Skip to content
Permalink
r1.8
Switch branches/tags
Go to file
 
 
Cannot retrieve contributors at this time
1020 lines (837 sloc) 31.6 KB
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
syntax = "proto3";
package xla;
option cc_enable_arenas = true;
// Primitive types are the individual values that can be held in rectangular
// multidimensional arrays. A description of the rectangular multidimensional
// array dimensions / primitive type is given by Shape, below.
enum PrimitiveType {
// Invalid primitive type to serve as default.
PRIMITIVE_TYPE_INVALID = 0;
// Predicates are two-state booleans.
PRED = 1;
// Signed integral values of fixed width.
S8 = 2;
S16 = 3;
S32 = 4;
S64 = 5;
// Unsigned integral values of fixed width.
U8 = 6;
U16 = 7;
U32 = 8;
U64 = 9;
// Floating-point values of fixed width.
//
// Note: if f16s are not natively supported on the device, they will be
// converted to f16 from f32 at arbirary points in the computation.
F16 = 10;
F32 = 11;
// Truncated 16 bit floating-point format. This is similar to IEEE's 16 bit
// floating-point format, but uses 1 bit for the sign, 8 bits for the exponent
// and 7 bits for the mantissa.
BF16 = 16;
F64 = 12;
// Complex values of fixed width.
C64 = 15; // Paired F32 (real, imag), as in std::complex<float>.
// A tuple is a polymorphic sequence; e.g. a shape that holds different
// sub-shapes. They are used for things like returning multiple values from a
// computation; e.g. a computation that returns weights and biases may have a
// signature that results in a tuple like (f32[784x2000], f32[2000])
//
// If a shape proto has the tuple element type, it may not have any entries
// in the dimensions field.
TUPLE = 13;
// An opaque type used for passing context specific data to a custom
// operation.
OPAQUE = 14;
// Next = 17
}
// Describes the value held inside padding elements.
enum PaddingValue {
INVALID_PAD = 0;
// Zero padding must be 0-values that correspond to the shape's element type.
ZERO_PAD = 1;
// One padding must be 1-values that correspond to the shape's element type.
ONE_PAD = 2;
// "Lowest" padding must be the lowest values in the shape's element type,
// used as padding for operations like max-accumulation.
LOWEST_PAD = 3;
// "Highest" padding must be the largest values in the shape's element type,
// used as padding for operations like min-accumulation.
HIGHEST_PAD = 4;
// Unknown padding could be anything; e.g. floating NaNs!
UNKNOWN_PAD = 5;
}
// Describes the padding configuration for Pad operation. The padding amount on
// both edges as well as between the elements are specified for each dimension.
message PaddingConfig {
// Describes the padding configuration for a dimension.
message PaddingConfigDimension {
// Padding amount on the low-end (next to the index 0).
int64 edge_padding_low = 1;
// Padding amount on the high-end (next to the highest index).
int64 edge_padding_high = 2;
// Padding amount between the elements.
int64 interior_padding = 3;
}
// The padding configuration for all dimensions.
repeated PaddingConfigDimension dimensions = 1;
}
// A format specifies the method used by a layout to store an array in memory.
enum Format {
INVALID_FORMAT = 0;
// The default layout, with exactly one storage location per element (ignoring
// padding).
DENSE = 1;
// A sparsely encoded layout, providing only the index/value pairs of non-zero
// elements.
SPARSE = 2;
}
// A layout describes how the array is placed in (1D) memory space. This
// includes the minor-to-major ordering of dimensions within a shape, as well as
// any padding present in those dimensions.
//
// Clients must specify the layouts of input Literals to the
// computation. Layouts specified in interior operations which take Shapes (for
// example, Convert) are ignored.
//
// See the XLA documentation for more information on shapes and layouts.
message Layout {
// The method used to store the data in memory. The format determines which of
// the other fields are used by the layout.
Format format = 4;
// Sequence of dimension numbers, from minor (fastest varying index) to major
// (slowest varying index). This field is required.
repeated int64 minor_to_major = 1;
// The width to which the layout of each dimension is padded up to. If
// present, the size of the padded_dimensions must equal the rank of the
// shape. The padding appears at the end of a dimension, not at the
// beginning. This kind of padding, unlike padding in e.g. convolution, is not
// part of the shape. This field must be unset unless the format is DENSE.
repeated int64 padded_dimensions = 2;
// Describes the values in the padding specified by padded_dimensions. This
// field must be unset unless the format is DENSE.
