
Termite Tutorial

Adam Walker Leonid Ryzhyk

September 2, 2014

Contents

1 Introduction 1

2 Specifications 1
2.1 Device specification . 2
2.2 OS specification . 2
2.3 Driver template . 3
2.4 Class specification . 4
2.5 Main file . 4

3 Running the tool 4

4 Generating the driver 5

5 Further reading 5

1 Introduction

Before reading this tutorial, it is recommended that you read [1] to understand the main concepts of the
Termite tool. Additionally, the reader is referred to [2] to further understand the driver synthesis algorithm.

In this tutorial we will generate a driver for a hypothetical one bit GPIO device. The operating system
may request that the driver set and clear the bit. The device exposes a simple interface consisting of a single
8 bit register. One of these bits is connected to the external GPIO output; the rest are ignored. The driver
that will be automatically synthesized writes the appropriate value to this register to fulfill the OS request.

The thoroughly commented source code of this example is available in the documentation/GPIO directory
in the Termite repository at http://github.com/termite2/Termite.

2 Specifications

The inputs to the Termite specification tool are:

1. the device specification

2. the operating system specification

3. the empty driver template

4. the class specification that declares the interfaces of the above 3 components

5. the main file that connects everything together

The specifications are connected as shown in figure 1. We will describe each of these in turn.

1

http://github.com/termite2/Termite

OS model

driver template

device model

IO requests
/*send()*/

IO completions
/*send_ack()*/

device commands
/*write_dat(), write_cmd(), read_cmd()*/

device notifications
/*irq()*/

virtual callbacks
/*evt_send(), evt_send_fail()*/

Figure 1: Input specifications for driver synthesis

2.1 Device specification

The device we are specifying is a simple 1 bit GPIO device whos output bit can be accessed by writing to a
register. We declare a 1 bit variable named output to keep track of the current state of the GPIO output.
The GPIO device has two interface methods - get value() for querying the current state of the GPIO pin,
which will be used by the OS specification later, and write8 which the driver can use to write to the register
connected to the GPIO pin.

get value() operates as expected - it simply returns the value that is currently being output. Note that
get value is a virtual function, it does not correspond to any run time behavior and is only used by the OS
specification to enforce correct behavior.

write8 sets the GPIO output to bit 0 of the value written, and, it additionally notifies the OS that the
value was set using os.value set(). This is also a virtual function. As we will see later, this is used to
prevent the driver from changing the value of the GPIO when it was not requested to.

1 import <class.tsl >

2

3 template gpio_dev_inst(gpio_os os)

4

5 derive gpio_dev;

6

7 uint <1> output;

8

9 task controllable void write8(uint <8> val){

10 output = val [0:0];

11 os.value_set(output);

12 };

13

14 function uint <1> get_value (){

15 return output;

16 };

17

18 endtemplate

2.2 OS specification

In this example, the operating system specification is the most complex specification. Unlike the device, the
OS contains an active process. The role of this process is to generate driver requests, dispatch them, and
ensure that the driver completed its job. It is similar to a test harness for the driver.

The process pos loops forever (the forever block), nondeterministically choosing one of two driver
requests to make. The forever block must contain a pause statement to that its body cannot complete
instantaneously. The choice block non-deterministically decides to either set or clear the GPIO bit. We
will only consider the set bit() function as clr bit() is very similar.

2

The set bit task ensures that the making request flag is true whenever execution is in the driver
function. This is to ensure that the driver does not make changes to the GPIO bit when not requested to as
explained below. It then calls the driver method and checks that the driver performed the required action
by calling the device’s get value() function and checking that it is the expected value.

All that remains is the value set() virtual callback function. This is called by the device whenever the
value of the GPIO pin is changed. It asserts that we are currently making a request using the making request

flag. This prevents the driver from changing the GPIO output when not requested to. It does not, however,
prevent the driver from changing the value to a temporarily wrong value during the driver call.

