": [], @@ -417,8 +379,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "EDGiYrBdE6fl" }, "outputs": [], @@ -438,8 +398,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "SLskPWHsG4Nj" }, "outputs": [], @@ -451,8 +409,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "RbcS9C00CzGe" }, "outputs": [], @@ -471,8 +427,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "q5PWCDsTC3El" }, "outputs": [], @@ -486,7 +440,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "SR6wFcQ1Fglm" }, "source": [ @@ -497,8 +450,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "O3IFOcUEIzQx" }, "outputs": [], @@ -515,8 +466,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "rKcToCBEC-Bu" }, "outputs": [], @@ -539,8 +488,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "kSjTmi05Tyod" }, "outputs": [], @@ -587,8 +534,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "ZZwg0wFaVXhZ" }, "outputs": [], @@ -606,7 +551,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "076bo3FMpRDb" }, "source": [ @@ -619,8 +563,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "XsPXqPlgZPjE" }, "outputs": [], @@ -636,7 +578,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "VyBVNwAzH3Oe" }, "source": [ @@ -646,7 +587,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "pdfa5L6wH87u" }, "source": [ @@ -656,7 +596,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "iLY6X8P90L0P" }, "source": [ @@ -667,8 +606,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "G3bjzLj10OJv" }, "outputs": [], @@ -680,8 +617,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "pVrBZv1-0Py-" }, "outputs": [], @@ -699,8 +634,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nX0N0M8u0R2s" }, "outputs": [], @@ -712,8 +645,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "LvLht1QM0W8k" }, "outputs": [], @@ -725,8 +656,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FdOq-4sT0X95" }, "outputs": [], @@ -743,7 +672,6 @@ "colab": { "collapsed_sections": [], "name": "tflite_c03_exercise_convert_model_to_tflite.ipynb", - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_lite/tflite_c04_exercise_convert_model_to_tflite_solution.ipynb b/courses/udacity_intro_to_tensorflow_lite/tflite_c04_exercise_convert_model_to_tflite_solution.ipynb index b6f845ae5e5..3f23aafdf4a 100644 --- a/courses/udacity_intro_to_tensorflow_lite/tflite_c04_exercise_convert_model_to_tflite_solution.ipynb +++ b/courses/udacity_intro_to_tensorflow_lite/tflite_c04_exercise_convert_model_to_tflite_solution.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -15,8 +14,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "06ndLauQxiQm" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Dtav_aq2xh6n" }, "source": [ @@ -68,7 +63,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Ka96-ajYzxVU" }, "source": [ @@ -94,7 +88,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "rjOAfhgd__Sp" }, "source": [ @@ -105,8 +98,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "pfyZKowNAQ4j" }, "outputs": [], @@ -127,7 +118,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "tadPBTEiAprt" }, "source": [ @@ -138,8 +128,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "jmSkLCyRKqKB" }, "outputs": [], @@ -152,8 +140,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "XcNwi6nFKneZ" }, "outputs": [], @@ -171,8 +157,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "-eAv71FRm4JE" }, "outputs": [], @@ -185,8 +169,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "hXe6jNokqX3_" }, "outputs": [], @@ -199,8 +181,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "iubWCThbdN8K" }, "outputs": [], @@ -211,7 +191,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ZAkuq0V0Aw2X" }, "source": [ @@ -221,7 +200,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_5SIivkunKCC" }, "source": [ @@ -232,8 +210,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "BwyhsyGydHDl" }, "outputs": [], @@ -249,8 +225,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "HAlBlXOUMwqe" }, "outputs": [], @@ -261,7 +235,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "JM4HfIJtnNEk" }, "source": [ @@ -272,8 +245,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "uxe2I3oxLDhq" }, "outputs": [], @@ -286,7 +257,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "M-topQaOm_LM" }, "source": [ @@ -297,8 +267,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kDqcwksFB1bh" }, "outputs": [], @@ -321,7 +289,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "zEMOz-LDnxgD" }, "source": [ @@ -332,8 +299,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "1fk2faPsjqfU" }, "outputs": [], @@ -345,8 +310,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "DGJe_CNvjnhT" }, "outputs": [], @@ -358,8 +321,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "JGlNoRtzCP4_" }, "outputs": [], @@ -372,7 +333,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "TZT9-7w9n4YO" }, "source": [ @@ -383,8 +343,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "9dq78KBkCV2_" }, "outputs": [], @@ -398,8 +356,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "EDGiYrBdE6fl" }, "outputs": [], @@ -419,8 +375,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "RbcS9C00CzGe" }, "outputs": [], @@ -435,8 +389,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "q5PWCDsTC3El" }, "outputs": [], @@ -450,7 +402,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "SR6wFcQ1Fglm" }, "source": [ @@ -461,8 +412,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "rKcToCBEC-Bu" }, "outputs": [], @@ -479,8 +428,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "E8EpFpIBFkq8" }, "outputs": [], @@ -503,8 +450,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "kSjTmi05Tyod" }, "outputs": [], @@ -551,8 +496,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "ZZwg0wFaVXhZ" }, "outputs": [], @@ -570,7 +513,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "076bo3FMpRDb" }, "source": [ @@ -583,8 +525,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "XsPXqPlgZPjE" }, "outputs": [], @@ -601,7 +541,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "H8t7_jRiz9Vw" }, "source": [ @@ -612,8 +551,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Fi09nIps0gBu" }, "outputs": [], @@ -625,8 +562,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "sF7EZ63J0hZs" }, "outputs": [], @@ -644,8 +579,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "uM35O-uv0iWS" }, "outputs": [], @@ -657,8 +590,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "aR20r4qW0jVm" }, "outputs": [], @@ -670,8 +601,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tjk4537X0kWN" }, "outputs": [], @@ -688,7 +617,6 @@ "colab": { "collapsed_sections": [], "name": "tflite_c04_exercise_convert_model_to_tflite_solution.ipynb", - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_lite/tflite_c05_exercise_rock_paper_scissors.ipynb b/courses/udacity_intro_to_tensorflow_lite/tflite_c05_exercise_rock_paper_scissors.ipynb index 0b5176f0914..3d9f8cf25d6 100644 --- a/courses/udacity_intro_to_tensorflow_lite/tflite_c05_exercise_rock_paper_scissors.ipynb +++ b/courses/udacity_intro_to_tensorflow_lite/tflite_c05_exercise_rock_paper_scissors.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -15,8 +14,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "oYM61xrTsP5d" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "pAI9358VyAsE" }, "source": [ @@ -68,7 +63,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "bL54LWCHt5q5" }, "source": [ @@ -79,8 +73,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "dlauq-4FWGZM" }, "outputs": [], @@ -102,7 +94,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "mmaHHH7Pvmth" }, "source": [ @@ -115,8 +106,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FlsEcKVeuCnf" }, "outputs": [], @@ -132,7 +121,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "sYUsgwCBv87A" }, "source": [ @@ -142,7 +130,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "8nqVX3KYwGPh" }, "source": [ @@ -155,8 +142,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "jGvpkDj4wBup" }, "outputs": [], @@ -168,7 +153,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YkF4Boe5wN7N" }, "source": [ @@ -181,8 +165,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "SQ9xK9F2wGD8" }, "outputs": [], @@ -202,7 +184,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "pmXQYXNWwf19" }, "source": [ @@ -217,8 +198,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "y7UyXblSwkUS" }, "outputs": [], @@ -231,7 +210,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "1nrDR8CnwrVk" }, "source": [ @@ -242,8 +220,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "zAEUG7vawxLm" }, "outputs": [], @@ -255,8 +231,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "fHEC9mbswxvM" }, "outputs": [], @@ -273,7 +247,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ghQhZjgEw1cK" }, "source": [ @@ -284,8 +257,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gz0xsMCjwx54" }, "outputs": [], @@ -299,7 +270,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "FS_gVStowW3G" }, "source": [ @@ -315,8 +285,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "RaJW3XrPyFiF" }, "outputs": [], @@ -328,8 +296,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "50FYNIb1dmJH" }, "outputs": [], @@ -349,7 +315,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "u2e5WupIw2N2" }, "source": [ @@ -360,8 +325,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "9f3yBUvkd_VJ" }, "outputs": [], @@ -382,8 +345,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "w_YKX2Qnfg6x" }, "outputs": [], @@ -397,7 +358,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "u_psFoTeLpHU" }, "source": [ @@ -408,8 +368,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "XaSb5nVzHcVv" }, "outputs": [], @@ -420,7 +378,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "fZqRAg1uz1Nu" }, "source": [ @@ -431,8 +388,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "yJMue5YgnwtN" }, "outputs": [], @@ -444,7 +399,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "uVrnAWjqCMxs" }, "source": [ @@ -455,8 +409,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "SOQF4cOan0SY" }, "outputs": [], @@ -469,8 +421,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FY7QGBgBytwX" }, "outputs": [], @@ -482,8 +432,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tIhPyMISz952" }, "outputs": [], @@ -497,7 +445,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "XxLiLC8n0H16" }, "source": [ @@ -508,8 +455,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "WmSr2-yZoUhz" }, "outputs": [], @@ -529,7 +474,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "BbTF6nd1KG2o" }, "source": [ @@ -541,8 +485,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "dg2NkVTmLUdJ" }, "outputs": [], @@ -565,8 +507,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "snJQVs9JNglv" }, "outputs": [], @@ -592,8 +532,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "YMTWNqPpNiAI" }, "outputs": [], @@ -630,8 +568,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "1-lbnicPNkZs" }, "outputs": [], @@ -647,7 +583,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "PmZRieHmKLY5" }, "source": [ @@ -660,8 +595,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "0jJAxrQB2VFw" }, "outputs": [], @@ -681,7 +614,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "BDlmpjC6VnFZ" }, "source": [ @@ -691,7 +623,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_1ja_WA0WZOH" }, "source": [ @@ -702,8 +633,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "fzLKEBrfTREA" }, "outputs": [], @@ -715,8 +644,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Qn7ukNQCSewb" }, "outputs": [], @@ -734,8 +661,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "xVKKWUG8UMO5" }, "outputs": [], @@ -747,8 +672,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "l_w_-UdlS9Vi" }, "outputs": [], @@ -760,8 +683,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Giva6EHwWm6Y" }, "outputs": [], @@ -778,7 +699,6 @@ "colab": { "collapsed_sections": [], "name": "tflite_c05_exercise_rock_paper_scissors.ipynb", - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/courses/udacity_intro_to_tensorflow_lite/tflite_c06_exercise_rock_paper_scissors_solution.ipynb b/courses/udacity_intro_to_tensorflow_lite/tflite_c06_exercise_rock_paper_scissors_solution.ipynb index 84444fce0bf..a43c24f2386 100644 --- a/courses/udacity_intro_to_tensorflow_lite/tflite_c06_exercise_rock_paper_scissors_solution.ipynb +++ b/courses/udacity_intro_to_tensorflow_lite/tflite_c06_exercise_rock_paper_scissors_solution.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Za8-Nr5k11fh" }, "source": [ @@ -15,8 +14,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "Eq10uEbw0E4l" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "oYM61xrTsP5d" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "xWFpUd1yy3gt" }, "source": [ @@ -68,7 +63,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "bL54LWCHt5q5" }, "source": [ @@ -79,8 +73,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "dlauq-4FWGZM" }, "outputs": [], @@ -102,7 +94,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "mmaHHH7Pvmth" }, "source": [ @@ -115,8 +106,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FlsEcKVeuCnf" }, "outputs": [], @@ -132,7 +121,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "sYUsgwCBv87A" }, "source": [ @@ -142,7 +130,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "8nqVX3KYwGPh" }, "source": [ @@ -155,8 +142,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "jGvpkDj4wBup" }, "outputs": [], @@ -168,7 +153,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YkF4Boe5wN7N" }, "source": [ @@ -181,8 +165,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "SQ9xK9F2wGD8" }, "outputs": [], @@ -200,7 +182,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "pmXQYXNWwf19" }, "source": [ @@ -215,8 +196,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "y7UyXblSwkUS" }, "outputs": [], @@ -229,7 +208,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "1nrDR8CnwrVk" }, "source": [ @@ -240,8 +218,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "zAEUG7vawxLm" }, "outputs": [], @@ -253,8 +229,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "fHEC9mbswxvM" }, "outputs": [], @@ -267,7 +241,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ghQhZjgEw1cK" }, "source": [ @@ -278,8 +251,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "gz0xsMCjwx54" }, "outputs": [], @@ -293,7 +264,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "FS_gVStowW3G" }, "source": [ @@ -309,8 +279,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "RaJW3XrPyFiF" }, "outputs": [], @@ -322,8 +290,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "50FYNIb1dmJH" }, "outputs": [], @@ -342,7 +308,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "u2e5WupIw2N2" }, "source": [ @@ -353,8 +318,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "9f3yBUvkd_VJ" }, "outputs": [], @@ -375,8 +338,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "w_YKX2Qnfg6x" }, "outputs": [], @@ -390,7 +351,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "u_psFoTeLpHU" }, "source": [ @@ -401,8 +361,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "XaSb5nVzHcVv" }, "outputs": [], @@ -413,7 +371,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "fZqRAg1uz1Nu" }, "source": [ @@ -424,8 +381,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "yJMue5YgnwtN" }, "outputs": [], @@ -437,8 +392,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "SOQF4cOan0SY" }, "outputs": [], @@ -451,8 +404,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FY7QGBgBytwX" }, "outputs": [], @@ -464,8 +415,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "tIhPyMISz952" }, "outputs": [], @@ -479,7 +428,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "XxLiLC8n0H16" }, "source": [ @@ -490,8 +438,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "WmSr2-yZoUhz" }, "outputs": [], @@ -508,7 +454,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "BbTF6nd1KG2o" }, "source": [ @@ -519,8 +464,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "dg2NkVTmLUdJ" }, "outputs": [], @@ -541,8 +484,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "snJQVs9JNglv" }, "outputs": [], @@ -567,8 +508,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "YMTWNqPpNiAI" }, "outputs": [], @@ -606,8 +545,6 @@ "execution_count": null, "metadata": { "cellView": "both", - "colab": {}, - "colab_type": "code", "id": "1-lbnicPNkZs" }, "outputs": [], @@ -623,7 +560,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "PmZRieHmKLY5" }, "source": [ @@ -636,8 +572,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "0jJAxrQB2VFw" }, "outputs": [], @@ -656,7 +590,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "BDlmpjC6VnFZ" }, "source": [ @@ -666,7 +599,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_1ja_WA0WZOH" }, "source": [ @@ -677,8 +609,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "fzLKEBrfTREA" }, "outputs": [], @@ -690,8 +620,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Qn7ukNQCSewb" }, "outputs": [], @@ -709,8 +637,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "xVKKWUG8UMO5" }, "outputs": [], @@ -722,8 +648,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "l_w_-UdlS9Vi" }, "outputs": [], @@ -735,8 +659,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Giva6EHwWm6Y" }, "outputs": [], @@ -753,7 +675,6 @@ "colab": { "collapsed_sections": [], "name": "tflite_c06_exercise_rock_paper_scissors_solution.ipynb", - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/lite/codelabs/digit_classifier/ml/step2_train_ml_model.ipynb b/lite/codelabs/digit_classifier/ml/step2_train_ml_model.ipynb index 2b353ca5763..3d1dbd90150 100644 --- a/lite/codelabs/digit_classifier/ml/step2_train_ml_model.ipynb +++ b/lite/codelabs/digit_classifier/ml/step2_train_ml_model.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "V2RPZQF05ngq" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "PEig-M385xKS" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "9afYQkHI52mr" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "v8hkClAF58p6" }, "source": [ @@ -57,7 +52,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Yu1BOwfPzaIy" }, "source": [ @@ -78,7 +72,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "EXyJkL4WnqyS" }, "source": [ @@ -88,7 +81,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "XXX8WpQI5U6_" }, "source": [ @@ -97,10 +89,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kS_mq4yAlXHZ" }, "outputs": [], @@ -120,7 +110,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "r0WlLrJcnwWp" }, "source": [ @@ -133,10 +122,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "B5REuMrblewK" }, "outputs": [], @@ -149,10 +136,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "REY5lDDylpFh" }, "outputs": [], @@ -165,10 +150,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "SAOE84IplyWR" }, "outputs": [], @@ -188,7 +171,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "9v-Wp3TxpLX6" }, "source": [ @@ -203,10 +185,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "IWgBGmaplzcp" }, "outputs": [], @@ -235,7 +215,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "WFHKkb7gcJei" }, "source": [ @@ -244,10 +223,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "y7V6-UQqcuK-" }, "outputs": [], @@ -258,7 +235,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "n16JkSyNc5cf" }, "source": [ @@ -268,7 +244,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "za35DFJ5uFkX" }, "source": [ @@ -278,10 +253,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "sJI8nqFWmMwC" }, "outputs": [], @@ -295,7 +268,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "7-qv9-9_cUb7" }, "source": [ @@ -304,10 +276,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "PdlXEyUImeXC" }, "outputs": [], @@ -348,7 +318,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "AWROBI4iv9fY" }, "source": [ @@ -358,7 +327,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "bV99Izwykb-J" }, "source": [ @@ -367,10 +335,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "2fXStjR4mzkR" }, "outputs": [], @@ -387,7 +353,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "tfer6hI8ljEh" }, "source": [ @@ -398,10 +363,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "yhY86SRTmtGC" }, "outputs": [], @@ -420,7 +383,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ahTP3T60nYJb" }, "source": [ @@ -431,10 +393,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "YvszGa11ne6Q" }, "outputs": [], @@ -489,7 +449,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ItyEwAdCCVw6" }, "source": [ @@ -502,10 +461,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Q_Z5yLxrwbpI" }, "outputs": [], @@ -525,7 +482,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "C4ASalaLIbu2" }, "source": [ @@ -539,8 +495,6 @@ "colab": { "collapsed_sections": [], "name": "step2_train_ml_model.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/lite/codelabs/digit_classifier/ml/step7_improve_accuracy.ipynb b/lite/codelabs/digit_classifier/ml/step7_improve_accuracy.ipynb index bd99bf61745..2a3234820f2 100644 --- a/lite/codelabs/digit_classifier/ml/step7_improve_accuracy.ipynb +++ b/lite/codelabs/digit_classifier/ml/step7_improve_accuracy.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "5HEkgJW62Zhq" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "ZvnzHC7lmzWB" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "mxPxpHKHMAkl" }, "source": [ @@ -62,7 +58,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "w0qKcVsBNVyL" }, "source": [ @@ -74,7 +69,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "p8bO0hupMdZM" }, "source": [ @@ -85,10 +79,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "nImr6z7TMBJQ" }, "outputs": [], @@ -107,7 +99,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Rivc81WyRpXG" }, "source": [ @@ -116,10 +107,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "ZGd5hkioMpcr" }, "outputs": [], @@ -140,7 +129,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "0SbDbl3HSHh1" }, "source": [ @@ -149,10 +137,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "JjoUeI5WSE_H" }, "outputs": [], @@ -176,7 +162,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "QGgIJ4pYThkm" }, "source": [ @@ -185,10 +170,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "W2cYWUbkTb8Q" }, "outputs": [], @@ -205,7 +188,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "lEtLCGS0Ufag" }, "source": [ @@ -216,10 +198,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "xptCfTnBTgvm" }, "outputs": [], @@ -239,7 +219,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "phB_hWqFWOQR" }, "source": [ @@ -248,10 +227,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "2V0KsvSLVE6I" }, "outputs": [], @@ -288,7 +265,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "GulcBpSRc3CO" }, "source": [ @@ -307,10 +283,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "AC5l3W7bY1td" }, "outputs": [], @@ -332,7 +306,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "wy1IfuRZjjec" }, "source": [ @@ -341,10 +314,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "1G-tWDc2aia1" }, "outputs": [], @@ -364,7 +335,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "G-zys-yNkL4b" }, "source": [ @@ -373,10 +343,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "IPnP4xPbjqWi" }, "outputs": [], @@ -387,7 +355,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "AgNlTPPVlDqX" }, "source": [ @@ -397,7 +364,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Xls8oqBnlcZj" }, "source": [ @@ -408,10 +374,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "DX4XRgc9k-6s" }, "outputs": [], @@ -423,7 +387,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "3UlqZ1XnnJRu" }, "source": [ @@ -433,7 +396,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "fsI4mHtbpE_A" }, "source": [ @@ -444,10 +406,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "a0l6HcBTmh7-" }, "outputs": [], @@ -470,7 +430,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "CAp7mKIkrfjY" }, "source": [ @@ -484,8 +443,6 @@ "colab": { "collapsed_sections": [], "name": "step7_improve_accuracy.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/lite/codelabs/flower_classification/ml/Flower_Classification_with_TFLite_Model_Maker.ipynb b/lite/codelabs/flower_classification/ml/Flower_Classification_with_TFLite_Model_Maker.ipynb index 99b1240a78c..891444e026c 100644 --- a/lite/codelabs/flower_classification/ml/Flower_Classification_with_TFLite_Model_Maker.ipynb +++ b/lite/codelabs/flower_classification/ml/Flower_Classification_with_TFLite_Model_Maker.