PaddingValue padding_value = 3;
// The maximum number of elements that can be stored for SPARSE formats. This
// can be used to determine the maximum size in bytes of arrays stored in
// memory. This field must be unset unless the format is SPARSE.
int64 max_sparse_elements = 5;
// Important: if any field is added, be sure to modify ShapeUtil::Equal()
// appropriately to account for the new field.
}
// A shape describes the number of dimensions in the array, the size of each
// dimension, and the primitive component type.
//
// Tuples are a special case in that they have rank zero and have tuple_shapes
// defined.
//
// See the XLA documentation for more information on shapes and layouts.
message Shape {
reserved 1;
reserved "rank";
// The element type for this shape.
PrimitiveType element_type = 2;
// The size (number of elements) for each dimension.
// In XLA, dimensions are numbered from 0 to N-1 for an
// N-dimensional array. The first element of 'dimensions' is the size of
// dimension 0, the second element is the size of dimension 1, and so forth.
// Empty list indicates a scalar.
repeated int64 dimensions = 3;
// For tuples only, the shapes of constitutent shapes in the tuple sequence.
repeated Shape tuple_shapes = 4;
// The layout used to back this shape.
Layout layout = 5;
// Important: if any field is added, be sure to modify ShapeUtil::Equal() and
// ShapeUtil::Compatible() appropriately to account for the new field.
}
// Shape of the parameters and output of a computation (like a traditional
// function signature).
message ProgramShape {
repeated Shape parameters = 1;
Shape result = 2;
repeated string parameter_names = 3;
}
// Statistics of a computation.
message ComputationStats {
// The number of floating point operations in the computation.
double flop_count = 1;
// The number of transcendental operations (e.g., exp) in the computation.
double transcendental_count = 2;
}
// Symbolization metadata for HLO Instructions.
//
// This metadata is used for debugging XLA code generation, as well as
// performance profiling of XLA-generated executables.
message OpMetadata {
// The framework op name that generated this XLA op.
//
// Frameworks that build on top of XLA should mirror the names of their ops
// back to users by specifying the op_type. In this way, even if the
// framework's "ops" are implemented as multiple XLA HLO Ops, they can be
// grouped appropriately. (e.g. if a SoftMax layer is emitted into XLA as
// multiple ops, then each op should have the op_type be "SoftMax".)
string op_type = 1;
// The user-specified name of the op.
//
// This name is often unique within a computation. Note: some frameworks
// add auto-generated names if the user does not provide one.
string op_name = 2;
// Indicate a file and line that this op is associated to in a user's program.
//
// e.g. it could be the file and line of user code that generated the op.
string source_file = 3;
int32 source_line = 4;
}
// Profile data from the execution of a computation.
message ExecutionProfile {
// Whether the executable was read from the compilation cache.
bool compilation_cache_hit = 1;
// The time in milliseconds spent to compile the computation. This only set if
// the executable was not read from the compilation cache
// (compilation_cache_hit == false).
int64 compile_time_ms = 2;
// The number of cycles spent for the computation. This does not include the
// time taken for the data transfers between the host and the device. This is
// a target-dependent field and only used for debugging purposes.
int64 compute_cycle_count = 3;
// The time in nanoseconds spent for the computation, without data transfer.
int64 compute_time_ns = 4;
// The time in nanoseconds spent for the entire computation, including the
// result data transfer time. Current implementation does not spend any cycles
// for the input data transfer since the memory is initialized with the proper
// values before the execution.
int64 compute_and_transfer_time_ns = 5;
}
// Handle given to a user that represents a computation that the user builds up
// before execution.
message ComputationHandle {
int64 handle = 1;
}
// Handle given to a user that represents an execution that the user launched
// asynchronously on the device.
message ExecutionHandle {
int64 handle = 1;
}
// Handle given to a user that represents a globally accessible allocation.
// Contrast this against a ComputationDataHandle, which is not globally
// accessible, since it only exists within a specific computation.
message GlobalDataHandle {
int64 handle = 1;
}
// Handle given to a user that represents a data result in a computation.
