Fetching contributors…
Cannot retrieve contributors at this time
1099 lines (922 sloc) 47 KB
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import re
import os
import numpy as np
import tensorflow as tf
from import optimizer as tf_optimizer
import tflearn
from .. import callbacks as tf_callbacks
from ..config import init_training_mode
from ..utils import to_list, id_generator, check_dir_name, standarize_dict, \
get_dict_first_element, make_batches, slice_array, check_scope_path, \
from .. import data_flow
from .. import variables
from .. import utils
from .summarizer import summaries, summarize, summarize_gradients, \
summarize_variables, summarize_activations
# Fix for TF 0.12
writer_summary = tf.summary.FileWriter
merge_summary = tf.summary.merge
except Exception:
writer_summary = tf.train.SummaryWriter
merge_summary = tf.merge_summary
class Trainer(object):
""" Trainer.
Generic class to handle any TensorFlow graph training. It requires
the use of `TrainOp` to specify all optimization parameters.
train_ops: list of `TrainOp`. A list of a network training
operations for performing optimizations.
graph: `tf.Graph`. The TensorFlow graph to use. Default: default tf
clip_gradients: `float`. Clip gradient. Default: 5.0.
tensorboard_dir: `str`. Tensorboard log directory.
Default: "/tmp/tflearn_logs/".
tensorboard_verbose: `int`. Verbose level. It supports:
0 - Loss, Accuracy. (Best Speed)
1 - Loss, Accuracy, Gradients.
2 - Loss, Accuracy, Gradients, Weights.
3 - Loss, Accuracy, Gradients, Weights, Activations, Sparsity.
(Best Visualization)
checkpoint_path: `str`. Path to store model checkpoints. If None,
no model checkpoint will be saved. Default: None.
best_checkpoint_path: `str`. Path to store the model when the validation rate reaches its
highest point of the current training session and also is above best_val_accuracy. Default: None.
max_checkpoints: `int` or None. Maximum amount of checkpoints. If
None, no limit. Default: None.
keep_checkpoint_every_n_hours: `float`. Number of hours between each
model checkpoints.
random_seed: `int`. Random seed, for test reproductivity.
Default: None.
session: `Session`. A session for running ops. If None, a new one will
be created. Note: When providing a session, variables must have been
initialized already, otherwise an error will be raised.
best_val_accuracy: `float` The minimum validation accuracy that needs to be
achieved before a model weight's are saved to the best_checkpoint_path. This
allows the user to skip early saves and also set a minimum save point when continuing
to train a reloaded model. Default: 0.0.
def __init__(self, train_ops, graph=None, clip_gradients=5.0,
tensorboard_verbose=0, checkpoint_path=None, best_checkpoint_path=None,
keep_checkpoint_every_n_hours=10000.0, random_seed=None,
session=None, best_val_accuracy=0.0):
self.graph = tf.get_default_graph()
self.summ_writer = None
if graph:
self.graph = graph
with self.graph.as_default():
train_ops = to_list(train_ops)
if random_seed:
self.restored = False
self.tensorboard_dir = check_dir_name(tensorboard_dir)
self.training_state = TrainingState()
self.train_ops = to_list(train_ops)
self.global_step = tf.Variable(0., name='Global_Step',
self.incr_global_step = tf.assign(self.global_step,
tf.add(self.global_step, 1))
self.best_val_accuracy = best_val_accuracy
self.best_checkpoint_path = best_checkpoint_path
config = None
tflearn_conf = tf.get_collection(tf.GraphKeys.GRAPH_CONFIG)
if tflearn_conf:
config = tflearn_conf[0]
if not session:
self.session = tf.Session(config=config)
self.session = session
self.restored = True
self.coord = tf.train.Coordinator()
for i, train_op in enumerate(self.train_ops):
# For display simplicity in Tensorboard, if only one optmizer,
# we don't display its name
if len(train_ops) == 1:
train_op.scope_name = ""
train_op.initialize_training_ops(i, self.session,
# Saver for saving a model
self.saver = tf.train.Saver(
# Saver for restoring a model (With exclude variable list)
all_vars = variables.get_all_variables()
excl_vars = tf.get_collection(tf.GraphKeys.EXCL_RESTORE_VARS)
to_restore = [item for item in all_vars
if check_restore_tensor(item, excl_vars)]
self.restorer = tf.train.Saver(
# A second Saver, that only restore trainable variables
to_restore_trainvars = [item for item in tf.trainable_variables()
if check_restore_tensor(item, excl_vars)]
self.restorer_trainvars = tf.train.Saver(
self.to_restore = to_restore
self.to_restore_trainvars = to_restore_trainvars
self.checkpoint_path = checkpoint_path
if not self.restored:
# TF 0.12 fix
init =,
except Exception as e:
init = tf.initialize_all_variables()
# Fix for re-using sessions
def fit(self, feed_dicts, n_epoch=10, val_feed_dicts=None, show_metric=False,
snapshot_step=None, snapshot_epoch=True, shuffle_all=None,
dprep_dict=None, daug_dict=None, excl_trainops=None, run_id=None,
""" fit.
