diff --git a/example/tutorial_tfrecord3.py b/example/tutorial_tfrecord3.py index 0da7a8b83..b111bf127 100644 --- a/example/tutorial_tfrecord3.py +++ b/example/tutorial_tfrecord3.py @@ -15,15 +15,12 @@ """ -import io import json import os -import time import numpy as np import tensorflow as tf import tensorlayer as tl from PIL import Image -from tensorlayer.layers import set_keep def _int64_feature(value): @@ -326,7 +323,7 @@ def prefetch_input_data(reader, try: # for TensorFlow 0.11 img = tf.image.resize_images(img, size=(resize_height, resize_width), method=tf.image.ResizeMethod.BILINEAR) -except: +except Exception: # for TensorFlow 0.10 img = tf.image.resize_images(img, new_height=resize_height, new_width=resize_width, method=tf.image.ResizeMethod.BILINEAR) # Crop to final dimensions. diff --git a/tensorlayer/layers/convolution.py b/tensorlayer/layers/convolution.py index 33e6d1b82..d7b3432d8 100644 --- a/tensorlayer/layers/convolution.py +++ b/tensorlayer/layers/convolution.py @@ -834,9 +834,9 @@ def _tf_batch_map_offsets(inputs, offsets, grid_offset): offset_params = [osparam for osparam in offset_layer.all_params if osparam not in layer.all_params] offset_layers = [oslayer for oslayer in offset_layer.all_layers if oslayer not in layer.all_layers] - self.all_params.extend(offset_params) - self.all_layers.extend(offset_layers) - self.all_drop.update(offset_layer.all_drop) + self.all_params.extend(list(offset_params)) + self.all_layers.extend(list(offset_layers)) + self.all_drop.update(dict(offset_layer.all_drop)) # this layer self.all_layers.extend([self.outputs]) diff --git a/tensorlayer/prepro.py b/tensorlayer/prepro.py index 85970e9f9..04af4c328 100644 --- a/tensorlayer/prepro.py +++ b/tensorlayer/prepro.py @@ -100,8 +100,10 @@ def apply_fn(results, i, data, kwargs): if thread_count is None: results = [None] * len(data) threads = [] - for i in range(len(data)): - t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, data[i], kwargs)) + # for i in range(len(data)): + # t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, data[i], kwargs)) + for i, d in enumerate(data): + t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, d, kwargs)) t.start() threads.append(t) else: @@ -120,7 +122,7 @@ def apply_fn(results, i, data, kwargs): if thread_count is None: try: return np.asarray(results) - except: + except Exception: return results else: return np.concatenate(results) diff --git a/tensorlayer/rein.py b/tensorlayer/rein.py index 5021361e4..bec9daf38 100644 --- a/tensorlayer/rein.py +++ b/tensorlayer/rein.py @@ -6,7 +6,7 @@ from six.moves import xrange -def discount_episode_rewards(rewards=[], gamma=0.99, mode=0): +def discount_episode_rewards(rewards=None, gamma=0.99, mode=0): """Take 1D float array of rewards and compute discounted rewards for an episode. When encount a non-zero value, consider as the end a of an episode. @@ -40,6 +40,8 @@ def discount_episode_rewards(rewards=[], gamma=0.99, mode=0): ... 1.49048996 1.65610003 0.72899997 0.81 0.89999998 1. ] """ + if rewards is None: + raise Exception("rewards should be a list") discounted_r = np.zeros_like(rewards, dtype=np.float32) running_add = 0 for t in reversed(xrange(0, rewards.size)): @@ -84,13 +86,13 @@ def cross_entropy_reward_loss(logits, actions, rewards, name=None): """ try: # TF 1.0+ cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=actions, logits=logits, name=name) - except: + except Exception: cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, targets=actions) # cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, actions) try: ## TF1.0+ loss = tf.reduce_sum(tf.multiply(cross_entropy, rewards)) - except: ## TF0.12 + except Exception: ## TF0.12 loss = tf.reduce_sum(tf.mul(cross_entropy, rewards)) # element-wise mul return loss @@ -153,5 +155,6 @@ def choice_action_by_probs(probs=[0.5, 0.5], action_list=None): n_action = len(probs) action_list = np.arange(n_action) else: - assert len(action_list) == len(probs), "Number of actions should equal to number of probabilities." + if len(action_list) != len(probs): + raise Exception("number of actions should equal to number of probabilities.") return np.random.choice(action_list, p=probs)