Skip to content
Permalink
5f71c12a02
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
574 lines (488 sloc) 21 KB
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model utilities."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
import sys
from absl import flags
from absl import logging
import numpy as np
import tensorflow.compat.v1 as tf
import lars_optimizer
from tensorflow.python.tpu import tpu_function # pylint:disable=g-direct-tensorflow-import
FLAGS = flags.FLAGS
def build_learning_rate(initial_lr,
global_step,
steps_per_epoch=None,
lr_decay_type='exponential',
decay_factor=0.97,
decay_epochs=2.4,
total_steps=None,
warmup_epochs=5):
"""Build learning rate."""
if lr_decay_type == 'exponential':
assert steps_per_epoch is not None
decay_steps = steps_per_epoch * decay_epochs
lr = tf.train.exponential_decay(
initial_lr, global_step, decay_steps, decay_factor, staircase=True)
elif lr_decay_type == 'cosine':
assert total_steps is not None
lr = 0.5 * initial_lr * (
1 + tf.cos(np.pi * tf.cast(global_step, tf.float32) / total_steps))
elif lr_decay_type == 'constant':
lr = initial_lr
elif lr_decay_type == 'poly':
tf.logging.info('Using poly LR schedule')
assert steps_per_epoch is not None
assert total_steps is not None
warmup_steps = int(steps_per_epoch * warmup_epochs)
min_step = tf.constant(1, dtype=tf.int64)
decay_steps = tf.maximum(min_step, tf.subtract(global_step, warmup_steps))
lr = tf.train.polynomial_decay(
initial_lr,
decay_steps,
total_steps - warmup_steps + 1,
end_learning_rate=0.1,
power=2.0)
else:
assert False, 'Unknown lr_decay_type : %s' % lr_decay_type
if warmup_epochs:
logging.info('Learning rate warmup_epochs: %d', warmup_epochs)
warmup_steps = int(warmup_epochs * steps_per_epoch)
warmup_lr = (
initial_lr * tf.cast(global_step, tf.float32) / tf.cast(
warmup_steps, tf.float32))
lr = tf.cond(global_step < warmup_steps, lambda: warmup_lr, lambda: lr)
return lr
def build_optimizer(learning_rate,
optimizer_name='rmsprop',
decay=0.9,
epsilon=0.001,
momentum=0.9,
lars_weight_decay=None,
lars_epsilon=None):
"""Build optimizer."""
if optimizer_name == 'sgd':
logging.info('Using SGD optimizer')
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
elif optimizer_name == 'momentum':
logging.info('Using Momentum optimizer')
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate, momentum=momentum)
elif optimizer_name == 'rmsprop':
logging.info('Using RMSProp optimizer')
optimizer = tf.train.RMSPropOptimizer(learning_rate, decay, momentum,
epsilon)
elif optimizer_name == 'lars':
logging.info('Using LARS optimizer')
assert lars_weight_decay is not None, 'LARS weight decay is None.'
assert lars_epsilon is not None, 'LARS epsilon is None.'
optimizer = lars_optimizer.LARSOptimizer(
learning_rate,
momentum=momentum,
weight_decay=lars_weight_decay,
skip_list=['batch_normalization', 'bias', 'beta', 'gamma'],
epsilon=lars_epsilon)
else:
logging.fatal('Unknown optimizer: %s', optimizer_name)
return optimizer
class TpuBatchNormalization(tf.layers.BatchNormalization):
# class TpuBatchNormalization(tf.layers.BatchNormalization):
"""Cross replica batch normalization."""
def __init__(self, fused=False, **kwargs):
if fused in (True, None):
raise ValueError('TpuBatchNormalization does not support fused=True.')
super(TpuBatchNormalization, self).__init__(fused=fused, **kwargs)
def _cross_replica_average(self, t, num_shards_per_group):
"""Calculates the average value of input tensor across TPU replicas."""
