Skip to content
Permalink
f3b9bf4c3c
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
151 lines (121 sloc) 6.09 KB
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// See docs in ../ops/math_ops.cc.
#define EIGEN_USE_THREADS
#include "tensorflow/core/kernels/histogram_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/platform/types.h"
namespace tensorflow {
typedef Eigen::ThreadPoolDevice CPUDevice;
typedef Eigen::GpuDevice GPUDevice;
namespace functor {
template <typename T, typename Tout>
struct HistogramFixedWidthFunctor<CPUDevice, T, Tout> {
static Status Compute(OpKernelContext* context,
const typename TTypes<T, 1>::ConstTensor& values,
const typename TTypes<T, 1>::ConstTensor& value_range,
int32_t nbins, typename TTypes<Tout, 1>::Tensor& out) {
const CPUDevice& d = context->eigen_device<CPUDevice>();
Tensor index_to_bin_tensor;
TF_RETURN_IF_ERROR(context->forward_input_or_allocate_temp(
{0}, DataTypeToEnum<int32>::value, TensorShape({values.size()}),
&index_to_bin_tensor));
auto index_to_bin = index_to_bin_tensor.flat<int32>();
const double step = static_cast<double>(value_range(1) - value_range(0)) /
static_cast<double>(nbins);
const double nbins_minus_1 = static_cast<double>(nbins - 1);
// The calculation is done by finding the slot of each value in `values`.
// With [a, b]:
// step = (b - a) / nbins
// (x - a) / step
// , then the entries are mapped to output.
// Bug fix: Switch the order of cwiseMin and int32-casting to avoid
// producing a negative index when casting an big int64 number to int32
index_to_bin.device(d) =
((values.cwiseMax(value_range(0)) - values.constant(value_range(0)))
.template cast<double>() /
step)
.cwiseMin(nbins_minus_1)
.template cast<int32>();
out.setZero();
for (int32_t i = 0; i < index_to_bin.size(); i++) {
out(index_to_bin(i)) += Tout(1);
}
return Status::OK();
}
};
} // namespace functor
template <typename Device, typename T, typename Tout>
class HistogramFixedWidthOp : public OpKernel {
public:
explicit HistogramFixedWidthOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}
void Compute(OpKernelContext* ctx) override {
const Tensor& values_tensor = ctx->input(0);
const Tensor& value_range_tensor = ctx->input(1);
const Tensor& nbins_tensor = ctx->input(2);
OP_REQUIRES(ctx, TensorShapeUtils::IsVector(value_range_tensor.shape()),
errors::InvalidArgument("value_range should be a vector."));
OP_REQUIRES(ctx, (value_range_tensor.shape().num_elements() == 2),
errors::InvalidArgument(
"value_range should be a vector of 2 elements."));
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(nbins_tensor.shape()),
errors::InvalidArgument("nbins should be a scalar."));
const auto values = values_tensor.flat<T>();
const auto value_range = value_range_tensor.flat<T>();
const auto nbins = nbins_tensor.scalar<int32>()();
OP_REQUIRES(
ctx, (value_range(0) < value_range(1)),
errors::InvalidArgument("value_range should satisfy value_range[0] < "
"value_range[1], but got '[",
value_range(0), ", ", value_range(1), "]'"));
OP_REQUIRES(
ctx, (nbins > 0),
errors::InvalidArgument("nbins should be a positive number, but got '",
nbins, "'"));
Tensor* out_tensor;
OP_REQUIRES_OK(ctx,
ctx->allocate_output(0, TensorShape({nbins}), &out_tensor));
auto out = out_tensor->flat<Tout>();
OP_REQUIRES_OK(
ctx, functor::HistogramFixedWidthFunctor<Device, T, Tout>::Compute(
ctx, values, value_range, nbins, out));
}
};
#define REGISTER_KERNELS(type) \
REGISTER_KERNEL_BUILDER(Name("HistogramFixedWidth") \
.Device(DEVICE_CPU) \
.TypeConstraint<type>("T") \
.TypeConstraint<int32>("dtype"), \
HistogramFixedWidthOp<CPUDevice, type, int32>) \
REGISTER_KERNEL_BUILDER(Name("HistogramFixedWidth") \
.Device(DEVICE_CPU) \
.TypeConstraint<type>("T") \
.TypeConstraint<int64_t>("dtype"), \
HistogramFixedWidthOp<CPUDevice, type, int64>)
TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNELS);
#undef REGISTER_KERNELS
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
#define REGISTER_KERNELS(type) \
REGISTER_KERNEL_BUILDER(Name("HistogramFixedWidth") \
.Device(DEVICE_GPU) \
.HostMemory("value_range") \
.HostMemory("nbins") \
.TypeConstraint<type>("T") \
.TypeConstraint<int32>("dtype"), \
HistogramFixedWidthOp<GPUDevice, type, int32>)
TF_CALL_GPU_NUMBER_TYPES(REGISTER_KERNELS);
#undef REGISTER_KERNELS
#endif // GOOGLE_CUDA || TENSORFLOW_USE_ROCM
} // end namespace tensorflow