
8
ABSTRACTIONS IN THE LwDITA
CONTENT LIFECYCLE

The scenar►o is pretty common in professional conferences: an instructor or
trainer attends an event and is inspired by a presentation or visit to a vendor's
booth that focuses on a new software application for automating content pro-
cesses. The instructor requests a free demo or obtains departmental support
to purchase an academic or trial license. The curriculum in the instructor's
program is modified to include the selected tool, and then the tool developer
releases a paid upgrade, which the instructor's department cannot afford. The
result rapid obsolescence and a failed experiment that keeps the department
from exploring technologies for creating intelligent content.

Saul Carliner sees these choices of time and money in tools as a risky investment
for practitioners and academics alike. For practitioners, "the primary issue is which
technologies they should choose for investing their limited training dollars," based
on the rapid changes in software applications. For academics, the risks include both
limited resources to purchase costlypubllshing software" (including enterprise-level
content management systems), and the perishable nature of tools-based training,
"often outdated within five years," for students (Carliner, 2010, p. 47).

Instead of purchasing a commercial software application and then build-
ing a curriculum around it, technical communication instructors and trainers
can focus on the mental activities that lead to the development of intelligent
content. Those activities are an implementation of the "broader rhetorical strat-
egies for analyzing the audience, planning, revising, and managing one's lime
and writing process" proposed in Linda Flower's "Rhetorical Problem Solving:
Cognition and Professional Writing" (1989, p. 5).

The thinking and working process that I propose in this book involves a series of
layers of abstraction based on the model introduced at the end of Chapter 7. For the
purpose of this chapter, a revised version of those layers, focusing on the flexibility

Abstractions in the LwDITA Content Lifecycle 165

about authoring formats allowed by LwDITA and inspired by the ISTE standards
for evaluating students as computational thinkers (ISTE, 2018), looks as follows:

• Layer 1: Developing a content strategy
• Layer 2: Authoring modular content with LwDITA
• Layer 3: Separating content from design and context
• Layer 4: Linking topics and maps for collection and reuse
• Layer 5: Processing and producing deliverables
• Layer 6: Preparing for the future.

The "Learning to Think Like a Computer" article from The New York Times
mentioned in Chapter 7 provides an appropriate example for looking at each
layer of abstraction and its connections to the ISTE standards and the content-
development ilfecycles presented In this chapter. Dan Garcia's milkshake recipe
from that article can be the inspiration for a fictional content project that can
guide us through these revised layers of abstraction.

As I focus on each layer of abstraction, I attempt to connect it to stages in
content-development lifecycles and the ISTE standards for evaluating com-
putational thinkers. My objective, as I mentioned before, is to separate the
intimidating mandate of learning about industry practices and then bringing
them back to the classroom in manageable tasks that stay relevant to our profes-
sion and also relate to computing-for-all initiatives in the disciplinary context of
content development and technical communication, as an alternative to learn-
ing about code and programming in introductory computer science courses
(although I strongly believe that every student, regardless of academic major,
can benefit from an introductory course in computer programming). The cor-
respondence among these layers of abstraction and the indicators in the ISTE
standard has not been evaluated empirically beyond my own assessment of
students' writing and their progression towards completing the undergraduate
degree in Professional and Technical Writing at Virginia Tech.

Layer 1: Developing a Content Strategy

Few concepts have such a strong potential for uniting and dividing, at the same
time, opinions about the importance of planning for the development and
management of content as content strategy. Clark (2016) notes that the idea of
content strategy "can realize the interdepartmental possibilities" involving the
adoption of reuse and single-sourcing outside of technical communication that
authors have been promising for decades. However, Clark also analyzes the dis-
crepancies in definition and implementation of content strategy in the realms
of documentation, marketing, web development, and others. Clark's meticulous
literature review on the term is eye-opening and inspiring to take the first step
through the layers of abstraction behind developing intelligent content with

166 Abstractions in the LwDITA Content Lifecycle

LwDITA. Authors must be guided by a content strategy, and its development
and adoption processes require mental abstractions to defer further layers of
the authoring lifecyde until a plan is ready to implement. Without a content
strategy, a user cannot advance in the LwDITA process layers of abstraction.
Andersen debunks the role of technology over strategy when she explains that
while "high-speed networks and the evolution of content technologies (e.g.,
Web 2.0, CM systems) and their underlying standards (e.g., XML, HTMLS,
DITA) have made possible the emergence of intelligent content (...), its success
depends on the content strategy that governs its life cycle" (2014, p. 133).

A simple and direct definition of content strategy, for those who do not have
time to read Clark's excellent analysis of the term, comes from Rahel Anne
Bathe, who is an active member of the Lightweight DITA subcommittee at
OASIS. Bailie defines content strategy as "the analysis and planning to develop
a repeatable system that governs the management of content throughout the
entire content lifecycle" (2014, p. 14). Going back to the adaptive milkshake rec-
ipe from Dan Garcia's example, in a LwDITA workflow an author would need
to (following Baille's definition) analyze and plan before writing any content.
The abundance of definitions and approaches to content strategy also creates a
long list of potential deliverables related to this concept.

Let's assume that the overarching task is to develop a collection of soda
fountain recipes and procedures. For the milkshake entry, the collection should
include a versatile recipe with a list of ingredients and steps. The ingredients list
should accommodate different flavors in one single template, instead of hav-
ing separate recipes for each possible flavor. For the scope of this chapter, this
layer is not a comprehensive collection of content strategy materials; instead, it
focuses on the mental tasks that, at a minimum, authors should focus on before
starting an intelligent content project with LwDITA.

1. Perform an audience analysis. Determine who will be the users of the
milkshake recipe. If possible, conduct observations and interviews. Bailie
& Urbina recommend developing personas and scenarios to understand
the audience. Personas, they claim, "help you understand the behavioral
characteristics of typical content consumers. From that information, it's
possible to anticipate what the most common tasks will be and what infor-
mation will be in highest demand" (2013, p. 20). Getto & St. Amant (2014)
present an overview of personas and their usage at the intersection of user
experience and technical communication. Through personas and scenar-
ios, the author can identify the users' needs, expectations, and anticipated
reactions to the recipe/collection of recipes. Then, those needs statements
can be converted into specific topics and tasks for the recipes.

2. Conduct a content audit or inventory. The author could be creating origi-
nal content for the recipes or collecting legacy documentation (in this case,
as Dan Garcia mentioned, from the pages of an existing cookbook). If the

Abstractions in the LwDITA Content Lifecycle 167

milkshake represents a truly revolutionary approach to frozen treats, the
author should work with the soda fountain experts to document their ideas
and tasks while identifying all sources of content. Traditionally, a content
audit is based on a spreadsheet with columns representing bits of informa-
tion and rows for each piece of content. Halvorson & Rach (2012) say that
there "is no one perfect format, size, or timing for an audit; there are many
different (and totally valid) ways to audit your content," and they recom-
mend including at least the following columns:

• ID: Each content unit needs an identification number or code. A con-
tent unit can include a whole milkshake or root beer float recipe, but a
picture illustrating how to use the mixer and a how-to video for making
whipped cream are also content units that need their own row and ID.

• Title/Topics: Most recipes will have a clear title; other smaller units can
use "a short description of the key topics or themes covered."

• URL: If the content units live on the web.
• Format Explain if the content unit is a piece of "text, video, PDF, etc."
• Source: "Specify whether the content is created in-house, by a con-

tent partner (newsfeeds, articles, blog posts, and so on), or by your
users:'

• Technical home: The content units reside in computer files that are
stored somewhere. If the soda fountain has several folders for recipes
and images, the "home" for each unit should be specified to avoid miss-
ing pieces and duplication.

• Metadata: Lauren Creekmore defines metadata as "attributes of content
you can use to structure, semantically define, and target content" (in
Abel & Bailie, 2014, p. 28). These attributes are foundational for the
filtering and processing of content that will take place in future layers.
An example would be a context metadata for the milkshake recipe. The
recipe could be the same, with some variations about available equip-
ment and ingredients, for personnel preparing it in a restaurant or a
food truck environment. The metadata, which end users do not see,
can set specific rules for each of those environments. After processing,
the resulting recipe will give the exact instructions for each context.
Layer 3 provides more details about this sample use of metadata.

• Traffic/usage statistics: "If it's feasible, get the skinny on how people are
using (or not using) each piece of content."

• Last update: "When was the last lime somebody in your organization
paid attention to this piece of content?"

• Language: "If you have content in multiple languages, you'll want to re-
cord the language or dialect used on each piece of content" (Halvorson
& Rach, 2012, pp. 51-52).

