Skip to content
Permalink
 
 
Cannot retrieve contributors at this time
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python layer for image_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.image.ops import gen_image_ops
from tensorflow.contrib.util import loader
from tensorflow.python.framework import common_shapes
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import resource_loader
_image_ops_so = loader.load_op_library(
resource_loader.get_path_to_datafile("_image_ops.so"))
_IMAGE_DTYPES = set(
[dtypes.uint8, dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64])
ops.RegisterShape("ImageConnectedComponents")(common_shapes.call_cpp_shape_fn)
ops.RegisterShape("ImageProjectiveTransform")(common_shapes.call_cpp_shape_fn)
def rotate(images, angles, interpolation="NEAREST", name=None):
"""Rotate image(s) counterclockwise by the passed angle(s) in radians.
Args:
images: A tensor of shape (num_images, num_rows, num_columns, num_channels)
(NHWC), (num_rows, num_columns, num_channels) (HWC), or
(num_rows, num_columns) (HW). The rank must be statically known (the
shape is not `TensorShape(None)`.
angles: A scalar angle to rotate all images by, or (if images has rank 4)
a vector of length num_images, with an angle for each image in the batch.
interpolation: Interpolation mode. Supported values: "NEAREST", "BILINEAR".
name: The name of the op.
Returns:
Image(s) with the same type and shape as `images`, rotated by the given
angle(s). Empty space due to the rotation will be filled with zeros.
Raises:
TypeError: If `image` is an invalid type.
"""
with ops.name_scope(name, "rotate"):
image_or_images = ops.convert_to_tensor(images)
if image_or_images.dtype.base_dtype not in _IMAGE_DTYPES:
raise TypeError("Invalid dtype %s." % image_or_images.dtype)
elif image_or_images.get_shape().ndims is None:
raise TypeError("image_or_images rank must be statically known")
elif len(image_or_images.get_shape()) == 2:
images = image_or_images[None, :, :, None]
elif len(image_or_images.get_shape()) == 3:
images = image_or_images[None, :, :, :]
elif len(image_or_images.get_shape()) == 4:
images = image_or_images
else:
raise TypeError("Images should have rank between 2 and 4.")
image_height = math_ops.cast(array_ops.shape(images)[1],
dtypes.float32)[None]
image_width = math_ops.cast(array_ops.shape(images)[2],
dtypes.float32)[None]
output = transform(
images,
angles_to_projective_transforms(angles, image_height, image_width),
interpolation=interpolation)
if image_or_images.get_shape().ndims is None:
raise TypeError("image_or_images rank must be statically known")
elif len(image_or_images.get_shape()) == 2:
return output[0, :, :, 0]
elif len(image_or_images.get_shape()) == 3:
return output[0, :, :, :]
else:
return output
def translate(images, translations, interpolation="NEAREST", name=None):
"""Translate image(s) by the passed vectors(s).
Args:
images: A tensor of shape (num_images, num_rows, num_columns, num_channels)
(NHWC), (num_rows, num_columns, num_channels) (HWC), or
(num_rows, num_columns) (HW). The rank must be statically known (the
shape is not `TensorShape(None)`.
translations: A vector representing [dx, dy] or (if images has rank 4)
a matrix of length num_images, with a [dx, dy] vector for each image in
the batch.
interpolation: Interpolation mode. Supported values: "NEAREST", "BILINEAR".
name: The name of the op.
Returns:
Image(s) with the same type and shape as `images`, translated by the given
vector(s). Empty space due to the translation will be filled with zeros.
Raises:
TypeError: If `image` is an invalid type.
"""
with ops.name_scope(name, "translate"):
return transform(
images,
translations_to_projective_transforms(translations),
interpolation=interpolation)
def angles_to_projective_transforms(angles,
image_height,
image_width,
name=None):
"""Returns projective transform(s) for the given angle(s).
Args:
angles: A scalar angle to rotate all images by, or (for batches of images)
a vector with an angle to rotate each image in the batch. The rank must
be statically known (the shape is not `TensorShape(None)`.
image_height: Height of the image(s) to be transformed.
image_width: Width of the image(s) to be transformed.
Returns:
A tensor of shape (num_images, 8). Projective transforms which can be given
to `tf.contrib.image.transform`.
