DOCUMENTATION

1. Table of content

1
2

3

4

5

INEEOAUCTION «oueenriinriiniiiniiiiiinicsnicstecsteisnissiesiesstesaeessnssssesssessseesseessessssssssesssessseesssssssssssssssssssesssssssesssasssss 4
TEIMMNS ceceuieiiiiseecstensnenstiistinssessseessecssesssassssesssesssesssesssessssssssesssesssssssesssassssesssesssesssessssessassssssssessassssasssasssasssae 4
2.1 CTOSS-CULLINZ COMCEITISuviutieutientietiestteeteeeseeenteeateenseeseenseessseenseenseenseesseessaeensesaseenseenseesseesnsesnseenseansens 4
2.2 AAVICR. .ttt ettt h e h e ettt e b e ekt e ekt e eh et e et e et e e bt e bt e bt e bt e enteeneeenteentean 4
2.3 POTIECUL ...ttt ettt sttt e bt et et e bt e st e et e e st et e eh e et e bt eet et e eneennenteeneens 4
N 147131 7o 11 OSSOSO PSSRSO 4
2.5 N 1Tt PSSP 4
PACKAGE . ccciiiiriiiiiinnriiniinniiinintiicnesnsticsssnsticsssssiessssssossssssnsssssssnssnssssss 5
3.1 L2540) 3 1101 o BRSSPSR 5
3.2 N 112 D GO OO OO PO P RS POPORUTPURPPROIOt 5
33) €21 401 o) (< USSP 5
POINECUL...coiuiiiiiiiiinniintiniiiniintectecstecsseessnsssseesstsssesssesssessssesssessssssseessassssesssesssesssessssessassssssssesssesssasssasssasssas 6
4.1 25 q 0] 30 11102 o BSOSO PUURURTSR 6
4.2 STIIEAX 1.ttt et ee ettt ettt e ettt e et e et e ettt e eteeeetbeeeabee e tbeeeabeeetaeeanbee e tbeeenbeeetbeeanbaeetteeetbeeentaeesseeenreeenes 6
4.3) €21 401 o) (<SSP 7
AVICES cucuveeeneercrerisnnnisuticsseisssenessseesssessssessssssesssesssssesssssssssssssssssssssssssssssssssssssesssssssssssssssssssnsesss 7
5.1 AVICE KINAS ..ttt ettt e h e b e et et et e e bt e bt e b e bt e st e eneeenteentean 7
R 10T (I N A4 1o SRS PRRRSTRUR 8
5.2.1 25 q 0] N0 1101 s BRSO PRPSR 8
5.2.2 N 117 D GO OO TUP P PURRUPSRTI 8
5.2.3 EXAMPIE ...uiitiiiiciieieeteee ettt ettt ettt et e et e e te e tae e tbeerbeer b e es b e e bt e tteetbeetbeerbeenseenras 8
53 TYPE MEMDEIS AQVICE ..uvviiiieiiieiiieiieiie sttt ettt et e bt e b e e s taestaessaessseessaessaesssesssessseenseensens 8
5.3.1 25 q 0] 30T 110 s DO ORI 8
5.3.2 N 11 b OO U PSP PN PURUUPSURPI 9
5.33 EXAMPIE ...tiitiiiiiciieteeeee ettt ettt ettt et e b et e e etae e tb e et b e er b e esb e e be e tteetbeetbeerbeenbeenras 9
R TS T4 A Y 1o PRSPPI 10
5.4.1 EXPIANAtIONeiiiiieeiie ettt et e ettt e et e et e e s b e e ete e e sabeeenbaeestbeeenbbeentseeenbeeetbaeenaeean 10
5.4.2 N4 11 b PSSP 10
543 EXAMPLE ...ttt ettt e et e et e et e bt e ta e e ab e e beenbeeteestaeenaenneean 11
5.5 Interface MEMDEIS AGVICEccviiiiuiiiiiieeiie ettt ettt e et e et e e abeeeaaeesaseesaseeensseeennas 11
5.5.1 EXPIANAtIONeiiiiiiciie ettt et ettt e et e et e et e e et eeeab e e e abe e e tbeeebb e e taeeanbeeenaaeenaeen 11
5.5.2 N4 117 b PRSP SPS 12
5.53 EXAMPLE ...t ettt ettt ettt et e e be e teeeaeeenneens 12
5.6 ENum mMemDBETS @VICEeeiuiiiiiiiieitieitieeie ettt ettt ettt ettt sa e ettt et e be e b e saee e en 12
5.6.1 EXPLANALIONuviiiiieiieiteeete ettt ettt s et et e e b e e beesteestaessbeasseesbeesseesssensseasseessaessaessaesssessseans 12
5.6.2)4 117 b RPN 12
5.6.3 EXAMPLE ...ttt ettt ht e ettt e bt e beesteesaeeenneens 13
5.7 AIIDULES AAVICE ...eti ittt ettt et ettt et e ettt e e et ene e bese e en e ne et et e bt e e teeneeneas 13
5.7.1 EXPLANAIONcutieiiieiieiie ettt ettt ettt et esteesteessaessseessaesaessseasseenseensaeseensaessnennseans 13
5.7.2 N 117 b QOO O T OO P PSPPSRI 13
5.7.3 o €211 0] (=T TET O S P SU PP PRUUURRURPPRRNt 14
5.8 Change ValUe AAVICE.......ccvieiieiieiietieieestee ettt e ette e et e e be e te et e s taessbeesseesbeesseesssessaeesseesseesseesseesseenens 14
5.8.1 EXPIANAIONeitieitieieiee ettt ettt e st e et e ettt b e s ateent e et e bt e bt e steesneeenneens 14
5.8.2 N 117 b U TSP UPPI 14
5.8.3 EXAMPIE ...ttt ettt e b ta e s taeetbe et e et e e bt e tteetbeenbeenbaebeestaeerbeeraeans 15
PrOtOtYPES..uuecccciicneiininiicnricsntinsensssstessanssssnsssssssssssosstsssssssssssesssssssassssssssssssssssnsssssssssssssssasssssnssssnssssasssses 15
6.1 PTOLOLYPES TNEIMIDETSeeiiiiieiiieteette st ee sttt ettt ettt et et estee e st e esbeeat e enteesteesseesaseenseenseesseesneesneesnseenseenseas 15
6.1.1 DIECIATATION ...ttt et ettt et et e bt e bt e sbe e e st e en bt et e e beenbeeeaeeeaneens 15
6.1.2 Prototype Member MapPINg.........c.vevverierieeiietiesiieiieseesreareeseesseessaesssessseasseesseesseesssesssesssenns 17

0.2 TYPE OF PLOLOLYPES . et ueeeuetetietiestieetie ettt et et et e steestte ettt et e e bt et eesseeeseeenseenseanseesseesseesnsesnseenseenseenneennes 20