Train network with feeded data dicts.
# 1 Optimizer{input1: X, output1: Y},
val_feed_dicts={input1: X, output1: Y}){input1: X1, input2: X2, output1: Y},
val_feed_dicts=0.1) # 10% of data used for validation
# 2 Optimizers[{in1: X1, out1:Y}, {in2: X2, out2:Y2}],
val_feed_dicts=[{in1: X1, out1:Y}, {in2: X2, out2:Y2}])
feed_dicts: `dict` or list of `dict`. The dictionary to feed
data to the network. It follows Tensorflow feed dict
specifications: '{placeholder: data}'. In case of multiple
optimizers, a list of dict is expected, that will
respectively feed optimizers.
n_epoch: `int`. Number of epoch to runs.
val_feed_dicts: `dict`, list of `dict`, `float` or list of
`float`. The data used for validation. Feed dict are
following the same specification as `feed_dicts` above. It
is also possible to provide a `float` for splitting training
data for validation (Note that this will shuffle data).
show_metric: `bool`. If True, accuracy will be calculated and
displayed at every step. Might give slower training.
snapshot_step: `int`. If not None, the network will be snapshot
every provided step (calculate validation loss/accuracy and
save model, if a `checkpoint_path` is specified in `Trainer`).
snapshot_epoch: `bool`. If True, snapshot the network at the end
of every epoch.
shuffle_all: `bool`. If True, shuffle all data batches (overrides
`TrainOp` shuffle parameter behavior).
dprep_dict: `dict` with `Placeholder` as key and
`DataPreprocessing` as value. Apply realtime data
preprocessing to the given placeholders (Applied at training
and testing time).
daug_dict: `dict` with `Placeholder` as key and
`DataAugmentation` as value. Apply realtime data
augmentation to the given placeholders (Only applied at
training time).
excl_trainops: `list` of `TrainOp`. A list of train ops to
exclude from training process.
run_id: `str`. A name for the current run. Used for Tensorboard
display. If no name provided, a random one will be generated.
callbacks: `Callback` or `list`. Custom callbacks to use in the
training life cycle
if not run_id:
run_id = id_generator(6)
print("Run id: " + run_id)
print("Log directory: " + self.tensorboard_dir)
original_train_ops = list(self.train_ops)
# Remove excluded train_ops
if excl_trainops:
self.train_ops = list(filter(lambda a: a not in excl_trainops, self.train_ops))
# shuffle is an override for simplicty, it will overrides every
# training op batch shuffling
if isinstance(shuffle_all, bool):
for t in self.train_ops: t.shuffle = shuffle_all
with self.graph.as_default():
# TF 0.12 Fix
obj_lists = utils.fix_saver()
if self.summ_writer:
self.summ_writer = writer_summary(
self.tensorboard_dir + run_id, self.session.graph)
self.summ_writer = writer_summary(
self.tensorboard_dir + run_id, self.session.graph)
except Exception: # TF 0.7
self.summ_writer = writer_summary(
self.tensorboard_dir + run_id, self.session.graph_def)
feed_dicts = to_list(feed_dicts)
for d in feed_dicts: standarize_dict(d)
val_feed_dicts = to_list(val_feed_dicts)
if val_feed_dicts:
[standarize_dict(d) for d in val_feed_dicts if not
isinstance(d, float)]
termlogger = tf_callbacks.TermLogger()
modelsaver = tf_callbacks.ModelSaver(,
for i, train_op in enumerate(self.train_ops):
vd = val_feed_dicts[i] if val_feed_dicts else None
# Prepare all train_ops for fitting
train_op.initialize_fit(feed_dicts[i], vd, dprep_dict,
daug_dict, show_metric,
self.summ_writer, self.coord)
# Prepare TermLogger for training display
metric_term_name = None
if train_op.metric is not None:
if hasattr(train_op.metric, 'm_name'):
metric_term_name = train_op.metric.m_name
metric_term_name =':')[0]
max_batches_len = np.max([t.n_batches for t in self.train_ops])
caller = tf_callbacks.ChainCallback(callbacks=[termlogger, modelsaver])
callbacks = to_list(callbacks)
if callbacks:
[caller.add(cb) for cb in callbacks]
train_ops_count = len(self.train_ops)
snapshot = snapshot_epoch
for epoch in range(n_epoch):