// This is used to pass to subsequent computations that depends upon the data as
// an operand.
message ComputationDataHandle {
int64 handle = 1;
}
// Handle given to a user that represents a replicated virtual device. Each
// replicated device represents N physical devices for execution where N is the
// number of replicas.
message DeviceHandle {
int64 handle = 1;
// The number of model-parallel virtual devices that communicate via XLA
// Send/Recv instructions.
int64 device_count = 2;
}
// Handle given to a user to represent a channel between two computations
// via a Send and Recv instruction pair. Channels are unbuffered, so Send
// Send instructions will be blocked until the data is transferred.
message ChannelHandle {
int64 handle = 1;
}
// DeviceAssignmentProto is a serialized form of DeviceAssignment class, which
// represents the device ids assigned to a set of replicated computations.
// See xla::DeviceAssignment class comment for more details.
message DeviceAssignmentProto {
int32 replica_count = 1;
int32 computation_count = 2;
// Each logical computation runs on replica_count physical devices.
// ComputationDevice represents the device ids assinged to the replicas.
message ComputationDevice {
repeated int32 replica_device_ids = 1;
}
repeated ComputationDevice computation_devices = 3;
}
// Literals are used when the server and client need to exchange materialized
// data / results. Literals are also used to describe constants used in
// computations.
//
// Transfers to/from the client are encoded in literal form, and the structure
// of the repeated fields is implied by the shape.
message LiteralProto {
Shape shape = 1;
repeated bool preds = 2;
bytes u8s = 3;
repeated int32 s32s = 4;
repeated int64 s64s = 5;
repeated uint32 u32s = 6;
repeated uint64 u64s = 7;
repeated float f32s = 8;
repeated double f64s = 9;
repeated float c64s = 12; // Stored as interleaved real, imag floats.
repeated LiteralProto tuple_literals = 10;
// The F16s and BF16s are encoded in little endian byte order
bytes f16s = 11;
bytes bf16s = 13;
repeated int64 sparse_indices = 14;
// Next = 15
}
message WindowDimension {
// The size of the window in this dimension. For a rectangle, this would be
// the width or height.
int64 size = 1;
// The stride at which the window moves across the base area in this
// dimension. In other words, this is the spacing between different
// positions of the window in this dimension.
int64 stride = 2;
// If positive, means the amount of padding with zeroes to add to the base
// area at the low end of this dimension; if negative, its negative means the
// number of elements removed from the low end of this dimension. For example,
// in the horizontal dimension of a rectangle, this would be the number of
// zeroes to pad on the left, given that indices increase when going right.
int64 padding_low = 3;
// As padding_low, but on the high end of this dimension. For
// example, in the horizontal dimension of a rectangle, this would
// be the number of zeroes to pad on the right, given that indices
// increase when going right.
int64 padding_high = 4;
// Dilation factor of the sliding window in this dimension. A dilation factor
// of 1 means no dilation. window_dilation - 1 no-op entries ("holes") are
// implicitly placed between each kernel element. See documentation for
// convolution.
int64 window_dilation = 5;
// Dilation factor of the base area in this dimension. A dilation factor of 1
// means no dilation. base_dilation - 1 no-op entries ("holes") are implicitly
// placed between each base area element. See documentation for convolution.
int64 base_dilation = 6;
// Window reversal means that this dimension was logically reversed before the
// operation.
bool window_reversal = 7;
}
// Describes the windowing in an operation such as convolution.
//
// The window is moved across a base area and for each position of the
// window a computation is performed. The field below describes the
// window and the movement of the window across a base area.
message Window {
repeated WindowDimension dimensions = 1;
}
// Describes the dimension numbers for a gather operation.
//
// See https://www.tensorflow.org/performance/xla/operation_semantics#gather for
// more details.
message GatherDimensionNumbers {
// "Window indices" is a term for a set of indices that index into the
// interior of a dynamic-slice from the input tensor, the starting indices for
// which were computed from output_gather_dims (see the operation semantic for
// how this is defined) and the gather_indices tensor.
//
// The window indices for a specific output index Out is computed as:
//
// i = 0
// for (k : [0, input_tensor_shape.rank))
// window_indices[k] =
// if k in elided_window_dims
// then 0
// else Out[output_window_dims[i++]]
repeated int64 output_window_dims = 1;
repeated int64 elided_window_dims = 2;
// This is interpreted as a map from i to gather_dims_to_operand_dims[i]. It
// transforms the gather index looked up from the gather_indices tensor into
// the starting index in the input space.
repeated int64 gather_dims_to_operand_dims = 3;
// The dimension in the gather_indices input that contains the starting
// indices.
int64 index_vector_dim = 4;
}
// Operation requests that are all collected as a tagged union with a oneof
// field in OpRequest.
message ConstantRequest {
LiteralProto literal = 2;
}
message GetTupleElementRequest {
ComputationDataHandle operand = 2;
int64 index = 3;
}
message SliceRequest {
ComputationDataHandle operand = 2;
repeated int64 start_indices = 3;
repeated int64 limit_indices = 4;
repeated int64 strides = 5;
}
message DynamicSliceRequest {
// Operand from which to slice at dynamic 'start_indices'.
