Execute untrusted code with custom permissions (fork of asvd/jailed)
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.


Build Status Jailed — flexible JS sandbox

Jailed-node is a small JavaScript library for running untrusted code in a sandbox.

With Jailed you can:

  • Load an untrusted code into a secure sandbox;

  • Export a set of external functions into the sandbox.

The untrusted code may then interract with the main application by directly calling those functions, but the application owner decides which functions to export, and therefore what will be allowed for the untrusted code to perform.

The code is executed as a plugin, a special instance running in a restricted subprocess.

You can use Jailed to:

  • Setup a safe environment for executing untrusted code, without a need to create a sandboxed worker / subprocess manually;

  • Do that in an isomorphic way: the syntax is same both for Node.js and web-browser, the code works unchanged;

  • Execute a code from a string or from a file;

  • Initiate and interrupt the execution anytime;

  • Control the execution against a hangup or too long calculation times;

  • Perform heavy calculations in a separate thread

  • Delegate to a 3rd-party code the precise set of functions to harmlessly operate on the part of your application

  • Safely execute user-submitted code

  • Export the particular set of application functions into the sandbox (or in the opposite direction), and let those functions be invoked from the other site (without a need for manual messaging) thus building any custom API and set of permissions.

For instance:

var path = 'http://path.to/the/plugin.js';

// exported methods, will be available to the plugin
var api = {
    alert: alert

var plugin = new jailed.Plugin(path, api);


// runs in a sandboxed worker, cannot access the main application,
// with except for the explicitly exported alert() method

// exported methods are stored in the application.remote object
application.remote.alert('Hello from the plugin!');

(exporting the alert() method is not that good idea actually)

Under the hood, an application may only communicate to a plugin (sandboxed worker / jailed subprocess) through a messaging mechanism, which is reused by Jailed in order to simulate the exporting of particular functions. Each exported function is duplicated on the opposite site with a special wrapper method with the same name. Upon the wrapper method is called, arguments are serialized, and the corresponding message is sent, which leads to the actual function invocation on the other site. If the executed function then issues a callback, the responce message will be sent back and handled by the opposite site, which will, in turn, execute the actual callback previously stored upon the initial wrapper method invocation. A callback is in fact a short-term exported function and behaves in the same way, particularly it may invoke a newer callback in reply.


Install jailed-node with npm (preferred way):

$ npm install jailed-node

and then in your code:

var jailed = require('jailed-node');

Optionally you may load the script from the distribution:

var jailed = require('path/to/jailed.js');

After the module is loaded, the two plugin constructors are available: jailed.Plugin and jailed.DynamicPlugin.


The messaging mechanism reused beyond the remote method invocation introduces some natural limitations for the exported functions and their usage (nevertheless the most common use-cases are still straightforward):

  • Exported function arguments may only be either simple objects (which are then serialized and sent within a message), or callbacks (which are preserved and replaced with special identifiers before sending). Custom object instance may not be used as an argument.

  • A callback can not be executed several times, it will be destroyed upon the first invocation.

  • If several callbacks are provided, only one of them may be called.

  • Returned value of an exported function is ignored, result should be provided to a callback instead.

In Node.js the send() method of a child process object is used for transfering messages, which serializes an object into a JSON-string. In a web-browser environment, the messages are transfered via postMessage() method, which implements the structured clone algorithm for the serialization. That algorithm is more capable than JSON (for instance, in a web-browser you may send a RegExp object, which is not possible in Node.js). More details about structured clone algorithm and its comparsion to JSON.

