Skip to content
Permalink
5100e359ae
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
150 lines (125 sloc) 5.92 KB
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// See docs in ../ops/nn_ops.cc.
#define EIGEN_USE_THREADS
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/kernels/ops_util.h"
#include "tensorflow/core/kernels/pooling_ops_common.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"
namespace tensorflow {
typedef Eigen::ThreadPoolDevice CPUDevice;
template <typename Device, typename T>
class QuantizedAvgPoolingOp : public OpKernel {
public:
explicit QuantizedAvgPoolingOp(OpKernelConstruction* context)
: OpKernel(context) {
OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
OP_REQUIRES(context, ksize_.size() == 4,
errors::InvalidArgument("Sliding window ksize field must "
"specify 4 dimensions"));
OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
OP_REQUIRES(context, stride_.size() == 4,
errors::InvalidArgument("Sliding window strides field must "
"specify 4 dimensions"));
OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1,
errors::Unimplemented(
"Pooling is not yet supported on the batch dimension."));
}
void Compute(OpKernelContext* context) override {
const Tensor& tensor_in = context->input(0);
PoolParameters params{context,
ksize_,
stride_,
padding_,
/*explicit_paddings=*/{},
FORMAT_NHWC,
tensor_in.shape()};
if (!context->status().ok()) {
return;
}
const float min_input = context->input(1).flat<float>()(0);
const float max_input = context->input(2).flat<float>()(0);
OP_REQUIRES(context, params.depth_window == 1,
errors::Unimplemented("Non-spatial pooling is not "
"yet supported. Volunteers? :)"));
OP_REQUIRES(context, tensor_in.dims() == 4,
errors::InvalidArgument("tensor_in must be 4-dimensional"));
Tensor* output = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(
0, params.forward_output_shape(), &output));
const int32_t highest = static_cast<int32>(Eigen::NumTraits<T>::highest());
const int32_t lowest = static_cast<int32>(Eigen::NumTraits<T>::lowest());
// TODO(vrv): Switch this to the Eigen::Tensor version of
// SpatialAvgPooling once that version is running quickly.
Tensor int32_output(DT_INT32, params.forward_output_shape());
// Cast input to int32 tensor and call SpatialAvgPool.
Tensor int32_input(DT_INT32, tensor_in.shape());
int32_input.flat<int32>() = tensor_in.flat<T>().template cast<int32>();
SpatialAvgPool<Device, int32>(context, &int32_output, int32_input, params,
padding_);
// Clamp the int32 output back into quantized space.
output->flat<T>() = int32_output.flat<int32>()
.cwiseMax(lowest)
.cwiseMin(highest)
.template cast<T>();
Tensor* output_min = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(1, {}, &output_min));
output_min->flat<float>()(0) = min_input;
Tensor* output_max = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(2, {}, &output_max));
output_max->flat<float>()(0) = max_input;
}
private:
std::vector<int32> ksize_;
std::vector<int32> stride_;
Padding padding_;
};
template <typename Device, typename T>
class QuantizedMaxPoolingOp : public MaxPoolingOp<Device, T> {
public:
explicit QuantizedMaxPoolingOp(OpKernelConstruction* context)
: MaxPoolingOp<Device, T>(context) {}
void Compute(OpKernelContext* context) override {
const float min_input = context->input(1).flat<float>()(0);
const float max_input = context->input(2).flat<float>()(0);
MaxPoolingOp<Device, T>::Compute(context);
Tensor* output_min = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(1, {}, &output_min));
output_min->flat<float>()(0) = min_input;
Tensor* output_max = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(2, {}, &output_max));
output_max->flat<float>()(0) = max_input;
}
};
REGISTER_KERNEL_BUILDER(
Name("QuantizedAvgPool").Device(DEVICE_CPU).TypeConstraint<quint8>("T"),
QuantizedAvgPoolingOp<CPUDevice, quint8>);
REGISTER_KERNEL_BUILDER(
Name("QuantizedMaxPool").Device(DEVICE_CPU).TypeConstraint<quint8>("T"),
QuantizedMaxPoolingOp<CPUDevice, quint8>);
#ifdef INTEL_MKL
REGISTER_KERNEL_BUILDER(
Name("QuantizedAvgPool").Device(DEVICE_CPU).TypeConstraint<qint8>("T"),
QuantizedAvgPoolingOp<CPUDevice, qint8>);
REGISTER_KERNEL_BUILDER(
Name("QuantizedMaxPool").Device(DEVICE_CPU).TypeConstraint<qint8>("T"),
QuantizedMaxPoolingOp<CPUDevice, qint8>);
#endif
} // namespace tensorflow