Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
tpu/models/official/efficientnet/utils.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
574 lines (488 sloc)
21 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Model utilities.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import json | |
import os | |
import sys | |
from absl import flags | |
from absl import logging | |
import numpy as np | |
import tensorflow.compat.v1 as tf | |
import lars_optimizer | |
from tensorflow.python.tpu import tpu_function # pylint:disable=g-direct-tensorflow-import | |
FLAGS = flags.FLAGS | |
def build_learning_rate(initial_lr, | |
global_step, | |
steps_per_epoch=None, | |
lr_decay_type='exponential', | |
decay_factor=0.97, | |
decay_epochs=2.4, | |
total_steps=None, | |
warmup_epochs=5): | |
"""Build learning rate.""" | |
if lr_decay_type == 'exponential': | |
assert steps_per_epoch is not None | |
decay_steps = steps_per_epoch * decay_epochs | |
lr = tf.train.exponential_decay( | |
initial_lr, global_step, decay_steps, decay_factor, staircase=True) | |
elif lr_decay_type == 'cosine': | |
assert total_steps is not None | |
lr = 0.5 * initial_lr * ( | |
1 + tf.cos(np.pi * tf.cast(global_step, tf.float32) / total_steps)) | |
elif lr_decay_type == 'constant': | |
lr = initial_lr | |
elif lr_decay_type == 'poly': | |
tf.logging.info('Using poly LR schedule') | |
assert steps_per_epoch is not None | |
assert total_steps is not None | |
warmup_steps = int(steps_per_epoch * warmup_epochs) | |
min_step = tf.constant(1, dtype=tf.int64) | |
decay_steps = tf.maximum(min_step, tf.subtract(global_step, warmup_steps)) | |
lr = tf.train.polynomial_decay( | |
initial_lr, | |
decay_steps, | |
total_steps - warmup_steps + 1, | |
end_learning_rate=0.1, | |
power=2.0) | |
else: | |
assert False, 'Unknown lr_decay_type : %s' % lr_decay_type | |
if warmup_epochs: | |
logging.info('Learning rate warmup_epochs: %d', warmup_epochs) | |
warmup_steps = int(warmup_epochs * steps_per_epoch) | |
warmup_lr = ( | |
initial_lr * tf.cast(global_step, tf.float32) / tf.cast( | |
warmup_steps, tf.float32)) | |
lr = tf.cond(global_step < warmup_steps, lambda: warmup_lr, lambda: lr) | |
return lr | |
def build_optimizer(learning_rate, | |
optimizer_name='rmsprop', | |
decay=0.9, | |
epsilon=0.001, | |
momentum=0.9, | |
lars_weight_decay=None, | |
lars_epsilon=None): | |
"""Build optimizer.""" | |
if optimizer_name == 'sgd': | |
logging.info('Using SGD optimizer') | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) | |
elif optimizer_name == 'momentum': | |
logging.info('Using Momentum optimizer') | |
optimizer = tf.train.MomentumOptimizer( | |
learning_rate=learning_rate, momentum=momentum) | |
elif optimizer_name == 'rmsprop': | |
logging.info('Using RMSProp optimizer') | |
optimizer = tf.train.RMSPropOptimizer(learning_rate, decay, momentum, | |
epsilon) | |
elif optimizer_name == 'lars': | |
logging.info('Using LARS optimizer') | |
assert lars_weight_decay is not None, 'LARS weight decay is None.' | |
assert lars_epsilon is not None, 'LARS epsilon is None.' | |
optimizer = lars_optimizer.LARSOptimizer( | |
learning_rate, | |
momentum=momentum, | |
weight_decay=lars_weight_decay, | |
skip_list=['batch_normalization', 'bias', 'beta', 'gamma'], | |
epsilon=lars_epsilon) | |
else: | |
logging.fatal('Unknown optimizer: %s', optimizer_name) | |
return optimizer | |
class TpuBatchNormalization(tf.layers.BatchNormalization): | |
# class TpuBatchNormalization(tf.layers.BatchNormalization): | |
"""Cross replica batch normalization.""" | |
def __init__(self, fused=False, **kwargs): | |
if fused in (True, None): | |
raise ValueError('TpuBatchNormalization does not support fused=True.') | |
super(TpuBatchNormalization, self).__init__(fused=fused, **kwargs) | |
def _cross_replica_average(self, t, num_shards_per_group): | |
"""Calculates the average value of input tensor across TPU replicas.""" | |
num_shards = tpu_function.get_tpu_context().number_of_shards | |
