-
Notifications
You must be signed in to change notification settings - Fork 45.4k
Description
Prerequisites
Please answer the following question for yourself before submitting an issue.
- I checked to make sure that this issue has not been filed already.
1. The entire URL of the documentation with the issue
https://github.com/tensorflow/models/tree/master/research/object_detection/g3doc/tf2.md
2. Describe the issue
I tried to build the docker image of the tf2 object detection API on my system running ubuntu 16.04 and
the output of
nvidia-smi
Tue Feb 9 21:50:50 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.118.02 Driver Version: 440.118.02 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 108... Off | 00000000:03:00.0 Off | N/A |
| 0% 48C P8 13W / 280W | 145MiB / 11178MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX 108... Off | 00000000:04:00.0 Off | N/A |
| 49% 53C P8 15W / 280W | 145MiB / 11178MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 GeForce GTX 108... Off | 00000000:05:00.0 Off | N/A |
| 46% 51C P8 13W / 280W | 145MiB / 11176MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 4978 C python3 135MiB |
| 1 4978 C python3 135MiB |
| 2 4978 C python3 135MiB |
+-----------------------------------------------------------------------------+
when I run the docker image
docker build -f research/object_detection/dockerfiles/tf2/Dockerfile -t od .
docker run --gpus all -it od
and then I tried to check if the TensorFlow is using GPU with python3
import tensorflow as tf
assert tf.test.is_gpu_available()
I get this error
AssertionError
and when I tried
tf.config.list_physical_devices('GPU')
I got
[]
So apparently the od tf2 is not using the gpu and I don't know the error
when I tried to run the tensorflow/tensorflow:2.2.0-gpu docker image and tried the same python code It is reading the gpu and using it