3. Develop a content structure. Structured authoring can provide many ben-
efits, including consistency of format and sections among recipes. The

168 Abstractions in the LwDITA Content Lifecycle

recipe can be its own content type specific characteristics and headings.
Sara Wachter-Boettcher (2012) actually includes the recipe in her list of
common examples of content types, which also includes bios, blog posts,
business listings, episodes, event listings, fact sheets, FAQs, feature articles,
help/user assistance modules, podcasts, poems, press relearns, products,
reviews, short stories, testimonials, tips and lists, and tutorials. In Chapter 1
we saw how DITA XML is frequently associated in the world of techni-
cal communication with the content types of concept, task, and reference.
Chapters 5 and 6 guided us through the role of content types in LwDITA,
but for the purpose of the milkshake recipe we can think of a structured
topic that includes sections for ingredients and tools, steps, and a result

4. Compile or adopt a style guide and code of ethics. If the collection of reci-
pes has more than one author, a style guide can keep all recipes consistent
in punctuation, capitalization, word usage, and other editorial decisions.
Adopting an existing style guide would be an easy decision, but maybe the
owner has specific ideas about content formatting. Similarly, adopting a
code of ethics can avoid leaving users at a disadvantage by establishing
principles. Russell Willerton (2015) assembled a thorough overview of eth-
ics in the technical and professional communication literature that includes
a section on characteristics of available codes for the profession.

5. Create a diversity plan. Authors should acknowledge the diversity of their
content users, which can include local issues such as including information
for milkshakes that use non-dairy alternatives instead of milk. The diver-
sity plan should also consider outlining a global content strategy, which
Val Swisher defines as "a plan for managing content that is intended for
people whose main language is something other than the source language"
(2014). The plan should also acknowledge the diversity of content authors,
which includes language but also covers the diverse departments or groups
involved with the content. If the soda fountain project were to expand,
authors could include professionals from the kitchen, technical writers
in charge of instructions, and marketing writers developing promotional
materials. Those groups have different communication styles, expectations,
and structures that should be acknowledged and reconciled.

6. Make a technology plan considering human involvement. Following from
the previous task, this one should identify the writing platforms, content
standards, and tools used by the potential authors. The technology plan
should also cover decisions about content management applications or
services, and tools for processing of deliverables. The plan should also con-
sider and accommodate a human-in-the-loop (HITL) strategy. Rothrock
& Narayanan posit that traditional projects involving automation "regard
human interaction as an external input to the system being considered.
However, studies of complex systems in today's technological landscape
must include humans as active participants" (2011, p. v). For this example,

Abstractions in the LwDITA Content Lifecycle 169

the plan includes humans as content developers and curators working with
a user experience team to produce end-user deliverables for the soda foun-
tain. For the milkshake example, the selected standard will be LwDITA,
authored in the following two options:

• Option a: With the text editor Atom by GitHub, with the DITA Open
Toolkit as processing tool, and with content and source code stored and
delivered in GitHub and GitHub Pages, respectively.

• Option b: With the LwDITA-aware application Oxygen XML, and with
content and source code stored and delivered in GitHub and GitHub
Pages, respectively.

The tasks involved in this layer are related to several stages of the content-
development lifecycles featured in the previous chapter. Layer 1 tasks focus
on Bailie & Urbina's analysis stage. They also cover some of the work included
in Andersen's Analyzing the customer and business needs and Developing an
information architecture stages. Contrasting layer 1 with the ISTE standards
for assessing computational thinking in students, some of its tasks could
comply with sections of standards 5a (Students formulate problem definitions
suited for technology-assisted methods such as data analysis, abstract models
and algorithmic thinking in exploring and finding solutions), 5b (Students
collect data or identify relevant data sets, use digital tools to analyze them,
and represent data in various ways to facilitate problem-solving and decision-
making), and 5c (Students break problems into component parts, extract key
information, and develop descriptive models to understand complex systems or
facilitate problem-solving).

Layer 2: Authoring Modular Content with LwDITA

Probably the most important layer for readers of Creating Intelligent Content
with Lightweight DITA, layer 2 involves content development tasks that can
only happen after completing the first layer of abstraction. Following the model
proposed by Flower (1989), this layer focuses on important discourse conven-
tions that, regardless of their inherent importance, need the broader rhetorical
conventions of the remaining layers. Once a content audit has identified all
legacy documentation, and it has been prepared for update or migration, it's
time for authors to produce text and/or multimedia content to address the
users' needs identified in layer 1. For the milkshake example, let's assume that
the soda fountain operator manual will include a few recipes, with the versa-
tile milkshake being one of them, probably featured next to the root beer float
and the banana split. The authors, after collecting information from any exist-
ing sources, conducting interviews with experts, and observing work in the
kitchen, can start creating topics following the guidelines from the proposed
LwDITA standard.

170 Abstractions in the LwDITA Content Lifecycle

Focusing, for now, exclusively on the milkshake recipe and ignoring all
other offerings from the fountain manual, we can identify more than one way
to achieve with LwDITA the versatility required by Dan Garda's example. One
possible approach could be through conditional content, which Julio Vazquez
defines as "content that has sufficient metadata to allow a processor to filter or
flag that content in any output or format, using a profile to determine the exact
output for a given context or format" (2016, p. 64). Layer 3 will look at condi-
tional content, as we advance to connecting elements of the recipe to specific
contexts. A second approach, which is more appropriate for layer 2, is provided
by content variables, which Nancy Harrison defines as "variables that contain
phrase-level content that needs to be in a topic no matter what document the
topic is part of, but that changes depending on context, for example, a product
name or a company name" (2016, p. 66).

The content variable Icecream-flavor" appears in a phrase-level element of
the milkshake recipe (inside an ingredient item), but its value changes depend-
ing on the flavor established by the manager. If the milkshake today will be
strawberry-flavored, the variable "Icecream-flavor" will be set to the value of
"strawberry'. If tomorrow the flavor needs to be vanilla, the variable can take
that new value and keep the same content with only that variation. That vari-
able should be part of the metadata specified in the previous layer, as the author
identified elements that need to change in the recipes. Without that metadata,
an author cannot produce the adaptive milkshake recipe required by Dan
Garcia's example. The following sections show how to use a content variable in
the three initial authoring formats of LwDITA.

XDITA

In XDITA, the LwDITA authoring format based on XML, a content variable is
implemented on the phrase (<ph>) element using the @keyref attribute. Hackos
explains the @keyref mechanism in DITA XML, as a process of "putting place-
holders into your topics and then defining the content for those placeholders"
elsewhere (2011, p. 272). The @keyref mechanism, Hackos adds, is comprised
of two components:

• The referencing key (the @keyref attribute), which is "found in the topic
where the content will be included," and

• The defining key (the @keys attribute), which uses the ckeydef> element to
"set the content to replace the placeholder" (Hackos, 2011, p. 273).

The referencing key is covered in this layer, and the defining key will be set
in layer 4. Layer 5 addresses the processing tasks that will populate the content
placeholders with the value established in the defining keys.

Abstractions in the LwDITA Content Lifecycle 171

In the versatile milkshake recipe authored in XDITA, the referencing key
will be inside the ingredient that specifies a pint of ice cream. The content place-
holder will leave the ice cream flavor initially empty, and then it will adopt a
value determined by the defining key in layer 4. Figure 8.1 shows a version of
the XDITA code for the milkshake recipe. Like all code samples from previous
chapters, the examples included in this section can be authored in any text edi-
tor (not in a word processor) or a LwDITA-aware software application, and can
be downloaded from the Creating Intelligent Content with Lightweight DITA
GitHub repository (https://github.comicarlosevia/lwdita-book).

The code from Figure 8.1 (let's call it a draft of the recipe) includes an unor-
dered list (cub) with the identifier of "ingredients." This list of ingredients
contains two list item (cli>) elements. The first one is straightforward text that
specifies some milk (a more advanced recipe could even specify if the fountain
attendant should use actual milk or a non-dairy milk alternative). An author
working with this source code would be able to tell that step 1 is asking for
V. cup of milk'. Step 1 does not require any abstraction beyond understanding
text and the English language. The second list item, however, has an XDITA
phrase (<ph>) element inside the list item. This phrase element has a @keyref
attribute that works as a placeholder for variable text. The @keyref attribute

axed version:1.0' encoding:UTE-8'h

<100CTVPE topic PUBLIC "-//OASIS//DID LIGHTWEIGHT OITA Topic//01'

"lw-topic.dte>

<topic ide-nilksbake>

<title>Easy Kilkshake</title>

<body>

<p> The Easy Milkshake is our best-seller and a soda fountain tradition. We frequently

update the recipe to incorporate fresh flavors and ingredients.</ps

<ul id:ingredients")

elis<ps1/4 cup of 011k</p></lis

elis<psA pint of <ph keyrefv-icecream-flavor"/> ice crean</p></lis

</uls

<ol id•"steps">

<lis<p>Ccobine all ingredients in the Blendinixx 3000</ps

<lis<p>Mix for 30 seconds</p></lis

<lis<p>Serve in a cold fountain glass<0>

</els

</body>

</topic>

FIGURE 8.1 Recipe for a versatile milkshake in XDITA - following on an idea
presented by Dan Garcia. In this example, the recipe was created in
XDITA - the LwDITA authoring format based on a simplified version
of DITA XML. The list item asking for a pint of ice cream includes a
key reference with the value of a icecream-flavor," which will be set at
processing time in a different layer.

