-
Notifications
You must be signed in to change notification settings - Fork 75k
Closed
Labels
TF 2.3Issues related to TF 2.3Issues related to TF 2.3comp:kerasKeras related issuesKeras related issuesstaleThis label marks the issue/pr stale - to be closed automatically if no activityThis label marks the issue/pr stale - to be closed automatically if no activitystat:awaiting responseStatus - Awaiting response from authorStatus - Awaiting response from authortype:supportSupport issuesSupport issues
Description
System information
I have written codes similar to that in the Tensorflow page for checking the label on my image based on the model that I trained
- OS Platform and Distribution : Windows 10
- TensorFlow installed from: pip, tf 2.3.0, gpu
- Python version: - 3.6.8
I had run a simple code to test the model with the images
model = tf.keras.models.load_model(
"D:\\Python Projects\\Final Year Project\\assets\\resource\\micro.h5")
path_img = pathlib.Path("D:/Python Projects/Final Year Project/assets/resource/train_images/Acinetobacter.baumanii/edited/img0.png")
image = keras.preprocessing.image.load_img(path_img, target_size=(244, 244)
image_array = keras.preprocessing.image.img_to_array(image)
image_array = tf.expand_dims(image_array, 0)
prediction = model.predict(image_array )
Error Info
WARNING:tensorflow:Model was constructed with shape (None, 224, 224, 3) for input Tensor("sequential_1_input:0", shape=(None, 224, 224, 3), dtype=float32), but it was called on an input with incompatible shape (None, 244, 244, 3).
WARNING:tensorflow:Model was constructed with shape (None, 224, 224, 3) for input Tensor("random_flip_input:0", shape=(None, 224, 224, 3), dtype=float32), but it was called on an input with incompatible shape (None, 244, 244, 3).
Traceback (most recent call last):
File "d:\Python Projects\Final Year Project\controller\Image_Recognition.py", line 136, in toProcess
prediction = self.imgReg.model.predict(img_array)
File "c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\training.py", line 130, in _method_wrapper
return method(self, *args, **kwargs)
File "c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\training.py", line 1599, in predict
tmp_batch_outputs = predict_function(iterator)
File "c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\eager\def_function.py", line 780, in __call__
result = self._call(*args, **kwds)
File "c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\eager\def_function.py", line 823, in _call
self._initialize(args, kwds, add_initializers_to=initializers)
File "c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\eager\def_function.py", line 697, in _initialize
*args, **kwds))
File "c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\eager\function.py", line 2855, in _get_concrete_function_internal_garbage_collected
graph_function, _, _ = self._maybe_define_function(args, kwargs)
File "c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\eager\function.py", line 3213, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\eager\function.py", line 3075, in _create_graph_function
capture_by_value=self._capture_by_value),
File "c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\func_graph.py", line 986, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\eager\def_function.py", line 600, in wrapped_fn
return weak_wrapped_fn().__wrapped__(*args, **kwds)
File "c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\func_graph.py", line 973, in wrapper
raise e.ag_error_metadata.to_exception(e)
ValueError: in user code:
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\training.py:1462 predict_function *
return step_function(self, iterator)
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\training.py:1452 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1211 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2585 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2945 _call_for_each_replica
return fn(*args, **kwargs)
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\training.py:1445 run_step **
outputs = model.predict_step(data)
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\training.py:1418 predict_step
return self(x, training=False)
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\base_layer.py:985 __call__
outputs = call_fn(inputs, *args, **kwargs)
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\sequential.py:372 call
return super(Sequential, self).call(inputs, training=training, mask=mask)
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\functional.py:386 call
inputs, training=training, mask=mask)
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\functional.py:508 _run_internal_graph
outputs = node.layer(*args, **kwargs)
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\base_layer.py:976 __call__
self.name)
c:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\input_spec.py:216 assert_input_compatibility
' but received input with shape ' + str(shape))
ValueError: Input 0 of layer dense_2 is incompatible with the layer: expected axis -1 of input shape to have value 50176 but received input with shape [None, 57600]
I had run the code on Google Colab with the same model and image and it works there, but it doesn't on my local computer
Metadata
Metadata
Assignees
Labels
TF 2.3Issues related to TF 2.3Issues related to TF 2.3comp:kerasKeras related issuesKeras related issuesstaleThis label marks the issue/pr stale - to be closed automatically if no activityThis label marks the issue/pr stale - to be closed automatically if no activitystat:awaiting responseStatus - Awaiting response from authorStatus - Awaiting response from authortype:supportSupport issuesSupport issues