Skip to content
A collection of infrastructure and tools for research in neural network interpretability.
Branch: master
Clone or download
ludwigschubert Merge pull request #149 from rcshubhadeep/update-readme-add-activatio…

add the Activation Atlas paper link in the reading section.
Latest commit 0672b08 Mar 8, 2019
Type Name Latest commit message Commit time
Failed to load latest commit information.
lucid Fix Python 2 incompatibilty in ndimage_utils by importing division fr… Feb 13, 2019
notebooks Merge pull request #144 from tensorflow/activation-atlas Mar 5, 2019
tests Actually fix Python 2 incompatibility Feb 20, 2019
.editorconfig Set linter max-line-length to 88 (Black formatter default) Nov 21, 2018
MANIFEST Initial infrastructure setup and Python 2&3 fixes. Jan 31, 2018
tox.ini Allow for non-top-level imports in linter settings Jan 23, 2019


PyPI project status Travis build status Code coverage Supported Python version PyPI release version

Lucid is a collection of infrastructure and tools for research in neural network interpretability.


Start visualizing neural networks with no setup. The following notebooks run right from your browser, thanks to Colaboratory. It's a Jupyter notebook environment that requires no setup to use and runs entirely in the cloud.

You can run the notebooks on your local machine, too. Clone the repository and find them in the notebooks subfolder. You will need to run a local instance of the Jupyter notebook environment to execute them.

Tutorial Notebooks

Feature Visualization Notebooks

Notebooks corresponding to the Feature Visualization article

Building Blocks Notebooks

Notebooks corresponding to the Building Blocks of Interpretability article

Differentiable Image Parameterizations Notebooks

Notebooks corresponding to the Differentiable Image Parameterizations article

Activation Atlas Notebooks

Notebooks corresponding to the Activation Atlas article

Collecting activations Simple activation atlas Class activation atlas Activation atlas patches

Miscellaneous Notebooks

Recomended Reading

Related Talks


We're in #proj-lucid on the Distill slack (join link).

We'd love to see more people doing research in this space!

Additional Information

License and Disclaimer

You may use this software under the Apache 2.0 License. See LICENSE.

This project is research code. It is not an official Google product.

Special consideration for TensorFlow dependency

Lucid requires tensorflow, but does not explicitly depend on it in Due to the way tensorflow is packaged and some deficiencies in how pip handles dependencies, specifying either the GPU or the non-GPU version of tensorflow will conflict with the version of tensorflow your already may have installed.

If you don't want to add your own dependency on tensorflow, you can specify which tensorflow version you want lucid to install by selecting from extras_require like so: lucid[tf] or lucid[tf_gpu].

In actual practice, we recommend you use your already installed version of tensorflow.

You can’t perform that action at this time.