172 Abstractions in the LwDITA Content Lifecycle

has the generic value of aicecrearn-flavor" . Ingredient 2, by itself, would be
very confusing for a reader expecting a milkshake recipe. The @keyref attrib-
ute has to be established in this authoring layer, but it depends on the defining
key to be specified in layer 4. As a result, the LwDITA topic for the milk-
shake recipe is not ready for processing in this layer. The author can save this
recipe as milkshake.dita, but even a LwDITA-aware editor or the DITA Open
Toolkit would indicate an error if the author attempts to build a deliverable
at this stage.

HDITA

The same milkshake recipe can be created in HDITA, the LwDITA authoring
format based on HTML5, with a similar mechanism for the content varia-
ble. In HDITA, the referencing key for variable content is expressed with the
custom data attribute @data-keyref. In HTML5, phrase-level content can be
included in the element. Thus, the recipe In HDITA would look like
the draft in Figure 8.2.

The unordered list element with the identifier of "ingredients" is in this ver-
sion and it looks very similar to the one included in the XDITA recipe. The main

<IDDCPIPE hind>

<title>Easy Milkshakegtitle>

<body>

<article idemilkshake>

dilfEasy Milkshakee/hif

<p>The Easy Milkshake is our best-seller and a soda fountain tradition. Me frequently update

the recipe to incorporate fresh flavors and ingredients.</p>

<ul id•'ingredients'>

<II>

<p>1/4 cup of nilk</P>

<11>

<p>A pint of ice crease/p>

quI>

<ol idesteps'>

<11><p>Ccnbine all ingredients in the Blendinisx 10110</p>011 >

<p>Mix for 30 seconds</p>011>

411><p>Serve in a cold fountain glassOpm/li>

</article>

</body>

FIGURE 8.2 Recipe for the versatile milkshake authored in HDITA. The ingredient
asking for a pint of ice cream uses the HTML5 custom data attribute
@data-keyref to set a placeholder for a value that will be processed in a
more advanced layer.

Abstractions in the LwDITA Content Lifecycle 173

differences are in the element holding the variable content (in HDITA,
whereas in XDITA it was <ph>) and the attribute setting the placeholder
lcecream-flavor for a flavor to be determined in a more advanced layer (e)data-
keyref in HDITA, whereas in XDITA it was @keyref). These differences keep the
LwDITA authoring formats compliant with the HTML5 and DITA XML stand-
ards, respectively. The author can save this recipe as milkshake.html, and the
resulting file can be viewed in a web browser, but the recipe won't make sense for
end users because the content variable for "icecream-flavor" is not established in
this layer of abstraction (Figure 8.3).

MDITA

The versatile milkshake recipe can be expressed, with some minor dif-
ferences, in the MDITA core profile. MDITA uses the shortcut reference

Easy Milkshake X

4 e 0 file:///Users

Easy Milkshake

>>

The Easy Milkshake is our best-seller and a soda fountain
tradition. We frequently update the recipe to incorporate fresh
flavors and ingredients.

• 1/4 cup of milk

• A pint of ice cream

1. Combine all ingredients in the Blendimixx 3000

2. Mix for 30 seconds

3. Serve in a cold fountain glass

FIGURE 8.3 HDITA version of the milkshake recipe as seen on a web browser.
Note that the ingredient for a pint of ice cream does not have a flavor
attached to it, which will come in a more advanced layer when the
topic is processed through a LwDITA-aware software application.

174 Abstractions in the LwDITA Content Lifecycle

link structure from CommonMark/GitHub Flavored Markdown (GFM) to
establish content variables. The GFM spec explains shortcut reference links
as consisting "of a link label that matches a link reference definition else-
where in the document and is not followed by () or a link label. The contents
of the first link label are parsed as inlines, which are used as the link's text.
The link's URI and title are provided by the matching link reference defi-
nition. Thus, [fool is equivalent to poll)" (GitHub Flavored Markdown
Spec, 2017).

The milkshake recipe authored in MDITA extended profile, with a GFM
shortcut reference link setting the content placeholder for "icecream-flavor" ,
would look like Figure 8.4.

The unordered list item for ingredients is still In the recipe, and the second
ingredient has the placeholder variable "icecream-flavor" , which will inherit a
value in a more advanced layer of abstraction. The author can save this MDITA
topic as tnilkshake.md.

The tasks involved in this layer are related to stages of the content-
development lifecycles featured earlier in the previous chapter. Layer 2 tasks
focus on Bailie & Urbina's collect stage. They also cover some of the work
included in Andersen's Creating structured content stage. Contrasting layer 2
with the ISTE standards for assessing computational thinking in students, some
of its tasks could comply with sections of standards 5a (Students formulate
problem definitions suited for technology-assisted methods such as data analysis,
abstract models and algorithmic thinking in exploring and finding solutions) and
5b (Students collect data or identify relevant data sets, use digital tools to ana-
lyze them, and represent data In various ways to facilitate problem-solving and
decision-making).

V Easy Milkshake

the Easy Milkshake is our best -seller and a soda fountain tradition. We frequently update the

recipe to incorporate fresh flavors and ingredients.

- ibt cup of milk

-A pint of ficecreav-flavor] ice cream

1. Combine all ingredients in the Ellendiabm 2008

2. Mix for IS seconds

3. Serve in a cold fountain glass

FIGURE 8.4 Recipe for the versatile milkshake authored in MDITA. The ingredient
for ice cream uses a GitHub Flavored Markdown shortcut reference
link to inherit a key reference from a map that will appear in a more
advanced layer.

Abstractions in the LwDITA Content Lifecycle 175

Layer 3: Separating Content from Presentation and
Context

In a small soda fountain, the operators probably will have a printed manual as
the only available documentation. In a larger operation, however, the content of
a recipe collection could be used (or single-sourced) in the fountain's operation
manual, website, social media presence, mobile app, and even conversational
guidelines for a device like the Amazon Echo. In the first scenario, it makes
sense to have an author in control of the manual's content and presentation
to save time and money: one deliverable, one format, and one author. In the
second scenario, however, an intelligent content solution to address all those
potential deliverables depends on separating content from presentation. For
years, I have taught in my courses the four levels of Pringle & O'Keefe's meth-
odology for developing technical documents:

• Chaos ("there's no consistency in the presentation of content")
• Page consistency ("content looks the same on paper (or other delivery for-

mat," but there's no consistency in its source files)
• Template-based authoring (content follows "predetermined styles (and)

writers don't spend time figuring out how to create particular formatting —
they apply styles to add formatting")

• Structured authoring ("a publishing workflow that defines and enforces
consistent organization of content") (2009, pp. 41-42).

In previous layers of abstraction, the milkshake recipe moved towards the
structured authoring level. As it prepares for more advanced layers, the rec-
ipe must keep content and presentation separate. This separation "can create
philosophical and cognitive dissonance for technical communicators trained
to think of information as content that is inherently linked to presentation"
(Clark, 2007, p. 36). Mark Baker warned about the difficulties of teaching this
layer in the following statement:

One of the hardest things about moving technical writers from desktop
publishing to structured writing is persuading them to give up responsi-
bility for how the final output looks. Writers will keep looking for ways to
specify layout, even in markup languages specifically designed to remove
layout concerns. They understand their Jobs in terms of the responsibili-
ties their old tools imposed on them.

(Baker, 2013, p. 87)

The presentation rules and details for the milkshake recipe will be provided in
a further layer of abstraction by an external tool and style sheet. After complet-
ing layer 2, the recipe topics look either like raw XML, HTMLS, or Markdown

176 Abstractions in the LwDITA Content Lifecycle

code, depending on the LwDITA authoring format used to create them. In this
layer, authors should focus on producing content (text, audio, videos, etc.) and
letting the presentation be addressed elsewhere.

The fear of losing control over context is, however, real. According to some,
writers separating content from presentation "will have no control over the con-
text in which their information appears or the uses to which it may be put"
(Gu & Pullman, 2009, p. 6). Those concerns echo a threat to the characteristic
of rhetorical effectiveness, and DITA has tried to ameliorate that effect by giv-
ing authors control on the context of their content elements. Albers called for
a similar dimension of rhetorical effectiveness when discussing the effects of
single sourcing and XML in the careers of technical communicators: the real
questions in documentation projects "should not revolve around technology
but around whether the resulting documents effectively address a user's real-
world information needs (Albers, 2003, p. 338). Swarts also expressed a need for
content management systems that "suggest a rhetorical use of the content that
writers have at their disposal" (Swarts, 2010, p. 159).