num_shards = tpu_function.get_tpu_context().number_of_shards
group_assignment = None
if num_shards_per_group > 1:
if num_shards % num_shards_per_group != 0:
raise ValueError('num_shards: %d mod shards_per_group: %d, should be 0'
% (num_shards, num_shards_per_group))
num_groups = num_shards // num_shards_per_group
group_assignment = [[
x for x in range(num_shards) if x // num_shards_per_group == y
] for y in range(num_groups)]
return tf.tpu.cross_replica_sum(t, group_assignment) / tf.cast(
num_shards_per_group, t.dtype)
def _moments(self, inputs, reduction_axes, keep_dims):
"""Compute the mean and variance: it overrides the original _moments."""
shard_mean, shard_variance = super(TpuBatchNormalization, self)._moments(
inputs, reduction_axes, keep_dims=keep_dims)
num_shards = tpu_function.get_tpu_context().number_of_shards or 1
if num_shards <= 8: # Skip cross_replica for 2x2 or smaller slices.
num_shards_per_group = 1
else:
num_shards_per_group = max(8, num_shards // 8)
logging.info('TpuBatchNormalization with num_shards_per_group %s',
num_shards_per_group)
if num_shards_per_group > 1:
# Compute variance using: Var[X]= E[X^2] - E[X]^2.
shard_square_of_mean = tf.math.square(shard_mean)
shard_mean_of_square = shard_variance + shard_square_of_mean
group_mean = self._cross_replica_average(
shard_mean, num_shards_per_group)
group_mean_of_square = self._cross_replica_average(
shard_mean_of_square, num_shards_per_group)
group_variance = group_mean_of_square - tf.math.square(group_mean)
return (group_mean, group_variance)
else:
return (shard_mean, shard_variance)
class BatchNormalization(tf.layers.BatchNormalization):
"""Fixed default name of BatchNormalization to match TpuBatchNormalization."""
def __init__(self, name='tpu_batch_normalization', **kwargs):
super(BatchNormalization, self).__init__(name=name, **kwargs)
def train_batch_norm(**kwargs):
if 'optimizer' in FLAGS and FLAGS.optimizer == 'lars':
return DistributedBatchNormalization(**kwargs)
return TpuBatchNormalization(**kwargs)
def eval_batch_norm(**kwargs):
if 'optimizer' in FLAGS and FLAGS.optimizer == 'lars':
return DistributedBatchNormalization(**kwargs)
return BatchNormalization(**kwargs)
class DistributedBatchNormalization:
"""Distributed batch normalization used in https://arxiv.org/abs/2011.00071."""
def __init__(self, axis, momentum, epsilon):
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
def __call__(self, x, training, distname='batch_normalization'):
shape = [x.shape[-1]]
with tf.variable_scope('batch_normalization'):
ones = tf.initializers.ones()
zeros = tf.initializers.zeros()
gamma = tf.get_variable(
'gamma', shape, initializer=ones, trainable=True, use_resource=True)
beta = tf.get_variable(
'beta', shape, initializer=zeros, trainable=True, use_resource=True)
moving_mean = tf.get_variable(
'moving_mean',
shape,
initializer=zeros,
trainable=False,
use_resource=True)
moving_variance = tf.get_variable(
'moving_variance',
shape,
initializer=ones,
trainable=False,
use_resource=True)
num_replicas = FLAGS.num_replicas
x = tf.cast(x, tf.float32)
if training:
if num_replicas <= 8:
group_assign = None
group_shards = tf.cast(num_replicas, tf.float32)
else:
group_shards = max(
1,
int(FLAGS.batch_norm_batch_size /
(FLAGS.train_batch_size / num_replicas)))
group_assign = np.arange(num_replicas, dtype=np.int32)
group_assign = group_assign.reshape([-1, group_shards])
group_assign = group_assign.tolist()
group_shards = tf.cast(group_shards, tf.float32)
mean = tf.reduce_mean(x, [0, 1, 2])
mean = tf.tpu.cross_replica_sum(mean, group_assign) / group_shards
# Var[x] = E[x^2] - E[x]^2
mean_sq = tf.reduce_mean(tf.math.square(x), [0, 1, 2])
mean_sq = tf.tpu.cross_replica_sum(mean_sq, group_assign) / group_shards
variance = mean_sq - tf.math.square(mean)
decay = tf.cast(1. - self.momentum, tf.float32)
def u(moving, normal, name):
num_replicas_fp = tf.cast(num_replicas, tf.float32)
normal = tf.tpu.cross_replica_sum(normal) / num_replicas_fp
diff = decay * (moving - normal)
return tf.assign_sub(moving, diff, use_locking=True, name=name)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS,
u(moving_mean, mean, name='moving_mean'))
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS,
u(moving_variance, variance, name='moving_variance'))
x = tf.nn.batch_normalization(
x,
mean=mean,
variance=variance,
offset=beta,
scale=gamma,
variance_epsilon=self.epsilon)
else:
x, _, _ = tf.nn.fused_batch_norm(
x,
scale=gamma,
offset=beta,
mean=moving_mean,
variance=moving_variance,
epsilon=self.epsilon,
is_training=False)
return x
def drop_connect(inputs, is_training, survival_prob):
"""Drop the entire conv with given survival probability."""