6.2.1 DIECIATATION ...ttt ettt et s h ettt e bt et e bt e sbe e e st e en bt et e e beenbeesneeeaneens 20
6.2.2 IMLADPINIE . veetieeteeiitetee it e et e et e esbeesbe e teesttesabessbeesbeessaessaessaesssessseasseasseesssessseasseasseensaessaessaenssenseeans 22
6.2.3 EXAMPLE ...ttt ettt st e et e et e e st e tteenbeen b e enbeeteensaeeraeenneans 23
N 1 o £ Rt 23
7.1 Control fIOW €t EXECULION THITICeouieiiieieieeie ettt ettt ettt ettt et e et et eeeeseeneeseeeneeneeneennas 24
I T Ta (SR 1] o <o AR UPSPRPP 26
7.2.1 EXPIANAION ...ttt ettt ettt e st e et e ettt e bt e s aeeenteente et e eteesteeeaneenneens 26
7.2.2 N 117 b O U TSP P S URURUPPI 26
7.2.3 EXAMPIEiiiiiiiieiie ettt sttt b et st tbeesb e e b e et e e bb e tbeatbeerbeebaebaestaeereeerreans 27
7.3 EYPE MNEIIIDETS ASPECT..uveeeeieieteuieeteeteestteetteetteette ettt esteenteesteesaeeesseenseeseaseesseesnseanseenseenseenseesseesanesnseans 27
7.3.1 EXPIANAtIONeiiiiiieiie ettt e et e et e et eebe e e etb e e e nba e e tbeeebaeentaaeenbaeenaeeenaeean 27
7.3.2 N4 11 PSSP 28
7.3.3 EXAMPIE ...ttt ettt et e et e e et e et e tt e tbeen b e e b e eseentaeeraennreans 28
T EYPC ASPECE -eetenitieiite ettt ettt ettt ettt ettt e ht e e bttt e et e e bt e ea b e e bt e e bte e e bt e e bt e e eabe e e bt e e sabeeenbeeenbbeesbeeenn 29
7.4.1 EXPIANAtIONeiiiiiiciie ettt ettt e et e et e e st e e e bt eesabeeesbeeetbeeeabaeentbeeenbaeenneeenaeeas 29
7.4.2)4 117 b PRSPPI 29
7.4.3 EXAMPLE ...ttt et ettt et e et et e e te e teesaeeenneens 29
7.5 INEEITACE MEMDEIS ASPECE.....iiiiuiieiiiieeitiieetieeieeetee ettt e et e estaeeesteeestbeessbeeesaeessseeessseesssaeesseensseeensseensses 30
7.5.1 EXPLANALIONutiiiieiieiieeete ettt ettt et e et e ebeestaestaeesbeesseesseessaessseasseasseesseeseessaesssessseans 30
7.5.2 N4 117 b PSSP 30
7.5.3 EXAMPLCoiiiiiieiie ettt et e e e e e e et e e e bbeetbeeebbeentbeeenbaeetaaeenaeean 30
7.6 CNUM MEIMDETS ASPECE..eevviitiierrierietiesttestterteeteeteeseesseesseesseesssesssessseesseeseesseesssessseessesssessseesssesssensns 31
7.6.1 EXPLANAIONcutieiiieiieiie ettt ettt sttt et et e e steestaessaeasseesse e saessseasseenseenseeseensaesnaennneans 31
7.6.2 N 117 D QOO O T TP SOTOP P UTRRUPPRO 31
7.6.3 EXAMPLCeiiiiiieiie ettt et e et e e et e e ab e e bt e e etbeeebbeentbeeenbaeeraeeenaaean 31
T T AUIIDULE @SPECT..icuviitiisiieiiieiieeteete et eteeteesteesteesteestaeesbeesbeesseessaesssessseasseasseessaessaesssessseasseasseesseessensns 31
7.7.1 EXPLANAIONeutieiiietieie ettt ettt st e et ettt e bt e s h e e nteen bttt e bt e steesneeenneens 31
7.7.2 N 117 b OO TSP 31
7.7.3 EXAMPIE ...eiiiiiiiieiicteece ettt ettt sttt e e ta e e e e ba e bt e stteetbeerbeenbaebeestaeeraeerreans 32
7.8 ChanEe VAIUC @SPECL ...cuieiiiiiieeiieciecie ettt ettt ettt et e ettt et e st esabeesbeesseenseessaessaesssesnseanseenseenseennns 32
7.8.1 EXPLANAION ...ttt ettt e st e et e et e et e e bt e nt e e nteen b e et e e beesteeenneenneens 32
7.8.2 N4 11 RS RPS 32
7.8.3 EXAMPLE ...ttt ettt et e et et ettt e e tbeenb e e b e eteestaenraennreans 32
R 111 1§ L1ST6 B2 T 01T o] USSR 33
7.9.1 EXPIANAtIONeiiiiieiiie ettt et e et e et e et e et eeetbeesabeeeabeeesbeeenbbeentaeeenbeeetaeeenaeean 33
7.9.2)4 11 b PSSP 33
7.9.3 EXAMPLE ...t ettt h ettt et e e beesteesaeeenneens 33
Launch 2 WeAVe PIOCEeSS...cccuuiicrersnricscssnricssssnricsssssrssssssstesssans 33
8.1 WEAVE OPETALIONeeuviiiiiitiieiieetie ettt et e steestte et e etbeetbeesbeesseesseesssessseesseasseesssesssassseasseesseesseessaesssesssessseans 33
8.2 ASPECIDIN PrOJECL .. uiiuiieiieiieiiestie ettt ettt ettt ettt st e et e et e e e e taestaessbeasseenseesseesaesseesnseanseanseenseas 34

1 Introduction

AspectDN aims to weave through advices:
v" New types (class, enumeration, delegates, structures, interfaces),
v" New members in a type or interface (method, field, event, constructors, properties, operators,
indexers).
New attributes to assemblies, types and members.
New inheritance (interface or base type)
Code snippets to methods, properties (accessors) and events (add and remove)

ASRNEN

AspectDN is designed to encourage a weak coupling of advices with their target and thus allow the reuse of
advices. Therefore, it offers the ability to describe the target context with prototype member or prototype type
usable by the advices.

The purpose of this document is to describe AspectDN functionalities and the way to code pointcuts, advices,
prototypes and aspects and to use the aspect weaver.

First, we will define what is an advice, a pointcut, a join point and an aspect.
Then, we will describe how to declare advice, pointcut and aspect.

At least, we will explain how to create an AspectDN project and how to perform a weaving.

All the syntax described in the document are for the moment issue from the C#5 AspectDN language.

2 Terms

2.1 Cross-cutting concerns

It is an identical function scattered in different places of the application

Example:
Security, logs....

2.2 Advice

This is an element that we want to apply to the existing model.

2.3 Pointcut

This is the term given to determine the place in the application where the plugin is inserted by the weaver
Example: a method, property, class....

2.4 Join point

This is the term given to determine where the plugin should be executed on the pointcut.
Example: before the method is called, before a field is update by a value.

2.5 Aspect

An aspect is the combination of a pointcut, join point and advice.

3 Package

3.1 Explanation

The package is used to declare a set of related items. You can use a package to organize advices, pointcuts and
aspects. It has similar functionality to C# namespaces

Using another package is done by “using” as in C#. You can also reference an advice by its full name
package name.advice name.

3.2 Syntax

aspect-compilation-unit:
[using-directives] [package-declarations] [package-member-declarations]

package-declarations:
package-declaration
package-declarations package-declaration

package-declaration:
"package” qualified-identifier package-body

package-body:
*{" [using-directives] [package-declarations] [package-member-declarations] "}

package-member-declarations:
package-member-declaration
package-member-declarations package-member-declaration

package-member-declaration:
pointcut-declaration
advice-declaration
aspect-declaration
prototype-type-declaration
prototype-mapping-types-declaration

3.3 Example

Package declaration with a pointcut

using System;
package foundation.p

{
b

methods px : methods.Name == “methodName”;

Package declaration with an advice

using System;
package foundation.a

{
advice code ax
{
System.Console.WriteLine("'before');
[around anchor];
System.Console.WriteLine("after™);
}
by

Package declaration w

using System;

using foundation.p;

using foundation.a;
package foundation.aspect

{

myAspect =>
extend around call px with ax;

Or by defining everything in the aspect

using System;
package foundation.aspect

{
myAspect =>
extend around call foundation.p.px with foundation.a.ax;
}
4 Pointcut

4.1 Explanation

There are two types of pointcuts.

A named pointcut is a pointcut that can be used in any compatible aspect.
However, a pointcut can be defined locally in the aspect which will not be reusable in another aspect.

We can define different can of pointcuts:

assemblies: targeting modules in assemblies
classes: targeting class in assemblies
interfaces: targeting interfaces in assemblies
methods: targeting methods in assemblies
fields: targeting fields in assemblies
properties; targeting properties in assemblies
events; targeting events in assemblies
delegates: targeting delegates in assemblies
structs: targeting structures in assemblies
exceptions: targeting exceptions in assemblies
constructors: targeting constructors in assemblies
enums: targeting enumerations in assemblies

AN N N N N N Y N N N NN

4.2 Syntax

pointcut-type identifier : pointcut-expression ;

pointcut-expression:
expression

pointcut-type:
"assemblies”
“classes”
"interfaces”
"methods*”
“fields”
"properties”
“events”
"delegates”
"structs”
"exceptions*®
"constructors”®
“enums”

“pointcut-type” defines the kind of pointcut
“identifier” is the name of the pointcut that aspect has to reference.