In a workflow like the one proposed in this chapter, authors and their super-
visors take care of planning, authoring, organizing, and evaluating activities to
prevent content-generation problems. When dealing with machine automa-
tion, there will always be the possibility of errors and the occasional misplaced
component in a document, but those are more the exception than the rule. The
human-in-the-loop strategy developed in layer 1 has the goal of refuting portray-
als of writers as the lonely humans in a machine-dominated process of content
automation, with the content products of their hard work being arhetorkally
assembled (borrowing a term from Bacha, 2009) by algorithms and machines
without human control. The metadata and rules included in topics, phrases, and
maps preserve the rhetorical effectiveness of intelligent content repositories.

LwDITA inherits the context-setting capability of DITA XML, which depends
on rich metadata to filter or flag content. This type of context functions like a
simple conditional statement in the "if-then" model of computer programming.

Taking this to our recipe example, let's give the soda fountain an official
downtown location and also a mobile location with a food truck. Most processes
are the same in both locations, but some change because of available equip-
ment and ingredients. In the downtown location, the soda fountain operators
have a professional Blendlmixx 3000 mixer, which they use for the milkshakes;
however, in the food truck location they have a smaller Blendtlitte 200. The
sample recipe from layer 2 only mentions the professional mixer, but now that
its content will also generate the operator manual for the food truck location,
this same recipe should accommodate both cases while minimizing distractions
for the users: in the downtown location, the manual should only mention the
professional mixer, but in the food truck location it should only mention the
smaller blender. The metadata attributes assigned in this layer will help filter
out irrelevant information for each context in a future layer of abstraction.

Abstractions in the LwDITA Content Lifecycle 177

DITA XML has several attributes that identify properties for conditional pro-
cessing, which include @audience, @plaftorm, and @product. In LwDITA, the
only conditional processing attributes are @props (in XDITA) or @data-props
(in HDITA and MDITA extended profile). The DITA 1.3 spec defines @props
(properties) as a "generic conditional processing attribute", and in LwDITA it
can take different values based on authors' needs (2.2.4.2.1 Conditional pro-
cessing attributes, 2018).

In XDITA, the recipe will look like Figure 8.5 with the added metadata for
context,

The XDITA recipe, which can be saved as milkshake.dita, has a list item on
the ordered list labeled "steps" that instructs the operator to combine all ingre-
dients in a blender. The topic shows both options (the Blendimixx 3000 and
the Blendflitte 200), which have attached the corresponding metadata for each
context with the conditional attribute @props inside a phrase element. In this
layer of abstraction, the XDITA topic displays all available options for equip-
ment and locations. The topic is written in valid XDITA (it conforms to the
rules of the LwDITA standard) and can be processed in a software application
to generate user deliverables. However, those user deliverables will be incorrect
or redundant because the filters for specific context will be applied in a future
layer. Figure 8.6 shows a PDF transformation of the XDITA milkshake recipe
as it looks in layer 3.

Omni version:1.8' encoding:HU-gab

(IDOCTY➢E topic PUBLIC '-//0.6.15//DID LIGHTWEIGHT DITA Topic//EM'

nu-topic.dtd'f

(topic id:milkshake>

etitle>Easy Milkshakee/tltle>

(body>

cp>lhe Easy Milkshake is our best.seller and a soda fountain tradition. We frequently

update the recipe to incorporate fresh flavors and ingredients.(/p>

col id•'ingredients'>

eliscp>1/4 cup of 'dike/Pm/lb
eliScpok pint of (ph keyref:icecrean-flavor'/> ice cream/pc/1i>

<Jul>

col id: stops')

cliscp>Ccabine all ingredients in the tph propsesettinrckeentowi>81endinixx

3008e/ph> <ph propsn'setting-foodtrue>81endilitte 200c/ph>qp>c/li>

clis<p>Mix for 30 secomise/pWli>
clisepSServe in a cold fountain glasse/pc/lis

</body>

</topic>

FIGURE 8.5 XDITA version of the milkshake recipe with two possible values for
a setting condition. At processing time, the author can specify a filter
and exclude the value that is not needed for a specific setting.

178 Abstractions in the LwDITA Content Lifecycle

Easy Milkshake

T3.• E asy %lilt:shake cow bmia.elkr an! a soda fountain fruition N'e hoqucritly update the mope to mommeme
froth flavors and tracdtera.

• I'4 cup of milk
• A pint of me claim

I. Combrm ell minmlion, in the EllenMentmk 3000 Blendatitc 200
2. kim for Ansa-toads
3. Strtc in a cold fountain Om

FIGURE 8.6 PDF transformation of the XDITA milkshake recipe. Since no filters
were applied during the transformation, the first step includes the
values of both blenders without considering the setting where the
recipe will be used. Also, there is no ice cream flavor set, as the content
variable will be populated in a more advanced layer.

In HDITA, the conditional attribute @data-props, placed inside the HTML5
 element, can achieve similar results. An HDITA version of the milk-
shake recipe, with context information to specify the blender used in each
location, would look like Figure 8.7.

The HDITA recipe, which can be saved as milkshalce.html, is a valid HTML5
topic; therefore, it can be seen on a web browser at this stage. The resulting web

<100[TVPI htal>

<titlesEasy Milkshakes/title)

<body>

<article id•'nilkshake'>

thIsEasy Milkshakec/bl>

<Who Easy Milkshake is our best-seller and a soda fountain tradition. Me frequently update

the recipe to incorporate fresh flavors and ingredients.</p>

<ill id:ingredients')

<Its

<p>1/0 cup of tailk</p>

</lis

<lis

issA pint of ice creamc/p>

<ill>

</uls

sal id:steps)

dis<p>Corbine all ingredients in the <span data.propse'setting.dcwatown'selendLed'uc

i000</span) <span data-propsn'setting.foocftruck'salendilitte 2.00</p>

dis<cisMix for 30 seconds</w/li>

ainp>Seree in a cold fountain glasse/ps</lis

</article>

</body>

FIGURE 8.7 HDITA version of the milkshake recipe with two possible values for
a setting condition, which are specified with the HTML5 custom data
attribute @data-props.

Abstractions in the LwDITA Content Lifecycle 179

rendering (Figure 8. 8), however, shows both possible blender options in the
same step and would be confusing for an actual human operator. In layer 5,
processing the topic with the proper conditional code will produce correct
deliverables for each location.

The context-aware recipe cannot be expressed in MDITA core profile. In
order to use the conditional variable @data-props, a Markdown-based author
would have to use a few code snippets of HDITA in MDITA extended profile.
The recipe main elements are still in Markdown, but the available values for the
conditional setting attribute are the same as those used in the HDITA topic, as
shown in Figure 8.9. This MDITA version can be saved as milkshalce.md.

The HDITA code snippets enable the MDITA topic to allow conditional
content and let Markdown authors use DITA-like content filters. The MDITA
topic, in this layer, would not make sense for human users, and it must be pro-
cessed by a LwDITA-aware tool in layer 5.

The tasks involved in this layer are related to several stages of the content-
development lifecycles featured earlier in the previous chapter. Layer 3 tasks
focus on Bailie & Urbina's manage stage. They also cover some of the work

Easy Milkshake X

® 4 0 0 file:///Users/ca

Easy Milkshake

The Easy Milkshake is our best-seller and a soda fountain tradition.
We frequently update the recipe to incorporate fresh flavors and
ingredients.

• 1/4 cup of milk

• A pint of ice cream

1. Combine all ingredients in the Blendimixx 3000 Blendilitte 200

2. Mix for 30 seconds

3. Serve in a cold fountain glass

FIGURE 8.8 HDITA version of the milkshake recipe seen through a web browser.
Without advanced processing, the HTML file shows the values for
both possible blenders in step 1.

180 Abstractions in the LwDITA Content Lifecycle

4 Easy Milkshake

The Easy Milkshake is cur best-seller and a soda fountain tradition. Ile frequently update the

recipe to incorporate fresh flavors and ingredients.

- 1/4 cup of milk
- A pint of ticecrean•flavor) ice crams

1. Combine all ingredients in the (span data.props-'setting-de‘ntoan'Ailendimixx

3000</spans Blendilitte 100qspan>

2. Mix for IS seconds
1. Serve in a cold fountain glass

FIGURE 8.9 MDITA version of the milkshake recipe with two possible values for a
setting condition. To overcome Markdown's limitations as a language
for structuring content, the conditional properties are expressed with
HDITA code snippets.

included in Andersen's Developing an information architecture and Creating
structured content stages. Contrasting layer 3 with the ISTE standards for
assessing computational thinking in students, some of its tasks could comply
with sections of standards 5a (Students formulate problem definitions suited for
technology-assisted methods such as data analysis, abstract models and algorith-
mic thinking in exploring and finding solutions) and 5c (Students break problems
into component parts, extract key information, and develop descriptive models to
understand complex systems or facilitate problem-solving).

