diff --git a/tfjs-backend-wasm/scripts/test-bundle-size.js b/tfjs-backend-wasm/scripts/test-bundle-size.js index da511c2174a..0d9f2727a42 100755 --- a/tfjs-backend-wasm/scripts/test-bundle-size.js +++ b/tfjs-backend-wasm/scripts/test-bundle-size.js @@ -36,7 +36,9 @@ exec( shell.cd(dirName); shell.cd(wasmDirName); -exec(`yarn && ./scripts/build-ci.sh && yarn rollup -c`, {silent: false}); +exec( + `yarn && yarn build-core && ./scripts/build-ci.sh && yarn rollup -c`, + {silent: false}); const masterMinBundleSize = getFileSizeBytes(bundleFilename); const masterWasmSize = getFileSizeBytes(wasmFileName); diff --git a/tfjs-backend-wasm/src/kernels/all_kernels.ts b/tfjs-backend-wasm/src/kernels/all_kernels.ts index 363b27b8e28..51819c27127 100644 --- a/tfjs-backend-wasm/src/kernels/all_kernels.ts +++ b/tfjs-backend-wasm/src/kernels/all_kernels.ts @@ -31,6 +31,7 @@ import './Conv2D'; import './CropAndResize'; import './DepthwiseConv2dNative'; import './Div'; +import './Exp'; import './FloorDiv'; import './FusedBatchNorm'; import './FusedConv2D'; @@ -42,13 +43,12 @@ import './Mul'; import './NonMaxSuppressionV3'; import './PadV2'; import './Prelu'; -import './Reshape'; import './Relu'; import './Relu6'; +import './Reshape'; import './ResizeBilinear'; import './Sigmoid'; import './Slice'; import './Square'; import './Sub'; import './Transpose'; -import './Exp'; diff --git a/tfjs-backend-wasm/src/setup_test.ts b/tfjs-backend-wasm/src/setup_test.ts index 86c9f34faf5..bcc0d59483e 100644 --- a/tfjs-backend-wasm/src/setup_test.ts +++ b/tfjs-backend-wasm/src/setup_test.ts @@ -193,6 +193,7 @@ const TEST_FILTERS: TestFilter[] = [ {include: 'addN'}, {include: 'nonMaxSuppression'}, {include: 'argmax', excludes: ['gradient']}, + {include: 'exp '}, ]; const customInclude = (testName: string) => { diff --git a/tfjs-core/src/ops/unary_ops.ts b/tfjs-core/src/ops/unary_ops.ts index 55977225d40..3586397bc61 100644 --- a/tfjs-core/src/ops/unary_ops.ts +++ b/tfjs-core/src/ops/unary_ops.ts @@ -212,13 +212,16 @@ function exp_(x: T|TensorLike): T { const $x = convertToTensor(x, 'x', 'exp'); const bck = (dy: T, saved: Tensor[]) => { - return {$x: () => dy.mulStrict(saved[0] as T)}; + return {x: () => dy.mulStrict(saved[0] as T)}; }; + const attrs = {}; + const inputsToSave: Tensor[] = []; + const outputsToSave = [true]; return ENGINE.runKernelFunc((backend, save) => { const y = backend.exp($x); save([y]); return y; - }, {$x}, bck); + }, {x: $x}, bck, 'Exp', attrs, inputsToSave, outputsToSave); } /**