# Global epoch are defined as loop over all data (whatever
# which data input), so one epoch loop in a multi-inputs
# model is equal to max(data_input) size.
for batch_step in range(max_batches_len):
for i, train_op in enumerate(self.train_ops):
snapshot = train_op._train(self.training_state.step,
(bool(self.best_checkpoint_path) | snapshot_epoch),
# Update training state
self.training_state.update(train_op, train_ops_count)
# Optimizer batch end
caller.on_sub_batch_end(self.training_state, i)
# All optimizers batch end
caller.on_batch_end(self.training_state, snapshot)
# Epoch end
for t in self.train_ops:
# Set back train_ops
self.train_ops = original_train_ops
def fit_batch(self, feed_dicts, dprep_dict=None, daug_dict=None):
""" fit_batch.
Train network with a single batch.
feed_dicts: `dict` or list of `dict`. The dictionary to feed
data to the network. It follows Tensorflow feed dict
specifications: '{placeholder: data}'. In case of multiple
optimizers, a list of dict is expected, that will
respectively feed optimizers.
dprep_dict: `dict` with `Placeholder` as key and
`DataPreprocessing` as value. Apply realtime data
preprocessing to the given placeholders (Applied at training
and testing time).
daug_dict: `dict` with `Placeholder` as key and
`DataAugmentation` as value. Apply realtime data
augmentation to the given placeholders (Only applied at
training time).
feed_dicts = to_list(feed_dicts)
for d in feed_dicts: standarize_dict(d)
val_loss = []
for train_op in self.train_ops:
if daug_dict:
for k in daug_dict:
feed_dicts[k] = daug_dict.apply(feed_dicts[k])
if dprep_dict:
for k in dprep_dict:
feed_dicts[k] = dprep_dict.apply(feed_dicts[k])
for d in feed_dicts:
if len(val_loss) == 1: val_loss = val_loss[0]
return val_loss
def save(self, model_file, global_step=None):
""" save.
Save a Tensorflow model
model_file: `str`. Saving path of tensorflow model
global_step: `int`. The training step to append to the
model file name (optional).
# Temp workaround for tensorflow 0.7+ dict proto serialization issue
obj_lists = utils.fix_saver()
# TF 0.12 Fix
if not os.path.isabs(model_file):
model_file = os.path.abspath(os.path.join(os.getcwd(), model_file)), model_file, global_step=global_step)
def restore(self, model_file, trainable_variable_only=False, variable_name_map=None, scope_for_restore=None,
create_new_session=True, verbose=False):
""" restore.
Restore a Tensorflow model
model_file: path of tensorflow model to restore
trainable_variable_only: If True, only restore trainable variables.
variable_name_map: - a (pattern, repl) tuple providing a regular expression pattern
and replacement, which is applied to variable names, before
restoration from the model file
- OR, a function map_func, used to perform the mapping, called as:
name_in_file = map_func(existing_var_op_name)
The function may return None to indicate a variable is not to be
scope_for_restore: string specifying the scope to limit to, when restoring variables.
Also removes the scope name prefix from the var name to use when restoring.
create_new_session: Set to False if the current session is to be kept.