Layer 4: Linking Topics and Maps for Collection and Reuse

Linking Topics to Topics

In Chapter 6, we saw how to represent a cross-reference component in the
LwDITA authoring formats. With that component, an author can link a topic to
an external web resource, a file (an existing diagram in a PDF, for example), or
another LwDITA topic. Cross-topic linking works regardless of authoring for-
mat an XDITA topic can link to topics in HDITA and MDITA, and vice versa.
However, the cross-reference component in LwDITA also enables one of DITA's
strongest content reuse features: the content reference - or conref for short.

Layer 2 introduced the key reference attribute as a placeholder for content
reuse. The conref is a related attribute that allows an author to bring content
from one topic into another (without copying and pasting). The source ele-
ment from the content reference can be updated and, after reprocessing the
topic collection, all target topics that link to it will be automatically updated.
Hackos describes the structure of the conref mechanism in the DITA standard
as follows:

Abstractions in the LwDITA Content Lifecycle 181

The @conref attribute uses a unique @id attribute to identify the content
unit you want to use. For example, if you want to use a <note> from one
topic into another, you must add an @id attribute to the original note.

(Hacicos, 2011, p. 240)

In LwDITA, the structure of a conref should look like the following template:
path-to-fileifile-namelitopic-Welement-fd
For example, let's pretend that the LwDITA topic with the milkshake recipe

includes a note component, with the type of warning, that tells the operator to
unplug the blender after each use to prevent a fire hazard. That note should be
presented in every recipe produced by the soda fountain. Instead of copying
and pasting the note's content, an author can use a conref to link the topics. The
milkshake topic then, becomes the source for the conref, and in XDITA syntax
it would look like Figure 8.10.

In HDITA syntax, the revised milkshake recipe would look like Figure 8.11.
The Lightweight DITA subcommittee at OASIS evaluated several approaches

for including content references natively in Markdown syntax. However, some
of them required changes to many other MDITA components or allowed con-
tent exchange exclusively among Markdown files. Therefore, there is no direct
way to express a conref in MDITA core profile, and if authors want to take
advantage of this reuse mechanism they would need to include a raw HDITA
code snippet in an MDITA extended profile topic. Thus, the MDITA version of
the milkshake topic with the warning note would look as Figure 8.12.

Keep in mind that all recipes included in the soda fountain manual will need
the warning note. An author could copy and paste from the milkshake recipe
into all the other recipes from the manual. However, what if the requirements
change and a new type of blender does not require to be unplugged but needs
to be descaled once a week? The author would need to update the note manu-
ally on every topic that includes it. With a conref, however, the only note that
needs to be updated is the source in the milkshake topic and all recipes that llnk
to it will be updated automatically after re-processing the topics and their map
(more about that in the next layer).

To continue with the example, let's look at the root beer float recipe, which is
one of the many target topics that link to the warning note from the milkshake
recipe. Figure 8.13 shows the XDITA version of the root beer float recipe.

Figure 8.14 shows the root beer float recipe in HDITA syntax.
Figure 8.15 shows the root beer float recipe in MDITA extended profile syn-

tax. The content reference will be in a raw HDITA code block.
The @conref (in XDITA) or @data-conref (in HDITA and MDITA extended

profile) attribute is available on the following LwDITA content components:

• Audio
• Definition description

182 Abstractions in the LwDITA Content Lifecycle

<Seel version."1.0' encodingeUTF-Ir7s
<H2OCTYPE topic PUBLIC "-//OASIS//DTD LIGHTWEIGHT DITA Topic//EN'

"lw.topic.dtd's

<topic ids'ollkshake's

<titlesEasy Nilkshake</titles

<body>
<p>The Easy Milkshake is our best-seller and a soda fountain tradition. We frequently update

the recipe to incorporate fresh flavors and ingredients.</ps

<ul ids'ingredients",

<Lis

<psI/4 cup of nilk</P,
</11)

<lis

<psA p int of

<ph keyref.'iceerean-flavor'/,

ice creao<h>>
</lb

</uls

<ol id.'steps's

tpkosibine all ingredients in the
<ph propse'setting.donntowesBlendinixx 3000</ph,

<ph props.'setting-foodtruck'AlerWilitte 200</ph,

</PS
</lis

<Lis
tpsMix for 30 seconds</p>

Ohs

<psServe in a cold fountain glassUps

Ohs
</ols

<note id.'unplug' types'uorning",

<psUnplug the blender after each use to prevent a fire hazard.</ps

</notes

</body>
</topic>

FIGURE 8.10 Milkshake recipe in XDITA syntax with the note component. The
note has a unique @id with the value of unplug, and the optional
@type for the note is set to "warning".

• Definition list
• Definition list entry
• Definition term
• Footnote
• List item
• Note
• Ordered list
• Paragraph
• Preformatted text
• Section
• Simple table

Abstractions in the LwDITA Content Lifecycle 183

<IDOCTYPE Had>

<title>Easy Milkshaket/title>

<body>

<article id.'nilkshake>

chl>Easy Milkshake</h1>

<p>Tbe Easy Milkshake is our best-seller and a soda fountain tradition. Me frequently update

the recipe to incorporate fresh flavors and ingredients.</p>

<ul id.'ingredients'>

<p>l/a cup of milk</P>

<p>8 pint of ice crean</p>

</ulf

<01 id•'steps">

<Ii>

<p>Conbine all ingredients in the Plendindxx

3808</span) klendilitte 280</p>

<p>Mix for 3$ seconds</p>

<p>Serve in a cold fountain glass</p>

</al>

<div data-class: note" ids-unplug' data-types-warning')

<p>Unplug the blender after each use to prevent a fire hazand.</p>

</div>

</article>

</body>

FIGURE 8.11 Milkshake recipe in HDITA syntax with the note component. The
HTML5 <div> element includes the @id with the value of "unplug"
and custom data attributes to indicate that it is a LwDITA note with
the type of "warning".

• Simple table entry
• Simple table header
• Simple table row
• Unordered llst
• Video

Linking Maps to Topics

In this layer, we will work with maps as the main mechanism to organize top-
ics and create information hierarchies. LwDITA maps are essential for some
mental abstractions that take place in layer 4. The sample milkshake topics that
have been evolving in previous layers must be collected in a map in order to
produce deliverables for their intended human and algorithmic audiences (see

184 Abstractions in the LwDITA Content Lifecycle

Easy Milkshake

The Easy Milkshake is our best-seller and a soda fountain tradition. Ma frequently update the
recipe to incorporate fresh flavors and ingredients.

-1/4 cup of milk
-A pint of [icecream-flavor) ice cream

1. Combine all ingredients in the Slendiadxx
1000c/span> Slendilitte 200c/span>
2. Mix for 30 seconds
3. Serve in a cold fountain glass

ediv data.class.'mate' id-'unplug' data-types-turning",
cp>Unplug the blender after each use to prevent a fire hazard.c/p>
c/dlv>

FIGURE &12 Milkshake recipe in MDITA extended profile syntax with the note
component. The conref is represented with a raw block of HDITA code.

Gallagher, 2017). In this section, we will look at an XDITA map that includes
the milkshake recipe in a collection of topics that also includes recipes for a
root beer float and a banana split. This map can be combined with the topics
developed in earlier layers and advance to layer 5, where it will be processed by
a LwDITA-aware tool and generate information products for the soda fountain
operators. The map in the following example not only works as a collection
mechanism for topics, it also provides the defining key for the aicecreamilavor
content variable created in layer 2. Figure 8.16 shows a sample XDITA map for
the Soda Fountain Operator Manual.

Oxml version."1.0" encoding."UTF-8"?>
<Mr's/PE topic PUBLIC "4/0ASIS//DTD LIGHTWEIGHT DITA Topic//EN"
"lw-topic.dtd">
<topic idefloar>
<title>Root Beer Float</title>
<body>
<ul ideingrediente>

<11><p>20 oz root beer</p>
<11><p>A large scoop of vanilla ice cream</p>

<ol id...steps").

<11><p>Pour root beer in a large cold glass</p>
<11><p>Scoop ice cream into the glass</p>
<11><p>Serve float as it starts to fizzle</p>

<note conrefw"milkshake.ditallmIlkshake/unplug" I>

</body>
</topic>

FIGURE 8.13 XDITA version of the root beer float recipe with a content reference.
The conref links to the source note in the milkshake recipe. Note the
syntax of filename#topic-id/element-id.

