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Abstract

This thesis is motivated by a class of least squares approximation problems known as

two-sided Procrustes-type problems. For their solution these problems require three de-

compositions that play a central role in numerical linear algebra: the polar decomposition,

the SVD, and the spectral decomposition of a symmetric matrix.

We begin by discussing the Kendal Square Reserach KSR1, the parallel computer on

which we implemented our algorithms. We focus our attention on issues that concern

a numerical analyst. However, a description of the memory system of the KSR1 is also

given, since the main requirement in designing efficient algorithms for the KSR1 is a clear

understanding of its memory system.

We survey two-sided Procrustes-type problems, deriving analytic solutions where pos-

sible and otherwise developing numerical methods for their solution.

We discus existing algorithms for computing the polar decomposition and then present

a new parallel algorithm for this decomposition. The implementation of this algorithm

on the KSR1 is discussed, and timing results show that our implementation is faster than

existing methods for computing the polar decomposition of a large matrix on the KSR1.

An observation on the relation between the polar decomposition and the singular value

decomposition reveals a new approach to computing the SVD. This approach requires

the computation of the sprectral decomposition of a symmetric matrix. We discuss and

investigate on the KSR1 several schemes based on the Jacobi method for the solution

of the symmetric eigenvalue problem. Two of these methods, both parallel block Jacobi

methods, are the fastest way we know for computing the spectral decomposition of a large

dense symmetric matrix on the KSR1. We use a combination of our parallel algorithm

9



for computing the polar decomposition and one of these methods for the computation

of the SVD, and find that this approach is significantly faster than the LAPACK SVD

routine on the KSR1.

Applications are also discussed in this thesis. Applications of the two-sided Procrustes-

type problems are mentioned in the corresponding chapter. Applications of the polar

decomposition and of the SVD, the decompositions for which we derived new parallel

algorithms, are discussed in detail.
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Chapter 1

Introduction

This thesis is motivated by a class of constrained least squares approximation problems

which will be referred to as two-sided Procrustes-type problems. These problems can

be described as follows: given A, B ∈ Cm×n (m ≥ n), find matrices X ∈ Cm×m and

Y ∈ Cn×n with a given property to minimize

‖XAY −B‖F ,

where ‖·‖F denotes the Frobenius norm (‖A‖F = (
∑

i,j |aij|2)1/2). Problems with Y ≡ In

will be referred to as one-sided Procrustes-type problems. An example of this class is the

orthogonal Procrustes problem [106], where the unknown matrix X is a unitary matrix.

The general two-sided problem has not received the same amount of attention as the

one-sided one, and there are still many open questions associated with it, some of which

we consider in this thesis.

The investigation of a class of two-sided Procrustes-type problems revealed the main

tools required for their solution. Among them are the polar decomposition, the spec-

tral decomposition of a symmetric matrix, and the singular value decomposition (SVD).

These three decompositions play an important role in numerical linear algebra and they

are also important tools in numerous applications. The two-sided Procrustes-type prob-

lems discussed in this thesis occupy just a narrow band in the broad spectrum of their

applications.

The above-mentioned decompositions have received a great deal of attention from

13



CHAPTER 1. INTRODUCTION 14

the numerical linear algebra community and they have been studied in depth for many

years. Furthermore, highly sophisticated software for their traditional approaches has

been developed for conventional (sequential) computers.

The advent of parallel computers some twenty five years ago both provided an oppor-

tunity and prompted a need to develop parallel algorithms. The spectral decomposition

of a symmetric matrix and the singular value decomposition have attracted research in-

terest from the early days of parallel computing. The polar decomposition, probably due

to the fact that it can be obtained via the SVD, has not received the same amount of

attention. We are not aware of any parallel algorithm developed especially for the polar

decomposition. However, the development of parallel algorithms for the symmetric eigen-

value problem and the SVD did not saturate the research interest in this field, since the

efficiency of a parallel algorithm is strongly connected with the underlying architecture

of the parallel machine. Thus, the introduction of a new parallel architecture may cause

reconsideration of the existing parallel algorithms. An example of an advanced parallel

architecture that has been introduced recently (1991), is the Kendall Square Research

KSR1.

The KSR1 is a virtual shared memory MIMD computer system. The bulk of our

computational work took place on a 32-processor configuration KSR1, installed at the

Centre for Novel Computing at the University of Manchester. Having been familiar with

the KSR1, our interested was focused on developing parallel algorithms for the above-

mentioned decompositions and implementing them on this parallel machine.