# "Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf
if not is_training:
return inputs
# Compute tensor.
batch_size = tf.shape(inputs)[0]
random_tensor = survival_prob
random_tensor += tf.random_uniform([batch_size, 1, 1, 1], dtype=inputs.dtype)
binary_tensor = tf.floor(random_tensor)
# Unlike conventional way that multiply survival_prob at test time, here we
# divide survival_prob at training time, such that no addition compute is
# needed at test time.
output = tf.div(inputs, survival_prob) * binary_tensor
return output
def archive_ckpt(ckpt_eval, ckpt_objective, ckpt_path):
"""Archive a checkpoint if the metric is better."""
ckpt_dir, ckpt_name = os.path.split(ckpt_path)
saved_objective_path = os.path.join(ckpt_dir, 'best_objective.txt')
saved_objective = float('-inf')
if tf.gfile.Exists(saved_objective_path):
with tf.gfile.GFile(saved_objective_path, 'r') as f:
saved_objective = float(f.read())
if saved_objective > ckpt_objective:
logging.info('Ckpt %s is worse than %s', ckpt_objective, saved_objective)
return False
filenames = tf.gfile.Glob(ckpt_path + '.*')
if filenames is None:
logging.info('No files to copy for checkpoint %s', ckpt_path)
return False
# Clear the old folder.
dst_dir = os.path.join(ckpt_dir, 'archive')
if tf.gfile.Exists(dst_dir):
tf.gfile.DeleteRecursively(dst_dir)
tf.gfile.MakeDirs(dst_dir)
# Write checkpoints.
for f in filenames:
dest = os.path.join(dst_dir, os.path.basename(f))
tf.gfile.Copy(f, dest, overwrite=True)
ckpt_state = tf.train.generate_checkpoint_state_proto(
dst_dir,
model_checkpoint_path=ckpt_name,
all_model_checkpoint_paths=[ckpt_name])
with tf.gfile.GFile(os.path.join(dst_dir, 'checkpoint'), 'w') as f:
f.write(str(ckpt_state))
with tf.gfile.GFile(os.path.join(dst_dir, 'best_eval.txt'), 'w') as f:
f.write('%s' % ckpt_eval)
# Update the best objective.
with tf.gfile.GFile(saved_objective_path, 'w') as f:
f.write('%f' % ckpt_objective)
logging.info('Copying checkpoint %s to %s', ckpt_path, dst_dir)
return True
def get_ema_vars():
"""Get all exponential moving average (ema) variables."""
ema_vars = tf.trainable_variables() + tf.get_collection('moving_vars')
for v in tf.global_variables():
# We maintain mva for batch norm moving mean and variance as well.
if 'moving_mean' in v.name or 'moving_variance' in v.name:
ema_vars.append(v)
return list(set(ema_vars))
class DepthwiseConv2D(tf.keras.layers.DepthwiseConv2D, tf.layers.Layer):
"""Wrap keras DepthwiseConv2D to tf.layers."""