"""
with ops.name_scope(name, "angles_to_projective_transforms"):
angle_or_angles = ops.convert_to_tensor(
angles, name="angles", dtype=dtypes.float32)
if len(angle_or_angles.get_shape()) == 0: # pylint: disable=g-explicit-length-test
angles = angle_or_angles[None]
elif len(angle_or_angles.get_shape()) == 1:
angles = angle_or_angles
else:
raise TypeError("Angles should have rank 0 or 1.")
x_offset = ((image_width - 1) - (math_ops.cos(angles) *
(image_width - 1) - math_ops.sin(angles) *
(image_height - 1))) / 2.0
y_offset = ((image_height - 1) - (math_ops.sin(angles) *
(image_width - 1) + math_ops.cos(angles) *
(image_height - 1))) / 2.0
num_angles = array_ops.shape(angles)[0]
return array_ops.concat(
values=[
math_ops.cos(angles)[:, None],
-math_ops.sin(angles)[:, None],
x_offset[:, None],
math_ops.sin(angles)[:, None],
math_ops.cos(angles)[:, None],
y_offset[:, None],
array_ops.zeros((num_angles, 2), dtypes.float32),
],
axis=1)
def translations_to_projective_transforms(translations, name=None):
"""Returns projective transform(s) for the given translation(s).
Args:
translations: A 2-element list representing [dx, dy] or a matrix of
2-element lists representing [dx, dy] to translate for each image
(for a batch of images). The rank must be statically known (the shape
is not `TensorShape(None)`.
name: The name of the op.
Returns:
A tensor of shape (num_images, 8) projective transforms which can be given
to `tf.contrib.image.transform`.
"""
with ops.name_scope(name, "translations_to_projective_transforms"):
translation_or_translations = ops.convert_to_tensor(
translations, name="translations", dtype=dtypes.float32)
if translation_or_translations.get_shape().ndims is None:
raise TypeError(
"translation_or_translations rank must be statically known")
elif len(translation_or_translations.get_shape()) == 1:
translations = translation_or_translations[None]
elif len(translation_or_translations.get_shape()) == 2:
translations = translation_or_translations
else:
raise TypeError("Translations should have rank 1 or 2.")
num_translations = array_ops.shape(translations)[0]
# The translation matrix looks like:
# [[1 0 -dx]
# [0 1 -dy]
# [0 0 1]]
# where the last entry is implicit.
# Translation matrices are always float32.
return array_ops.concat(
values=[
array_ops.ones((num_translations, 1), dtypes.float32),
array_ops.zeros((num_translations, 1), dtypes.float32),
-translations[:, 0, None],
array_ops.zeros((num_translations, 1), dtypes.float32),
array_ops.ones((num_translations, 1), dtypes.float32),
-translations[:, 1, None],
array_ops.zeros((num_translations, 2), dtypes.float32),
],
axis=1)
def transform(images, transforms, interpolation="NEAREST", name=None):
"""Applies the given transform(s) to the image(s).
Args:
images: A tensor of shape (num_images, num_rows, num_columns, num_channels)
(NHWC), (num_rows, num_columns, num_channels) (HWC), or
(num_rows, num_columns) (HW). The rank must be statically known (the
shape is not `TensorShape(None)`.
transforms: Projective transform matrix/matrices. A vector of length 8 or
tensor of size N x 8. If one row of transforms is
[a0, a1, a2, b0, b1, b2, c0, c1], then it maps the *output* point
`(x, y)` to a transformed *input* point
`(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)`,
where `k = c0 x + c1 y + 1`. The transforms are *inverted* compared to
the transform mapping input points to output points. Note that gradients
are not backpropagated into transformation parameters.
interpolation: Interpolation mode. Supported values: "NEAREST", "BILINEAR".
Returns:
Image(s) with the same type and shape as `images`, with the given
transform(s) applied. Transformed coordinates outside of the input image
will be filled with zeros.
Raises:
TypeError: If `image` is an invalid type.
"""
with ops.name_scope(name, "transform"):
image_or_images = ops.convert_to_tensor(images, name="images")
transform_or_transforms = ops.convert_to_tensor(
transforms, name="transforms", dtype=dtypes.float32)
if image_or_images.dtype.base_dtype not in _IMAGE_DTYPES:
raise TypeError("Invalid dtype %s." % image_or_images.dtype)
elif image_or_images.get_shape().ndims is None:
raise TypeError("image_or_images rank must be statically known")
elif len(image_or_images.get_shape()) == 2:
images = image_or_images[None, :, :, None]
elif len(image_or_images.get_shape()) == 3:
images = image_or_images[None, :, :, :]
elif len(image_or_images.get_shape()) == 4:
images = image_or_images
else:
raise TypeError("Images should have rank between 2 and 4.")
if len(transform_or_transforms.get_shape()) == 1:
transforms = transform_or_transforms[None]
elif transform_or_transforms.get_shape().ndims is None:
raise TypeError(
"transform_or_transforms rank must be statically known")
elif len(transform_or_transforms.get_shape()) == 2:
transforms = transform_or_transforms
else:
raise TypeError("Transforms should have rank 1 or 2.")
output = gen_image_ops.image_projective_transform(
images, transforms, interpolation=interpolation.upper())
if len(image_or_images.get_shape()) == 2:
return output[0, :, :, 0]
elif len(image_or_images.get_shape()) == 3:
return output[0, :, :, :]
else:
return output
def compose_transforms(*transforms):
"""Composes the transforms tensors.
