Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Converts checkpoint variables into Const ops in a standalone GraphDef file.
This script is designed to take a GraphDef proto, a SaverDef proto, and a set of
variable values stored in a checkpoint file, and output a GraphDef with all of
the variable ops converted into const ops containing the values of the
variables.
It's useful to do this when we need to load a single file in C++, especially in
environments like mobile or embedded where we may not have access to the
RestoreTensor ops and file loading calls that they rely on.
An example of command-line usage is:
bazel build tensorflow/python/tools:freeze_graph && \
bazel-bin/tensorflow/python/tools/freeze_graph \
--input_graph=some_graph_def.pb \
--input_checkpoint=model.ckpt-8361242 \
--output_graph=/tmp/frozen_graph.pb --output_node_names=softmax
You can also look at freeze_graph_test.py for an example of how to use it.
"""
import argparse
import re
import sys
from absl import app
from google.protobuf import text_format
from tensorflow.core.framework import graph_pb2
from tensorflow.core.protobuf import saver_pb2
from tensorflow.core.protobuf.meta_graph_pb2 import MetaGraphDef
from tensorflow.python.checkpoint import checkpoint_management
from tensorflow.python.client import session
from tensorflow.python.framework import convert_to_constants
from tensorflow.python.framework import importer
from tensorflow.python.platform import gfile
from tensorflow.python.saved_model import loader
from tensorflow.python.saved_model import tag_constants
from tensorflow.python.tools import saved_model_utils
from tensorflow.python.training import py_checkpoint_reader
from tensorflow.python.training import saver as saver_lib
def _has_no_variables(sess):
"""Determines if the graph has any variables.
Args:
sess: TensorFlow Session.
Returns:
Bool.
"""
for op in sess.graph.get_operations():
if op.type.startswith("Variable") or op.type.endswith("VariableOp"):
return False
return True
def freeze_graph_with_def_protos(input_graph_def,
input_saver_def,
input_checkpoint,
output_node_names,
restore_op_name,
filename_tensor_name,
output_graph,
clear_devices,
initializer_nodes,
variable_names_whitelist="",
variable_names_denylist="",
input_meta_graph_def=None,
input_saved_model_dir=None,
saved_model_tags=None,
checkpoint_version=saver_pb2.SaverDef.V2):
"""Converts all variables in a graph and checkpoint into constants.
Args:
input_graph_def: A `GraphDef`.
input_saver_def: A `SaverDef` (optional).
input_checkpoint: The prefix of a V1 or V2 checkpoint, with V2 taking
priority. Typically the result of `Saver.save()` or that of
`tf.train.latest_checkpoint()`, regardless of sharded/non-sharded or
V1/V2.
output_node_names: The name(s) of the output nodes, comma separated.
restore_op_name: Unused.
filename_tensor_name: Unused.
output_graph: String where to write the frozen `GraphDef`.
clear_devices: A Bool whether to remove device specifications.
initializer_nodes: Comma separated string of initializer nodes to run before
freezing.
variable_names_whitelist: The set of variable names to convert (optional, by
default, all variables are converted).
variable_names_denylist: The set of variable names to omit converting
to constants (optional).
input_meta_graph_def: A `MetaGraphDef` (optional),
input_saved_model_dir: Path to the dir with TensorFlow 'SavedModel' file
and variables (optional).
saved_model_tags: Group of comma separated tag(s) of the MetaGraphDef to
load, in string format (optional).
checkpoint_version: Tensorflow variable file format (saver_pb2.SaverDef.V1
or saver_pb2.SaverDef.V2)
Returns:
Location of the output_graph_def.
"""
del restore_op_name, filename_tensor_name # Unused by updated loading code.
# 'input_checkpoint' may be a prefix if we're using Saver V2 format
if (not input_saved_model_dir and
not checkpoint_management.checkpoint_exists(input_checkpoint)):
raise ValueError("Input checkpoint '" + input_checkpoint +
"' doesn't exist!")
if not output_node_names:
raise ValueError(
"You need to supply the name of a node to --output_node_names.")
# Remove all the explicit device specifications for this node. This helps to
# make the graph more portable.
if clear_devices:
if input_meta_graph_def:
for node in input_meta_graph_def.graph_def.node:
node.device = ""
elif input_graph_def:
for node in input_graph_def.node:
node.device = ""
if input_graph_def:
_ = importer.import_graph_def(input_graph_def, name="")
with session.Session() as sess:
if input_saver_def:
saver = saver_lib.Saver(
saver_def=input_saver_def, write_version=checkpoint_version)
saver.restore(sess, input_checkpoint)
elif input_meta_graph_def:
restorer = saver_lib.import_meta_graph(
input_meta_graph_def, clear_devices=True)
restorer.restore(sess, input_checkpoint)
if initializer_nodes:
sess.run(initializer_nodes.replace(" ", "").split(","))
elif input_saved_model_dir:
if saved_model_tags is None:
saved_model_tags = []
loader.load(sess, saved_model_tags, input_saved_model_dir)
else:
var_list = {}
reader = py_checkpoint_reader.NewCheckpointReader(input_checkpoint)
var_to_shape_map = reader.get_variable_to_shape_map()