Abstractions in the LwDITA Content Lifecycle 185

<IDOCTYPE html>
<title>Root Beer Float</title>
<body>
<article id."float">

<h1>Root Beer Floatc/h1>
<ul ideingredients",

<11>
<p>20 oz root beer</p>

<11>

<p>A large scoop of vanilla ice creamc/p>

<ol id."steps">

<11>
<p>Pour root beer in a large cold glass</p>

<11>

<p>Scoop ice cream into the glass</p>

<p>Serve float as it starts to fizzle</p>

<div data-conrefm"milkshake.ditalmilkshake/unplug"></div>

</article>
</body>

FIGURE 8.14 HDITA version of the root beer float recipe with a content reference.
The conref links to the source note in the milkshake recipe.

The XDITA map in Figure 8.16 includes references (dopicreb) to the three
hypothetical recipes in the manual. The author can save this file as fountain.
ditamap, and in layer 5 a machine processor will parse the map and referenced
topics in XDITA, HDITA, and MDITA. Following the discussion about con-
tent silos from layer 2, the map on Figure 8.16 includes topics created in the

* Root Beer Float

-20 oz of root beer
-A large scoop of vanilla ice cream

1. Pour root beer in a large cold glass
2. Scoop ice cream into the glass
3. Serve float as it starts to fizzle

<div data-conrefemilkshake.ditallmilkshake/unplue></div>

FIGURE 8.15 MDITA version of the root beer float recipe with a content reference.
The conref links to the source note in the milkshake recipe. Authors
can use an HDITA code block to express the content reference.

186 Abstractions in the LwDITA Content Lifecycle

<?al version="2.0" encodimg="UTF-B"?>

<IDOCTYPE map PUBLIC --//0ASIS//0TO LIGHTWEIGHT DITA Hap//EN" "lw-map•dtd">

<map>

<topicmeta>

<navtitle>Soda fountain Operator Manual</navtitle>

</topicmeta>

<keydef keys="icecream-flavoe>

<topicmeta>

<linktext>strawberry</linktext>

</topicmeta>

</keydef>

<topicref href="xdita-topics/milkshake.dita' format="xdita"/>

<topicref href="hdita-topics/float.html" format="hdita'/>
<topicref href="mdita-topics/bananasplit.md" format="mdita"/>

</map>

FIGURE 8.16 XDITA map for a soda fountain operator manual. The <keydef>
environment declares the value for the "icecream-flavor" variable in
any linked topics.

different LwDITA authoring formats (see the different values of @format in
the <topicref> entries). This means that, for example, end users will not know
what came from MDITA and what came from HDITA: they will just see a uni-
fied deliverable.

The XDITA map also has a navigation title (<navtitle>) that can specify the
main heading for any user products created in the next layer of abstraction. The
defining key for the Icecream-flavor" content variable is provided in the key
definition (<1ceydeb) environment. Any LwDITA topics referenced in this map
will inherit that key definition in layer 5, and all elements with a placeholder for
aicecrearn-flavorwill display the key of, in this example, strawberry. If vanilla is
the flavor of the day tomorrow, the author only needs to change that in the map
key reference, and all the topics referenced will be updated automatically when
the collection is processed in layer 5.

The tasks involved in this layer are related to several stages of the content-
development lifecycles featured earlier in the previous chapter. Layer 4 tasks
focus on Bailie & Urbina's collect and manage stages. They also cover some of
the work included in Andersen's Analyzing the customer and business needs
and Developing an information architecture stages. Contrasting layer 4 with
the ISTE standards for assessing computational thinking in students, some
of its tasks could comply with sections of standards 5b (Students collect data
or identify relevant data sets, use digital tools to analyze them, and represent
data in various ways to facilitate problem-solving and decision-making) and
5c (Students break problems into component parts, extract key information,
and develop descriptive models to understand complex systems or facilitate
problem-solving).

Abstractions in the LwDITA Content Lifecycle 187

Layer 5: Processing and Producing Deliverables

Layer 5 addresses the "metal" tools in Wing's model of computational thinking.
In this layer, developers would build applications based on the algorithms cre-
ated in previous layers of abstraction. Authors in an intelligent content process
based on principles of computational thinking do not need to build tools. Any
author who is also a programmer and decides to build an automating solution
to generate deliverables following the work on previous layers of abstraction
deserves special recognition. However, most writing positions do not expect
that kind of work. Most likely, authors will follow the tools strategy set in layer
1 and bring all the work developed in previous layers to the tool selected. This
removes the emphasis from an actual software product and highlights the work
performed by humans behind the automation.

The technical communication literature shows some waves of interests for tech-
nologies included in this layer, from single-sourcing (e.g, Ament, 2003; Carter,
2003) to content management (e.g., Hart-Davidson et aL, 2007; Gu & Pullman,
2009), and most recently component content management (e.g, Andersen, 2014;
Batova, 2014). The current topic of interest receives attention in conference pres-
entations and journal articles for a while, and instructors evaluate ways to teach the
technology du jour.lf an authoring process or an academic curriculum lesson starts
in this processing layer, it will probably end up being too complicated for anyone
who is not a programmer or developer. And if the emphasis is placed on a specific
software package instead of a methodology based on human tasks of abstractions,
authors in industry and academia will face the tools' acquisition problems identi-
fied by Carllner that I mentioned in the introduction to this chapter.

The main automation tool that will take our milkshake example through layer 5
is the DITA Open Toolkit - the open source implementation of the DITA standard
that we discussed in previous chapters. The same results can be achieved with many
DITA-aware programs (open source and commercial) with a graphical user inter-
face, and I will also show how to process the milkshake example in Oxygen XML.

The processing layer needs the files that we have created in previous layers of
abstraction, which should include the following:

• Content strategy rules developed in layer 1
• LwDITA topics authored in layer 2
• Context filters added to LwDITA topics in layer 3
• Content references added to LwDITA topics in layer 4
• XDITA map to collect topics created in layer 4.

The fictional deliverable in this example is a web version of the soda fountain
operator manual that can be accessed on a device at both soda fountain locations.
In this first part, the processing tool will take the map and topics and populate the
lcecream-flavor" variable with the <key> value established in the XDITA map.

188 Abstractions in the LwDITA Content Lifecycle

On a given day, the author or a manager enters the <key> value on the map estab-
lishing the ice cream flavor for that day. After processing, the resulting deliverable
will replace all "icecream-flayor"placeholders found in the topics with the actual
content defined in the <key> element on the map. Figure 8.16 in layer 4, shows
an XDITA map in which the <key> value has been established as 'strawberry.

Revisiting the reference information from Chapter 5, and according to the
DITA-OT documentation, the general structure for a command that builds
DITA (and LwDITA) deliverables from topics and maps is shown in figure 8.17.

To generate the web version of the soda fountain operator manual, you
would need to enter the command shown on Figure 8.18 on a command-line
environment inside the directory or folder where you installed the DITA-OT.

The command has the reference to the built-in (bin) subdirectory and the
dita executable program, with the fountain.ditamap file created in layer 4 as
input, and htm15 as the delivery format. The value for the --input argument
needs to direct the DITA-OT to the specific folder where you stored the fountain.
ditamap file (the path-to-file section of the command, which must be replaced
by the actual path to the file in your computer). The easiest way to record the
correct file location or path is to drag and drop the file into the command line
interface immediately after the --input= argument. That one-line command
combines the map with the topics, processing the hierarchies and relationships
established by the topic references and also looking for and populating any vari-
able content placeholders. The resulting HTML files will appear automatically
in the DITA-OT out folder, although you can specify an alternative folder in
the build command with the --output option. Figure 8.19 shows the resulting
web version of the milkshake recipe after being processed with the DITA-OT.

0 G' te"

dita-of-diribirddita --input= input-file --format= format options

0 the directory where the DITA-OT files are installed in your computer (replace dita-ot-dir
with the full path for the DITA-OT folder).

®a subdirectory for programs that are "built-in" (bin) the DITA-OT. The built-in program
that you need to execute is dita.

0 argument for file input (e.g., a DITA/LwDITA topic or map)

Oct argument for fennel (e.g.,POF, HTML5, etc.) and additional options.

FIGURE &17 General structure for a command that builds DITA (and LwDITA)
deliverables with the DITA-OT.

Abstractions in the LwDITA Content Lifecycle 189

0 0
dita-of-difibinldita --input=path-M-fi/e/fountain.ditamap --

format=html5

d

) the directory where the OITA-OT files are installed in your computer (replace dita-ot-dir
with the full path for the DITA-OT folder).

Ca subdirectory for programs that are "built-in" (bin) the DITA-OT. The built-in program
that you need to execute is dita.

0 argument for file input (e.g., the OITA map for the soda fountain manual created in layer
4)

)argument for format (HTMLS; because the soda fountain manager wants a website).

FIGURE 8.18 Command for the DITA-OT to generate a web deliverable from the
soda fountain operator's manual XDITA map.

Figure 8.20 shows the resulting web version of the root beer float topic. The
warning note about unplugging the blender appears in this recipe via the con-
tent reference mechanism.

bay LUSO X

C Issousersecoo.