Args:
*transforms: List of image projective transforms to be composed. Each
transform is length 8 (single transform) or shape (N, 8) (batched
transforms). The shapes of all inputs must be equal, and at least one
input must be given.
Returns:
A composed transform tensor. When passed to `tf.contrib.image.transform`,
equivalent to applying each of the given transforms to the image in
order.
"""
assert transforms, "transforms cannot be empty"
with ops.name_scope("compose_transforms"):
composed = flat_transforms_to_matrices(transforms[0])
for tr in transforms[1:]:
# Multiply batches of matrices.
composed = math_ops.matmul(composed, flat_transforms_to_matrices(tr))
return matrices_to_flat_transforms(composed)
def flat_transforms_to_matrices(transforms):
"""Converts `tf.contrib.image` projective transforms to affine matrices.
Note that the output matrices map output coordinates to input coordinates. For
the forward transformation matrix, call `tf.linalg.inv` on the result.
Args:
transforms: Vector of length 8, or batches of transforms with shape
`(N, 8)`.
Returns:
3D tensor of matrices with shape `(N, 3, 3)`. The output matrices map the
*output coordinates* (in homogeneous coordinates) of each transform to the
corresponding *input coordinates*.
Raises:
ValueError: If `transforms` have an invalid shape.
"""
with ops.name_scope("flat_transforms_to_matrices"):
transforms = ops.convert_to_tensor(transforms, name="transforms")
if transforms.shape.ndims not in (1, 2):
raise ValueError("Transforms should be 1D or 2D, got: %s" % transforms)
# Make the transform(s) 2D in case the input is a single transform.
transforms = array_ops.reshape(transforms, constant_op.constant([-1, 8]))
num_transforms = array_ops.shape(transforms)[0]
# Add a column of ones for the implicit last entry in the matrix.
return array_ops.reshape(
array_ops.concat(
[transforms, array_ops.ones([num_transforms, 1])], axis=1),
constant_op.constant([-1, 3, 3]))
def matrices_to_flat_transforms(transform_matrices):
"""Converts affine matrices to `tf.contrib.image` projective transforms.
Note that we expect matrices that map output coordinates to input coordinates.
To convert forward transformation matrices, call `tf.linalg.inv` on the
matrices and use the result here.
Args:
transform_matrices: One or more affine transformation matrices, for the
reverse transformation in homogeneous coordinates. Shape `(3, 3)` or
`(N, 3, 3)`.
Returns:
2D tensor of flat transforms with shape `(N, 8)`, which may be passed into
`tf.contrib.image.transform`.
Raises:
ValueError: If `transform_matrices` have an invalid shape.
"""
with ops.name_scope("matrices_to_flat_transforms"):
transform_matrices = ops.convert_to_tensor(
transform_matrices, name="transform_matrices")
if transform_matrices.shape.ndims not in (2, 3):
raise ValueError(
"Matrices should be 2D or 3D, got: %s" % transform_matrices)
# Flatten each matrix.
transforms = array_ops.reshape(transform_matrices,
constant_op.constant([-1, 9]))
# Divide each matrix by the last entry (normally 1).
transforms /= transforms[:, 8:9]
return transforms[:, :8]
@ops.RegisterGradient("ImageProjectiveTransform")
def _image_projective_transform_grad(op, grad):
"""Computes the gradient for ImageProjectiveTransform."""
images = op.inputs[0]
transforms = op.inputs[1]
interpolation = op.get_attr("interpolation")
image_or_images = ops.convert_to_tensor(images, name="images")
transform_or_transforms = ops.convert_to_tensor(
transforms, name="transforms", dtype=dtypes.float32)
if image_or_images.dtype.base_dtype not in _IMAGE_DTYPES:
raise TypeError("Invalid dtype %s." % image_or_images.dtype)
if len(image_or_images.get_shape()) == 2:
images = image_or_images[None, :, :, None]
elif len(image_or_images.get_shape()) == 3:
images = image_or_images[None, :, :, :]
elif len(image_or_images.get_shape()) == 4:
images = image_or_images
else:
raise TypeError("Images should have rank between 2 and 4")
if len(transform_or_transforms.get_shape()) == 1:
transforms = transform_or_transforms[None]
elif len(transform_or_transforms.get_shape()) == 2:
transforms = transform_or_transforms
else:
raise TypeError("Transforms should have rank 1 or 2.")
