Permalink
Fetching contributors…
Cannot retrieve contributors at this time
42 lines (26 sloc) 1.48 KB

Tensorpack Documentation

../.github/tensorpack.png

Tensorpack is a training interface based on TensorFlow.

It's Yet Another TF wrapper, but different in:

  • Focus on training speed.
    • Speed comes for free with tensorpack -- it uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs 1.2~5x faster than the equivalent Keras code.
    • Data-parallel multi-GPU/distributed training strategy is off-the-shelf to use. It scales as well as Google's official benchmark. You cannot beat its speed unless you're a TensorFlow expert.
    • See tensorpack/benchmarks for some benchmark scripts.
  • Focus on large datasets.
    • You don't usually need tf.data. Symbolic programming often makes data processing harder. Tensorpack helps you efficiently process large datasets (e.g. ImageNet) in pure Python with autoparallelization.
  • It's not a model wrapper.
    • There are already too many symbolic function wrappers in the world. Tensorpack includes only a few common models, but you can use any symbolic function library inside tensorpack, including tf.layers/Keras/slim/tflearn/tensorlayer/...

See :doc:`tutorial/index` to know more about these features:

.. toctree::
  :maxdepth: 3

  tutorial/index
  modules/index