Skip to content
stm32 discovery line linux programmer
C Assembly Makefile CMake Other
Find file
Failed to load latest commit information.
doc/tutorial Update tutorial documentation to reflect current code. Jun 20, 2012
flash st-flash: Improve error handling Mar 14, 2016
flashloaders stlink-common: Fix STM32L4 loader write count to reflect 64bits granu… Mar 14, 2016
gdbserver read_debug32: Use a pointer instead of returning the value Mar 14, 2016
gui Added parameter to specify one stlink v2 of many Dec 7, 2015
mingw mingw compilation error (sleep) fixed Nov 19, 2015
src st-info: Add support for OpenOCD hla_serial printing Apr 29, 2016
stlinkv1_macosx_driver driver README minor edits Apr 8, 2016
.cproject Added all the F4 libraries to the project Nov 10, 2011
.gitignore * Merge st-probe tool into st-info Apr 15, 2016 travis: Initial continues integration build on linux and osx Apr 7, 2016
.travis.yml travis: Initial continues integration build on linux and osx Apr 7, 2016
49-stlinkv1.rules Include a udev rules file for v1 boards too, for permissions Nov 4, 2011
49-stlinkv2-1.rules Added support for ST nucleo devices. Feb 20, 2014
49-stlinkv2.rules More generic stlinkv2 udev naming Nov 1, 2011
ACKNOWLEDGMENTS [add] acknowledgments Oct 14, 2011
AUTHORS st-probe: Initial working stlink_probe_* API and CLI tool Apr 6, 2016
CMakeLists.txt * Merge st-probe tool into st-info Apr 15, 2016
COPYING add COPYING to repository to avoid license confusion May 16, 2012
ChangeLog autoconfiscate Apr 28, 2012
INSTALL.mingw Update MinGW instructions for USB 3.0 hub support. Feb 28, 2014
LICENSE [initial] Jan 14, 2011 fix: remove st_probe variables from automake May 1, 2016
NEWS autoconfiscate Apr 28, 2012
README update README Apr 30, 2016 travis: Initial continues integration build on linux and osx Apr 7, 2016
TODO [update] documentation, CHIBIOS Oct 23, 2011 Changes for compiling with mingw32 Apr 28, 2012 correct error message is given upon missing pkg-config package. fixes t… Sep 3, 2015
stlink_v1.modprobe.conf Update documentation removing all sg-utils notes Nov 4, 2011

Open source version of the STMicroelectronics Stlink Tools

Build Status


First, you have to know there are several boards supported by the software. Those boards use a chip to translate from USB to JTAG commands. The chip is called stlink and there are 2 versions:

  • STLINKv1, present on STM32VL discovery kits,
  • STLINKv2, present on STM32L discovery and later kits.

Two different transport layers are used:

  • STLINKv1 uses SCSI passthru commands over USB
  • STLINKv2 uses raw USB commands.

Common requirements

. libusb-1.0 (You probably already have this, but you'll need the development version to compile) . pkg-config


The STLINKv1's SCSI emulation is very broken, so the best thing to do is tell your operating system to completely ignore it.

Options (do one of these before you plug it in)

  • modprobe -r usb-storage && modprobe usb-storage quirks=483:3744:i
  • or *)1. add "options usb-storage quirks=483:3744:i" to /etc/modprobe.conf
  • *)2. modprobe -r usb-storage && modprobe usb-storage
  • or *)1. cp stlink_v1.modprobe.conf /etc/modprobe.d
  • *)2. modprobe -r usb-storage && modprobe usb-storage


You're ready to go :)

Build from sources


This project was converted to Autotools by a well meaning individual. The following steps will build the project for you.

$ ./
$ ./configure
$ make


$ mkdir build && cd build
$ cmake -DCMAKE_BUILD_TYPE=Debug ..
$ make

Using the gdb server

To run the gdb server: (you do not need sudo if you have set up permissions correctly)

$ make && [sudo] ./st-util

There are a few options:

./st-util - usage:

  -h, --help        Print this help
  -vXX, --verbose=XX    Specify a specific verbosity level (0..99)
  -v, --verbose     Specify generally verbose logging
  -s X, --stlink_version=X
            Choose what version of stlink to use, (defaults to 2)
  -1, --stlinkv1    Force stlink version 1
  -p 4242, --listen_port=1234
            Set the gdb server listen port. (default port: 4242)
  -m, --multi
            Set gdb server to extended mode.
            st-util will continue listening for connections after disconnect.
  -n, --no-reset
            Do not reset board on connection.

The STLINKv2 device to use can be specified in the environment variable STLINK_DEVICE on the format <USB_BUS>:<USB_ADDR>.