« pointcut-expression » is a lambda expression. According to the kind of pointcut, the referenced member

changes

and their related members too. The related members have their corresponding members in the

definition class of CECIL.

Pointcut kind Referenced Member Related Member (Cecil class)
assemblies assemblies ModuleDefinition
classes classes TypeDefinition
methods methods MethodDefinition
fields fields FieldDefinition
properties properties PropertyDefinition
events events EventDefinition
delegates delegates TypeDefinition
structs structs TypeDefinition
exceptions exceptions TypeDefinition
constructors constructors MethodDefinitions
enums enums TypeDefinition
Note

You will see later (see join point) that we can target a call of a method for instance. In this case, another
Referenced Member should be used in addition of methods “caller” with related members corresponding to
cecil class MethodDefinition.

4.3 Example

In the following example, the pointcut named “myPointcut” should target all methods of the targeting

assembl

ies which has the name “MethodName”

methods

myPointCut : methods.Name == “methodName”;

5 Advices

5.1 Adyvice Kinds

As pointcuts, we are able to define named advices which can be reused by several different aspects or define
an advice directly inside an aspect.

We can
[]

define several kinds of advice.

Code Advice: define chunk of code which can be weaved in methods, constructors, properties

Type Members Advice: define members (fields, properties, indexers, events, methods, constructors)
which can be weaved in classes or structures.

Interface Members Advice: define members (properties, indexers, events, methods) which can be
weaved in interfaces.

Enum Members Advice: define vales which can be weaved in enumerations.

Inherited Types Advice: define base type or interfaces which can be weaved in classes or interfaces
defining new inheritances

Types Advice: define types (classes, structures, interface, delegate) which can be weaved in
assemblies, classes or structures.

Attributes Advice: define attribute sections which can be weaved in assemblies, classes or members
Change Value Advice: define chunk able to change stack values while the IL code is running which
can be weaved in methods.

5.2 Code Advice

5.2.1 Explanation

A Code Advice allows to define a chunk of code which can be weaved inside a body method.

5.2.2 Syntax

// advice code
advice-code-declaration:
"advice® "code” identifier advice-code-block

advice-code-block:
*{" [prototype-members-declaration] [statement-list] }

around-statement:
"[* "around® "anchor® *]" *

“identifier” is the name of the advice which has to be used in aspects.
Inside a “advice-code-block™ you can define:
v" Prototype members which would be explained in a chapter later and used to described the internal
member of the target.
v" Instructions which will be weaved in the target

A special instruction has to be used when you want to weave a chunk of code around a join point: [around
anchor];

5.2.3 Example

In the following example, you will weave
v Before the target the first System.Console. WriteLine
V' After the target the second System.Console. WriteLine

advice code XXXx

{
System.Console.WriteLine("before™);
[around anchor];
System.Console.WriteLine("after™);
3

5.3 Type Members Advice

5.3.1 Explanation

Type members advices allow to defined members that can weave into classes for instances.
You can define named advice or directly define them in the aspect declaration.

Members can be
Constant
Fields
Methods
Properties
Indexers
Events
Constructors
Destructor
Operators

AN NN N N N VNN

The way to declare most of them is the same as how you will declare them in a C#5 class. Exception has to be
done for constructors, destructor and operators. For them, the name of the type is not specified since the
members can be woven into any type.

5.3.2 Syntax

advice-type-members-declaration:
"advice® "type® &"members® identifier advice-type-members-block

advice-type-members-block:
{" [prototype-members-declaration] [advice-type-members] "}

advice-type-members:
advice-type-member
advice-type-members advice-type-member

advice-type-member:
constant-declaration
Ffield-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
advice-operator-declaration
advice-constructor-declaration
advice-destructor-declaration
advice-static-constructor-declaration

advice-constructor-declaration:
[attributes] [constructor-modifiers] "(" [formal-parameter-list] ")" [constructor-initializer]
constructor-body

advice-destructor-declaration:
[attributes] [destructor-modifiers] "~" "(" ")" destructor-body

advice-static-constructor-declaration:
[attributes] static-constructor-modifiers "(")" static-constructor-body

advice-operator-declaration:
advice-unary-operator-declarator
advice-binary-operator-declarator
advice-conversion-operator-declarator

advice-unary-operator-declarator:
[attributes] operator-modifiers [return-type] “operator® overloadable-unary-operator °("
advice-operator-declarator-parameter ")" operator-body

advice-operator-declarator-parameter:
type identifier
identifier

advice-binary-operator-declarator:
[attributes] operator-modifiers [return-type] "operator® overloadable-binary-operator *("
advice-operator-declarator-parameter *,* advice-operator-declarator-parameter ")" operator-body

advice-conversion-operator-declarator:
[attributes] operator-modifiers conversion-operator-type "operator® [return-type] "(" advice-
operator-declarator-parameter ")" operator-body

conversion-operator-type:

"explicit-

"implicit”
advice-operator-declarator-parameter:

type identifier
identifier

5.3.3 Example

In the following example, each kind of member has been declared.

advice type members myAdvice

// constant
const int ¢ = 0;

// event
event EventHandler sampleEvent;

// field
int[] arr;

// property
public object Obj {get; set;}

// event property
public event EventHandler SampleEvent

add { sampleEvent += value;}
remove { sampleEvent -= value;}

}

// indexer
public int this[int 1] {get {return arr[i];} }

// constructor
(int size) { arr = new int[size]; }

// method

[Attribute()]

public string Method(int a)
{

}

// destructor
public ~ O { arr = null;}

return a.ToString(Q);

// operator unary
public static operator +(a) { return a; }

For the operation, as the returned type is not mentioned, AspectDN assume that the returned type is the same
as the target.

5.4 Types advice

5.4.1 Explanation

Type advices are used to weave new classes, structures, delegates, enumerations or interfaces into assemblies
or classes (nested type).

The type that you could be weaved are

e (lasses

e Structures

e Interfaces

e Enumerations
e Delegates

Several heterogeneous types can be declared in a same advice.

5.4.2 Syntax

advice-types-declaration:
“advice” "types” identifier "{" [type-declaration*] "}" [";"]

“identifier” is the name of the advice.

type-declaration is defined is in “ECMA-334 5th Edition / December 2017 as followed

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

5.4.3 Example

advice types myAdvice

{

// class

public class BankAccount

{
public string Number { get; }
public string Owner { get; set; }
public decimal Balance { get; }
public void MakeDeposit(decimal amount, DateTime date, string note)
{
3
public void MakeWithdrawal (decimal amount, DateTime date, string note)
{
3

3

// structure

public struct Coords

{
public Coords(double x, double y)
{

X = X;
Y =vy;

3
public double X { get; }
public double Y { get; }

3

// interface

interface ISamplelnterface

{
void SampleMethod();

3

// enumeration

enum ErrorCode : ushort

{
None = O,
Unknown = 1,
ConnectionLost = 100,
OutlierReading = 200

¥

// delegate

public delegate int PerformCalculation(int X, int y);

3

5.5 Interface Members Advice

5.5.1 Explanation

Interface members advices allow to weave interface members in a targeted interface.

Interface Members are the same as you can define in C#5:
v’ Properties
v Methods

v" Indexer
v" Events

5.5.2 Syntax

advice-interface-members-declaration:
advice interface members identifier advice-interface-members-block

advice-interface-members-block:
{ [prototype-members-declaration] [advice-interface-members] }

advice-interface-members:
interface-member-declaration
advice-interface-members interface-member-declaration

“identifier” is the name of the advice.
You are able to define one or more interface members as is defined in “ECMA-334 5th Edition / December
2017”.

5.5.3 Example

advice interface members InterfaceMembersAdvice

{

int P1 {get; set;} // property

event EventHandler El1; // event

void Method(int a); // method

int this[int index] {get; } // indexer
3

5.6 Enum members advice

5.6.1 Explanation

These advice weave new enumeration member inside a targeted enumeration.

