diff --git a/tensorlayer/iterate.py b/tensorlayer/iterate.py index 777f905c1..dc3051c7a 100644 --- a/tensorlayer/iterate.py +++ b/tensorlayer/iterate.py @@ -59,7 +59,10 @@ def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False): excerpt = indices[start_idx:start_idx + batch_size] else: excerpt = slice(start_idx, start_idx + batch_size) - yield inputs[excerpt], targets[excerpt] + if (isinstance(inputs, list) or isinstance(targets, list)) and (shuffle == True): + yield [inputs[i] for i in excerpt], [targets[i] for i in excerpt] # zsdonghao: for list indexing when shuffle==True + else: + yield inputs[excerpt], targets[excerpt] def seq_minibatches(inputs, targets, batch_size, seq_length, stride=1): diff --git a/tensorlayer/models/mobilenetv1.py b/tensorlayer/models/mobilenetv1.py index db2ffdd28..2f496f94e 100644 --- a/tensorlayer/models/mobilenetv1.py +++ b/tensorlayer/models/mobilenetv1.py @@ -56,7 +56,7 @@ class MobileNetV1(Layer): >>> # restore pre-trained parameters >>> cnn.restore_params(sess) >>> # train your own classifier (only update the last layer) - >>> train_params = tl.layers.get_variables_with_name('output') + >>> train_params = tl.layers.get_variables_with_name('out') Reuse model diff --git a/tensorlayer/models/vgg16.py b/tensorlayer/models/vgg16.py index 613ce5451..52dd090c1 100644 --- a/tensorlayer/models/vgg16.py +++ b/tensorlayer/models/vgg16.py @@ -231,7 +231,7 @@ def restore_params(self, sess): class VGG16(VGG16Base): - """Pre-trained VGG-16 Model. + """Pre-trained VGG-16 model. Parameters ------------