Set to True (the default) to create a new session, and re-init all variables.
verbose : Set to True to see a printout of what variables are being restored,
when using scope_for_restore or variable_name_map
# TF 0.12 Fix
if not os.path.isabs(model_file):
model_file = os.path.abspath(os.path.join(os.getcwd(), model_file))
if create_new_session:
config = None
tflearn_conf = tf.get_collection(tf.GraphKeys.GRAPH_CONFIG)
if tflearn_conf:
config = tflearn_conf[0]
self.session = tf.Session(config=config)
# TF 0.12 Fix
except Exception:
if scope_for_restore is not None: # allow variables to be restored into a different scope
sname = scope_for_restore
def vn_map_func(existing_name): # variable name map function which removes the scope name, e.g.
if not existing_name.startswith(sname): # so that "scope_name/var_name/... is retrieved from var_name/...
return None # and variables outside of scope_name are not restored
name_in_file = re.sub("^%s/" % sname, "", existing_name)
if verbose:
print ("[%s] Restoring %s <- %s" % (sname, existing_name, name_in_file))
return name_in_file
variable_name_map = vn_map_func
if variable_name_map is not None: # general-purpose remapping of variable names (name in file vs existing name)
if type(variable_name_map)==tuple: # tuple interpreted as regular expression pattern substitution
(pattern, repl) = variable_name_map
def vn_map_func(existing_name):
name_in_file = re.sub(pattern, repl, existing_name)
if verbose:
print ("Restoring %s <- %s" % (existing_name, name_in_file))
return name_in_file
vn_map_func = variable_name_map # allow arbitrary user-provided mapping function
if trainable_variable_only: # restore either trainingable variables only, or all variables
to_restore = self.to_restore_trainvars
to_restore = self.to_restore
renamed_to_restore = {vn_map_func( v for v in to_restore}
if None in renamed_to_restore:
restorer = tf.train.Saver(var_list=renamed_to_restore)
restorer.restore(self.session, model_file)
elif not trainable_variable_only:
self.restorer.restore(self.session, model_file)
self.restorer_trainvars.restore(self.session, model_file)
for o in self.train_ops:
o.session = self.session
self.restored = True
# Restore the training step
self.training_state.step = int(self.global_step.eval(self.session))
def close_session(self):
""" Close session """
def validate_trainop_names(self):
""" Give names to all TrainOp, handle no names and duplicated names """
t_len = len(self.train_ops)
# Rename optimizers without name
for i in range(t_len):
if not self.train_ops[i].name:
self.train_ops[i].name = 'Optimizer'
self.train_ops[i].scope_name = 'Optimizer'
# Handle duplicate names
for i in range(t_len):
dupl = 0
for j in range(i+1, t_len):
if not self.train_ops[i].name:
if self.train_ops[i].name == self.train_ops[j].name:
if dupl == 0:
self.train_ops[i].name += '_' + str(dupl)
self.train_ops[i].scope_name = self.train_ops[i].name
dupl += 1
self.train_ops[j].name += '_' + str(dupl)
self.train_ops[j].scope_name = self.train_ops[j].name
class TrainOp(object):
""" TrainOp.
TrainOp represents a set of operation used for optimizing a network.
A TrainOp is meant to hold all training parameters of an optimizer.
`Trainer` class will then instantiate them all specifically considering all
optimizers of the network (set names, scopes... set optimization ops...).
loss: `Tensor`. Loss operation to evaluate network cost.
Optimizer will use this cost function to train network.
optimizer: `Optimizer`. Tensorflow Optimizer. The optimizer to
use to train network.
metric: `Tensor`. The metric tensor to be used for evaluation.
batch_size: `int`. Batch size for data feeded to this optimizer.
