Skip to content
Go to file

Latest commit

* bump tf & tf-big dep versions

* bump tf-encrypted-primitives version, add simple project long_description

* black

Git stats


Failed to load latest commit information.
Latest commit message
Commit time

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of the Keras API while enabling training and prediction over encrypted data via secure multi-party computation and homomorphic encryption. TF Encrypted aims to make privacy-preserving machine learning readily available, without requiring expertise in cryptography, distributed systems, or high performance computing.

See below for more background material, explore the examples, or visit the documentation to learn more about how to use the library. You are also more than welcome to join our Slack channel for all questions around use and development.

Website Documentation PyPI CircleCI Badge


TF Encrypted is available as a package on PyPI supporting Python 3.5+ and TensorFlow 1.12.0+:

pip install tf-encrypted

Creating a conda environment to run TF Encrypted code can be done using:

conda create -n tfe python=3.6
conda activate tfe
conda install tensorflow notebook
pip install tf-encrypted

Alternatively, installing from source can be done using:

git clone
cd tf-encrypted
pip install -e .
make build

This latter is useful on platforms for which the pip package has not yet been compiled but is also needed for development. Note that this will get you a working basic installation, yet a few more steps are required to match the performance and security of the version shipped in the pip package, see the installation instructions.


The following is an example of simple matmul on encrypted data using TF Encrypted:

import tensorflow as tf
import tf_encrypted as tfe

def provide_input():
    # normal TensorFlow operations can be run locally
    # as part of defining a private input, in this
    # case on the machine of the input provider
    return tf.ones(shape=(5, 10))

# define inputs
w = tfe.define_private_variable(tf.ones(shape=(10,10)))
x = provide_input()

# define computation
y = tfe.matmul(x, w)

with tfe.Session() as sess:
    # initialize variables
    # reveal result
    result =

For more information, check out the documentation or the examples.


  • High-level APIs for combining privacy and machine learning. So far TF Encrypted is focused on its low-level interface but it's time to figure out what it means for interfaces such as Keras when privacy enters the picture.

  • Tighter integration with TensorFlow. This includes aligning with the upcoming TensorFlow 2.0 as well as figuring out how TF Encrypted can work closely together with related projects such as TF Privacy and TF Federated.

  • Support for third party libraries. While TF Encrypted has its own implementations of secure computation, there are other excellent libraries out there for both secure computation and homomorphic encryption. We want to bring these on board and provide a bridge from TensorFlow.

Background & Further Reading

Blog posts:




Development and Contribution

TF Encrypted is open source community project developed under the Apache 2 license and maintained by a set of core developers. We welcome contributions from all individuals and organizations, with further information available in our contribution guide. We invite any organizations interested in partnering with us to reach out via email or Slack.

Don't hesitate to send a pull request, open an issue, or ask for help! You can do so either via GitHub or in our Slack channel. We use ZenHub to plan and track GitHub issues and pull requests.

Individual contributions

We appreciate the efforts of all contributors that have helped make TF Encrypted what it is! Below is a small selection of these, generated by from most recent stats:

Organizational contributions

We are very grateful for the significant contributions made by the following organizations!

Cape Privacy Alibaba Security Group OpenMined

Project Status

TF Encrypted is experimental software not currently intended for use in production environments. The focus is on building the underlying primitives and techniques, with some practical security issues postponed for a later stage. However, care is taken to ensure that none of these represent fundamental issues that cannot be fixed as needed.

Known limitations

  • Elements of TensorFlow's networking subsystem does not appear to be sufficiently hardened against malicious users. Proxies or other means of access filtering may be sufficient to mitigate this.


Please open an issue, reach out directly on Slack, or send an email to


Licensed under Apache License, Version 2.0 (see LICENSE or Copyright as specified in NOTICE.

You can’t perform that action at this time.