Easy Milkshake

The Easy Milkshake is our best-seller and a soda fountain tradition. We frequently update
the recipe to incorporate fresh flavors and ingredients.

• I/4 cup of milk

• A pint of strawberry ice cream

I. Combine all ingredients in the Bkndimixx 3000 Blendilittc 200

2. Mix for 30 seconds

3. Serve in a cold fountain glass

Warning:

Unplug the blender after each use to prevent a fire hazard.

cosi 17

FIGURE 8.19 HTML5 transformation of the milkshake recipe processed with the
XDITA map. The ice cream flavor inherited the value of "strawberry,"
but step 1 still shows both possible options for the blender to be used.

190 Abstractions in the LwDITA Content Lifecycle

Root Serfloot X

el C Q G.) fita://Nserwearto,

Root Beer Float

120%

• 20 oz root beer

• A large scoop of vanilla ice cream

1. Pour root beer in a large cold glass

2. Scoop ice cream into the glass

3. Serve float as it starts to fizzle

Note:

Unplug the blender after each use to prevent a fire hazard.

O tr

FIGURE 8.20 HTML5 transformation of the root beer float recipe processed with
the XDITA map. The "warning" note appears in this topic via the
conref that reuses the original element from the milkshake recipe.

A LwDITA-aware software application like Oxygen can also produce the
soda fountain manual. The "Apply Transformation Scenario(s)" dialog box in
Oxygen would present the user with options to produce deliverables from this
LwDITA map.

If the soda fountain runs out of strawberry ice cream and needs to update the
manual to reflect that the default flavor is now vanilla, the author only needs to
modify one line of code inside the XDITA map, as shown in Figure 8.21.

After saving the fountain.dttamap with the new ice cream flavor, you can
run the same DITA-OT command from Figure 8.18 without any changes.
Remember to replace the path-to-file segment with the actual path to the file in
your computer.

Figure 8.22 shows the new web version of the milkshake recipe with vanilla
as the ice cream flavor.

The web versions of the milkshake recipe in Figures 18 and 21, however,
still show both blender options. These deliverables are not ready for the
intended users of the soda fountain manual. The next step is to apply the
If-then filter for conditional content. This stage involves adding a new file
to the collection created in these layers of abstractions. The new file will be
a DITAVAL (for DITA value), which "specifies which content is included
or excluded based on condition definitions" (Bellamy et al, 2012, p. 171).
This DITAVAL will specify the conditional arguments for applying filters to
the processing stage. If the intended deliverable is exclusively for the opera-
tors working at the food truck setting of the soda fountain, then the filter

Abstractions in the LwDITA Content Lifecycle 191

Oxml version="1.0" encoding="UTF-8'T>

<IDOCTYPE map PUBLIC . -//0ASIS//DTO LIGHTWEIGHT DITA Map//EN" "lw-map.dte>
<map>

<topicmeta>

<navtitle>Soda Fountain Operator Manual</navtitle>

</topicmeta>

<keydef keys= icecream-flavor.>

<topicmeta>

<linktext>Vanilla</linktext>

</topicmeta>

</keydef>

<topicref href="xdita-topics/ailkshake.dita" format="xdita"/>

<topicref href="hdita-topics/float.htals format="hdita"/>

<topicref href="mdita-topics/bananasplit.md' format="mdita"/>

</map>

FIGURE 8.21 XDITA map for the soda fountain operator manual with the
"icecream-flavor" variable set to vanilla.

should follow the structure of if @props="setting-foodtruck", then exclude
@props="setting-downtown". This is achieved in a DITAVAL that looks like
Figure 8.23.

The same DITAVAL file can work for all LwDITA authoring formats with the @
props attribute for XDITA and the @data-props attribute for HDITA and MDITA
extended profile. You can save this new file as setting.ditavat and add it to the file col-
lection, which now includes LwDITA topics, an XDITA map, and a DITAVAL filter.

aley%1001%00 X

E- Ca 4) 0 fJe9/A1sero/cxN• 170%

Easy Milkshake

The Easy Milkshake is our bestseller and a soda fountain tradition. We frequently update
the recipe to incorporate fresh flavors and ingredienm

• 1/4 cup of milk

• A pint of vanilla ice cream

1. Combine all ingredients in the Ellendimixx 3000 Blendilitte 200

2. Mix for 30 seconds

3. Serve in a cold fountain glass

Warning:

Unplug the blender after each use to prevent a fire hazard.

tt ± ma)»

FIGURE 8.22 HTML5 transformation of the milkshake recipe with vanilla as the ice
cream flavor.

192 Abstractions in the LwDITA Content Lifecycle

<hag version."1.0" encoding."UTF-8"?>
<val>

<prop actions'exclude" att."props" val.usetting-downtoweh
<prop actions'exclude" att."data-props' vallesetting-downtown"h

</val.>

FIGURE 8.23 DITAVAL file that excludes all references to the "downtown" setting
when processing the map and topics. The two lines of code between
the <val> and </val> tags reference the variables in XDITA and
HDITAJMDITA extended profile syntaxes, respectively.

The marriage of the XDITA map with the DITAVAL in the DITA-OT takes
place in the same one-line command but adding an option to indicate the filter loca-
tion (Figure 8.24). You should also replace the path-to-file placeholders with the
actual locations of the fountain.dltamap and setting.clitaval files in your computer.

The filter argument points the dita executable program in the direction of
the DITAVAL, which will be processed with the XDITA map. The resulting
web version of the milkshake recipe, which now excludes all references to the
downtown location of the soda fountain, appears on Figure 8.26.

In Oxygen XML Editor, you can link a DITAVAL to a LwDITA map
when configuring the transformation scenario by clicking on the Filters tab.
The Oxygen user manual includes information on applying filters to DITA
transformations'.

0 ®
dits-at-dir/binidita --input,path-to-file/fountain.ditamap --
format=htm/5--fifter= path-to-Ne/setting.dftaval

d ,

a
the directory where the DITA-OT files are installed in your computer (replace dita-ot-dir
with the full path for the DITA-OT folder).

a subdirectory for programs that are "built-in" (bin) the DITA-OT. The built-in program tl / that you need to execute is dita.

° argument for file input (e.g., the DITA map for the soda fountain manual created in layer
4)

®argument for format (HTML5; because the soda fountain manager wants a website).

(pargument for fitter (the DITAVAL file that excludes all references to the 'downtown"
location).

FIGURE 8.24 Command for the DITA-OT to generate a web deliverable from
the soda fountain operator's manual XDITA map that excludes
references to the "downtown" location.

Abstractions in the LwDITA Content Lifecycle 193

taw Worsham X

C Q E) filoWAJsersicado:

Easy Milkshake

The Easy Milkshake is our best-seller and a soda fountain tradition. We frequently update
the recipe to incorporate fresh flavors and ingredients.

• 1/4 cup of milk

• A pint of vanilla ice cream

I. Combine all ingredients in the Blendilitte 20D

2. Mix for 30 seconds

3. Serve in a cold fountain glass

Warning:

Unplug the blender after each use to prevent a tire hazard.

no% s)

FIGURE 8.25 Filtered web deliverable of the milkshake recipe that excludes all
references to the "downtown" setting.

If the setting needs to change, you only need to update the DITAVAL and
process again with the same DITA-OT one-line command or applying the
transformation scenario in Oxygen. For larger content repositories, this build
process can be automated with scripts and algorithms, which are beyond the
scope of Creating Intelligent Content with Lightweight DITA (aimed primarily
at authors and instructors of introductory LwDITA workflows).

Building deliverables with the DITA-OT or LwDITA-aware tools is only one
stage of this layer. The soda fountain will need a technology-based solution to
store source code, enable authoring and processing, and deliver information
products to end users (on web or print platforms). These layers of abstraction
reflect the academic privilege behind their creation, as in a classroom environ-
ment my students do not have to deal with workplace clients and users with real
needs. Even in client projects for internships or service learning purposes, dead-
lines and deliverables are flexible when they involve undergraduate students as
content creators. Thus, this layer does not get involved with advanced software
for component content management and presentation of deliverables. In my
courses at Virginia Tech, students learn to host their source code and track ver-
sions of it with GitHub repositories, and their processing is automated with the
DITA-OT or Oxygen XML. GitHub Pages is the default hosting service for web
deliverables produced in this layer. Graduates of the Professional and Technical
Writing program who work in industry, non-profits, or government agencies
authoring for intelligent content workflows learn their worksite-specific tools

194 Abstractions in the LwDITA Content Lifecycle

as part of job training programs, and the layers of abstraction presented in this
chapter make that learning process easier, particularly for graduates from a
department of English. Teaching intelligent content (or even DITA) using a
commercial CCMS, following its professionally-developed video tutorials and
typing in a graphical user interface, is a professional skill that might benefit a
handful of students and create limitations for many others who end up in envi-
ronments that do not use that specific tool.