# List of all partition variables. Because the condition is heuristic
# based, the list could include false positives.
all_partition_variable_names = [
tensor.name.split(":")[0]
for op in sess.graph.get_operations()
for tensor in op.values()
if re.search(r"/part_\d+/", tensor.name)
]
has_partition_var = False
for key in var_to_shape_map:
try:
tensor = sess.graph.get_tensor_by_name(key + ":0")
if any(key in name for name in all_partition_variable_names):
has_partition_var = True
except KeyError:
# This tensor doesn't exist in the graph (for example it's
# 'global_step' or a similar housekeeping element) so skip it.
continue
var_list[key] = tensor
try:
saver = saver_lib.Saver(
var_list=var_list, write_version=checkpoint_version)
except TypeError as e:
# `var_list` is required to be a map of variable names to Variable
# tensors. Partition variables are Identity tensors that cannot be
# handled by Saver.
if has_partition_var:
raise ValueError(
"Models containing partition variables cannot be converted "
"from checkpoint files. Please pass in a SavedModel using "
"the flag --input_saved_model_dir.")
# Models that have been frozen previously do not contain Variables.
elif _has_no_variables(sess):
raise ValueError(
"No variables were found in this model. It is likely the model "
"was frozen previously. You cannot freeze a graph twice.")
return 0
else:
raise e
saver.restore(sess, input_checkpoint)
if initializer_nodes:
sess.run(initializer_nodes.replace(" ", "").split(","))
variable_names_whitelist = (
variable_names_whitelist.replace(" ", "").split(",")
if variable_names_whitelist else None)
variable_names_denylist = (
variable_names_denylist.replace(" ", "").split(",")
if variable_names_denylist else None)
if input_meta_graph_def:
output_graph_def = convert_to_constants.convert_variables_to_constants(
sess,
input_meta_graph_def.graph_def,
output_node_names.replace(" ", "").split(","),
variable_names_whitelist=variable_names_whitelist,
variable_names_blacklist=variable_names_denylist)
else:
output_graph_def = convert_to_constants.convert_variables_to_constants(
sess,
input_graph_def,
output_node_names.replace(" ", "").split(","),
variable_names_whitelist=variable_names_whitelist,
variable_names_blacklist=variable_names_denylist)
# Write GraphDef to file if output path has been given.
if output_graph:
with gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString(deterministic=True))
return output_graph_def
def _parse_input_graph_proto(input_graph, input_binary):
"""Parses input tensorflow graph into GraphDef proto."""
if not gfile.Exists(input_graph):
raise IOError("Input graph file '" + input_graph + "' does not exist!")
input_graph_def = graph_pb2.GraphDef()
mode = "rb" if input_binary else "r"
with gfile.GFile(input_graph, mode) as f:
if input_binary:
input_graph_def.ParseFromString(f.read())
else:
text_format.Merge(f.read(), input_graph_def)
return input_graph_def
def _parse_input_meta_graph_proto(input_graph, input_binary):
"""Parses input tensorflow graph into MetaGraphDef proto."""
if not gfile.Exists(input_graph):
raise IOError("Input meta graph file '" + input_graph + "' does not exist!")
input_meta_graph_def = MetaGraphDef()
mode = "rb" if input_binary else "r"
with gfile.GFile(input_graph, mode) as f:
if input_binary:
input_meta_graph_def.ParseFromString(f.read())
else:
text_format.Merge(f.read(), input_meta_graph_def)
print("Loaded meta graph file '" + input_graph)
return input_meta_graph_def
def _parse_input_saver_proto(input_saver, input_binary):
"""Parses input tensorflow Saver into SaverDef proto."""
if not gfile.Exists(input_saver):
raise IOError("Input saver file '" + input_saver + "' does not exist!")
mode = "rb" if input_binary else "r"
with gfile.GFile(input_saver, mode) as f:
saver_def = saver_pb2.SaverDef()
if input_binary:
saver_def.ParseFromString(f.read())
else:
text_format.Merge(f.read(), saver_def)
return saver_def
def freeze_graph(input_graph,
input_saver,
input_binary,
input_checkpoint,
output_node_names,
restore_op_name,
filename_tensor_name,
output_graph,
clear_devices,
initializer_nodes,
variable_names_whitelist="",
variable_names_denylist="",
input_meta_graph=None,
input_saved_model_dir=None,
saved_model_tags=tag_constants.SERVING,
checkpoint_version=saver_pb2.SaverDef.V2):
"""Converts all variables in a graph and checkpoint into constants.
