Skip to content
Permalink
5100e359ae
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
144 lines (118 sloc) 5.76 KB
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#define EIGEN_USE_THREADS
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/types.h"
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
namespace tensorflow {
namespace {
template <typename T>
struct mod_op {
const T operator()(const T& a, const T& b) const { return a % b; }
};
} // namespace
typedef Eigen::ThreadPoolDevice CPUDevice;
template <typename Tidx>
class UnravelIndexOp : public OpKernel {
public:
explicit UnravelIndexOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}
void Compute(OpKernelContext* ctx) override {
const Tensor& indices_tensor = ctx->input(0);
OP_REQUIRES(ctx,
TensorShapeUtils::IsVector(indices_tensor.shape()) ||
TensorShapeUtils::IsScalar(indices_tensor.shape()),
errors::InvalidArgument(
"The indices can only be scalar or vector, got \"",
indices_tensor.shape().DebugString(), "\""));
const Tensor& dims_tensor = ctx->input(1);
OP_REQUIRES(
ctx, TensorShapeUtils::IsVector(dims_tensor.shape()),
errors::InvalidArgument("The indices can only be 1-D, got \"",
dims_tensor.shape().DebugString(), "\""));
auto dims = dims_tensor.vec<Tidx>();
// Make sure dims does not contain a zero
for (int i = 0; i < dims.size(); i++) {
OP_REQUIRES(
ctx, dims(i) != 0,
errors::InvalidArgument("Input dims cannot contain a dim of zero, "
"but dims contains zero at index ",
i));
}
// Check to make sure indices is not out of boundary
Eigen::Tensor<Tidx, 0, Eigen::RowMajor> dims_prod_eigen = dims.prod();
Tidx dims_prod = dims_prod_eigen();
const Tidx* indices = indices_tensor.flat<Tidx>().data();
int64_t size = indices_tensor.NumElements();
bool check = std::all_of(indices, indices + size,
[&](Tidx index) { return index < dims_prod; });
OP_REQUIRES(ctx, check,
errors::InvalidArgument("index is out of bound as with dims"));
Eigen::array<bool, 1> reverse({true});
Tensor strides_tensor;
OP_REQUIRES_OK(ctx,
ctx->allocate_temp(DataTypeToEnum<Tidx>::value,
TensorShape({dims_tensor.NumElements()}),
&strides_tensor));
auto strides = strides_tensor.vec<Tidx>();
strides = dims.reverse(reverse)
.scan(0, Eigen::internal::ProdReducer<Tidx>(), false)
.reverse(reverse);
Tensor strides_shifted_tensor;
OP_REQUIRES_OK(ctx,
ctx->allocate_temp(DataTypeToEnum<Tidx>::value,
TensorShape({dims_tensor.NumElements()}),
&strides_shifted_tensor));
auto strides_shifted = strides_shifted_tensor.vec<Tidx>();
strides_shifted = dims.reverse(reverse)
.scan(0, Eigen::internal::ProdReducer<Tidx>(), true)
.reverse(reverse);
Tensor* output_tensor = nullptr;
if (TensorShapeUtils::IsScalar(indices_tensor.shape())) {
OP_REQUIRES_OK(
ctx, ctx->allocate_output(0, TensorShape({dims_tensor.NumElements()}),
&output_tensor));
auto output = output_tensor->vec<Tidx>();
output = output.constant(indices_tensor.scalar<Tidx>()());
output = output.binaryExpr(strides, mod_op<Tidx>()) / strides_shifted;
} else {
OP_REQUIRES_OK(
ctx, ctx->allocate_output(0,
TensorShape({dims_tensor.NumElements(),
indices_tensor.NumElements()}),
&output_tensor));
auto output = output_tensor->matrix<Tidx>();
Eigen::array<Eigen::Index, 2> reshape{
{static_cast<Eigen::Index>(dims_tensor.NumElements()), 1}};
Eigen::array<Eigen::Index, 2> bcast(
{1, static_cast<Eigen::Index>(indices_tensor.NumElements())});
Eigen::array<Eigen::Index, 2> indices_reshape{
{1, static_cast<Eigen::Index>(indices_tensor.NumElements())}};
Eigen::array<Eigen::Index, 2> indices_bcast(
{static_cast<Eigen::Index>(dims_tensor.NumElements()), 1});
output = indices_tensor.vec<Tidx>()
.reshape(indices_reshape)
.broadcast(indices_bcast);
output = output.binaryExpr(strides.reshape(reshape).broadcast(bcast),
mod_op<Tidx>()) /
strides_shifted.reshape(reshape).broadcast(bcast);
}
}
};
#define REGISTER_KERNEL(type) \
REGISTER_KERNEL_BUILDER( \
Name("UnravelIndex").Device(DEVICE_CPU).TypeConstraint<type>("Tidx"), \
UnravelIndexOp<type>);
TF_CALL_int32(REGISTER_KERNEL) TF_CALL_int64(REGISTER_KERNEL)
#undef REGISTER_KERNEL
} // namespace tensorflow