Skip to content
Permalink
0b6b491d21
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
134 lines (117 sloc) 5.65 KB
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <limits>
#include <memory>
#include <string>
#include <vector>
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
namespace tensorflow {
using errors::InvalidArgument;
template <typename T, typename SPLITS_TYPE>
class RaggedRangeOp : public OpKernel {
public:
using OpKernel::OpKernel;
void Compute(OpKernelContext* context) override {
const Tensor& starts_in = context->input(0);
const Tensor& limits_in = context->input(1);
const Tensor& deltas_in = context->input(2);
// Check input tensor shapes.
OP_REQUIRES(context, starts_in.shape().dims() <= 1,
InvalidArgument("starts must be a scalar or vector"));
OP_REQUIRES(context, limits_in.shape().dims() <= 1,
InvalidArgument("limits must be a scalar or vector"));
OP_REQUIRES(context, deltas_in.shape().dims() <= 1,
InvalidArgument("deltas must be a scalar or vector"));
// Determine which tensors we need to broadcast.
bool broadcast_starts = starts_in.shape().dims() == 0;
bool broadcast_limits = limits_in.shape().dims() == 0;
bool broadcast_deltas = deltas_in.shape().dims() == 0;
// nrows (number of output rows) is the size of the non-broadcast inputs,
// or 1 if all inputs are scalars.
std::vector<int> in_sizes;
if (!broadcast_starts) in_sizes.push_back(starts_in.shape().dim_size(0));
if (!broadcast_limits) in_sizes.push_back(limits_in.shape().dim_size(0));
if (!broadcast_deltas) in_sizes.push_back(deltas_in.shape().dim_size(0));
for (int i = 1; i < in_sizes.size(); ++i) {
OP_REQUIRES(context, in_sizes[i] == in_sizes[i - 1],
InvalidArgument("starts, limits, and deltas must have the "
"same shape"));
}
SPLITS_TYPE nrows = in_sizes.empty() ? 1 : in_sizes[0];
const auto& starts = starts_in.flat<T>();
const auto& limits = limits_in.flat<T>();
const auto& deltas = deltas_in.flat<T>();
// Construct the rt_nested_splits tensor.
Tensor* rt_nested_splits_out = nullptr;
OP_REQUIRES_OK(context,
context->allocate_output(0, TensorShape({nrows + 1}),
&rt_nested_splits_out));
auto rt_nested_splits = rt_nested_splits_out->flat<SPLITS_TYPE>();
rt_nested_splits(0) = 0;
for (int row = 0; row < nrows; ++row) {
T start = broadcast_starts ? starts(0) : starts(row);
T limit = broadcast_limits ? limits(0) : limits(row);
T delta = broadcast_deltas ? deltas(0) : deltas(row);
OP_REQUIRES(context, delta != 0, InvalidArgument("Requires delta != 0"));
rt_nested_splits(row + 1) =
rt_nested_splits(row) + RangeSize(start, limit, delta);
}
SPLITS_TYPE nvals = rt_nested_splits(nrows);
// Construct the rt_dense_values tensor.
Tensor* rt_dense_values_out = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(1, TensorShape({nvals}),
&rt_dense_values_out));
auto rt_dense_values = rt_dense_values_out->flat<T>();
int value_index = 0;
for (int row = 0; row < nrows; ++row) {
SPLITS_TYPE row_size = rt_nested_splits(row + 1) - rt_nested_splits(row);
T value = broadcast_starts ? starts(0) : starts(row);
T delta = broadcast_deltas ? deltas(0) : deltas(row);
for (SPLITS_TYPE i = 0; i < row_size; ++i) {
rt_dense_values(value_index++) = T(value);
value += delta;
}
}
}
private:
// Returns the number of elements in the specified range.
SPLITS_TYPE RangeSize(T start, T limit, T delta) {
if (((delta > 0) && (limit < start)) || ((delta < 0) && (limit > start))) {
return 0;
}
// The following is copied from tensorflow::RangeOp::Compute().
return (std::is_integral<T>::value
? ((std::abs(limit - start) + std::abs(delta) - 1) /
std::abs(delta))
: std::ceil(std::abs((limit - start) / delta)));
}
};
#define REGISTER_CPU_KERNEL(TYPE) \
REGISTER_KERNEL_BUILDER(Name("RaggedRange") \
.Device(DEVICE_CPU) \
.TypeConstraint<TYPE>("T") \
.TypeConstraint<int32>("Tsplits"), \
RaggedRangeOp<TYPE, int32>); \
REGISTER_KERNEL_BUILDER(Name("RaggedRange") \
.Device(DEVICE_CPU) \
.TypeConstraint<TYPE>("T") \
.TypeConstraint<int64_t>("Tsplits"), \
RaggedRangeOp<TYPE, int64>);
TF_CALL_float(REGISTER_CPU_KERNEL);
TF_CALL_double(REGISTER_CPU_KERNEL);
TF_CALL_int32(REGISTER_CPU_KERNEL);
TF_CALL_int64(REGISTER_CPU_KERNEL);
#undef REGISTER_CPU_KERNEL
} // namespace tensorflow