Permalink
Browse files

update docs

  • Loading branch information...
ppwwyyxx committed Aug 14, 2018
1 parent 17955e8 commit a6a18db111d43017155d5246acbdd87e173252fe
Showing with 14 additions and 12 deletions.
  1. +1 −1 examples/DoReFa-Net/README.md
  2. +13 −11 examples/FasterRCNN/README.md
@@ -37,7 +37,7 @@ We hosted a demo at CVPR16 on behalf of Megvii, Inc, running a 1/4-VGG size DoRe
DoReFa-Net and its variants have been deployed widely in Megvii's embeded products.
This code release is meant for research purpose. We're not planning to release our C++ runtime for bit-operations.
In this implementation, quantized operations are all performed through `tf.float32`.
In this implementation, quantized operations are all performed through `tf.float32`. They don't make your network faster.
## Use
@@ -71,17 +71,19 @@ These models are trained with different configurations on trainval35k and evalua
Performance in [Detectron](https://github.com/facebookresearch/Detectron/) can be roughly reproduced, some are better but some are worse.
MaskRCNN results contain both box and mask mAP.
| Backbone | mAP<br/>(box;mask) | Detectron mAP <sup>[1](#ft1)</sup><br/> (box;mask) | Time on 8 V100s | Configurations <br/> (click to expand) |
| - | - | - | - | - |
| R50-C4 | 33.1 | | 18h | <details><summary>super quick</summary>`MODE_MASK=False FRCNN.BATCH_PER_IM=64`<br/>`PREPROC.SHORT_EDGE_SIZE=600 PREPROC.MAX_SIZE=1024`<br/>`TRAIN.LR_SCHEDULE=[150000,230000,280000]` </details> |
| R50-C4 | 36.6 | 36.5 | 44h | <details><summary>standard</summary>`MODE_MASK=False` </details> |
| R50-FPN | 37.4 | 37.9 | 30h | <details><summary>standard</summary>`MODE_MASK=False MODE_FPN=True` </details> |
| R50-C4 | 37.8;33.1 [:arrow_down:](http://models.tensorpack.com/FasterRCNN/COCO-R50C4-MaskRCNN-Standard.npz) | 37.8;32.8 | 49h | <details><summary>standard</summary>`MODE_MASK=True` </details> |
| R50-FPN | 38.2;34.9 [:arrow_down:](http://models.tensorpack.com/FasterRCNN/COCO-R50FPN-MaskRCNN-Standard.npz) | 38.6;34.5 | 32h | <details><summary>standard</summary>`MODE_MASK=True MODE_FPN=True` </details> |
| R50-FPN | 39.5;35.2 | 39.5;34.4<sup>[2](#ft2)</sup> | 34h | <details><summary>standard+ConvGNHead</summary>`MODE_MASK=True MODE_FPN=True`<br/>`FPN.FRCNN_HEAD_FUNC=fastrcnn_4conv1fc_gn_head` </details> |
| R50-FPN | 40.0;36.1 [:arrow_down:](http://models.tensorpack.com/FasterRCNN/COCO-R50FPN-MaskRCNN-StandardGN.npz) | 40.3;35.7 | 44h | <details><summary>standard+GN</summary>`MODE_MASK=True MODE_FPN=True`<br/>`FPN.NORM=GN BACKBONE.NORM=GN`<br/>`FPN.FRCNN_HEAD_FUNC=fastrcnn_4conv1fc_gn_head`<br/>`FPN.MRCNN_HEAD_FUNC=maskrcnn_up4conv_gn_head` |
| R101-C4 | 40.8;35.1 [:arrow_down:](http://models.tensorpack.com/FasterRCNN/COCO-R101C4-MaskRCNN-Standard.npz) | | 63h | <details><summary>standard</summary>`MODE_MASK=True `<br/>`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]` </details> |
| R101-FPN | 40.4;36.6 [:arrow_down:](http://models.tensorpack.com/FasterRCNN/COCO-R101FPN-MaskRCNN-Standard.npz) | 40.9;36.4 | 40h | <details><summary>standard</summary>`MODE_MASK=True MODE_FPN=True`<br/>`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]` </details> |
