Skip to content
Permalink
f3b9bf4c3c
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
152 lines (126 sloc) 5.78 KB
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// See docs in ../ops/data_flow_ops.cc.
#include <limits.h>
#include <vector>
#include "tensorflow/core/common_runtime/device.h"
#include "tensorflow/core/framework/device_base.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/map_util.h"
#include "tensorflow/core/platform/errors.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/core/platform/types.h"
namespace tensorflow {
class GetSessionHandleOp : public OpKernel {
public:
explicit GetSessionHandleOp(OpKernelConstruction* context)
: OpKernel(context) {}
void Compute(OpKernelContext* ctx) override {
const Tensor& val = ctx->input(0);
auto session_state = ctx->session_state();
OP_REQUIRES(ctx, session_state != nullptr,
errors::FailedPrecondition(
"GetSessionHandle called on null session state"));
int64_t id = session_state->GetNewId();
TensorStore::TensorAndKey tk{val, id, requested_device()};
OP_REQUIRES_OK(ctx, ctx->tensor_store()->AddTensor(name(), tk));
Tensor* handle = nullptr;
OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &handle));
if (ctx->expected_output_dtype(0) == DT_RESOURCE) {
ResourceHandle resource_handle = MakeResourceHandle<Tensor>(
ctx, SessionState::kTensorHandleResourceTypeName,
tk.GetHandle(name()));
resource_handle.set_maybe_type_name(
SessionState::kTensorHandleResourceTypeName);
handle->scalar<ResourceHandle>()() = resource_handle;
} else {
// Legacy behavior in V1.
handle->flat<tstring>().setConstant(tk.GetHandle(name()));
}
}
TF_DISALLOW_COPY_AND_ASSIGN(GetSessionHandleOp);
};
REGISTER_KERNEL_BUILDER(Name("GetSessionHandle").Device(DEVICE_CPU),
GetSessionHandleOp);
REGISTER_KERNEL_BUILDER(Name("GetSessionHandleV2").Device(DEVICE_CPU),
GetSessionHandleOp);
#define REGISTER_DEFAULT_KERNEL(type) \
REGISTER_KERNEL_BUILDER(Name("GetSessionHandle") \
.Device(DEVICE_DEFAULT) \
.HostMemory("handle") \
.TypeConstraint<type>("T"), \
GetSessionHandleOp) \
REGISTER_KERNEL_BUILDER(Name("GetSessionHandleV2") \
.Device(DEVICE_DEFAULT) \
.HostMemory("handle") \
.TypeConstraint<type>("T"), \
GetSessionHandleOp)
TF_CALL_NUMBER_TYPES(REGISTER_DEFAULT_KERNEL);
REGISTER_DEFAULT_KERNEL(bool);
#undef REGISTER_DEFAULT_KERNEL
class GetSessionTensorOp : public OpKernel {
public:
explicit GetSessionTensorOp(OpKernelConstruction* context)
: OpKernel(context) {}
void Compute(OpKernelContext* ctx) override {
const Tensor& handle = ctx->input(0);
const string& name = handle.scalar<tstring>()();
Tensor val;
auto session_state = ctx->session_state();
OP_REQUIRES(ctx, session_state != nullptr,
errors::FailedPrecondition(
"GetSessionTensor called on null session state"));
OP_REQUIRES_OK(ctx, session_state->GetTensor(name, &val));
ctx->set_output(0, val);
}
TF_DISALLOW_COPY_AND_ASSIGN(GetSessionTensorOp);
};
REGISTER_KERNEL_BUILDER(Name("GetSessionTensor").Device(DEVICE_CPU),
GetSessionTensorOp);
#define REGISTER_DEFAULT_KERNEL(type) \
REGISTER_KERNEL_BUILDER(Name("GetSessionTensor") \
.Device(DEVICE_DEFAULT) \
.HostMemory("handle") \
.TypeConstraint<type>("dtype"), \
GetSessionTensorOp)
TF_CALL_NUMBER_TYPES(REGISTER_DEFAULT_KERNEL);
REGISTER_DEFAULT_KERNEL(bool);
#undef REGISTER_DEFAULT_KERNEL
class DeleteSessionTensorOp : public OpKernel {
public:
explicit DeleteSessionTensorOp(OpKernelConstruction* context)
: OpKernel(context) {}
void Compute(OpKernelContext* ctx) override {
const Tensor& handle = ctx->input(0);
const string& name = handle.scalar<tstring>()();
auto session_state = ctx->session_state();
OP_REQUIRES(ctx, session_state != nullptr,
errors::FailedPrecondition(
"DeleteSessionTensor called on null session state"));
OP_REQUIRES_OK(ctx, session_state->DeleteTensor(name));
}
TF_DISALLOW_COPY_AND_ASSIGN(DeleteSessionTensorOp);
};
REGISTER_KERNEL_BUILDER(Name("DeleteSessionTensor").Device(DEVICE_CPU),
DeleteSessionTensorOp);
REGISTER_KERNEL_BUILDER(
Name("DeleteSessionTensor").Device(DEVICE_DEFAULT).HostMemory("handle"),
DeleteSessionTensorOp);
} // namespace tensorflow