Using dpt-distance as transportation cost

Benchmark

Transportation costs	Squared L2 (=WOT)+ dpt-distance
Representations	PCA + global scVI + local scVI
Data sets	WOT-data set + Mouse Gastrulation
Validation metrics	Geodesic interpolation + Push-consistency

Validation of transport maps

Geodesic interpolation

Why I don't like using geodesics

Push-consistency

WOT-data set

37 time points, every 0.5 day

Geodesic interpolation

WOT-data set

Push-consistency

WOT-data set

Cross-Push-consistency

WOT-data set

Global scVI

Cross - total of 1 day

Cross - total of 2 days

Mouse Gastrulation

9 time points, every 0.25 day

Geodesic interpolation

Mouse Gastrulation

Push-consistency

Mouse Gastrulation

Global scVI

Choosing representation

Choosing representation

WOT-data set

Comparing 1x0.5d-WOT-matrix to 1x0.5d-dpt-matrix cost=space in which emd was calculated map=representation used to calculate T-maps

Summary

- → Push consistency can be used as a validation metric
- → Using geodesics, L2 and dpt perform similarly well
- → Using push-consistency, dpt seems to perform better
- → Global scVI representation

Supplementary slides

Push-consistency

Global scVI

Batch correction for time-series data

Choosing representation

WOT-data set