1 import <class.tsl >

2

3 template gpio_os_inst(gpio_drv drv , gpio_dev dev)

4

5 derive gpio_os;

6

7 process pos {

8 forever{

9 choice{

10 set_bit ();

11 clr_bit ();

12 {};

13 };

14 pause;

15 };

16 };

17

18 bool making_request = false;

19

20 task void set_bit (){

21 making_request = true;

22 drv.set_bit (); // call the driver

23 making_request = false;

24

25 assert(dev.get_value () == 1’h1);

26 };

27

28 task void clr_bit (){

29 making_request = true;

30 drv.clr_bit (); // call the driver

31 making_request = false;

32

33 assert(dev.get_value () == 1’h0);

34 };

35

36 procedure void value_set(uint <1> value){

37 // Only allow the GPIO pin to change its state when there is a request in progress

38 assert(making_request);

39 };

40

41 endtemplate

2.3 Driver template

The driver template is what the Termite tool will interactively fill in to create the final driver. The driver
consists of two methods: set bit() and clr bit() as declared in the class specification. They neither
return a result or take any arguments. You will notice that the body of each driver method contains only
an ellipsis. This is referred to as a magic block. It is Termite’s job to replace all magic blocks with driver
code. When we run the tool in section 3 we will interactively ask Termite to fill these in.

3

1 import <class.tsl >

2 import <gpio.tsl >

3

4 template gpio_drv_inst(gpio_dev_inst dev , gpio_os os)

5

6 derive gpio_drv;

7

8 task uncontrollable void set_bit (){

9 ...;

10 };

11

12 task uncontrollable void clr_bit (){

13 ...;

14 };

15

16 endtemplate

2.4 Class specification

The class specification declares three abstract interfaces, one each for the driver, device and operating system
components.

1 template gpio_drv

2

3 task uncontrollable void set_bit ();

4 task uncontrollable void clr_bit ();

5

6 endtemplate

7

8 template gpio_dev

9

10 function uint <1> get_value ();

11

12 endtemplate

13

14 template gpio_os

15

16 procedure void value_set(uint <1> value);

17

18 endtemplate

2.5 Main file

The main file simply creates an instance of each of the components described earlier and ties them together.

1 import <os.tsl >

2 import <gpio.tsl >

3 import <drv.tsl >

4

5 template main

6

7 instance gpio_os_inst os (drv , dev);

8 instance gpio_dev_inst dev (os);

9 instance gpio_drv_inst drv (dev , os);

10

11 endtemplate

3 Running the tool

Enter the directory of the specifications and run the tool with:

termite -i main.tsl -s

4

Figure 2: The debugger after switching to the drv.tsl tab

-i specifies the input file and -s tells Termite to perform synthesis.
It should only take a few seconds to synthesize and then launch a graphical debugging console. We will

now ask Termite to fill in the magic blocks.

4 Generating the driver

Once the graphical debugger has been launched, switch to the drv.tsl tab in the rightmost pane. The
window should look like figure 2. Notice the yellow highlighted magic blocks. We are now going to generate
the code that goes in these magic blocks. Click on the first magic block and then click on the button with
the gears icon at the top of the page. A line of code should be automatically generated above the magic
block. Click the gears one more time. This time the magic block should be replaced by {}, indicating that
there is nothing more to do in the function.

Repeat the above steps for the second magic block. The drv.tsl file should appear as in figure 3. You
should convince yourself that the generated code is correct. Congratulations, you have generated your first
Termite driver!

You may save drv.tsl and then rerun Termite. As there are no magic blocks, Termite is now acting as
a verifier. It should report that synthesis succeeded.

5 Further reading

An extensively commented I2C driver example is available at https://github.com/termite2/Termite/

tree/master/documentation/i2c. It demonstrates more advanced usage of Termite on a real device.

References

[1] L. Ryzhyk, A. C. Walker, J. Keys, A. Legg, A. Raghunath, M. Stumm, and M. Vij. User-guided
device driver synthesis. In Usenix Symposium on Operating Systems Design and Implementation (OSDI),

5

https://github.com/termite2/Termite/tree/master/documentation/i2c
https://github.com/termite2/Termite/tree/master/documentation/i2c

Figure 3: The debugger after generating code

Broomfield, CO, USA, oct 2014.

[2] A. C. Walker and L. Ryzhyk. Predicate abstraction for reactive synthesis. In Formal Methods in
Computer-Aided Design (FMCAD), Lausanne, Switzerland, oct 2014.

6

	Introduction
	Specifications
	Device specification
	OS specification
	Driver template
	Class specification
	Main file

	Running the tool
	Generating the driver
	Further reading