pass
class Conv2D(tf.layers.Conv2D):
"""Wrapper for Conv2D with specialization for fast inference."""
def _bias_activation(self, outputs):
if self.use_bias:
outputs = tf.nn.bias_add(outputs, self.bias, data_format='NCHW')
if self.activation is not None:
return self.activation(outputs)
return outputs
def _can_run_fast_1x1(self, inputs):
batch_size = inputs.shape.as_list()[0]
return (self.data_format == 'channels_first' and
batch_size == 1 and
self.kernel_size == (1, 1))
def _call_fast_1x1(self, inputs):
# Compute the 1x1 convolution as a matmul.
inputs_shape = tf.shape(inputs)
flat_inputs = tf.reshape(inputs, [inputs_shape[1], -1])
flat_outputs = tf.matmul(
tf.squeeze(self.kernel),
flat_inputs,
transpose_a=True)
outputs_shape = tf.concat([[1, self.filters], inputs_shape[2:]], axis=0)
outputs = tf.reshape(flat_outputs, outputs_shape)
# Handle the bias and activation function.
return self._bias_activation(outputs)
def call(self, inputs):
if self._can_run_fast_1x1(inputs):
return self._call_fast_1x1(inputs)
return super(Conv2D, self).call(inputs)
class EvalCkptDriver(object):
"""A driver for running eval inference.
Attributes:
model_name: str. Model name to eval.
batch_size: int. Eval batch size.
image_size: int. Input image size, determined by model name.
num_classes: int. Number of classes, default to 1000 for ImageNet.
include_background_label: whether to include extra background label.
advprop_preprocessing: whether to use advprop preprocessing.
"""
def __init__(self,
model_name,
batch_size=1,
image_size=224,
num_classes=1000,
include_background_label=False,
advprop_preprocessing=False):
"""Initialize internal variables."""
self.model_name = model_name
self.batch_size = batch_size
self.num_classes = num_classes
self.include_background_label = include_background_label
self.image_size = image_size
self.advprop_preprocessing = advprop_preprocessing
def restore_model(self, sess, ckpt_dir, enable_ema=True, export_ckpt=None):
"""Restore variables from checkpoint dir."""
sess.run(tf.global_variables_initializer())
checkpoint = tf.train.latest_checkpoint(ckpt_dir)
if enable_ema:
ema = tf.train.ExponentialMovingAverage(decay=0.0)
ema_vars = get_ema_vars()
var_dict = ema.variables_to_restore(ema_vars)
ema_assign_op = ema.apply(ema_vars)
else:
var_dict = get_ema_vars()
ema_assign_op = None
tf.train.get_or_create_global_step()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(var_dict, max_to_keep=1)
saver.restore(sess, checkpoint)
if export_ckpt:
if ema_assign_op is not None:
sess.run(ema_assign_op)
saver = tf.train.Saver(max_to_keep=1, save_relative_paths=True)
saver.save(sess, export_ckpt)
def build_model(self, features, is_training):
"""Build model with input features."""
del features, is_training
raise ValueError('Must be implemented by subclasses.')
def get_preprocess_fn(self):
raise ValueError('Must be implemented by subclsses.')
def build_dataset(self, filenames, labels, is_training):
"""Build input dataset."""
batch_drop_remainder = False
if 'condconv' in self.model_name and not is_training:
# CondConv layers can only be called with known batch dimension. Thus, we
# must drop all remaining examples that do not make up one full batch.
# To ensure all examples are evaluated, use a batch size that evenly
# divides the number of files.
batch_drop_remainder = True
num_files = len(filenames)
if num_files % self.batch_size != 0:
tf.logging.warn('Remaining examples in last batch are not being '
'evaluated.')