5.6.2 Syntax

advice-enum-members-declaration:
"advice®" “enum® “members® identifier enum-body

enum-body:
“{" [enum-member-declarations] "}*
“{® enum-member-declarations *," "}*

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

enum-modifier:
“new”
"internal”
"protected”
"private”
“public*

enum-member-declarations:
enum-member-declaration
enum-member-declarations *," enum-member-declaration

enum-member-declaration:
[attributes] identifier
[attributes] identifier "=" constant-expression

Identifier is the name of the advice.

Members are described in the same way as you describe them in a C#5 enumeration.

5.6.3 Example

advice enum members meAdvice

{

ConnectionLostl
OutlierReadingl

300,
400

5.7 attributes advice

5.7.1 Explanation

These advices allow to weave attribute section towards targeted members or assemblies.

5.7.2 Syntax

advice-attributes-declaration:
"advice" "attributes” identifier advice-attributes-block

advice-attributes-block:
“{" [prototype-members-declaration] [attribute-sections] "}"

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
" [attribute-target-specifier] attribute-list 1
" [attribute-target-specifier] attribute-list " 1

attribute-target-specifier:
attribute-target -

attribute-target:
“field”
"event”
"method*
"param”
"property”
"return”
“type"

attribute-list:
attribute
attribute-list -, attribute

attribute:
attribute-name [attribute-arguments]

attribute-name:
type-name

+attribute-arguments:
C [positional-argument-list] -
C positional-argument-list ", named-argument-list -
C named-argument-list -

positional-argument-list:
positional-argument
positional-argument-list .- positional-argument

positional-argument:
[argument-name] attribute-argument-expression

named-argument-list:
named-argument
named-argument-list - named-argument

named-argument:
identifier =" attribute-argument-expression

attribute-argument-expression:
(non-assignment-expression ?! "=")

Identifier is the name of the advice.
Attribute section are described in the same way as you describe them in a C#5.

5.7.3 example

advice attributes xxxx

{
[Att(), Attr()]

[Att2()]

5.8 Change value advice

5.8.1 Explanation

This advice is somewhat special. You have to notice that when an advice is weaved, AspectDN is taking in
account of the IL stack and preserves it. In the following code, the location where the IL code is weaved if the
join point is a get field is as followed.

.method public hidebysig
instance int32 ReturnPl (
int32 i
) ¢il managed

// Method begins at RVA 8x228c
// Header size: 12

/{ Code size: 12 (Bxc)

.maxstack 1
.locals init (
[8] int32

e

IL 8eed: nop
IL eegl: ldarg.8
IL 8882: ldfld int32 CodeAspect.Targets.One:: P1
IL @887: stloc.8
4t— after

IL 8888: br.s IL @6da

Il @eBa: ldloc.8
IL BaBb: ret
} /f end of method One::ReturnPl

As you can see, you are not able the value of the field P1 before the field is saved in the variable 0. Change
value advice is used if you want to change the value of the stack after the value P1 has been stacked.

5.8.2 Syntax

advice-change-value-declaration:
"advice® &"change® "value® identifier advice-change-value-block

advice-change-value-block:
type ":° "{" [prototype-members-declaration] [statement-list] "}

“identifier” is the name of the advice.
“type” is the type of the value to change.
There is a special keyword to change or get the value of the stack: “value”

5.8.3 Example

In the following example, the value is decreased by 1.

advice change value myAdvice
int :

{
b

value = value-1;

6 Prototypes

Prototype are used to describe the context in which the advice has to be targeted and with which they can
interact.

AspectDN consider two kinds of prototype:

v" Prototype member which describes internal members of the targeted types.
v" Prototype type which describes the external environment in assemblies in which advice interacts.

6.1 prototypes members

6.1.1 Declaration

6.1.1.1 Explication

Prototypes members are defined in advices and allow to describe members (context) with which advices has
to interact.

6.1.1.2 Example:

Imagine that you want track changes of the value of a private field in a class, you need to have a way to look
up the value of the concerned field. As we prone that advice has to be independent physically with the target,
we need to describe the field as a prototype which will be mapped to the actual field when weaving.

Several kinds of prototype members can be defined
e Field

Properties and indexes

Events

Methods

constructors

Type parameters

Parameter type are used when the target (class or method) is generic and the advice need the parameter type to
do its job like declare a value with the parameter type.

6.1.1.3 Syntax

prototype-members-declaration:
"prototype” “"members® "{* [prototype-member-declarations] "}"

prototype-member-declarations:
prototype-member-declaration
prototype-member-declarations prototype-member-declaration

prototype-member-declaration:
prototype-field-declaration
prototype-method-declaration
prototype-indexer-declaration
prototype-type-parameter-declaration
prototype-constructor-declaration

prototype-field-declaration:
[prototype-member-modifier] type prototype-identifier ~;*

prototype-member-modifier:
"static”

prototype-method-declaration:
[prototype-member-modifier] return-type prototype-identifier [type-parameter-list] *(°
[formal-parameter-list] *)" ";*"

prototype-event-declaration:
prototype-event-field-declaration

prototype-event-field-declaration:
[prototype-member-modifier] “event” type prototype-identifier

prototype-type-parameter-declaration:
< prototype-identifier *>" *;*

prototype-indexer-declaration:
[prototype-member-modifier] type “#this® "[* formal-parameter-list "] "{" prototype-
property-accessor-declarations "} [";"]

prototype-constructor-declaration:
#e C [formal-parameter-list] D R

prototype-identifier::
"#° identifier-or-keyword
e

Prototype members are always declared in a special section in the advice

prototype members

int #x;

Prototype member name starts always with the character ‘#’. The sole modifier allowed is static.
The name of the constructor is only ‘#’ and the indexer is always “this”

Fields are always defined as a field in a class.
Properties and methods are defined as you define them in an interface.

Parameter type are defined in ‘<’ and “>’.

6.1.1.4 Example

advice type members myAdvice
prototype members

<#T>; // type parameter

T #M<T>(T x); // méthod

#T #a; // field

#(#T t); // constructeur
#this[int i1]; // indexer

// property advice member using #T, #a
public #T P2

{
get { return #a;}
set { #a = value;}

}

// method using #T, #M, #0
public #T Get(#T value)
{

}

return #M<#T>(new #(this));

6.1.2 Prototype Member Mapping

6.1.2.1 Mapping prototype members

6.1.2.1.1 Explanation

If prototype members have been defined in an advice, the aspect will be in charge of defining the mapping of
the prototype members with real target members. For instance, a prototype field will be defined with the
corresponding field name in the target.

6.1.2.1.2 Syntax

prototype-mappings:
"where® prototype-mapping-items

prototype-mapping-item:
prototype-member-mapping
prototype-type-parameter-mapping
prototype-type-reference-mapping

prototype-member-mapping:
prototype-identifier "=" prototype-target-declaration

prototype-target-declaration:
prototype-target-this-member-declaration
prototype-target-base-member-declaration
prototype-target-member-declaration

prototype-target-this-member-declaration:
"this®" "." identifier

prototype-target-base-member-declaration:
"base® "." identifier

prototype-target-member-declaration:
simple-name

Prototype member mapping are always included in “where” clause at the end of an aspect declaration. A
prototype member can be mapped to a member target kind according its type.

Prototype member Prototype Target Syntax Remark

declaration member kind member kind

int #f ; Field Field #f = field The target field must have the same name as the
one defined in the left part of the assignment and
must have the same return type as the prototype
member.

int #f ; Field Property #f="P1 The target property must the same name as name
defined in the left part of the assignment and must
have the same return type as the prototype member.
Moreover, the property must have the correct
accessors according the usage in methods.

int #f; Field Local variable #f=0or#f=pdb The corresponding target variable must have the

local varname specified index number or have the same name as

defined in the left-hand side of the assignment and
must have the same return type as the prototype

member. The name match will only occur if the pdb
file is present.

int #f; Field Method #f = param1 The target parameter must have the same name as
parameter the one defined in the left part of the assignment
and must have the same return type as the prototype
member.
int #method(string Method Method #method = The target method must have the same name as the
S); Convert one defined in the left part of the assignment and

must have the same return type as the prototype
member, the same number of method parameter
and the same signature.

int #method(string Method Field as #Method = F1 The target field must have the same name as the

S); delegate one defined in the left part of the assignment and
the delegate type of the field must match the
method.

event Event #E = Eventl The type of the source and the target must match

eventhandler #E1; and the name define in the left part of the
assignment has to exist in the target type.

int #Pr {get ; set ;} Property #Pr="P1 The target property must have the same name as the

name defined in the left part of the assignment and
must have the same return type as the prototype
member.