| Backbone | mAP<br/>(box;mask) | Detectron mAP <sup>[1](#ft1)</sup><br/> (box;mask) | Time on 8 V100s | Configurations <br/> (click to expand) |
| - | - | - | - | - |
| R50-C4 | 33.1 | | 18h | <details><summary>super quick</summary>`MODE_MASK=False FRCNN.BATCH_PER_IM=64`<br/>`PREPROC.SHORT_EDGE_SIZE=600 PREPROC.MAX_SIZE=1024`<br/>`TRAIN.LR_SCHEDULE=[150000,230000,280000]` </details> |
| R50-C4 | 36.6 | 36.5 | 44h | <details><summary>standard</summary>`MODE_MASK=False` </details> |
| R50-FPN | 37.4 | 37.9 | 30h | <details><summary>standard</summary>`MODE_MASK=False MODE_FPN=True` </details> |
| R50-C4 | 37.8;33.1 [:arrow_down:](http://models.tensorpack.com/FasterRCNN/COCO-R50C4-MaskRCNN-Standard.npz) | 37.8;32.8 | 49h | <details><summary>standard</summary>`MODE_MASK=True` </details> |
| R50-FPN | 38.2;34.9 [:arrow_down:](http://models.tensorpack.com/FasterRCNN/COCO-R50FPN-MaskRCNN-Standard.npz) | 38.6;34.5 | 32h | <details><summary>standard</summary>`MODE_MASK=True MODE_FPN=True` </details> |
| R50-FPN | 39.1;35.2 | 38.6;34.5 | 32h | <details><summary>better params</summary>`MODE_MASK=True MODE_FPN=True`<br/>`TEST.RESULT_SCORE_THRESH=1e-4`<br/>`FRCNN.BBOX_REG_WEIGHTS=[20,20,10,10]` </details> |
| R50-FPN | 39.5;35.2 | 39.5;34.4<sup>[2](#ft2)</sup> | 34h | <details><summary>standard+ConvGNHead</summary>`MODE_MASK=True MODE_FPN=True`<br/>`FPN.FRCNN_HEAD_FUNC=fastrcnn_4conv1fc_gn_head` </details> |
| R50-FPN | 40.0;36.1 [:arrow_down:](http://models.tensorpack.com/FasterRCNN/COCO-R50FPN-MaskRCNN-StandardGN.npz) | 40.3;35.7 | 44h | <details><summary>standard+GN</summary>`MODE_MASK=True MODE_FPN=True`<br/>`FPN.NORM=GN BACKBONE.NORM=GN`<br/>`FPN.FRCNN_HEAD_FUNC=fastrcnn_4conv1fc_gn_head`<br/>`FPN.MRCNN_HEAD_FUNC=maskrcnn_up4conv_gn_head` |
| R101-C4 | 40.8;35.1 [:arrow_down:](http://models.tensorpack.com/FasterRCNN/COCO-R101C4-MaskRCNN-Standard.npz) | | 63h | <details><summary>standard</summary>`MODE_MASK=True `<br/>`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]` </details> |
| R101-FPN | 40.4;36.6 [:arrow_down:](http://models.tensorpack.com/FasterRCNN/COCO-R101FPN-MaskRCNN-Standard.npz) | 40.9;36.4 | 40h | <details><summary>standard</summary>`MODE_MASK=True MODE_FPN=True`<br/>`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]` </details> |
| R101-FPN | 41.0;36.6 [:arrow_down:](http://models.tensorpack.com/FasterRCNN/COCO-R101FPN-MaskRCNN-BetterParams.npz) | 40.9;36.4 | 40h | <details><summary>better params</summary>`MODE_MASK=True MODE_FPN=True`<br/>`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]`<br/>`TEST.RESULT_SCORE_THRESH=1e-4`<br/>`FRCNN.BBOX_REG_WEIGHTS=[20,20,10,10]` </details> |
<a id="ft1">1</a>: Here we comapre models that have identical training & inference cost between the two implementation. However their numbers are different due to many small implementation details.

0 comments on commit a6a18db

Please sign in to comment.