Permalink
e121667 Dec 29, 2016
@nathansilberman @jart @tensorflower-gardener
61 lines (51 sloc) 2.39 KB
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition of a Dataset.
A Dataset is a collection of several components: (1) a list of data sources
(2) a Reader class that can read those sources and returns possibly encoded
samples of data (3) a decoder that decodes each sample of data provided by the
reader (4) the total number of samples and (5) an optional dictionary mapping
the list of items returns to a description of those items.
Data can be loaded from a dataset specification using a dataset_data_provider:
dataset = CreateMyDataset(...)
provider = dataset_data_provider.DatasetDataProvider(
dataset, shuffle=False)
image, label = provider.get(['image', 'label'])
See slim.data.dataset_data_provider for additional examples.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
class Dataset(object):
"""Represents a Dataset specification."""
def __init__(self, data_sources, reader, decoder, num_samples,
items_to_descriptions, **kwargs):
"""Initializes the dataset.
Args:
data_sources: A list of files that make up the dataset.
reader: The reader class, a subclass of BaseReader such as TextLineReader
or TFRecordReader.
decoder: An instance of a data_decoder.
num_samples: The number of samples in the dataset.
items_to_descriptions: A map from the items that the dataset provides to
the descriptions of those items.
**kwargs: Any remaining dataset-specific fields.
"""
kwargs['data_sources'] = data_sources
kwargs['reader'] = reader
kwargs['decoder'] = decoder
kwargs['num_samples'] = num_samples
kwargs['items_to_descriptions'] = items_to_descriptions
self.__dict__.update(kwargs)