Args:
input_graph: A `GraphDef` file to load.
input_saver: A TensorFlow Saver file.
input_binary: A Bool. True means input_graph is .pb, False indicates .pbtxt.
input_checkpoint: The prefix of a V1 or V2 checkpoint, with V2 taking
priority. Typically the result of `Saver.save()` or that of
`tf.train.latest_checkpoint()`, regardless of sharded/non-sharded or
V1/V2.
output_node_names: The name(s) of the output nodes, comma separated.
restore_op_name: Unused.
filename_tensor_name: Unused.
output_graph: String where to write the frozen `GraphDef`.
clear_devices: A Bool whether to remove device specifications.
initializer_nodes: Comma separated list of initializer nodes to run before
freezing.
variable_names_whitelist: The set of variable names to convert (optional, by
default, all variables are converted),
variable_names_denylist: The set of variable names to omit converting
to constants (optional).
input_meta_graph: A `MetaGraphDef` file to load (optional).
input_saved_model_dir: Path to the dir with TensorFlow 'SavedModel' file and
variables (optional).
saved_model_tags: Group of comma separated tag(s) of the MetaGraphDef to
load, in string format.
checkpoint_version: Tensorflow variable file format (saver_pb2.SaverDef.V1
or saver_pb2.SaverDef.V2).
Returns:
String that is the location of frozen GraphDef.
"""
input_graph_def = None
if input_saved_model_dir:
input_graph_def = saved_model_utils.get_meta_graph_def(
input_saved_model_dir, saved_model_tags).graph_def
elif input_graph:
input_graph_def = _parse_input_graph_proto(input_graph, input_binary)
input_meta_graph_def = None
if input_meta_graph:
input_meta_graph_def = _parse_input_meta_graph_proto(
input_meta_graph, input_binary)
input_saver_def = None
if input_saver:
input_saver_def = _parse_input_saver_proto(input_saver, input_binary)
return freeze_graph_with_def_protos(
input_graph_def,
input_saver_def,
input_checkpoint,
output_node_names,
restore_op_name,
filename_tensor_name,
output_graph,
clear_devices,
initializer_nodes,
variable_names_whitelist,
variable_names_denylist,
input_meta_graph_def,
input_saved_model_dir,
[tag for tag in saved_model_tags.replace(" ", "").split(",") if tag],
checkpoint_version=checkpoint_version)
def main(unused_args, flags):
if flags.checkpoint_version == 1:
checkpoint_version = saver_pb2.SaverDef.V1
elif flags.checkpoint_version == 2:
checkpoint_version = saver_pb2.SaverDef.V2
else:
raise ValueError("Invalid checkpoint version (must be '1' or '2'): %d" %
flags.checkpoint_version)
freeze_graph(flags.input_graph, flags.input_saver, flags.input_binary,
flags.input_checkpoint, flags.output_node_names,
flags.restore_op_name, flags.filename_tensor_name,
flags.output_graph, flags.clear_devices, flags.initializer_nodes,
flags.variable_names_whitelist, flags.variable_names_denylist,
flags.input_meta_graph, flags.input_saved_model_dir,
flags.saved_model_tags, checkpoint_version)
def run_main():
"""Main function of freeze_graph."""
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
parser.add_argument(
"--input_graph",
type=str,
default="",
help="TensorFlow \'GraphDef\' file to load.")
parser.add_argument(
"--input_saver",
type=str,
default="",
help="TensorFlow saver file to load.")
parser.add_argument(
"--input_checkpoint",
type=str,
default="",
help="TensorFlow variables file to load.")
parser.add_argument(
"--checkpoint_version",
type=int,
default=2,
help="Tensorflow variable file format")
parser.add_argument(
"--output_graph",
type=str,
default="",
help="Output \'GraphDef\' file name.")
parser.add_argument(
"--input_binary",
nargs="?",
const=True,
type="bool",
default=False,
help="Whether the input files are in binary format.")
parser.add_argument(
"--output_node_names",
type=str,
default="",
help="The name of the output nodes, comma separated.")
parser.add_argument(
"--restore_op_name",
type=str,
default="save/restore_all",
help="""\
The name of the master restore operator. Deprecated, unused by updated \
loading code.
""")
parser.add_argument(
"--filename_tensor_name",
type=str,
default="save/Const:0",
help="""\
The name of the tensor holding the save path. Deprecated, unused by \
updated loading code.
""")
parser.add_argument(
"--clear_devices",
nargs="?",
const=True,
type="bool",
default=True,
help="Whether to remove device specifications.")
parser.add_argument(
"--initializer_nodes",
type=str,
default="",
help="Comma separated list of initializer nodes to run before freezing.")
parser.add_argument(
"--variable_names_whitelist",
type=str,
default="",
help="""\
Comma separated list of variables to convert to constants. If specified, \
only those variables will be converted to constants.\
""")
parser.add_argument(
"--variable_names_denylist",
type=str,
default="",
help="""\
Comma separated list of variables to skip converting to constants.\
""")
parser.add_argument(
"--input_meta_graph",
type=str,
default="",
help="TensorFlow \'MetaGraphDef\' file to load.")
parser.add_argument(
"--input_saved_model_dir",
type=str,
default="",
help="Path to the dir with TensorFlow \'SavedModel\' file and variables.")
parser.add_argument(
"--saved_model_tags",
type=str,
default="serve",
help="""\
Group of tag(s) of the MetaGraphDef to load, in string format,\
separated by \',\'. For tag-set contains multiple tags, all tags \
must be passed in.\
""")
flags, unparsed = parser.parse_known_args()
my_main = lambda unused_args: main(unused_args, flags)
app.run(main=my_main, argv=[sys.argv[0]] + unparsed)
if __name__ == "__main__":
run_main()