A plugin object may be created either from a string containing a source code to be executed, or with a path to the script. To load a plugin code from a file, create the plugin using jailed.Plugin constructor and provide the path:

var path = 'http://path.to/some/plugin.js';

// set of methods to be exported into the plugin
var api = {
    alert: alert

var plugin = new jailed.Plugin(path, api);


application.remote.alert('Hello from the plugin!');

Creating a plugin from a string containing a code is very similar, this is performed using jailed.DynamicPlugin constructor:

var code = "application.remote.alert('Hello from the plugin!');";

var api = {
    alert: alert

var plugin = new jailed.DynamicPlugin(code, api);

The second api argument provided to the jailed.Plugin and jailed.DynamicPlugin constructors is an interface object with a set of functions to be exported into the plugin. It is also possible to export functions in the opposite direction — from a plugin to the main application. It may be used for instance if a plugin provides a method to perform a calculation. In this case the second argument of a plugin constructor may be omitted. To export some plugin functions, use application.setInterface() method in the plugin code:

// create a plugin
var path = "http://path.to/some/plugin.js";
var plugin = new jailed.Plugin(path);

// called after the plugin is loaded
var start = function() {
    // exported method is available at this point
    plugin.remote.square(2, reportResult);

var reportResult = function(result) {
    window.alert("Result is: " + result);

// execute start() upon the plugin is loaded


// provides the method to square a number
var api = {
    square: function(num, cb) {
        // result reported to the callback

// exports the api to the application environment

In this example the whenConnected() plugin method is used at the application site: that method subscribes the given function to the plugin connection event, after which the functions exported by the plugin become accessible at the remote property of a plugin.

The whenConnected() method may be used as many times as needed and thus subscribe several handlers for a single connection event. For additional convenience, it is also possible to set a connection handler even after the plugin has already been connected — in this case the handler is issued immediately (yet asynchronously).

When a plugin code is executed, a set of functions exported by the application is already prepared. But if one of those functions is invoked, it will actually be called on the application site. If in this case the code of that function will try to use a function exported by the plugin, it may not be prepared yet. To solve this, the similar application.whenConnected() method is available on the plugin site. The method works same as the one of the plugin object: the subscribed handler function will be executed after the connection is initialized, and a set of functions exported by each site is available on the opposite site.


  • If you need to load a plugin and supply it with a set of exported functions, simply provide those functions into the plugin constructor, and then access those at application.remote property on the plugin site — the exported functions are already prepared when the plugin code is exectued.

  • If you need to load a plugin and use the functions it provides through exporting, set up a handler using plugin.whenConnected() method on the application site. After the event is fired, the functions exported by the plugin are available at its remote property of the plugin object;.

  • If both application and a plugin use the exported functions of each other, and the communication is initiated by the plugin, you will most likely need to use the application.whenConnected() method on the plugin site before initiating the communication, in order to make sure that the functions exported by the plugin are already available to the application.

To disconnect a plugin, use the disconnect() method: it kills a worker / subprocess immediately without any chance for its code to react.

A plugin may also disconnect itself by calling the application.disconnect() method.

In addition to whenConnected() method, the plugin object also provides similar whenFailed() and whenDisconnected() methods:

  • whenFailed() subscribes a handler function to the connection failure event, which happens if there have been some error during the plugin initialization, like a network problem or a syntax error in the plugin initialization code.

  • whenDisconnected() subscribes a function to the disconnect event, which happens if a plugin was disconnected by calling the disconnect() method, or a plugin has disconnected itself by calling application.disconnect(), or if a plugin failed to initialize (along with the failure event mentioned above). After the event is fired, the plugin is not usable anymore.

Just like as for whenConnected() method, those two methods may also be used several times or even after the event has actually been fired.


This is how the sandbox is built:

  • A Node.js subprocess is created by the Jailed library;

  • the subprocess (down)loads the file containing an untrusted code as a string (or, in case of DynamicPlugin, simply uses the provided string with code)

  • then "use strict"; is appended to the head of that code (in order to prevent breaking the sandbox using arguments.callee.caller);

  • finally the code is executed using vm.runInNewContext() method, where the provided sandbox only exposes some basic methods like setTimeout(), and the application object for messaging with the application site.

follow me on twitter: https://twitter.com/asvd0