group_assignment = None | |
if num_shards_per_group > 1: | |
if num_shards % num_shards_per_group != 0: | |
raise ValueError('num_shards: %d mod shards_per_group: %d, should be 0' | |
% (num_shards, num_shards_per_group)) | |
num_groups = num_shards // num_shards_per_group | |
group_assignment = [[ | |
x for x in range(num_shards) if x // num_shards_per_group == y | |
] for y in range(num_groups)] | |
return tf.tpu.cross_replica_sum(t, group_assignment) / tf.cast( | |
num_shards_per_group, t.dtype) | |
def _moments(self, inputs, reduction_axes, keep_dims): | |
"""Compute the mean and variance: it overrides the original _moments.""" | |
shard_mean, shard_variance = super(TpuBatchNormalization, self)._moments( | |
inputs, reduction_axes, keep_dims=keep_dims) | |
num_shards = tpu_function.get_tpu_context().number_of_shards or 1 | |
if num_shards <= 8: # Skip cross_replica for 2x2 or smaller slices. | |
num_shards_per_group = 1 | |
else: | |
num_shards_per_group = max(8, num_shards // 8) | |
logging.info('TpuBatchNormalization with num_shards_per_group %s', | |
num_shards_per_group) | |
if num_shards_per_group > 1: | |
# Compute variance using: Var[X]= E[X^2] - E[X]^2. | |
shard_square_of_mean = tf.math.square(shard_mean) | |
shard_mean_of_square = shard_variance + shard_square_of_mean | |
group_mean = self._cross_replica_average( | |
shard_mean, num_shards_per_group) | |
group_mean_of_square = self._cross_replica_average( | |
shard_mean_of_square, num_shards_per_group) | |
group_variance = group_mean_of_square - tf.math.square(group_mean) | |
return (group_mean, group_variance) | |
else: | |
return (shard_mean, shard_variance) | |
class BatchNormalization(tf.layers.BatchNormalization): | |
"""Fixed default name of BatchNormalization to match TpuBatchNormalization.""" | |
def __init__(self, name='tpu_batch_normalization', **kwargs): | |
super(BatchNormalization, self).__init__(name=name, **kwargs) | |
def train_batch_norm(**kwargs): | |
if 'optimizer' in FLAGS and FLAGS.optimizer == 'lars': | |
return DistributedBatchNormalization(**kwargs) | |
return TpuBatchNormalization(**kwargs) | |
def eval_batch_norm(**kwargs): | |
if 'optimizer' in FLAGS and FLAGS.optimizer == 'lars': | |
return DistributedBatchNormalization(**kwargs) | |
return BatchNormalization(**kwargs) | |
class DistributedBatchNormalization: | |
"""Distributed batch normalization used in https://arxiv.org/abs/2011.00071.""" | |
def __init__(self, axis, momentum, epsilon): | |
self.axis = axis | |
self.momentum = momentum | |
self.epsilon = epsilon | |
def __call__(self, x, training, distname='batch_normalization'): | |
shape = [x.shape[-1]] | |
with tf.variable_scope('batch_normalization'): | |
ones = tf.initializers.ones() | |
zeros = tf.initializers.zeros() | |
gamma = tf.get_variable( | |
'gamma', shape, initializer=ones, trainable=True, use_resource=True) | |
beta = tf.get_variable( | |
'beta', shape, initializer=zeros, trainable=True, use_resource=True) | |
moving_mean = tf.get_variable( | |
'moving_mean', | |
shape, | |
initializer=zeros, | |
trainable=False, | |
use_resource=True) | |
moving_variance = tf.get_variable( | |
'moving_variance', | |
shape, | |
initializer=ones, | |
trainable=False, | |
use_resource=True) | |
num_replicas = FLAGS.num_replicas | |
x = tf.cast(x, tf.float32) | |
if training: | |
if num_replicas <= 8: | |
group_assign = None | |
group_shards = tf.cast(num_replicas, tf.float32) | |
else: | |
group_shards = max( | |
1, | |
int(FLAGS.batch_norm_batch_size / | |
(FLAGS.train_batch_size / num_replicas))) | |
group_assign = np.arange(num_replicas, dtype=np.int32) | |
group_assign = group_assign.reshape([-1, group_shards]) | |
group_assign = group_assign.tolist() | |
group_shards = tf.cast(group_shards, tf.float32) | |
mean = tf.reduce_mean(x, [0, 1, 2]) | |
mean = tf.tpu.cross_replica_sum(mean, group_assign) / group_shards | |
# Var[x] = E[x^2] - E[x]^2 | |
mean_sq = tf.reduce_mean(tf.math.square(x), [0, 1, 2]) | |