Default: 64.
ema: `float`. Exponential moving averages.
trainable_vars: list of `tf.Variable`. List of trainable variables to
use for training. Default: all trainable variables.
shuffle: `bool`. Shuffle data.
step_tensor: `tf.Tensor`. A variable holding training step. If not
provided, it will be created. Early defining the step tensor
might be useful for network creation, such as for learning rate
validation_monitors: `list` of `Tensor` objects. List of variables
to compute during validation, which are also used to produce
summaries for output to TensorBoard. For example, this can be
used to periodically record a confusion matrix or AUC metric,
during training. Each variable should have rank 1, i.e.
shape [None].
validation_batch_size: `int` or None. If `int`, specifies the batch
size to be used for the validation data feed; otherwise
defaults to being th esame as `batch_size`.
name: `str`. A name for this class (optional).
graph: `tf.Graph`. Tensorflow Graph to use for training. Default:
default tf graph.
def __init__(self, loss, optimizer, metric=None, batch_size=64, ema=0.,
trainable_vars=None, shuffle=True, step_tensor=None,
validation_monitors=None, validation_batch_size=None,
name=None, graph=None):
self.graph = tf.get_default_graph()
if graph:
self.graph = graph = name
self.scope_name = name
# Ops
self.loss = loss
self.optimizer = optimizer
self.metric = metric
self.metric_summ_name = ""
if metric is not None:
self.metric_summ_name ='/')[0]
if isinstance(validation_monitors, tf.Tensor):
validation_monitors = [validation_monitors]
self.validation_monitors = validation_monitors or []
self.grad = None
self.apply_grad = None
self.summ_op = None
self.val_summary_op = None
self.train_vars = trainable_vars
self.shuffle = shuffle
self.batch_size = batch_size
self.validation_batch_size = validation_batch_size or batch_size
self.n_batches = 0
self.ema = ema
self.feed_dict = None
self.val_feed_dict = None
self.loss_value = None
self.val_loss = None
self.acc_value = None
self.val_acc = None
if step_tensor is None:
with self.graph.as_default():
self.training_steps = tf.Variable(0., name="Training_step",
self.training_steps = step_tensor
# Building
if not isinstance(self.loss, tf.Tensor):
raise ValueError("Unknown Loss type")
if not isinstance(self.optimizer, tf_optimizer.Optimizer):
raise ValueError("Unknown Optimizer")
if self.train_vars is None:
self.train_vars = tf.trainable_variables()
self.train_var = to_list(self.train_vars)
self.train = None
def initialize_training_ops(self, i, session, tensorboard_verbose,
""" initialize_training_ops.
Initialize all ops used for training. Because a network can have
multiple optimizers, an id 'i' is allocated to differentiate them.
This is meant to be used by `Trainer` when initializing all train ops.
i: `int`. This optimizer training process ID.
session: `tf.Session`. The session used to train the network.
tensorboard_verbose: `int`. Logs verbose. Supports:
0 - Loss, Accuracy.
1 - Loss, Accuracy, Gradients.
2 - Loss, Accuracy, Gradients, Weights.
3 - Loss, Accuracy, Gradients, Weights, Activations, Sparsity..
clip_gradients: `float`. Option for clipping gradients.
self.session = session
# Variables holding mean validation loss, accuracy, and validation
# monitors, assigned after each model evaluation (by batch).
# For visualization in Tensorboard.
# Define variables, placeholders and assign ops.
self.val_loss_T = tf.Variable(0., name='val_loss', trainable=False)
self.val_acc_T = tf.Variable(0., name='val_acc', trainable=False)
self.validation_monitors_T = [tf.Variable(0., name='%s_T' %':', 1)[0], trainable=False) for v in self.validation_monitors]
self.val_loss_P = tf.placeholder(dtype=tf.float32, name='placeholder/%s' %':')[0])
self.val_acc_P = tf.placeholder(dtype=tf.float32, name='placeholder/%s' %':')[0])
self.val_monitors_P = [tf.placeholder(dtype=tf.float32, name='placeholder/%s' %':')[0]) for v in self.validation_monitors_T]
self.val_loss_assign = tf.assign(self.val_loss_T, self.val_loss_P,
name='assign/%s' %':')[0])
self.val_acc_assign = tf.assign(self.val_acc_T, self.val_acc_P,
name='assign/%s' %':')[0])
self.val_monitors_assign = [tf.assign(vmt, vmp, name='assign/%s' %':')[0]) for vmt, vmp in
zip(self.validation_monitors_T, self.val_monitors_P)]