The tasks involved in this layer are related to stages of the content-development
lifecycles featured earlier in the previous chapter. Layer 5 tasks focus on
Bailie & Urbina's publish stage. They also cover some of the work included
in Andersen's Developing the technology strategy and Creating structured
content. Contrasting layer 5 with the ISTE standards for assessing compu-
tational thinking in students, some of its tasks could comply with sections
of standard 5d (Students understand how automation works and use algo-
rithmic thinking to develop a sequence of steps to create and test automated
solutions) with limitations.

Layer 6: Preparing for the Future

Now that the soda fountain has an operator manual that adapts to different
locations, reuses warning content among topics regardless of authoring for-
mat, and incorporates the ice cream flavor of the day to all its recipes with a
one-line command, it's time to think about the future. LwDITA allows scal-
ability as represented by additional publication channels, new audience and
context requirements, and authors from different disciplines and writing tra-
ditions Joining the process. Additional publication channels can include those
already supported by the DITA-OT or other existing LwDITA-aware software
applications (EPUB, mobile web devices, PDF, Microsoft Word, and others) or
innovative approaches to user documentation like the conversational patterns
for chatbots or agents like an Amazon Echo. New audience and context require-
ments can come from expert or novice fountain operators who need different
levels of detail on their recipes, or additional settings for the soda fountain with
different equipment and ingredients availability. Authors from different writing
traditions can include those already represented in the initial LwDITA author-
ing formats (XML, HTML5, and Markdown) and those in formats considered
for future releases of the LwDITA standard (e.g., JSON and Microsoft Word).
This layer also includes a return to layer 1 for an iterative process of improve-
ment and revision.

In general, this layer focuses on making the content and structures devel-
oped in previous layers as future-proof as possible. This is accompllshed by the
emphasis on open standards instead of proprietary software solutions. DITA,
LwDITA, HTML5, and even CommonMark/GitHub flavored Markdown are

Abstractions in the LINDITA Content Lifecycle 195

maintained by international standards' consortiums. Their continuous devel-
opment guarantees applicability beyond the lifespan of a specific tool or app
release. Furthermore, it also enables interoperability with new standards, like
the International Standard for Intelligent Information Request and Delivery
(IiRDS)3, which has been heralded as the standard of Industry 4.0 and Internet
of Things workflows.

The tasks involved in this layer are related to several stages of the content-
development lifecycles featured earlier in the previous chapter. Layer 6 tasks
focus on the characteristics of extensible and iterative from Bailie & Urbina's
content model, which includes "a loop back to analysis for the next cycle"
(2013, p. 236). The tasks in layer 6 also cover some of the work included in
Andersen's Managing change stage. Contrasting layer 1 with the ISTE stand-
ards for assessing computational thinking in students, some of its tasks could
comply with sections of standards 5a (Students formulate problem definitions
suited for technology-assisted methods such as data analysis, abstract models
and algorithmic thinking in exploring and finding solutions), 5c (Students break
problems into component parts, extract key information, and develop descriptive
models to understand complex systems or facilitate problem-solving), and even
5d (Students understand how automation works and use algorithmic thinking to
develop a sequence of steps to create and test automated solutions) .

Notes

I "1/4 cup of milk," as the XDITA version of the recipe presented in Figure 1 shows, is
not really the same as "1/4 (one quarter) cup of milk." Representing fractions in DITA
can be properly achieved with snippets of the W3C standard MathML (https:I/www.
w3.org/Math/). In order to keep this example as simple as possible, I avoided the
complexity of adding MathML syntax to the XDITA topic.

2 https://www.oxygenxml.com/doc/versions/20.0/ug-author/topics/dita-map-edit-
filters.html

3 https://www.parson-europe.com/en/knowledge-base/427-iirds-new-delivery-
standard-technical-documentation.html

References

2.2.4.2.1 Conditional processing attributes (2018, June 19). Retrieved from http://docs.
oasis-open.org/dita/dita/v1.3/errata02/os/complete/part3-all-inclusive/archSpec/
base/conditional-processing-attributes.htmleconditional-processing-attributes

Albers, M. J. (2003). Single sourcing and the technical communication career path.
Technical Communication. 50(3), 335-344.

Ament, K. (2003). Single sourcing Building modular documentation. Norwich, NY:
William Andrew.

Andersen, R. (2014). Rhetorical work in the age of content management: Implications for
thefieldoftechnical communication.kunial ofBusiness and Technical Communication,
28(2), 115-157.

196 Abstractions in the twDITA Content Lifecycle

Bacha, J. (2009). Single sourcing and the return to positivism: The threat of plain-style,
arhetorical technical communication practices. In G. Pullman & B. Gu (Ms.) Content
management: Bridging the gap between theory and practice (pp. 143-159). Amityville,
NY: Baywood.

Bailie. R.A. (2014). Content strategy. In S. Abel & R.A. Bailie (Eds.), The language of
content strategy (pp. 14-15). Laguna Hills, CA: XML Press.

Bailie. R.A. & Urbina, N. (2013). Content strategy: Connecting the dots between business,
brand, and benefits. Laguna Hills, CA: XML Press.

Baker. M. (2013). Every page is page one: Topic-based writing for technical communica-
tion and the web. Laguna Hills, CA: XML Press.

Baton, T. (2014). Component content management and quality of information prod-
ucts for global audiences: An integrative literature review. IEEE Transactions on
Professional Communication. 57(4), 325-339.

Bellamy, L, Carey, M., &Schlotfeldt, J. (2012). DITA best practices: A roadmap for writ-
ing, editing, and architecting in DITA. Upper Saddle River, NJ: IBM Press.

Carliner, S. (2010). Computers and technical communication in the 21st century. In
R. Spilka (Ed.). Digital literacy for technical communication: 21st century theory and
practice (pp. 21-50). New York, NY: Routledge.

Carter, L (2003). The implications of single sourcing on writers and writing. Technical
Communication, 50(3), 1-4.

Clark, D. (2007). Content management and the separation of presentation and content.
Technical Communication Quarterly, 17(1), 35-60.

Clark, D. (2016). Content strategy: An integrative literature review. IEEE Transactions
on Professional Communication, 59(1), 7-23.

Creelcmore, L (2014). Metadata. In S. Abel & R.A. Bailie (Eds.), The language of content
strategy (pp. 28-29). Laguna Hills, CA: XML Press.

Flower, L. (1989). Rhetorical problem solving: Cognition and professional writing. In
M. Kogen (Ed.), Writing in the business professions (pp.3-36). Urbana, IL NCTE.

Gallagher, J.R. (2017). Writing for algorithmic audiences. Computers and composition.
45,25-35.

Getto, G. & St Amant, K. (2014). Designing globally, working locally: Using personas
to develop online communication products for international users. Communication
Design Quarterly. 3(1). 24-46.

GitHub Flavored Markdown Spec. (2017. August 1). Retrieved from https://github.
github.com/gfm/

Hackos, J. T. (2011). Introduction to DITA: A user guide to the Danvin Information Typing
Architecture including DITA 1.2 (2nd edition). Denver, CO: Comtech Services, Inc.

Halvorson, K. & Rach, M. (2012). Content strategy for the web (2nd Ed.). Berkeley, CA:
New Riders.

Harrison, N. (2016). Content variables. In R. Gallon (Ed.), The language of technical com-
munication (pp. 66-67). Laguna Hills, CA: XML Press.

Hart-Davidson, W. et al. (2007). Coming to content management Inventing infrastruc-
ture for organizational knowledge work. Technical Communication Quarterly. 17(1),
10-34.

ISTE. (2018). ISTE standards for students. Retrieved from http://www.iste.org/standards/
for-students

Pringle, A., & O'Keefe, S. (2009) Technical writing 101: A real-world guide to planning
and writing technical content. Durham, NC: Scriptorium Press.

Abstractions in the LwDITA Content Lifecycle 197

Rothrocic, L & Narayanan, S. (2011). Human-in-the-loop simulations: Methods and prac-
tice. London: Springer-Verlag.

Swans, J. (2010). Recycled writing: Assembling actor networks from reusable content.
Journal of Business and Technical Communication. 24(2), 127-163.

Swisher, V. (2014). Global content strategy: A primer. Laguna Hills, CA: XML Press.
Vazquez, J. (2016). Conditional content. In R. Gallon (Ed.), The language of technical

communication (pp. 64-65). Laguna Hills, CA: XML Press.
Wachter-Boettcher, S. (2012). Content everywhere: Strategy and structure for future-

ready content. Brooklyn, N.Y: Rosenfeld Media.
Willerton, R. (2015). Plain language and ethical action: A dialogic approach to technical

content in the 21st century. New York, NY: Routledge.