mean_sq = tf.tpu.cross_replica_sum(mean_sq, group_assign) / group_shards | |
variance = mean_sq - tf.math.square(mean) | |
decay = tf.cast(1. - self.momentum, tf.float32) | |
def u(moving, normal, name): | |
num_replicas_fp = tf.cast(num_replicas, tf.float32) | |
normal = tf.tpu.cross_replica_sum(normal) / num_replicas_fp | |
diff = decay * (moving - normal) | |
return tf.assign_sub(moving, diff, use_locking=True, name=name) | |
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, | |
u(moving_mean, mean, name='moving_mean')) | |
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, | |
u(moving_variance, variance, name='moving_variance')) | |
x = tf.nn.batch_normalization( | |
x, | |
mean=mean, | |
variance=variance, | |
offset=beta, | |
scale=gamma, | |
variance_epsilon=self.epsilon) | |
else: | |
x, _, _ = tf.nn.fused_batch_norm( | |
x, | |
scale=gamma, | |
offset=beta, | |
mean=moving_mean, | |
variance=moving_variance, | |
epsilon=self.epsilon, | |
is_training=False) | |
return x | |
def drop_connect(inputs, is_training, survival_prob): | |
"""Drop the entire conv with given survival probability.""" | |
# "Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf | |
if not is_training: | |
return inputs | |
# Compute tensor. | |
batch_size = tf.shape(inputs)[0] | |
random_tensor = survival_prob | |
random_tensor += tf.random_uniform([batch_size, 1, 1, 1], dtype=inputs.dtype) | |
binary_tensor = tf.floor(random_tensor) | |
# Unlike conventional way that multiply survival_prob at test time, here we | |
# divide survival_prob at training time, such that no addition compute is | |
# needed at test time. | |
output = tf.div(inputs, survival_prob) * binary_tensor | |
return output | |
def archive_ckpt(ckpt_eval, ckpt_objective, ckpt_path): | |
"""Archive a checkpoint if the metric is better.""" | |
ckpt_dir, ckpt_name = os.path.split(ckpt_path) | |
saved_objective_path = os.path.join(ckpt_dir, 'best_objective.txt') | |
saved_objective = float('-inf') | |
if tf.gfile.Exists(saved_objective_path): | |
with tf.gfile.GFile(saved_objective_path, 'r') as f: | |
saved_objective = float(f.read()) | |
if saved_objective > ckpt_objective: | |
logging.info('Ckpt %s is worse than %s', ckpt_objective, saved_objective) | |
return False | |
filenames = tf.gfile.Glob(ckpt_path + '.*') | |
if filenames is None: | |
logging.info('No files to copy for checkpoint %s', ckpt_path) | |
return False | |
# Clear the old folder. | |
dst_dir = os.path.join(ckpt_dir, 'archive') | |
if tf.gfile.Exists(dst_dir): | |
tf.gfile.DeleteRecursively(dst_dir) | |
tf.gfile.MakeDirs(dst_dir) | |
# Write checkpoints. | |
for f in filenames: | |
dest = os.path.join(dst_dir, os.path.basename(f)) | |
tf.gfile.Copy(f, dest, overwrite=True) | |
ckpt_state = tf.train.generate_checkpoint_state_proto( | |
dst_dir, | |
model_checkpoint_path=ckpt_name, | |
all_model_checkpoint_paths=[ckpt_name]) | |
with tf.gfile.GFile(os.path.join(dst_dir, 'checkpoint'), 'w') as f: | |
f.write(str(ckpt_state)) | |
with tf.gfile.GFile(os.path.join(dst_dir, 'best_eval.txt'), 'w') as f: | |
f.write('%s' % ckpt_eval) | |
# Update the best objective. | |
with tf.gfile.GFile(saved_objective_path, 'w') as f: | |
f.write('%f' % ckpt_objective) | |
logging.info('Copying checkpoint %s to %s', ckpt_path, dst_dir) | |
return True | |
def get_ema_vars(): | |
"""Get all exponential moving average (ema) variables.""" | |
ema_vars = tf.trainable_variables() + tf.get_collection('moving_vars') | |
for v in tf.global_variables(): | |
# We maintain mva for batch norm moving mean and variance as well. | |
if 'moving_mean' in v.name or 'moving_variance' in v.name: | |
ema_vars.append(v) | |
return list(set(ema_vars)) | |
class DepthwiseConv2D(tf.keras.layers.DepthwiseConv2D, tf.layers.Layer): | |
"""Wrap keras DepthwiseConv2D to tf.layers.""" | |
pass | |
class Conv2D(tf.layers.Conv2D): | |
"""Wrapper for Conv2D with specialization for fast inference.""" | |