Moreover, the property must have the accessors
defined in the prototype member even if one of
them is not used.

#(int x) ; Constructor Prototype constructors are match impolitely done.

int #this[int a] ; Indexer Prototype constructors are match impolitely done.

In C#, we can define new or overloaded methods, we can specify if the mapping has to be done with a
member of the target type or on inherited type.

If 'this' is specified (example #f=this. field), the member must be present in the target type (not inherited).

If 'base ' is specified (example #f=base.field), the member must be present in an inherited type of the target
type.

If nothing is specified, the first member can be found in the target type or in inherited type (from the hire level
to base types).

Remark:
The target member can be an existing member or a member that will be weaved.

The type matching take in account type mapping (advice type or prototype)

6.1.2.2 Prototype member Parameter

6.1.2.2.1 Explanation

In C#, the notion of generic allows the definition of parameter type or method type. In the context of a
mapping, it is therefore important to be able to specify this notion and the way to link it with the target.

Imagine that you would weave a new method to a class which is generic. This method would return a value
with a type defined in the generic param

On peut imaginer que 1’on souhaite rajouter une méthode complémentaire a la classe suivante qui est une
classe générique qui réagit en fonction du type de parametre.

/ target class
public class C<t,k>

{
}

// aspect

existingfields =>
extend classes : classes.Name == *"C 1"
with type members

t P {get; set;}

// prototype member definition

prototype members
<#x>; // generic parameter
#x #Property; // field

// new method
public string GetPropertyValue()

{
string r = null;
it (typeof(#x).FullName == typeof(string).FullName)
r = (string)#Property;
else
r = #Property.ToSring();
3
}
where

#x = 1, // x is related to the second parameyer of C°1
#Property = P; // #Property is related with P of the target

// resulting targen
// target class
public class C<t,k>

{
t P {get; set;}
public string GetPropertyValue()
{
string r = null;
if (typeof(k).FullName == typeof(string).FullName)
r = (string)P;
else
r = P.ToSring(Q);
¥
3}

6.1.2.2.2 Syntax

prototype-type-parameter-mapping:
"<" aspect-identifier ">" ":" prototype-type-generic-parameter-target
"<" aspect-identifier ">" ":° prototype-method-generic-parameter-target

prototype-type-generic-parameter-target:
“"type® "(" decimal-integer-literal ")"
“type” (7 type ")°
decimal-integer-literal
type

prototype-method-generic-parameter-target:
"method® " (" decimal-integer-literal ")"
"method® *"(* type ")*

You can address the target generic parameter with its index in the target list (starting by 0) or by its name.
If several generic parameters are present and come from both methods and types, the source must be specified
(method(0) or type(0))

6.1.2.3 Mapping des advices type

6.1.2.3.1 Explanation

Since AspectDN allows types to be woven into assemblies, it is necessary to be able to map them from the
target if they are used, as the same type can be woven several times into different namespaces.

6.1.2.3.2 Syntax

prototype-type-reference-mapping:
unbound-type-name 'from' namespace-or-type-name

Example

| 77 type aspect

addNewClass =>
extend assemblies : assemblies.Name == "Targets.dll"
with types
{

public class GenericClass<T> : MarshalByRefObject
{
public T P2 { get; set; }

public GenericClass(T a) { P2 = a;}
}

3} namespace target PrototypeGenericParameters.New;

// code adspect
codeExtenser =>

extend before body methods : methods.Name == "'SetP3"
with
{
prototype members
<H#HT>;
#T #a;

3

var mT = new addNewClass.GenericClass<#T>(#a);

#T result = mT.P2;

it (typeof(#T).FullName == typeof(#U).FullName)
result = (#T)(object)#u;

return result;

where <#T> : type(0).,#a = A, addNewClass.GenericClass<> from PrototypeGenericParameters.New;

6.2 Type of prototypes

6.2.1 Declaration

6.2.1.1 Explanation

AspectDN advocates for weak coupling with the target in order to be able to reuse aspects with several
versions of a same application.

We have already addressed the subject on prototype members which allow to describe the target context of a
type (internal).

Type prototypes are used to declare the target context within an assembly (external to a type).

The prototype types are classes, structures, interfaces, enumerations and delegates representing roughly a part
of the target (the one required for aspects).

Each prototype type has member which are declared in a same way as they were in C#5

6.2.1.2 Syntax

prototype-type-declarations:
prototype-type-declaration
prototype-type-declarations prototype-type-declaration

prototype-type-declaration:
prototype-class-declaration
prototype-interface-declaration
prototype-struct-declaration
prototype-delegate-declaration
prototype-enum-declaration

prototype-class-declaration:
"prototype” [prototype-class-modifier] "class® prototype-identifier [type-parameter-list]
[prototype-base-list] [type-parameter-constraints-clauses] prototype-class-or-struct-body

20

prototype-class-modifier:
"abstract*
"static”

prototype-base-list:
"oT prototype-base-types

prototype-base-types:
prototype-base-type
prototype-base-types " prototype-base-type

prototype-base-type:
type

prototype-struct-declaration:

"prototype” "struct® prototype-identifier [variant-type-parameter-list] [prototype-base-list]

prototype-class-or-struct-body

+prototype-interface-declaration:
"prototype” "interface"” prototype-identifier [variant-type-parameter-list] [prototype-base-
list] interface-body

prototype-delegate-declaration:
"prototype” "delegate” return-type prototype-identifier [variant-type-parameter-list] " ("
[formal-parameter-list] ")" ;"

+prototype-enum-declaration:
"prototype® “"enum® prototype-identifier [enum-base] enum-body | I |

prototype-class-or-struct-body:
{ [prototype-type-member-declarations] S e |

prototype-type-member-declarations:
prototype-type-member-declaration
prototype-type-member-declarations prototype-type-member-declarations

prototype-type-member-declaration:
prototype-type-field-declaration
prototype-type-property-declaration
prototype-type-indexer-declaration
prototype-type-method-declaration
prototype-type-constructor-declaration
prototype-type-event-declaration
prototype-type-nested-declaration

prototype-type-nested-declaration:
prototype-nested-class-declaration
prototype-nested-interface-declaration
prototype-nested-struct-declaration
prototype-nested-delegate-declaration
prototype-nested-enum-declaration

prototype-nested-class-declaration:
“class”® identifier [type-parameter-list] [prototype-base-list] prototype-class-or-struct-
body

prototype-nested-struct-declaration:
"struct” identifier [variant-type-parameter-list] [prototype-base-list] prototype-class-or-
struct-body

prototype-nested-interface-declaration:
"interface” identifier [variant-type-parameter-list] [prototype-base-list] interface-body

prototype-nested-delegate-declaration:
"delegate” return-type identifier [variant-type-parameter-list] "(" [formal-parameter-list]

3o

prototype-nested-enum-declaration:
"enum® identifier [enum-base] enum-body | e |

prototype-type-member-modifier:
"abstract*
"static*
"virtual*®

prototype-type-field-declaration:
[prototype-type-member-modifier] type identifier =;°

prototype-type-property-declaration:
[prototype-type-member-modifier] type member-name “{" prototype-property-accessor-
declarations S R |

21

prototype-property-accessor-declarations:
prototype-get-accessor-declaration
prototype-set-accessor-declaration

[prototype-set-accessor-declaration]
[prototype-get-accessor-declaration]

prototype-get-accessor-declaration:
“get® ":°

prototype-set-accessor-declaration:

"set" ";
prototype-type-method-declaration:
[prototype-type-member-modifier] return-type

parameter-list] *)-* ;

identifier [type-parameter-list] "(" [formal-

prototype-type-event-declaration:
prototype-type-event-field-declaration
prototype-type-event-property-declaration

prototype-type-event-field-declaration:

[prototype-type-member-modifier] “event” type identifier
prototype-type-event-property-declaration:
[prototype-type-member-modifier] “event”

declarations) S I |

prototype-event-accessor-declarations:
prototype-add-accessor-declaration
prototype-remove-accessor-declaration

type identifier ~“{° prototype-event-accessor-

prototype-remove-accessor-declaration
prototype-add-accessor-declaration

prototype-add-accessor-declaration:
"add® *";*"

prototype-remove-accessor-declaration:
"remove® ";*

prototype-type-indexer-declaration:

[prototype-type-member-modifier] type “this* " formal-parameter-list 1 {
prototype-property-accessor-declarations S R |
prototype-type-constructor-declaration:

aspect-identifier “(° [formal-parameter-list] ")" [prototype-type-constructor-

initializer] ";*

prototype-type-constructor-initializer:
- prototype-type-constructor-initializer-modifier [argument-list]

prototype-type-constructor-initializer-modifier:
"base*

The name of the prototype type must always start with ‘#’. But the name of the members has to be declarer
without ‘#” and has to have the same name as their counterpart in the target.
All members must be empty (with no implementation as it is when you define interface member)

6.2.2 Mappin
6.2.2.1 Explanation

The mapping will map the prototype type to the target type.

When weaving, the mapping of the members of each prototype type must have the same name and the same
characteristics (return type, parameters (generic or method, same accessors).
If this is not respected, weaving errors will be recorded in the log.

6.2.2.2 Syntax

prototype-mapping-types-declaration:
"map® “"types® “{" [prototype-map-type-members] “}* [";"]
prototype-map-type-members:

prototype-map-type-member

prototype-map-type-members *," prototype-map-type-member

prototype-map-type-member:

22

prototype-type-name "=" target-type-name //[prototype-mappings-of-types]

prototype-type-name:
aspect-identifier [generic-dimension-specifier]
prototype-type-name *".° aspect-identifier [generic-dimension-specifier]

target-type-name:
type

6.2.3 Example

In the following example, we want to define a price not only for a product but also for the customer/product
pair.

We need therefore to weave the customer property into the price class. As this notion does not exist in the
definition of aspects, we will declare a prototype of type #customer and this type will be used to declare our
property which will be woven into the Price class.

// target class

public class Price

{
Product Product {get; set;}
decimal Price {get; set;}

// target class
public class Customer

{
int OID {get;}
string Id {get; set;}
Address Address {get; set;}
3

// prototype type
prototype class #Customer

}

// mapping
map types

#Customer = Customer

}

// weave new members

// a private field

// a property

// a method

myTyMembersAspect =>
extend classes : classes.Name = "Price"
with type members

@Customer _Customer;
public #Customer Customer

{
get

{

return _Customer;

_Customer = value;

7 Aspects.

An aspect is defined by different properties.
e A name
e A pointcut referenced by a name or directly defined in the aspect (anonymous)

23

An advice referenced by a name or directly defined inside the aspect (anonymous)

A control flow defining where the advice has to be woven (before, after or around)

An execution point defining the location in the pointcut. Example call method or body method.
A mapping clause defining the prototype members mapping.

Different kind of aspects can be defined.

Code aspects are used weave chunk of code

Type member aspects are used to weave type member toward classes and structures.

Interface member aspects are used to weave new interface members toward interfaces.

Enum member aspects are used to weave new enumeration member towards enumeration.
Inherited type aspects are used to weave base type and interface toward class and structure.

Type aspect are used to weave new type (class, delegate, interface, enumeration, structure) toward
assemblies or types.

Attribute aspect allow to weave new attribute section on class and members.

Change value aspect able to change stack value during IL execution.

AN NI N NN

AN

aspect-declarations:
aspect-declaration
aspect-declarations aspect-declaration

aspect-declaration:
aspect-code-declaration
aspect-type-members-declaration
aspect-inherit-declaration
aspect-interface-members-declaration
aspect-enum-members-declaration
aspect-types-declaration
aspect-change-value-declaration
aspect-attributes-declaration

7.1 Control flow et execution time

control-flow:
"set”
"get"
"body*
“call”
“throw*
"add*
"remove*

Control flow is only allowed with code advice and defines the location of the pointcut where the chunk of
code has to be place.

The possible values are:
v’ set: targets an operation of value assignment of a property, field, variable or method argument.
v set body: targets the body set accessor.
v/ get: targets an operation of value retrieving of a to retrieve a value fa property, field, variable or
method argument.
get body: targets the body get accessor.
call: targets an operation of performing a method.
body: targets the body of the method.
add: targets the event subscription operation
add body; targets the body of an event add accessor.
remove: targets the removal operation of an event subscription.
remove body; targets the body of an event remove accessor.
throw: targets the operation that throw of an exception

AN N N N N NN

Controls flows depend on kind of pointcut and can be used only according the list below

24

set set get get Call Body throw add add remove remove
body body body body

assemblies

interfaces

methods X X

fields X X

properties X X X X

events X X X X
delegates X

structs

exceptions X
enum

constructors X X

Execution time expresses when the advice must be performed.

execution-time:
"before”
"after”
"around”

v" before: the advice will be executed before instruction or instruction set defined by the pointcut and
control flow

v’ After: the advice will be executed after the instruction or set of instructions defined by the pointcut
and control flow

v Around: the advice will be executed before and after the instruction or set of instructions. The advice
must include the keyword [around anchor]. Instructions preceding the keyword will be executed
before the targeted instructions and instructions following the keyword will be executed after the
target’s instructions.

Remark
With a control flow corresponding to throw, only before mut be used.

The advice weaving is taken in account the stack. In the following method example, if you would weave an
advice code before or after the instruction StringReturn ().

/F Codelspect.Targets.One
public object CneReturn(string s}

{
object result = null;
StringReturn ("s") ;
return result;

}

The IL Code corresponding to the code above is as followed:

25

.method public hidebysig
instance object CneReturn |
string =
} il managed

S Method begins at BEVA Ox21b4
S Header size: 12
Sf Code size: 21 (0Ox=l5)
maxstack 2
docals init |

[O0] okject,

[1] okject

IL Q000: nop
IL. 0001: 1dnmll

IL 0002: stloc.0 4,_,-/.

IL Q003: ldarg.O
IL 0004: ldstr "s"
IL 000%: call instance string Codefispect.Targets.One::StringReturn(string)

IL Q00e: pop

I1. 000f: 1dloc.O
IL_GGlG: stloc.1
IL. 0011: br.s IL 0013

before

after

IL_ﬂﬂl3: 1dloc.1
IL_GGl&: ret
} /S end of method Dne::DnEREtuIﬂ

AspectDN does not weave the advice code before or after IL_0009. Instead, the adviceo is placed before
IL 0003 or after IL_000e when the stack is empy.

7.2 code aspect

7.2.1 Explanation

Aspect code will weave piece of code contained in the advice to the join point defined in the aspect according
to the pointcut, execution time and control flow.

It is possible to use the following pointcut for an aspect code:
methods: methods

fields: fields

properties; property or indexer

events; events

exceptions: exceptions

constructors

ANANANENENAN

7.2.2 Syntax

aspect-code-declaration:
identifier "=>" "extend” &execution-time control-flows aspect-pointcut “"with" aspect-advice-

code-named [prototype-mappings] ;

identifier "=>" “extend” &execution-time control-flows aspect-pointcut “"with" aspect-advice-
code-anonymous [";"]
identifier "=>" "extend” &execution-time control-flows aspect-pointcut “"with" aspect-advice-

code-anonymous prototype-mappings

aspect-advice-code-named:
qualified-identifier

26

aspect-advice-code-anonymous:
*{" [prototype-members-declaration] [statement-list] }

"identifier" is the name of the aspect which will be used to reference the aspect and call back in error logs if
any anomalies were found.