Then, in your project directory, someting like this... (remember, you need to run an ARM gdb, not an x86 gdb)

$ arm-none-eabi-gdb fancyblink.elf
(gdb) tar extended-remote :4242
(gdb) load
Loading section .text, size 0x458 lma 0x8000000
Loading section .data, size 0x8 lma 0x8000458
Start address 0x80001c1, load size 1120
Transfer rate: 1 KB/sec, 560 bytes/write.
(gdb) continue

Have fun!

Resetting the chip from GDB

You may reset the chip using GDB if you want. You'll need to use `target extended-remote' command like in this session:

(gdb) target extended-remote localhost:4242
Remote debugging using localhost:4242
0x080007a8 in _startup ()
(gdb) kill
Kill the program being debugged? (y or n) y
(gdb) run
Starting program: /home/whitequark/ST/apps/bally/firmware.elf

Remember that you can shorten the commands. `tar ext :4242' is good enough for GDB.

Setting up udev rules

For convenience, you may install udev rules file, 49-stlinkv*.rules, located in the root of repository. You will need to copy it to /etc/udev/rules.d, and then either reboot or execute

$ udevadm control --reload-rules
$ udevadm trigger

Udev will now create a /dev/stlinkv2_XX or /dev/stlinkv1_XX file, with the appropriate permissions. This is currently all the device is for, (only one stlink of each version is supported at any time presently)

Running programs from SRAM

You can run your firmware directly from SRAM if you want to. Just link it at 0x20000000 and do

(gdb) load firmware.elf

It will be loaded, and pc will be adjusted to point to start of the code, if it is linked correctly (i.e. ELF has correct entry point).

Writing to flash

The GDB stub ships with a correct memory map, including the flash area. If you would link your executable to 0x08000000 and then do (gdb) load firmware.elf then it would be written to the memory.


Q: My breakpoints do not work at all or only work once.

A: Optimizations can cause severe instruction reordering. For example, if you are doing something like `REG = 0x100;' in a loop, the code may be split into two parts: loading 0x100 into some intermediate register and moving that value to REG. When you set up a breakpoint, GDB will hook to the first instruction, which may be called only once if there are enough unused registers. In my experience, -O3 causes that frequently.

Q: At some point I use GDB command `next', and it hangs.

A: Sometimes when you will try to use GDB next' command to skip a loop, it will use a rather inefficient single-stepping way of doing that. Set up a breakpoint manually in that case and docontinue'.

Q: Load command does not work in GDB.

A: Some people report XML/EXPAT is not enabled by default when compiling GDB. Memory map parsing thus fail. Use --enable-expat.

Currently known working combinations of programmer and target

STLink v1 (as found on the 32VL Discovery board)

Known working targets:

  • STM32F100xx (Medium Density VL)
  • STM32F103 (according to jpa- on ##stm32)

No information:

  • everything else!

STLink v2 (as found on the 32L and F4 Discovery boards), known working targets:

  • STM32F030F4P6 (custom board)
  • STM32F0Discovery (STM32F0 Discovery board)
  • STM32F100xx (Medium Density VL, as on the 32VL Discovery board)
  • STM32L1xx (STM32L Discovery board)
  • STM32F103VC, STM32F107RC, STM32L151RB, STM32F205RE and STM32F405RE on custom boards (
  • STM32F103VET6 (HY-STM32 board)
  • STM32F105RCT6 (DecaWave EVB1000 board)
  • STM32F303xx (STM32F3 Discovery board)
  • STM32F407xx (STM32F4 Discovery board)
  • STM32F429I-DISCO (STM32F4 Discovery board with LCD)
  • STM32F439VIT6 (discovery board reseated CPU)
  • STM32L052K8T6 (custom board)
  • STM32L151CB (custom board)
  • STM32L152RB (STM32L-Discovery board, custom board)
  • STM32F051R8T6 (STM320518-EVAL board)

STLink v2-1 (as found on the Nucleo boards), known working targets:

  • STM32F401xx (STM32 Nucleo-F401RE board)
  • STM32F030R8T6 (STM32 Nucleo-F030R8 board)
  • STM32F072RBT6 (STM32 Nucleo-F072RB board)
  • STM32F103RB (STM32 Nucleo-F103RB board)
  • STM32F303RET6 (STM32 Nucleo-F303RE board)
  • STM32F334R8 (STM32 Nucleo-F334R8 board)
  • STM32F411RET6 (STM32 Nucleo-F411RE board)
  • STM32F756NGHx (STMF7 evaluation board)
  • STM32L053R8 (STM32 Nucleo-L053R8 board)

Please report any and all known working combinations so I can update this!

Something went wrong with that request. Please try again.