def _bias_activation(self, outputs): | |
if self.use_bias: | |
outputs = tf.nn.bias_add(outputs, self.bias, data_format='NCHW') | |
if self.activation is not None: | |
return self.activation(outputs) | |
return outputs | |
def _can_run_fast_1x1(self, inputs): | |
batch_size = inputs.shape.as_list()[0] | |
return (self.data_format == 'channels_first' and | |
batch_size == 1 and | |
self.kernel_size == (1, 1)) | |
def _call_fast_1x1(self, inputs): | |
# Compute the 1x1 convolution as a matmul. | |
inputs_shape = tf.shape(inputs) | |
flat_inputs = tf.reshape(inputs, [inputs_shape[1], -1]) | |
flat_outputs = tf.matmul( | |
tf.squeeze(self.kernel), | |
flat_inputs, | |
transpose_a=True) | |
outputs_shape = tf.concat([[1, self.filters], inputs_shape[2:]], axis=0) | |
outputs = tf.reshape(flat_outputs, outputs_shape) | |
# Handle the bias and activation function. | |
return self._bias_activation(outputs) | |
def call(self, inputs): | |
if self._can_run_fast_1x1(inputs): | |
return self._call_fast_1x1(inputs) | |
return super(Conv2D, self).call(inputs) | |
class EvalCkptDriver(object): | |
"""A driver for running eval inference. | |
Attributes: | |
model_name: str. Model name to eval. | |
batch_size: int. Eval batch size. | |
image_size: int. Input image size, determined by model name. | |
num_classes: int. Number of classes, default to 1000 for ImageNet. | |
include_background_label: whether to include extra background label. | |
advprop_preprocessing: whether to use advprop preprocessing. | |
""" | |
def __init__(self, | |
model_name, | |
batch_size=1, | |
image_size=224, | |
num_classes=1000, | |
include_background_label=False, | |
advprop_preprocessing=False): | |
"""Initialize internal variables.""" | |
self.model_name = model_name | |
self.batch_size = batch_size | |
self.num_classes = num_classes | |
self.include_background_label = include_background_label | |
self.image_size = image_size | |
self.advprop_preprocessing = advprop_preprocessing | |
def restore_model(self, sess, ckpt_dir, enable_ema=True, export_ckpt=None): | |
"""Restore variables from checkpoint dir.""" | |
sess.run(tf.global_variables_initializer()) | |
checkpoint = tf.train.latest_checkpoint(ckpt_dir) | |
if enable_ema: | |
ema = tf.train.ExponentialMovingAverage(decay=0.0) | |
ema_vars = get_ema_vars() | |
var_dict = ema.variables_to_restore(ema_vars) | |
ema_assign_op = ema.apply(ema_vars) | |
else: | |
var_dict = get_ema_vars() | |
ema_assign_op = None | |
tf.train.get_or_create_global_step() | |
sess.run(tf.global_variables_initializer()) | |
saver = tf.train.Saver(var_dict, max_to_keep=1) | |
saver.restore(sess, checkpoint) | |
if export_ckpt: | |
if ema_assign_op is not None: | |
sess.run(ema_assign_op) | |
saver = tf.train.Saver(max_to_keep=1, save_relative_paths=True) | |
saver.save(sess, export_ckpt) | |
def build_model(self, features, is_training): | |
"""Build model with input features.""" | |
del features, is_training | |
raise ValueError('Must be implemented by subclasses.') | |
def get_preprocess_fn(self): | |
raise ValueError('Must be implemented by subclsses.') | |
def build_dataset(self, filenames, labels, is_training): | |
"""Build input dataset.""" | |
batch_drop_remainder = False | |
if 'condconv' in self.model_name and not is_training: | |
# CondConv layers can only be called with known batch dimension. Thus, we | |
# must drop all remaining examples that do not make up one full batch. | |
# To ensure all examples are evaluated, use a batch size that evenly | |
# divides the number of files. | |
batch_drop_remainder = True | |
num_files = len(filenames) | |
if num_files % self.batch_size != 0: | |
tf.logging.warn('Remaining examples in last batch are not being ' | |
'evaluated.') | |
filenames = tf.constant(filenames) | |
labels = tf.constant(labels) | |
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels)) | |
def _parse_function(filename, label): | |
image_string = tf.read_file(filename) | |