The pointcut can be a named pointcut (see dedicated chapter) or directly declared in the aspect. In this case,
we talk about anonymous pointcut since it has no name.

aspect-pointcut-anonymous:
aspect-pointcut-common-anonymous
aspect-pointcut-this-code-anonymous

aspect-pointcut-common-anonymous:
pointcut-type ":" pointcut-expression

aspect-pointcut-this-code-anonymous:
pointcut-type ":" pointcut-expression

"in" "prototype” "type" namespace-or-type-name

Example:

methods xxx : methods.Name == “methodName”;

corresponds to the following declaration in an aspect

methods: methods.Name == “methodName”;

The pointcut "this" is special and can only be defined in an anonymous pointcut within an aspect. The
declared type in the anonymous pointcut must be a prototype type.

When the advice related to the aspect is weaving, the word 'this' or any code in the aspect's advice code will
be able to access all the members of the prototype type defined within it initially or by another aspect with a
pointcut of type "this" on the same prototype type.

7.2.3 Example

// prototype declaration
prototype class #Pr

public int Pl {get; set;}
}

// aspect code declaration with this pointcut

myCodeAspect =>
extend before set body properties : properties.Name="P1" in prototype type #Pr
with

{
System.Console._WriteLine(string.format(''value before set P1 from the class {0} : {1}",
typeof(#Pr) .ToString(), P1));
3

In the above example, we describe a prototype type #Pr in which a property P1 is declared.

The declared advice code can use the property of the type prototype because we have a pointcut of type "this".
The instructions in the advice code will be woven before the assignment of the value to the P1 property is
carried out and this for all the target classes correctly mapped to the type prototype.

7.3 type members aspect

7.3.1 Explanation

27

Aspect codes will allow to weave new members of an advice to the join point defined in the aspect.
The two different pointcuts usable are:
v' classes: classes

v structs: structures

The members which available are described in the chapter “type members advice”. Of course, prototype
member et prototype are allowed in all the declaration and the mapping has to be done.

7.3.2 Syntax

aspect-type-members-declaration:

identifier "=>" "extend” aspect-pointcut “"with® “"type®" "members®" aspect-advice-type-members-
named [aspect-type-member-modifiers-declaration] [prototype-mappings] ~:*

identifier "=>" “extend” aspect-pointcut “with® “type® "members® aspect-advice-type-members-
anonymous [";"]

identifier "=>" "extend" aspect-pointcut “"with® “"type®" "members®" aspect-advice-type-members-
anonymous aspect-type-member-modifiers-declaration [prototype-mappings] °;°

identifier "=>" “extend” aspect-pointcut “with® “type® "members® aspect-advice-type-members-
anonymous prototype-mappings “;°*

« identifier » is the name of the aspect.
Pointcut can be a named pointcut or an anonymous one.

aspect-pointcut-anonymous:
aspect-pointcut-common-anonymous
aspect-pointcut-this-type-members-anonymous

aspect-pointcut-common-anonymous:
pointcut-type ":" pointcut-expression

aspect-pointcut-this-type-members-anonymous:
"prototype” "type" namespace-or-type-name

Modifiers allow to specify, when a new member is weaving, whether the member is new or must override an
existing member. This modifier is applied to all members of the advice contained in the aspect and apply only
if the member is already in the target.

aspect-type-member-modifiers-declaration:
"modifiers® ":" aspect-type-member-modifiers

aspect-type-member-modifiers:
aspect-type-member-modifier
aspect-type-member-modifiers "," aspect-type-member-modifier

aspect-type-member-modifier:
“new”
"override”

7.3.3 Example

In the following example, AspectDN will implement a method ToString which will override the existing one.
This woven method will use information from the target class namely Id and CompanyName.

addCustomerAspect =>
extend classes : classes.FullName == "Sales.Customer"
with type members

prototype members

{
string #I1d;
string #CompanyName;

public string ToString()

28

return String.Format(‘'Customer {0}, {1}, #ld, #CompanyName);

} modifiers : override
where #l1d = Id, #CompanyName = CompanyName;

7.4 type aspect

7.4.1 Explanation

Type Aspect allow to weave types defined in an advice to the pointcut defined or identified in the aspect.

The possible pointcuts are:
v’ assemblies: allows to define a module in the assembly
v' classes: classes
v’ structs: structures

7.4.2 Syntax

aspect-types-declaration:

identifier "=>" "extend" aspect-pointcut “with®" "types® aspect-advice-type-named aspect-type-
target-namespace [prototype-mappings-of-types] ;"

identifier "=>" "extend" aspect-pointcut "with" "types® aspect-advice-type-named [prototype-
mappings-of-types] ";*

identifier "=>" "extend" aspect-pointcut “with®" "types® aspect-advice-type-anonymous aspect-
type-target-namespace [prototype-mappings-of-types] *;*

identifier "=>" "extend" aspect-pointcut "with" "types® aspect-advice-type-anonymous [";"]

identifier "=>" “extend" aspect-pointcut “with" “types® aspect-advice-type-anonymous

prototype-mappings-of-types *;

aspect-type-target-namespace:
"namespace” “"target® qualified-identifier

prototype-mappings-of-types:
"where® prototype-mapping-types

prototype-mapping-types:
prototype-mapping-type

prototype-mapping-types "," prototype-mapping-type

prototype-mapping-type:
prototype-type-parameter-mapping
prototype-type-reference-mapping

prototype-type-parameter-mapping:
"<" aspect-identifier ">" ":" prototype-type-generic-parameter-target
"<" aspect-identifier ">" ":" prototype-method-generic-parameter-target

prototype-type-generic-parameter-target:
“type® (" decimal-integer-literal ")"
“type” "(" type)"
decimal-integer-literal
type

prototype-type-reference-mapping:
unbound-type-name "from® namespace-or-type-name

The namespace is the name of the target namespace if the type is woven into an assembly. If the target is a
class or structure, the type will be woven as a nested type.

Here, prototype members mapping is slightly different as you can only define generic parameters as prototype
members.

7.4.3 Example

In the following example, in the SalesDb.dll assembly, two new types will be woven: a class and an interface.
Note that the class inherits from an interface defined in the same aspect. The interface could have been
defined in another advice. In the latter case, the interface would have been addressed with the package name

29

of the advice, the name of the advice and the name of the interface. In addition, you would have had to map
the interface from the right namespace.

The class and the interface will be woven in the same namespace: SalesDb

myAspect =>

extend assemblies : assemblies.Name == "SalesDb.dlIl"
with types

internal class Publisher : IPublisher

{

internal string Id { get; set; }
internal string PublisherName { get; set; }

string IPublisher.1d { get { return Id; }}

string IPublisher._PublisherName { get { return PublisherName;} set

{PublisherName value;} }

¥
public interface IPublisher
{

string Id { get; }
string PublisherName { get; set; }

} namespace target SalesDb;

7.5 interface members aspect

7.5.1 Explanation

Interface members aspect allow to weave members defined in an advice to one or more target interfaces.

The possible pointcut is:
v" interfaces: interfaces

Important note:

An interface member can only be woven to an interface if all types implementing that interface have that
member. This member can be already existing or a member being woven in another advice. Otherwise, an
error message will indicate that weaving cannot be performed.

7.5.2 Syntax

aspect-interface-members-declaration:

identifier "=>" “"extend” aspect-pointcut “with® &"interface® "members® aspect-advice-
interface-members-named [prototype-mappings] ";*

identifier "=>" "extend” aspect-pointcut "with" &"interface® "members® aspect-advice-
interface-members-anonymous [";"]

identifier "=>" “"extend” aspect-pointcut “with® &"interface® "members® aspect-advice-
interface-members-anonymous prototype-mappings”;"*

7.5.3 Example

In the following example, the target class CustomerOrder implements an [CustomerOrder interface.