ComputationDataHandle operand = 2;
// Dynamically computed 'start_indices' for slice operation.
ComputationDataHandle start_indices = 3;
// Slice sizes for each dimension (note that indices calculations are computed
// modulo dimension sizes to avoid out-of-bound array accesses).
repeated int64 slice_sizes = 4;
}
message DynamicUpdateSliceRequest {
// Operand on which slice 'update' is to be applied.
ComputationDataHandle operand = 2;
// The slice update to apply to 'operand'.
ComputationDataHandle update = 3;
// Dynamically computed start indices for the update slice operation.
ComputationDataHandle start_indices = 4;
}
message ConvolutionDimensionNumbers {
// The number of the dimension that represents batch in the input.
int64 input_batch_dimension = 7;
// The number of the dimension that represents features in the input.
int64 input_feature_dimension = 8;
// The dimension numbers for the spatial dimensions that the window
// moves through in the input.
repeated int64 input_spatial_dimensions = 11;
// The number of the dimension that represents input features in the
// convolutional kernel (rhs).
int64 kernel_input_feature_dimension = 3;
// The number of the dimension that represents output features in
// the convolutional kernel (rhs).
int64 kernel_output_feature_dimension = 4;
// The dimension numbers for the spatial dimensions that the window
// moves through in the kernel (rhs). window.strides(0) is the
// stride in the kernel_spatial_dimensions(0) dimension.
repeated int64 kernel_spatial_dimensions = 6;
// The number of the dimension that represents batch in the output.
int64 output_batch_dimension = 9;
// The number of the dimension that represents features in the output.
int64 output_feature_dimension = 10;
// The dimension numbers for the spatial dimensions that the window
// moves through in the output.
repeated int64 output_spatial_dimensions = 12;
// Next = 13
};
message ConvolveRequest {
ComputationDataHandle lhs = 2;
ComputationDataHandle rhs = 3; // This is the filter/kernel.
Window window = 4; // Describes the filter/kernel.
ConvolutionDimensionNumbers dimension_numbers = 5;
}
enum FftType {
FFT = 0; // Forward FFT; complex in, complex out.
IFFT = 1; // Inverse FFT; complex in, complex out.
RFFT = 2; // Forward real FFT; real in, fft_length / 2 + 1 complex out
IRFFT = 3; // Inverse real FFT; fft_length / 2 + 1 complex in,
// fft_length real out
}
message FftRequest {
FftType fft_type = 1;
repeated int64 fft_length = 2; // Multivalent for higher-order FFT.
ComputationDataHandle operand = 3;
}
message InfeedRequest {
// The shape of the data returned by reading the device's infeed buffer.
Shape shape = 2;
// Additional infeed configuration for the backend.
bytes config = 3;
}
message OutfeedRequest {
// The shape of the data returned by reading the device's outfeed buffer.
Shape shape = 1;
// Operand to the Outfeed. Supports tuple.
ComputationDataHandle operand = 2;
// Backend-specific information for how to perform the outfeed.
bytes outfeed_config = 3;
}
message CallRequest {
ComputationHandle to_apply = 2;
repeated ComputationDataHandle operands = 3;
}
message CustomCallRequest {
string call_target_name = 2;
repeated ComputationDataHandle operands = 3;
Shape shape = 4;
}
message HostComputeRequest {
// Operand to the HostCompute. Supports tuple.
repeated ComputationDataHandle operands = 1;
// Name used to identify HostSend/Recv channels.
string channel_name = 2;
// Cost estimate in nanoseconds.
int64 cost_estimate_ns = 3;
// The shape of any data returned by host.