filenames = tf.constant(filenames)
labels = tf.constant(labels)
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
def _parse_function(filename, label):
image_string = tf.read_file(filename)
preprocess_fn = self.get_preprocess_fn()
image_decoded = preprocess_fn(
image_string, is_training, image_size=self.image_size)
image = tf.cast(image_decoded, tf.float32)
return image, label
dataset = dataset.map(_parse_function)
dataset = dataset.batch(self.batch_size,
drop_remainder=batch_drop_remainder)
iterator = dataset.make_one_shot_iterator()
images, labels = iterator.get_next()
return images, labels
def run_inference(self,
ckpt_dir,
image_files,
labels,
enable_ema=True,
export_ckpt=None):
"""Build and run inference on the target images and labels."""
label_offset = 1 if self.include_background_label else 0
with tf.Graph().as_default(), tf.Session() as sess:
images, labels = self.build_dataset(image_files, labels, False)
probs = self.build_model(images, is_training=False)
if isinstance(probs, tuple):
probs = probs[0]
self.restore_model(sess, ckpt_dir, enable_ema, export_ckpt)
prediction_idx = []
prediction_prob = []
for _ in range(len(image_files) // self.batch_size):
out_probs = sess.run(probs)
idx = np.argsort(out_probs)[::-1]
prediction_idx.append(idx[:5] - label_offset)
prediction_prob.append([out_probs[pid] for pid in idx[:5]])
# Return the top 5 predictions (idx and prob) for each image.
return prediction_idx, prediction_prob
def eval_example_images(self,
ckpt_dir,
image_files,
labels_map_file,
enable_ema=True,
export_ckpt=None):
"""Eval a list of example images.
Args:
ckpt_dir: str. Checkpoint directory path.
image_files: List[str]. A list of image file paths.
labels_map_file: str. The labels map file path.
enable_ema: enable expotential moving average.
export_ckpt: export ckpt folder.
Returns:
A tuple (pred_idx, and pred_prob), where pred_idx is the top 5 prediction
index and pred_prob is the top 5 prediction probability.
"""
classes = json.loads(tf.gfile.Open(labels_map_file).read())
pred_idx, pred_prob = self.run_inference(
ckpt_dir, image_files, [0] * len(image_files), enable_ema, export_ckpt)
for i in range(len(image_files)):
print('predicted class for image {}: '.format(image_files[i]))
for j, idx in enumerate(pred_idx[i]):
print(' -> top_{} ({:4.2f}%): {} '.format(j, pred_prob[i][j] * 100,
classes[str(idx)]))
return pred_idx, pred_prob
def eval_imagenet(self, ckpt_dir, imagenet_eval_glob,
imagenet_eval_label, num_images, enable_ema, export_ckpt):
"""Eval ImageNet images and report top1/top5 accuracy.
Args:
ckpt_dir: str. Checkpoint directory path.
imagenet_eval_glob: str. File path glob for all eval images.
imagenet_eval_label: str. File path for eval label.
num_images: int. Number of images to eval: -1 means eval the whole
dataset.
enable_ema: enable expotential moving average.
export_ckpt: export checkpoint folder.
Returns:
A tuple (top1, top5) for top1 and top5 accuracy.
"""
imagenet_val_labels = [int(i) for i in tf.gfile.GFile(imagenet_eval_label)]
imagenet_filenames = sorted(tf.gfile.Glob(imagenet_eval_glob))
if num_images < 0:
num_images = len(imagenet_filenames)
image_files = imagenet_filenames[:num_images]
labels = imagenet_val_labels[:num_images]
pred_idx, _ = self.run_inference(
ckpt_dir, image_files, labels, enable_ema, export_ckpt)
top1_cnt, top5_cnt = 0.0, 0.0
for i, label in enumerate(labels):
top1_cnt += label in pred_idx[i][:1]
top5_cnt += label in pred_idx[i][:5]
if i % 100 == 0:
print('Step {}: top1_acc = {:4.2f}% top5_acc = {:4.2f}%'.format(
i, 100 * top1_cnt / (i + 1), 100 * top5_cnt / (i + 1)))
sys.stdout.flush()
top1, top5 = 100 * top1_cnt / num_images, 100 * top5_cnt / num_images
print('Final: top1_acc = {:4.2f}% top5_acc = {:4.2f}%'.format(top1, top5))
return top1, top5