# Invert transformations
transforms = flat_transforms_to_matrices(transforms=transforms)
inverse = linalg_ops.matrix_inverse(transforms)
transforms = matrices_to_flat_transforms(inverse)
output = gen_image_ops.image_projective_transform(
grad, transforms, interpolation=interpolation)
if len(image_or_images.get_shape()) == 2:
return [output[0, :, :, 0], None]
elif len(image_or_images.get_shape()) == 3:
return [output[0, :, :, :], None]
else:
return [output, None]
def bipartite_match(distance_mat,
num_valid_rows,
top_k=-1,
name="bipartite_match"):
"""Find bipartite matching based on a given distance matrix.
A greedy bi-partite matching algorithm is used to obtain the matching with
the (greedy) minimum distance.
Args:
distance_mat: A 2-D float tensor of shape `[num_rows, num_columns]`. It is a
pair-wise distance matrix between the entities represented by each row and
each column. It is an asymmetric matrix. The smaller the distance is, the
more similar the pairs are. The bipartite matching is to minimize the
distances.
num_valid_rows: A scalar or a 1-D tensor with one element describing the
number of valid rows of distance_mat to consider for the bipartite
matching. If set to be negative, then all rows from `distance_mat` are
used.
top_k: A scalar that specifies the number of top-k matches to retrieve.
If set to be negative, then is set according to the maximum number of
matches from `distance_mat`.
name: The name of the op.
Returns:
row_to_col_match_indices: A vector of length num_rows, which is the number
of rows of the input `distance_matrix`. If `row_to_col_match_indices[i]`
is not -1, row i is matched to column `row_to_col_match_indices[i]`.
col_to_row_match_indices: A vector of length num_columns, which is the
number of columns of the input ditance matrix.
If `col_to_row_match_indices[j]` is not -1, column j is matched to row
`col_to_row_match_indices[j]`.
"""
result = gen_image_ops.bipartite_match(
distance_mat, num_valid_rows, top_k, name=name)
return result
def connected_components(images):
"""Labels the connected components in a batch of images.
A component is a set of pixels in a single input image, which are all adjacent
and all have the same non-zero value. The components using a squared
connectivity of one (all True entries are joined with their neighbors above,
below, left, and right). Components across all images have consecutive ids 1
through n. Components are labeled according to the first pixel of the
component appearing in row-major order (lexicographic order by
image_index_in_batch, row, col). Zero entries all have an output id of 0.
This op is equivalent with `scipy.ndimage.measurements.label` on a 2D array
with the default structuring element (which is the connectivity used here).
Args:
images: A 2D (H, W) or 3D (N, H, W) Tensor of boolean image(s).
Returns:
Components with the same shape as `images`. False entries in `images` have
value 0, and all True entries map to a component id > 0.
Raises:
TypeError: if `images` is not 2D or 3D.
"""
with ops.name_scope("connected_components"):
image_or_images = ops.convert_to_tensor(images, name="images")
if len(image_or_images.get_shape()) == 2:
images = image_or_images[None, :, :]
elif len(image_or_images.get_shape()) == 3:
images = image_or_images
else:
raise TypeError(
"images should have rank 2 (HW) or 3 (NHW). Static shape is %s" %
image_or_images.get_shape())
components = gen_image_ops.image_connected_components(images)
# TODO(ringwalt): Component id renaming should be done in the op, to avoid
# constructing multiple additional large tensors.
components_flat = array_ops.reshape(components, [-1])
unique_ids, id_index = array_ops.unique(components_flat)
id_is_zero = array_ops.where(math_ops.equal(unique_ids, 0))[:, 0]
# Map each nonzero id to consecutive values.
nonzero_consecutive_ids = math_ops.range(
array_ops.shape(unique_ids)[0] - array_ops.shape(id_is_zero)[0]) + 1
def no_zero():
# No need to insert a zero into the ids.
return nonzero_consecutive_ids
def has_zero():
# Insert a zero in the consecutive ids where zero appears in unique_ids.
# id_is_zero has length 1.
zero_id_ind = math_ops.to_int32(id_is_zero[0])
ids_before = nonzero_consecutive_ids[:zero_id_ind]
ids_after = nonzero_consecutive_ids[zero_id_ind:]
return array_ops.concat([ids_before, [0], ids_after], axis=0)
new_ids = control_flow_ops.cond(
math_ops.equal(array_ops.shape(id_is_zero)[0], 0), no_zero, has_zero)
components = array_ops.reshape(
array_ops.gather(new_ids, id_index), array_ops.shape(components))
if len(image_or_images.get_shape()) == 2:
return components[0, :, :]
else:
return components
ops.NotDifferentiable("BipartiteMatch")
ops.NotDifferentiable("ImageConnectedComponents")