Shape shape = 4;
}
message DotDimensionNumbers {
// The dimension numbers that represent the 'lhs' contracting dimensions.
repeated int64 lhs_contracting_dimensions = 1;
// The dimension numbers that represent the 'rhs' contracting dimensions.
repeated int64 rhs_contracting_dimensions = 2;
// The dimension numbers that represent the 'lhs' batch dimensions.
repeated int64 lhs_batch_dimensions = 3;
// The dimension numbers that represent the 'rhs' batch dimensions.
repeated int64 rhs_batch_dimensions = 4;
};
message DotRequest {
ComputationDataHandle lhs = 2;
ComputationDataHandle rhs = 3;
DotDimensionNumbers dimension_numbers = 4;
}
message MapRequest {
repeated ComputationDataHandle operands = 2;
ComputationHandle to_apply = 3;
repeated ComputationDataHandle static_operands = 4;
// The dimensions over which to map.
// Example mapping a Dot operation along the batch dimension 0:
// operand0.shape = [2, 2, 2], operand1.shape = [2,2,3]
// Map({operand0, operand1}, Dot, {0})
repeated int64 dimensions = 5;
}
message ReduceRequest {
// Operand to the reduction.
ComputationDataHandle operand = 2;
// Initial value for the reduction. This must be consistent with the result
// shape of to_apply.
ComputationDataHandle init_value = 3;
// The dimensions to reduce over.
repeated int64 dimensions = 4;
// The computation to apply in the reduction.
ComputationHandle to_apply = 5;
}
message ReduceWindowRequest {
ComputationDataHandle operand = 2;
ComputationDataHandle init_value = 3;
Window window = 4;
ComputationHandle to_apply = 5;
}
message BatchNormTrainingRequest {
ComputationDataHandle operand = 1;
ComputationDataHandle scale = 2;
ComputationDataHandle offset = 3;
float epsilon = 4;
int64 feature_index = 5;
}
message BatchNormInferenceRequest {
ComputationDataHandle operand = 1;
ComputationDataHandle scale = 2;
ComputationDataHandle offset = 3;
ComputationDataHandle mean = 4;
ComputationDataHandle variance = 5;
float epsilon = 6;
int64 feature_index = 7;
}
message BatchNormGradRequest {
ComputationDataHandle operand = 1;
ComputationDataHandle scale = 2;
ComputationDataHandle mean = 3;
ComputationDataHandle variance = 4;
ComputationDataHandle grad_output = 5;
float epsilon = 6;
int64 feature_index = 7;
}
message CrossReplicaSumRequest {
ComputationDataHandle operand = 2;
}
message SelectAndScatterRequest {
// Operand array on which the windows slide.
ComputationDataHandle operand = 2;
// Source array for the data to scatter.
ComputationDataHandle source = 3;
// Initial scalar value for each element in the output.
ComputationDataHandle init_value = 4;
// Window configuration.
Window window = 5;
// Binary function used to select an element from each window.
ComputationHandle select = 6;
// Binary function used to combine each scattered value from source with the
// current output value at the selected location.
ComputationHandle scatter = 7;
}
message ReverseRequest {
ComputationDataHandle operand = 2;
repeated int64 dimensions = 3;
}
message BroadcastRequest {
ComputationDataHandle operand = 2;
repeated int64 broadcast_sizes = 3;
}
message PadRequest {
ComputationDataHandle operand = 2;
ComputationDataHandle padding_value = 3;
PaddingConfig padding_config = 4;
}
message ReshapeRequest {
ComputationDataHandle operand = 2;
// The dimension order for collapse (from fastest-changing to slowest).
repeated int64 dimensions = 3;
// The new dimension sizes (from dimension 0 to n-1).
repeated int64 new_sizes = 4;
}
message TransposeRequest {
ComputationDataHandle operand = 2;
// The permutation of the operand's dimensions (in the range 0 to n-1).
repeated int64 dimensions = 3;
}
message ParameterRequest {
Shape shape = 2;
int64 parameter = 3;
string name = 4;
}
message GetLocalShapeRequest {
ComputationHandle computation = 1;
ComputationDataHandle operand = 2;
}
message GetLocalShapeResponse {
Shape shape = 1;
}
message TraceRequest {
string tag = 2;
ComputationDataHandle operand = 3;
}
message ConvertRequest {
ComputationDataHandle operand = 2;
PrimitiveType new_element_type = 3;
}
message ConcatenateRequest {
repeated ComputationDataHandle operands = 2;
// The dimension in which we concatenate; e.g. if you had dimension arrays of
// [4, 1] and [5, 1], you'd concatenate in dimension 0 to produce a [9, 1].