# Creating the accuracy moving average, for better visualization.
if self.metric is not None:
self.acc_averages = \
tf.train.ExponentialMovingAverage(0.9, self.training_steps,
acc_avg_op = self.acc_averages.apply([self.metric])
acc_avg_op = tf.no_op()
# Compute total loss, which is the loss of all optimizers plus the
# loss of all regularizers. Then, we summarize those losses for
# visualization in Tensorboard.
with tf.name_scope(
lss = [self.loss] + tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = tf.add_n(lss, name="Total_Loss")
loss_avg_op = summaries.add_loss_summaries(
name_prefix=self.scope_name, + "_training_summaries",
# Compute gradients operations
with tf.control_dependencies([loss_avg_op, acc_avg_op]):
self.grad = tf.gradients(total_loss, self.train_vars)
if clip_gradients > 0.0:
self.grad, self.grad_norm = \
tf.clip_by_global_norm(self.grad, clip_gradients)
self.grad = list(zip(self.grad, self.train_vars))
self.apply_grad = self.optimizer.apply_gradients(
name="apply_grad_op_" + str(i))
# Create other useful summary (weights, grads, activations...)
# according to 'tensorboard_verbose' level.
# Track the moving averages of trainable variables
if self.ema > 0.:
var_averages = tf.train.ExponentialMovingAverage(
self.ema, self.training_steps)
var_averages_op = var_averages.apply(self.train_vars)
with tf.control_dependencies([var_averages_op]):
with tf.control_dependencies([self.apply_grad]):
self.train = tf.no_op(name="train_op_" + str(i))
with tf.control_dependencies([self.apply_grad]):
self.train = tf.no_op(name="train_op_" + str(i))
def initialize_fit(self, feed_dict, val_feed_dict, dprep_dict, daug_dict,
show_metric, summ_writer, coord):
""" initialize_fit.
Initialize data for feeding the training process. It is meant to
be used by `Trainer` before starting to fit data.
feed_dict: `dict`. The data dictionary to feed.
val_feed_dict: `dict` or `float`. The validation data dictionary to
feed or validation split.
dprep_dict: `dict`. Data Preprocessing dict (with placeholder as
key and corresponding `DataPreprocessing` object as value).
daug_dict: `dict`. Data Augmentation dict (with placeholder as
key and corresponding `DataAugmentation` object as value).
show_metric: `bool`. If True, display accuracy at every step.
summ_writer: `SummaryWriter`. The summary writer to use for
Tensorboard logging.
self.summary_writer = summ_writer
self.feed_dict = feed_dict
self.val_feed_dict = val_feed_dict
self.n_train_samples = len(get_dict_first_element(feed_dict))
self.index_array = np.arange(self.n_train_samples)
self.n_val_samples = 0
# Validation Split
#TODO: Optional per key validation split
if isinstance(val_feed_dict, float):
split_at = int(self.n_train_samples * (1 - val_feed_dict))
# Shuffle Data
self.val_index_array = self.index_array[split_at:]
self.index_array = self.index_array[:split_at]
self.n_train_samples = len(self.index_array)
self.n_val_samples = len(self.val_index_array)
val_feed_dict = feed_dict
elif val_feed_dict is not None:
self.val_index_array = None
self.n_val_samples = len(get_dict_first_element(val_feed_dict))
if dprep_dict:
for k in dprep_dict:
assert feed_dict[k] is not None, \
"Unknown DataPreprocessing dict key!"
dprep_dict[k].initialize(feed_dict[k], self.session)
self.train_dflow = data_flow.FeedDictFlow(feed_dict, coord,
self.n_batches = len(self.train_dflow.batches)
# TODO: Optimize data_flow to not start/restart threads (cost time)
# every time testing
if val_feed_dict:
self.test_dflow = data_flow.FeedDictFlow(val_feed_dict, coord,
self.create_testing_summaries(show_metric, self.metric_summ_name,
def _train(self, training_step, snapshot_epoch, snapshot_step,
""" _train.