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "h2q27gKz1H20" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "TUfAcER1oUS6" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Gb7qyhNL1yWt" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "nDABAblytltI" }, "source": [ @@ -68,7 +63,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "m86-Nh4pMHqY" }, "source": [ @@ -80,7 +74,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "bcLF2PKkSbV3" }, "source": [ @@ -91,10 +84,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "6cv3K3oaksJv" }, "outputs": [], @@ -105,7 +96,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Gx1HGRoFQ54j" }, "source": [ @@ -114,10 +104,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "XtxiUeZEiXpt" }, "outputs": [], @@ -138,7 +126,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "KKRaYHABpob5" }, "source": [ @@ -148,7 +135,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "SiZZ5DHXotaW" }, "source": [ @@ -159,11 +145,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "3jz5x0JoskPv" }, "outputs": [], @@ -177,7 +161,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "a55MR6i6nuDm" }, "source": [ @@ -189,7 +172,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "NNRNv_mloS89" }, "source": [ @@ -199,7 +181,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "w-VDriAdsowu" }, "source": [ @@ -210,7 +191,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "6ahtcO86tZBL" }, "source": [ @@ -219,10 +199,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "lANoNS_gtdH1" }, "outputs": [], @@ -234,7 +212,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Y_9IWyIztuRF" }, "source": [ @@ -243,10 +220,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "yRXMZbrwtyRD" }, "outputs": [], @@ -257,7 +232,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "oxU2fDr-t2Ya" }, "source": [ @@ -266,10 +240,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "wQr02VxJt6Cs" }, "outputs": [], @@ -280,7 +252,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "eVZw9zU8t84y" }, "source": [ @@ -290,10 +261,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Zb-eIzfluCoa" }, "outputs": [], @@ -304,7 +273,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "pyju1qc_v-wy" }, "source": [ @@ -319,28 +287,13 @@ "colab": { "collapsed_sections": [], "name": "Flower_Classification_with_TFLite_Model_Maker.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", - "language": "python", "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 0 } diff --git a/lite/examples/digit_classifier/ml/mnist_tflite.ipynb b/lite/examples/digit_classifier/ml/mnist_tflite.ipynb index 714070a6f8b..402c86d8f02 100644 --- a/lite/examples/digit_classifier/ml/mnist_tflite.ipynb +++ b/lite/examples/digit_classifier/ml/mnist_tflite.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Tce3stUlHN0L" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "tuOe1ymfHZPu" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "MfBg1C5NB3X0" }, "source": [ @@ -56,7 +52,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "xHxb-dlhMIzW" }, "source": [ @@ -68,7 +63,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "MUXex9ctTuDB" }, "source": [ @@ -77,10 +71,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "kS_mq4yAlXHZ" }, "outputs": [], @@ -116,7 +108,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "r0WlLrJcnwWp" }, "source": [ @@ -129,10 +120,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "B5REuMrblewK" }, "outputs": [], @@ -152,13 +141,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", - "id": "REY5lDDylpFh", - "private_outputs": true, - "toc_visible": true + "id": "REY5lDDylpFh" }, "outputs": [], "source": [ @@ -169,10 +154,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "SAOE84IplyWR" }, "outputs": [], @@ -185,7 +168,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "9v-Wp3TxpLX6" }, "source": [ @@ -195,10 +177,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "IWgBGmaplzcp" }, "outputs": [], @@ -228,10 +208,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "V6SOZuLRmEzS" }, "outputs": [], @@ -243,7 +221,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "za35DFJ5uFkX" }, "source": [ @@ -253,10 +230,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "sJI8nqFWmMwC" }, "outputs": [], @@ -269,10 +244,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "PdlXEyUImeXC" }, "outputs": [], @@ -288,7 +261,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "AWROBI4iv9fY" }, "source": [ @@ -297,10 +269,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "2fXStjR4mzkR" }, "outputs": [], @@ -317,10 +287,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "Q_Z5yLxrwbpI" }, "outputs": [], @@ -338,7 +306,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "3TvDxaYU2ui7" }, "source": [ @@ -347,10 +314,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "fFtIESwrx7cR" }, "outputs": [], @@ -378,10 +343,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "xPtbtEJ2uacB" }, "outputs": [], @@ -401,30 +364,14 @@ ], "metadata": { "accelerator": "GPU", - "anaconda-cloud": {}, "colab": { "collapsed_sections": [], "name": "mnist_tflite.