We weave a new interface member named NetAmount to the ICustomerOrder interface without forgetting to
weave the NetAmount member in the CustomerOrder class which does not already exist otherwise a weaving
error would be detected.

addICustomerOrderMembers =>

extend interfaces : inerfaces.Name = "ICustomerOrder"
with interface members
{

decimal NetAmount { get;}
}

addCustomerOrderMembers =>

30

extend classes : classes.Name = "'CustomerOrder"
with type members

internal decimal NetAmount

{
get { return CustomerOrderLines.Sum(t => t.Amount * (1 - (t.DiscountRate() /

100))):}
b5

7.6 enum members aspect

7.6.1 Explanation

Enum members aspect allow to weave enum members defined in an advice to one or more target enumeration.

Possible pointcut is
v/ enums : enumeration

7.6.2 Syntax

aspect-enum-members-declaration:

identifier "=>" "extend” aspect-pointcut "with® &"enum® "members® aspect-advice-enum-members-
named "t

identifier "=>" “extend” aspect-pointcut “with® &“enum® "members® aspect-advice-enum-members-

anonymous [";"]

7.6.3 Example

In the following example, two new members are woven to target enumeration named ‘Kinds’.

myAspect =>
extend enums : enums.Name = "Kinds"
with enum members
{
B = 4,
cC =28
b

7.7 attribute aspect

7.7.1 Explanation

Attribute aspects allow to weave attributes to one or more targets according its defined pointcuts.
assemblies: assembly or module

classes: classes

interfaces: interfaces

methods

fields

properties; property or indexer

structs: structures

constructors

AN NN NN

7.7.2 Syntax

aspect-attributes-declaration:
identifier "=>" "extend" aspect-pointcut "with" &"attributes® aspect-advice-attributes-named

[prototype-mappings] *;"
identifier "=>" "extend" aspect-pointcut “"with® &"attributes® aspect-advice-attributes-

anonymous [";"]

31

identifier "=> extend® aspect-pointcut "with® &"attributes® aspect-advice-attributes-
anonymous prototype-mappings ";°

7.7.3 Example

In the following example, we weave two new attribute types to the target.dll assembly. From these two new
attribute types, we weave attribute sections to the target Class named "TargetClass"

typesAspect =>
extend assemblies : assemblies.Name==""target.dll";

with types
public class Attributel : Attribute
{
b
public class Attribute2 : Attribute
{
public string Id { get; set;}
public Attribute2(string id) { Id = id; }
3

} namespace target AttributesAspect.Targets;

attributesAspect =>
extend classes : classes.Name=="TargetClass'; with attributes
{
[AttributeTypesAdvice . Attributel()]
[AttributeTypesAdvice.Attribute2("'xxx")]

where AttributeTypesAdvice.Attributel from AttributesAspect.Targets, AttributeTypesAdvice.Attribute2

from AttributesAspect.Targets;

7.8 change value aspect

7.8.1 Explanation

Change value aspect allow to weave code which is able to modify a stack value towards the join point defined
in the aspect according to the pointcut, the execution time and the control flow.

As a reminder, AspectDN weave code before or after a set of IL. Code with a stack counter equal to 0 (see
change value advice for more explanation).

It is possible to use the following pointcut:
methods: methods

fields: fields

properties; property or indexer
constructors: constructors

D NANNIN

7.8.2 Syntax

aspect-change-value-declaration:

identifier "=>" "change® "value® "when®" control-flows aspect-pointcut “"with" aspect-advice-
changevalue-named [prototype-mappings] ~;*

identifier "=>" “change® “value® “when®" control-flows aspect-pointcut “with" aspect-advice-
changevalue-anonymous [";"]

identifier "=>" "change® "value® "when®" control-flows aspect-pointcut “"with" aspect-advice-
changevalue-anonymous [prototype-mappings] ~:;°

7.8.3 Example

In the following example, at each time the property named P1 is initialised with a value, the value will be
stored by divided it by two.

myaspect =>
change value when set properties : properties.Name == "P1"

32

with
int :

value = value/2;

7.9 inherited aspect

7.9.1 Explanation

Inherited aspects allow you to weave types as base types or interfaces if the target implements the interface
members.

It is possible to use the following pointcut:
v classes: classes
v interfaces: interfaces
v’ structs: structures

When constructors are existing in the target which will have a new base type, you are able to constructor
overloading by matching the signature of the inherited constructor with the constructor of the targeted type.

7.9.2 Syntax

aspect-inherit-declaration:
identifier "=>" aspect-pointcut &"inherit" "from" aspect-advice-inherit-anonymous [override-
constructor-declaration-section] [prototype-mappings] ";"* override-constructor-declaration-section:
"override® "constructors® override-specific-constructor-declarations

override-specific-constructor-declarations:
override-specific-constructor-declaration
override-specific-constructor-declarations *," override-specific-constructor-declaration

override-specific-constructor-declaration:
override-specific-constructors ":" [argument-list]

override-specific-constructors:
override-specific-constructor
override-specific-constructors

override-specific-constructor

override-specific-constructor:
C [formal-parameter-list] *)*

The constructor overload is mandatory for constructors. The left-hand side describes the constructor(s) of the
target type and the right-hand side the constructor of the base type.
Constants or expressions can be used in the right-hand part.

7.9.3 Example

In the following example, the weaver adds a basic type to the outer class. The two constructors of class
"Outer" overload the base constructor of the class "A" with the parameter values a and b.

inheritAspect =>
classes : classes.Name="Outer"
inherit from A, 11, 12
override constructors
(int a, string b, object 0), (int a, string b, EventHandler c) : (a , b);

8 Launch a weave process

8.1 Weave operation

33

The weaving is done by running the following command: aspectdn -create "project-name"
aspectdn is the executable in charge of weaving an aspect project.
-create is the parameter expressing that we want create new executables from the target by weaving aspects.

The project is an xml file that you have to declare which contains all the information to perform the weaving
(file containing aspect, target assemblies, reference assemblies to add to the target and the location of the
woven assemblies)

The weaving process proceed as followed.
v’ It performs a syntactic analysis of the prototypes, advices, points and aspects.
v' Tt visits the target assembly to locate all join point.
v" According the join point define by the aspect, AspectDN weave the advice to the target and save the
new executable file in a directory defined by the project.
v"In case of errors has been encountered, either syntactic errors or integrity errors, a log is then updated
indicating the anomalies. According the error, the woven assemblies are not created.

8.2 AspectDN Project

Weaving project are saved in an XML file with the following structure:

<?xml version="1.0" encoding="utf-8" 7>
<AspectDN>
<Project name=

language=""
projectDirectoryPath=""
logPath=""
sourceTargetPath=""
outputTargetPath="">

nmn

<l-- c# assembly and directories excluded for this project -->
<SourceTargetExclusion>

<File filename=""/>
</SourceTargetExclusion>

<l-- c# assembly références and aspect file used in this project -->
<FileReferences>

<FileReference filename=""/>
</FileReferences>

<!-- c# aspect sources -->
<AspectSourceFiles>

<AspectSourceFile filename =""/>
</AspectSourceFiles>

</Project>
</AspectDN>

Attribute "name" is the prject name used to identify the project.

Attribute "projectDirectoryPath" define the project directory where the AspectDN files declaring the aspects,
pointcuts and advices are located. Only one directory can be defined.

Note
For all other attributes containing a directory name, if they are started with "..\", the system will complete the
directory path with the project directory path.

34

Attribute "logPath" allows to specify the directory where the log file of anomalies will be generated.

Attribute "sourceTargetPath" is the directory where the assemblies for which we want to apply a weaving.
Attribute "outputTargetPath" is the target directory where woven assemblies are stored.

The SourceTargetExclusion section allow to exclude some assemblies present in the source target path but not
targeted by the aspect and therefore which can be excluded in the weaving process. This has a big impact on
performance as we can limited a huge amount of pointcuts.

Note you cannot address the assemblies of the .net framework with AspectDN.

In the FileReferences section, you specify the files necessary to carry out the weaving and the coherence of
the assemblies after the weaving as AspectDN consider all assemblies as a coherent whole (references must

exist). This could be a dll such as log4net.dll but also a pre-compiled aspect file (suffixed with aspectdn).

AspectSourceFiles is the section where you indicate the set of sources containing the declarations of aspects,
advices, pointcuts and prototypes.

35

