From f4c259b3bee0aefa90990802e34dac62f4786b0c Mon Sep 17 00:00:00 2001 From: zsdonghao Date: Sat, 14 Apr 2018 12:23:09 +0100 Subject: [PATCH] update docs save model; --- docs/modules/files.rst | 64 ++++++++++++++++++++++++------------------ 1 file changed, 36 insertions(+), 28 deletions(-) diff --git a/docs/modules/files.rst b/docs/modules/files.rst index 272c8c829..6861d8d1b 100644 --- a/docs/modules/files.rst +++ b/docs/modules/files.rst @@ -120,9 +120,40 @@ Google Drive ^^^^^^^^^^^^^^^^ .. autofunction:: download_file_from_google_drive + + + + Load and save network ---------------------- +TensorFlow provides ``.ckpt`` file format to save and restore the models, while +we suggest to use standard python file format ``.npz`` to save models for the +sake of cross-platform. + +.. code-block:: python + + ## save model as .ckpt + saver = tf.train.Saver() + save_path = saver.save(sess, "model.ckpt") + # restore model from .ckpt + saver = tf.train.Saver() + saver.restore(sess, "model.ckpt") + + ## save model as .npz + tl.files.save_npz(network.all_params , name='model.npz') + # restore model from .npz (method 1) + load_params = tl.files.load_npz(name='model.npz') + tl.files.assign_params(sess, load_params, network) + # restore model from .npz (method 2) + tl.files.load_and_assign_npz(sess=sess, name='model.npz', network=network) + + ## you can assign the pre-trained parameters as follow + # 1st parameter + tl.files.assign_params(sess, [load_params[0]], network) + # the first three parameters + tl.files.assign_params(sess, load_params[:3], network) + Save network into list (npz) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autofunction:: save_npz @@ -159,37 +190,10 @@ Load network from ckpt + Load and save variables ------------------------ -TensorFlow provides ``.ckpt`` file format to save and restore the models, while -we suggest to use standard python file format ``.npz`` to save models for the -sake of cross-platform. - -.. code-block:: python - - ## save model as .ckpt - saver = tf.train.Saver() - save_path = saver.save(sess, "model.ckpt") - # restore model from .ckpt - saver = tf.train.Saver() - saver.restore(sess, "model.ckpt") - - ## save model as .npz - tl.files.save_npz(network.all_params , name='model.npz') - # restore model from .npz (method 1) - load_params = tl.files.load_npz(name='model.npz') - tl.files.assign_params(sess, load_params, network) - # restore model from .npz (method 2) - tl.files.load_and_assign_npz(sess=sess, name='model.npz', network=network) - - ## you can assign the pre-trained parameters as follow - # 1st parameter - tl.files.assign_params(sess, [load_params[0]], network) - # the first three parameters - tl.files.assign_params(sess, load_params[:3], network) - - Save variables as .npy ^^^^^^^^^^^^^^^^^^^^^^^^^ .. autofunction:: save_any_to_npy @@ -199,6 +203,8 @@ Load variables from .npy .. autofunction:: load_npy_to_any + + Folder/File functions ------------------------ @@ -238,6 +244,8 @@ Download or extract ^^^^^^^^^^^^^^^^^^^^^^^^^ .. autofunction:: maybe_download_and_extract + + Sort -------