// Attempting to concatenate those in dimension 1 would produce an error, as
// 4 != 5 (and there is no ragged array support).
int64 dimension = 3;
}
message ConditionalRequest {
ComputationDataHandle predicate = 2;
ComputationDataHandle true_operand = 3;
ComputationHandle true_computation = 4;
ComputationDataHandle false_operand = 5;
ComputationHandle false_computation = 6;
}
message WhileRequest {
ComputationHandle condition = 2;
ComputationHandle body = 3;
ComputationDataHandle init = 4;
}
enum UnaryOperation {
UNOP_INVALID = 0;
// Elementwise, logical negation on booleans and bitwise negation on ints.
UNOP_NOT = 1;
// Elementwise, computes e^x.
UNOP_EXP = 2;
// Elementwise, computes -x.
UNOP_NEGATE = 3;
// Puts the elements in the operand into sorted order.
UNOP_SORT = 4;
// Elementwise, computes tanh(x).
UNOP_TANH = 5;
// Elementwise, computes the natural logarithm of x.
UNOP_LOG = 6;
// Elementwise, computes the floor of x.
UNOP_FLOOR = 7;
// Elementwise, computes the ceil of x.
UNOP_CEIL = 8;
// Elementwise, computes the abs of x.
UNOP_ABS = 9;
// Elementwise, computes the sign of x.
UNOP_SIGN = 10;
// Elementwise, tests if values are finite (not NaN or inf)
UNOP_IS_FINITE = 11;
// Elementwise, computes the cosine of x.
UNOP_COS = 12;
// Elementwise, computes the sine of x.
UNOP_SIN = 13;
// Elementwise, rounds x to nearest integral value, rounding half-way cases
// away from zero.
UNOP_ROUND_NEAREST_AFZ = 14;
// Elementwise, extract real component of complex x.
UNOP_REAL = 15;
// Elementwise, extract real component of complex x.
UNOP_IMAG = 16;
}
message UnaryOpRequest {
UnaryOperation unop = 2;
ComputationDataHandle operand = 3;
}
enum BinaryOperation {
BINOP_INVALID = 0;
// Arithmetic operations.
BINOP_ADD = 1;
BINOP_DIV = 2;
BINOP_MUL = 3;
BINOP_SUB = 4;
// Comparison operators.
BINOP_EQ = 5;
BINOP_GE = 6;
BINOP_GT = 7;
BINOP_LE = 8;
BINOP_LT = 9;
BINOP_NE = 10;
// Element-wise maximum.
BINOP_MAX = 14;
// Element-wise minimum.
BINOP_MIN = 15;
// Raises the left-hand-side to the right-hand-side power.
BINOP_POW = 16;
// Remainder operation.
BINOP_REM = 17;
// Element-wise, logical operators on booleans and bitwise operators on ints.
BINOP_AND = 18;
BINOP_OR = 19;
BINOP_SHIFT_LEFT = 20;
BINOP_SHIFT_RIGHT_ARITHMETIC = 21;
BINOP_SHIFT_RIGHT_LOGICAL = 22;
// Complex from real, imag.
BINOP_COMPLEX = 23;
// Computes the 4-quadrant arctangent of the y, x input arguments.
BINOP_ATAN2 = 24;
}
message BinaryOpRequest {
BinaryOperation binop = 2;
ComputationDataHandle lhs = 3;
ComputationDataHandle rhs = 4;
repeated int64 broadcast_dimensions = 5;
}
enum RandomDistribution {
RNG_INVALID = 0;
// Creates a uniform-distribution-generated random number on the semi-open
// interval [parameter[0], parameter[1]).
RNG_UNIFORM = 1;
// Creates a normal-distribution-generated random number with mean
// parameter[0] and standard deviation parameter[1].
RNG_NORMAL = 2;
// Next: 4
}
message RngRequest {
RandomDistribution distribution = 2;
repeated ComputationDataHandle parameter = 3;
Shape shape = 4;
}
enum TernaryOperation {
TRIOP_INVALID = 0;
// Given a predicate and two operands, selects operand0 if the predicate is
// true and operand1 if the predicate is false.
TRIOP_SELECT = 1;
// Given a min, max and an operand returns the operand if between min and max,
// else returns min if operand is less than min or max if operand is greater
// than max.