Training process for this optimizer.
training_step: `int`. The global step.
snapshot_epoch: `bool`. If True, snapshot network at each epoch.
snapshot_step: `int`. If not None, snapshot network given 'step'.
show_metric: `bool`. If True, display accuracy at every step.
self.loss_value, self.acc_value = None, None
self.val_loss, self.val_acc = None, None
train_summ_str, test_summ_str = None, None
snapshot = False
epoch = self.train_dflow.data_status.epoch
feed_batch =
tflearn.is_training(True, session=self.session)
_, train_summ_str =[self.train, self.summ_op],
# Retrieve loss value from summary string
sname = "Loss/" + self.scope_name
self.loss_value = summaries.get_value_from_summary_string(
sname, train_summ_str)
if show_metric and self.metric is not None:
# Retrieve accuracy value from summary string
sname = self.metric_summ_name + "/" + self.scope_name
self.acc_value = summaries.get_value_from_summary_string(
sname, train_summ_str)
if epoch != self.train_dflow.data_status.epoch:
if snapshot_epoch:
snapshot = True
# Check if step reached snapshot step
if snapshot_step:
if training_step % snapshot_step == 0:
snapshot = True
# Calculate validation
if snapshot and self.val_feed_dict:
tflearn.is_training(False, session=self.session)
# Evaluation returns the mean over all batches.
eval_ops = [self.loss] + self.validation_monitors # compute loss as well as any extra validation monotor tensors
if show_metric and self.metric is not None:
e = evaluate_flow(self.session, eval_ops, self.test_dflow)
self.val_loss = e[0]
if show_metric and self.metric is not None:
self.validation_monitor_values = e[1:-1]
self.val_acc = e[-1]
self.validation_monitor_values = e[1:]
# Set evaluation results to variables, to be summarized.
update_val_op = [self.val_loss_assign]
update_val_feed = {self.val_loss_P: self.val_loss}
if show_metric:
update_val_feed[self.val_acc_P] = self.val_acc
if self.validation_monitors:
for vmp, vmv in zip(self.val_monitors_P, self.validation_monitor_values):
update_val_feed[vmp] = vmv, feed_dict=update_val_feed)
# Run summary operation.
test_summ_str =
# Write to Tensorboard
#TODO: Delete?
n_step = self.training_steps.eval(session=self.session)
if n_step > 1:
if train_summ_str:
train_summ_str, n_step)
if test_summ_str:
test_summ_str, n_step)
return snapshot
def _train_batch(self, feed_dict):
""" _train_batch.
Train on a single batch.
feed_dict: `dict`. The data dictionary to feed.
tflearn.is_training(True, session=self.session)
_, loss, _ =[self.train, self.loss, self.summ_op],
tflearn.is_training(False, session=self.session)
return loss
def duplicate(self):
""" Returns a duplicated `TrainOp` """
return TrainOp(self.loss, optimizer=self.optimizer,
batch_size=self.batch_size, ema=self.ema,
def create_summaries(self, verbose=2):
""" Create summaries with `verbose` level """
summ_collection = + "_training_summaries"
if verbose in [3]:
# Summarize activations
activations = tf.get_collection(tf.GraphKeys.ACTIVATIONS)
summarize_activations(activations, summ_collection)
if verbose in [2, 3]:
# Summarize variable weights
summarize_variables(self.train_vars, summ_collection)
if verbose in [1, 2, 3]:
# Summarize gradients
summarize_gradients(self.grad, summ_collection)
self.summ_op = merge_summary(tf.get_collection(summ_collection))
def create_testing_summaries(self, show_metric=False,
metric_name="Accuracy", validation_set=None):
""" Create accuracy and validation summaries """
tr_summ_collection = + "_training_summaries"
te_summ_collection = + "_testing_summaries"
mn = metric_name.replace('/Mean:0/', '')
if show_metric and self.metric is not None:
# Summarize Raw Accuracy
sname = mn + "/" + self.scope_name + " (raw)"
summarize(self.metric, "scalar", sname, tr_summ_collection)
# Summarize Accuracy's moving averages
sname = mn + "/" + self.scope_name
self.summ_op = summarize(self.acc_averages.average(self.metric),
"scalar", sname, tr_summ_collection)