preprocess_fn = self.get_preprocess_fn() | |
image_decoded = preprocess_fn( | |
image_string, is_training, image_size=self.image_size) | |
image = tf.cast(image_decoded, tf.float32) | |
return image, label | |
dataset = dataset.map(_parse_function) | |
dataset = dataset.batch(self.batch_size, | |
drop_remainder=batch_drop_remainder) | |
iterator = dataset.make_one_shot_iterator() | |
images, labels = iterator.get_next() | |
return images, labels | |
def run_inference(self, | |
ckpt_dir, | |
image_files, | |
labels, | |
enable_ema=True, | |
export_ckpt=None): | |
"""Build and run inference on the target images and labels.""" | |
label_offset = 1 if self.include_background_label else 0 | |
with tf.Graph().as_default(), tf.Session() as sess: | |
images, labels = self.build_dataset(image_files, labels, False) | |
probs = self.build_model(images, is_training=False) | |
if isinstance(probs, tuple): | |
probs = probs[0] | |
self.restore_model(sess, ckpt_dir, enable_ema, export_ckpt) | |
prediction_idx = [] | |
prediction_prob = [] | |
for _ in range(len(image_files) // self.batch_size): | |
out_probs = sess.run(probs) | |
idx = np.argsort(out_probs)[::-1] | |
prediction_idx.append(idx[:5] - label_offset) | |
prediction_prob.append([out_probs[pid] for pid in idx[:5]]) | |
# Return the top 5 predictions (idx and prob) for each image. | |
return prediction_idx, prediction_prob | |
def eval_example_images(self, | |
ckpt_dir, | |
image_files, | |
labels_map_file, | |
enable_ema=True, | |
export_ckpt=None): | |
"""Eval a list of example images. | |
Args: | |
ckpt_dir: str. Checkpoint directory path. | |
image_files: List[str]. A list of image file paths. | |
labels_map_file: str. The labels map file path. | |
enable_ema: enable expotential moving average. | |
export_ckpt: export ckpt folder. | |
Returns: | |
A tuple (pred_idx, and pred_prob), where pred_idx is the top 5 prediction | |
index and pred_prob is the top 5 prediction probability. | |
""" | |
classes = json.loads(tf.gfile.Open(labels_map_file).read()) | |
pred_idx, pred_prob = self.run_inference( | |
ckpt_dir, image_files, [0] * len(image_files), enable_ema, export_ckpt) | |
for i in range(len(image_files)): | |
print('predicted class for image {}: '.format(image_files[i])) | |
for j, idx in enumerate(pred_idx[i]): | |
print(' -> top_{} ({:4.2f}%): {} '.format(j, pred_prob[i][j] * 100, | |
classes[str(idx)])) | |
return pred_idx, pred_prob | |
def eval_imagenet(self, ckpt_dir, imagenet_eval_glob, | |
imagenet_eval_label, num_images, enable_ema, export_ckpt): | |
"""Eval ImageNet images and report top1/top5 accuracy. | |
Args: | |
ckpt_dir: str. Checkpoint directory path. | |
imagenet_eval_glob: str. File path glob for all eval images. | |
imagenet_eval_label: str. File path for eval label. | |
num_images: int. Number of images to eval: -1 means eval the whole | |
dataset. | |
enable_ema: enable expotential moving average. | |
export_ckpt: export checkpoint folder. | |
Returns: | |
A tuple (top1, top5) for top1 and top5 accuracy. | |
""" | |
imagenet_val_labels = [int(i) for i in tf.gfile.GFile(imagenet_eval_label)] | |
imagenet_filenames = sorted(tf.gfile.Glob(imagenet_eval_glob)) | |
if num_images < 0: | |
num_images = len(imagenet_filenames) | |
image_files = imagenet_filenames[:num_images] | |
labels = imagenet_val_labels[:num_images] | |
pred_idx, _ = self.run_inference( | |
ckpt_dir, image_files, labels, enable_ema, export_ckpt) | |
top1_cnt, top5_cnt = 0.0, 0.0 | |
for i, label in enumerate(labels): | |
top1_cnt += label in pred_idx[i][:1] | |
top5_cnt += label in pred_idx[i][:5] | |
if i % 100 == 0: | |
print('Step {}: top1_acc = {:4.2f}% top5_acc = {:4.2f}%'.format( | |
i, 100 * top1_cnt / (i + 1), 100 * top5_cnt / (i + 1))) | |
sys.stdout.flush() | |
top1, top5 = 100 * top1_cnt / num_images, 100 * top5_cnt / num_images | |
print('Final: top1_acc = {:4.2f}% top5_acc = {:4.2f}%'.format(top1, top5)) | |
return top1, top5 |