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", - "language": "python", "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" } }, "nbformat": 4, diff --git a/lite/examples/gesture_classification/ml/tensorflowjs_to_tflite_colab_notebook.ipynb b/lite/examples/gesture_classification/ml/tensorflowjs_to_tflite_colab_notebook.ipynb index d0576203585..1d8a0c6646b 100644 --- a/lite/examples/gesture_classification/ml/tensorflowjs_to_tflite_colab_notebook.ipynb +++ b/lite/examples/gesture_classification/ml/tensorflowjs_to_tflite_colab_notebook.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Tce3stUlHN0L" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "tuOe1ymfHZPu" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "D6zc4Q6bxmHM" }, "source": [ @@ -52,7 +48,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "MfBg1C5NB3X0" }, "source": [ @@ -73,7 +68,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "yVMF3Q_HnJ09" }, "source": [ @@ -82,10 +76,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FbMsNJ4PAq2j" }, "outputs": [], @@ -95,10 +87,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "WZGFStffPj_Z" }, "outputs": [], @@ -124,7 +114,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Lh7zgNXVx8ML" }, "source": [ @@ -133,10 +122,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "JrMA8frMx7aa" }, "outputs": [], @@ -147,7 +134,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ct36DONNnNZJ" }, "source": [ @@ -158,10 +144,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "s-_80hGtMTFb" }, "outputs": [], @@ -172,7 +156,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "_ctAZ--FnStM" }, "source": [ @@ -181,10 +164,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "hrzzoZP5oK7S" }, "outputs": [], @@ -201,7 +182,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "RA0iINpNiK_p" }, "source": [ @@ -212,10 +192,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "8QMjVgxVggQJ" }, "outputs": [], @@ -309,10 +287,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "qUeoHM-Jg7uv" }, "outputs": [], @@ -332,10 +308,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "G7noTBgTg8Fz" }, "outputs": [], @@ -349,10 +323,7 @@ "colab": { "collapsed_sections": [], "name": "tensorflowjs_to_tflite_colab_notebook.ipynb", - "private_outputs": true, - "provenance": [], - "toc_visible": true, - "version": "0.3.2" + "toc_visible": true }, "kernelspec": { "display_name": "Python 3", diff --git a/lite/examples/recommendation/ml/ondevice_recommendation.ipynb b/lite/examples/recommendation/ml/ondevice_recommendation.ipynb index c11371c21e4..698c418fba5 100644 --- a/lite/examples/recommendation/ml/ondevice_recommendation.ipynb +++ b/lite/examples/recommendation/ml/ondevice_recommendation.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "h2q27gKz1H20" }, "source": [ @@ -15,8 +14,6 @@ "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "TUfAcER1oUS6" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Gb7qyhNL1yWt" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Fw5Y7snSuG51" }, "source": [ @@ -64,7 +59,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "fyYiyNxVp6mS" }, "source": [ @@ -74,7 +68,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "CShg7PXmqGUJ" }, "source": [ @@ -93,7 +86,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "qRBdzEu3qGFP" }, "source": [ @@ -103,7 +95,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "m86-Nh4pMHqY" }, "source": [ @@ -126,7 +117,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "bcLF2PKkSbV3" }, "source": [ @@ -139,8 +129,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "6cv3K3oaksJv" }, "outputs": [], @@ -153,7 +141,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "2BOGJnbVtCQQ" }, "source": [ @@ -174,8 +161,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "FQvryCfGtCQX" }, "outputs": [], @@ -191,7 +176,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "8zcEXFkgCz8g" }, "source": [ @@ -236,7 +220,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "XQcQ6AssuBN8" }, "source": [ @@ -261,8 +244,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "3gPKz5InxEbF" }, "outputs": [], @@ -286,7 +267,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "ObH_mcGcxS96" }, "source": [ @@ -311,8 +291,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "SH5r6AxHzGrS" }, "outputs": [], @@ -328,7 +306,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "qXMQ5D5JzSgv" }, "source": [ @@ -341,8 +318,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "og0qkYavz3Nt" }, "outputs": [], @@ -373,7 +348,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "A_omMjoT035u" }, "source": [ @@ -386,7 +360,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "N83Ev6nSwsUW" }, "source": [ @@ -397,7 +370,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "hUaXjqGBvnFP" }, "source": [ @@ -409,7 +381,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "bwr7pigOB7pT" }, "source": [ @@ -425,25 +396,14 @@ " \"topK\": 10,\n", " \"movieList\": \"sorted_movie_vocab.json\"\n", "}\n", - "```\n", - "\n" + "```\n" ] } ], "metadata": { "colab": { "collapsed_sections": [], - "last_runtime": { - "build_target": "//knowledge/hobbes/chat/analysis:notebook", - "kind": "shared" - }, - "name": "recommendation.ipynb", - "provenance": [ - { - "file_id": "17rRyzCXcZbyNMiu80_zHuEOUb7OSGpe9", - "timestamp": 1592804899406 - } - ], + "name": "ondevice_recommendation.ipynb", "toc_visible": true }, "kernelspec": { diff --git a/templates/notebook.ipynb b/templates/notebook.ipynb index 65436ced943..a3f81869348 100644 --- a/templates/notebook.ipynb +++ b/templates/notebook.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Tce3stUlHN0L" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "tuOe1ymfHZPu" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "MfBg1C5NB3X0" }, "source": [ @@ -58,7 +54,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "r6P32iYYV27b" }, "source": [ @@ -68,7 +63,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "xHxb-dlhMIzW" }, "source": [ @@ -80,7 +74,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "MUXex9ctTuDB" }, "source": [ @@ -89,10 +82,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "IqR2PQG4ZaZ0" }, "outputs": [], @@ -105,7 +96,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "1Eh-iCRVBm0p" }, "source": [ @@ -115,7 +105,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "UhNtHfuxCGVy" }, "source": [ @@ -125,7 +114,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "kKhmFeraTdEI" }, "source": [ @@ -137,7 +125,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "2V22fKegUtF9" }, "source": [ @@ -157,7 +144,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "YrsKXcPRUvK9" }, "source": [ @@ -183,7 +169,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "QKp40qS-DGEZ" }, "source": [ @@ -197,10 +182,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "KtylpxOmceaC" }, "outputs": [], @@ -214,10 +197,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "mMOeXVmbdilM" }, "outputs": [], @@ -233,10 +214,8 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { - "colab": {}, - "colab_type": "code", "id": "U82B_tH2d294" }, "outputs": [], @@ -249,7 +228,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "g3-lzxbCZi-H" }, "source": [ @@ -261,7 +239,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "TJdqBNBbS78n" }, "source": [ @@ -283,7 +260,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "78HBT9cQXJko" }, "source": [ @@ -303,8 +279,6 @@ "Tce3stUlHN0L" ], "name": "notebook.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { diff --git a/tensorflow_examples/lite/model_maker/demo/image_classification.ipynb b/tensorflow_examples/lite/model_maker/demo/image_classification.ipynb index 499f069371b..dea93150073 100644 --- a/tensorflow_examples/lite/model_maker/demo/image_classification.ipynb +++ b/tensorflow_examples/lite/model_maker/demo/image_classification.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "h2q27gKz1H20" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "TUfAcER1oUS6" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Gb7qyhNL1yWt" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "nDABAblytltI" }, "source": [ @@ -70,7 +65,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "m86-Nh4pMHqY" }, "source": [ @@ -83,26 +77,11 @@ "colab": { "collapsed_sections": [], "name": "image_classification.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", - "language": "python", "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" } }, "nbformat": 4, diff --git a/tensorflow_examples/lite/model_maker/demo/text_classification.ipynb b/tensorflow_examples/lite/model_maker/demo/text_classification.ipynb index f0ff054cf29..cbece2000aa 100644 --- a/tensorflow_examples/lite/model_maker/demo/text_classification.ipynb +++ b/tensorflow_examples/lite/model_maker/demo/text_classification.ipynb @@ -3,7 +3,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "h2q27gKz1H20" }, "source": [ @@ -12,11 +11,9 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "cellView": "form", - "colab": {}, - "colab_type": "code", "id": "TUfAcER1oUS6" }, "outputs": [], @@ -37,7 +34,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Gb7qyhNL1yWt" }, "source": [ @@ -47,7 +43,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "Fw5Y7snSuG51" }, "source": [ @@ -70,7 +65,6 @@ { "cell_type": "markdown", "metadata": { - "colab_type": "text", "id": "sr3q-gvm3cI8" }, "source": [ @@ -83,8 +77,6 @@ "colab": { "collapsed_sections": [], "name": "text_classification.ipynb", - "private_outputs": true, - "provenance": [], "toc_visible": true }, "kernelspec": {