TRIOP_CLAMP = 3;
}
message TernaryOpRequest {
TernaryOperation triop = 2;
ComputationDataHandle lhs = 3;
ComputationDataHandle rhs = 4;
ComputationDataHandle ehs = 5;
}
enum VariadicOperation {
VAROP_INVALID = 0;
// Creates a tuple from its operands.
VAROP_TUPLE = 1;
}
message VariadicOpRequest {
VariadicOperation varop = 2;
repeated ComputationDataHandle operands = 3;
}
message ReducePrecisionRequest {
ComputationDataHandle operand = 1;
int32 exponent_bits = 2;
int32 mantissa_bits = 3;
}
message SendRequest {
ComputationDataHandle operand = 1;
ChannelHandle channel_handle = 2;
}
message RecvRequest {
Shape shape = 1;
ChannelHandle channel_handle = 2;
}
message GatherRequest {
ComputationDataHandle input = 1;
ComputationDataHandle gather_indices = 2;
GatherDimensionNumbers dimension_numbers = 3;
repeated int64 window_bounds = 4;
}
message OpSharding {
enum Type {
// This sharding is replicated across all devices (implies maximal,
// all other fields are unused).
REPLICATED = 0;
// This sharding is maximal - one device runs the entire operation.
MAXIMAL = 1;
// This sharding is a tuple - only the tuple_shardings field is valid.
TUPLE = 2;
// None of the above; tile_shape and tile_assignment are both used.
OTHER = 3;
}
Type type = 1;
// The shape of the sharded tile.
Shape tile_shape = 2;
// The shape of the tile assignment tensor - this must be the same rank as
// tile_shape and the product of its dimensions must equal
// tile_assignment_devices.size().
repeated int64 tile_assignment_dimensions = 3;
// Flattened list of device IDs. The order of flattening is the same as used
// by IndexUtil::MultiToLinearIndex(tile_assignment_shape).
repeated int64 tile_assignment_devices = 4;
// If type == TUPLE, the sub-shardings, one per leaf node in the tuple shape,
// in pre-order. The tuple shape could be nested; here we store just a
// flattened list of all leaves in the tuple shape. Note that the tuple shape
// is not stored here; shardings do not store the shapes to which they are
// applied, this is inferred from the instruction this sharding gets attached
// to.
repeated OpSharding tuple_shardings = 5;
}
message OpRequest {
ComputationHandle computation = 1;
OpMetadata metadata = 33;
OpSharding sharding = 40;
oneof op {
BinaryOpRequest binary_op_request = 2;
BroadcastRequest broadcast_request = 3;
CallRequest call_request = 4;
ConcatenateRequest concatenate_request = 5;
ConstantRequest constant_request = 6;
ConvertRequest convert_request = 7;
ConvolveRequest convolve_request = 8;
CrossReplicaSumRequest cross_replica_sum_request = 9;
CustomCallRequest custom_call_request = 10;
DotRequest dot_request = 43;
DynamicSliceRequest dynamic_slice_request = 11;
DynamicUpdateSliceRequest dynamic_update_slice_request = 12;
GetTupleElementRequest get_tuple_element_request = 13;
InfeedRequest infeed_request = 14;
MapRequest map_request = 15;
PadRequest pad_request = 16;
ParameterRequest parameter_request = 17;
ReducePrecisionRequest reduce_precision_request = 36;
ReduceRequest reduce_request = 18;
ReduceWindowRequest reduce_window_request = 19;
ReshapeRequest reshape_request = 20;
ReverseRequest reverse_request = 21;
RngRequest rng_request = 22;
SelectAndScatterRequest select_and_scatter_request = 23;
SliceRequest slice_request = 24;
TernaryOpRequest ternary_op_request = 25;
TraceRequest trace_request = 26;
TransposeRequest transpose_request = 34;
UnaryOpRequest unary_op_request = 27;
VariadicOpRequest variadic_op_request = 28;
WhileRequest while_request = 29;
SendRequest send_request = 30;
RecvRequest recv_request = 31;
OutfeedRequest outfeed_request = 32;
BatchNormTrainingRequest batch_norm_training_request = 35;
BatchNormGradRequest batch_norm_grad_request = 37;
BatchNormInferenceRequest batch_norm_inference_request = 38;
FftRequest fft_request = 41;
ConvertRequest bitcast_convert_request = 42;
ConditionalRequest conditional_request = 44;
HostComputeRequest host_compute_request = 45;
GatherRequest gather_request = 46;
// Next: 47
}
}
message OpResponse {
ComputationDataHandle output = 1;
}