# tensorflow/models

Latest commit a803bf4 Jun 15, 2016 Add to neural_gpu documentation.
`* Switch from decimal to symbol in most places and add a description of what a symbol is per Lukasz.`
 .. Failed to load latest commit information. README.md Jun 15, 2016 data_utils.py Mar 14, 2016 neural_gpu.py Apr 5, 2016 neural_gpu_trainer.py Mar 14, 2016

# NeuralGPU

Code for the Neural GPU model as described in [[http://arxiv.org/abs/1511.08228]].

Requirements:

• TensorFlow (see tensorflow.org for how to install)
• Matplotlib for Python (sudo apt-get install python-matplotlib)

The model can be trained on the following algorithmic tasks:

• `sort` - Sort a symbol list
• `kvsort` - Sort symbol keys in dictionary
• `id` - Return the same symbol list
• `rev` - Reverse a symbol list
• `rev2` - Reverse a symbol dictionary by key
• `incr` - Add one to a symbol value
• `add` - Long decimal addition
• `left` - First symbol in list
• `right` - Last symbol in list
• `left-shift` - Left shift a symbol list
• `right-shift` - Right shift a symbol list
• `bmul` - Long binary multiplication
• `mul` - Long decimal multiplication
• `dup` - Duplicate a symbol list with padding
• `badd` - Long binary addition
• `qadd` - Long quaternary addition
• `search` - Search for symbol key in dictionary

The value range for symbols are defined by the `niclass` and `noclass` flags. In particular, the values are in the range `min(--niclass, noclass) - 1`. So if you set `--niclass=33` and `--noclass=33` (the default) then `--task=rev` will be reversing lists of 32 symbols, and `--task=id` will be identity on a list of up to 32 symbols.

To train the model on the reverse task run:

``````python neural_gpu_trainer.py --task=rev
``````

While training, interim / checkpoint model parameters will be written to `/tmp/neural_gpu/`.

Once the amount of error gets down to what you're comfortable with, hit `Ctrl-C` to stop the training process. The latest model parameters will be in `/tmp/neural_gpu/neural_gpu.ckpt-<step>` and used on any subsequent run.

To test a trained model on how well it decodes run:

``````python neural_gpu_trainer.py --task=rev --mode=1
``````

To produce an animation of the result run:

``````python neural_gpu_trainer.py --task=rev --mode=1 --animate=True
``````

Maintained by Lukasz Kaiser (lukaszkaiser)