if validation_set is not None:
# Summarive Validation Loss
loss_val_name = "Loss/" + self.scope_name + "/Validation"
loss_val_name = check_scope_path(loss_val_name)
self.val_summary_op = summarize(self.val_loss_T, "scalar",
loss_val_name, te_summ_collection)
if show_metric and self.metric is not None:
# Summarize Validation Accuracy
acc_val_name = mn + "/" + self.scope_name + "/Validation"
acc_val_name = check_scope_path(acc_val_name)
self.val_summary_op = summarize(self.val_acc_T, "scalar",
if self.validation_monitors:
# add summaries of additional validation monitor variables
for vm_op in self.validation_monitors_T:
vm_name = + "/" + self.scope_name + "/Validation"
vm_name = check_scope_path(vm_name)
self.val_summary_op = summarize(vm_op, "scalar",
def duplicate_identical_ops(ops):
""" Duplicate identical `TrainOp` """
for i in range(len(ops)):
for j in range(i+1, len(ops)):
if ops[i] == ops[j]:
ops[j] = ops[i].duplicate()
def get_current_batch_size(feed_batch, dataflow):
if hasattr(feed_batch, 'iteritems'):
iterator = feed_batch.iteritems
iterator = feed_batch.items
for k, v in iterator():
if k.get_shape()[0].value == None:
if type(v) is list:
return len(v)
return int(v.shape[0])
return dataflow.batch_size
def evaluate_flow(session, ops_to_evaluate, dataflow):
if not isinstance(ops_to_evaluate, list):
ops_to_evaluate = [ops_to_evaluate]
tflearn.is_training(False, session)
res = [0. for i in ops_to_evaluate]
feed_batch =
while feed_batch:
r =, feed_batch)
current_batch_size = get_current_batch_size(feed_batch, dataflow)
for i in range(len(r)):
res[i] += r[i] * current_batch_size
feed_batch =
res = [r / dataflow.n_samples for r in res]
return res
def evaluate(session, op_to_evaluate, feed_dict, batch_size):
""" evaluate.
Evaluate an operation with provided data dict using a batch size
to save GPU memory.
session: `tf.Session`. Session for running operations.
op_to_evaluate: `tf.Op`. Operation to be evaluated.
feed_dict: `dict`. Data dictionary to feed op_to_evaluate.
batch_size: `int`. Batch size to be used for evaluation.
`float`. op_to_evaluate mean over all batches.
tflearn.is_training(False, session)
n_test_samples = len(get_dict_first_element(feed_dict))
batches = make_batches(n_test_samples, batch_size)
index_array = np.arange(n_test_samples)
avg = 0.0
for i, (batch_start, batch_end) in enumerate(batches):
batch_ids = index_array[batch_start:batch_end]
feed_batch = {}
for key in feed_dict:
# Make batch for multi-dimensional data
if np.ndim(feed_dict[key]) > 0:
feed_batch[key] = slice_array(feed_dict[key], batch_ids)
feed_batch[key] = feed_dict[key]
avg +=, feed_batch) / len(batches)
return avg
class TrainingState(object):
def __init__(self):
self.epoch = 0
self.step = 0
self.current_iter = 0
self.step_time = 0.0
self.acc_value = None
self.loss_value = None
self.val_acc = None
self.val_loss = None
self.best_accuracy = 0.0
self.global_acc = 0.0
self.global_loss = 0.0
def update(self, train_op, train_ops_count = 1):
data_status = train_op.train_dflow.data_status
self.acc_value = train_op.acc_value
self.loss_value = train_op.loss_value
self.val_acc = train_op.val_acc
self.val_loss = train_op.val_loss
self.current_iter = data_status.current_iter
# Update best validation accuracy
if self.val_acc is not None and self.val_acc > self.best_accuracy:
self.best_accuracy = self.val_acc
# Update global values
self.global_loss += self.loss_value
if self.acc_value and self.global_acc:
self.global_acc += self.acc_value / train_ops_count
self.global_acc = None
def increaseEpoch(self):
self.epoch += 1
def increaseStep(self):
self.step += 1
def resetGlobal(self):
self.global_acc = 0.0
self.global_loss = 0.0
# def initialize_uninit_variables(session, list_of_variables=None):
# if list_of_variables is None:
# list_of_variables = tf.global_variables()
# uninitialized_variables = list(tf.get_variable(name) for name in
# return uninitialized_variables