-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
residual_network_cifar10.py
67 lines (54 loc) · 2.29 KB
/
residual_network_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# -*- coding: utf-8 -*-
""" Deep Residual Network.
Applying a Deep Residual Network to CIFAR-10 Dataset classification task.
References:
- K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image
Recognition, 2015.
- Learning Multiple Layers of Features from Tiny Images, A. Krizhevsky, 2009.
Links:
- [Deep Residual Network](http://arxiv.org/pdf/1512.03385.pdf)
- [CIFAR-10 Dataset](https://www.cs.toronto.edu/~kriz/cifar.html)
"""
from __future__ import division, print_function, absolute_import
import tflearn
# Residual blocks
# 32 layers: n=5, 56 layers: n=9, 110 layers: n=18
n = 5
# Data loading
from tflearn.datasets import cifar10
(X, Y), (testX, testY) = cifar10.load_data()
Y = tflearn.data_utils.to_categorical(Y)
testY = tflearn.data_utils.to_categorical(testY)
# Real-time data preprocessing
img_prep = tflearn.ImagePreprocessing()
img_prep.add_featurewise_zero_center(per_channel=True)
# Real-time data augmentation
img_aug = tflearn.ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_crop([32, 32], padding=4)
# Building Residual Network
net = tflearn.input_data(shape=[None, 32, 32, 3],
data_preprocessing=img_prep,
data_augmentation=img_aug)
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
net = tflearn.residual_block(net, n, 16)
net = tflearn.residual_block(net, 1, 32, downsample=True)
net = tflearn.residual_block(net, n-1, 32)
net = tflearn.residual_block(net, 1, 64, downsample=True)
net = tflearn.residual_block(net, n-1, 64)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
# Regression
net = tflearn.fully_connected(net, 10, activation='softmax')
mom = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
net = tflearn.regression(net, optimizer=mom,
loss='categorical_crossentropy')
# Training
model = tflearn.DNN(net, checkpoint_path='model_resnet_cifar10',
max_checkpoints=10, tensorboard_verbose=0,
clip_gradients=0.)
model.fit(X, Y, n_epoch=200, validation_set=(testX, testY),
snapshot_epoch=False, snapshot_step=500,
show_metric=True, batch_size=128, shuffle=True,
run_id='resnet_cifar10')