We started with the polar decomposition. It is a well-known result that any matrix

A ∈ Cm×n (m ≥ n) has a polar decomposition A = UH, where U ∈ Cm×n has orthonor-

mal columns and H ∈ Cn×n is Hermitian and positive semidefinite. If A has full rank

then H is nonsingular and U is unique. Having developed, analyzed, and implemented

a parallel algorithm for the polar decomposition we made the following observation: if

H = V DV ∗ is the spectral decomposition of the Hermitian positive semidefinite polar

factor H of A, where V is unitary and D = diag(di) with d1 ≥ d2 ≥ · · · ≥ dn ≥ 0, then

A = PΣQ∗ is a SVD of A, where P = UV , Σ = D and Q = V . The above observation
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suggested a new approach to computing the SVD, and led our research to investigating

parallel methods for the symmetric eigenvalue problem.

Unlike the polar decomposition, the symmetric eigenvalue problem has received much

attention from the parallel computing community. There is a rich literature on parallel

methods for the symmetric eigenvalue problem. Most of these methods are based on

the Jacobi method for computing the eigenvalues and the eigenvectors of a symmetric

matrix. We experimented with several versions of the Jacobi method on the KSR1 and

we found that block versions are more suitable for this parallel machine. According to

our experimental results, two of the block Jacobi methods that we implemented on the

KSR1 were found to be the fastest methods known to us for computing the spectral

decomposition of large dense symmetric matrices on this parallel system. Moreover, the

combination of our parallel algorithm for computing the polar decomposition and of these

block Jacobi methods for the computation of the spectral decomposition of a symmetric

matrix, was found to be the fastest stable method we know for computing the SVD of large

dense matrices. Our parallel methods have been compared with parallelized versions of

the corresponding LAPACK routines, and parallelized versions of corresponding existing

sequential algorithms.

This thesis is also concerned with applications. There are two separate sections de-

voted to applications of the polar decomposition and the SVD, the decompositions for

which we derive new parallel algorithms. Applications of the two-sided Procrustes prob-

lems discussed in this thesis, most of them applications of the SVD and the polar decom-

position, are not discussed in detail. However, their known to us applications of these

two-sided Procrustes-type problems are mentioned during their discussion.

This thesis is structured in the following way. Chapter 2 introduces the KSR1, and

can be viewed as a numerical analysis perspective of the KSR1. Here, having described

the KSR1 we put emphasis on issues that concern a numerical analyst. These include an

introduction to the parallel constructs of the KSR1, KSR Fortran, and numerical software.

In the final section of this chapter we report our experiences as a pioneer user of the KSR1.

Chapter 3 concentrates on a class of two-sided Procrustes-type problems, suggesting
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methods for their solution. Chapter 4 is the core of this thesis. In this chapter, having

discussed the existing sequential algorithms for the polar decomposition, we present a

parallel algorithm for its computation and discuss its implementation on the KSR1. In

the same chapter we state numerical and timing results concerning the performance of our

parallel algorithm and other existing techniques on the KSR1. Applications of the polar

decomposition are also discussed in this chapter. The bulk of Chapter 5 is concerned

with Jacobi methods for the solution of the symmetric eigenvalue problem. In the first

sections we discuss sequential and parallel scalar Jacobi methods. We also discuss and

examine two schemes designed to improve the performance of a parallel Jacobi method.

Then, we present two parallel block Jacobi methods and we discuss their implementation

on the KSR1. The implementation of parallel scalar Jacobi algorithms on the KSR1 is

also discussed. In the same chapter we state numerical and timing results concerning the

performance of our algorithms for the symmetric eigenvalue problem and the SVD, and

of the correspondind standard and parallelized LAPACK routines on the KSR1. There

is also a separate section in this chapter devoted to applications of the SVD. Finally in

Chapter 6 we state our conclusions and discuss our future research plans. Listings of our

KSR Fortran routines for the polar decomposition of a general matrix and the spectral

decomposition of a symmetric matrix are given in Appendix. The source codes for the

most important algorithms mentioned in this work can be found inside the back cover of

this thesis.



Chapter 2

The Kendall Square Research KSR1

2.1 Introducing the KSR1

In this chapter we introduce the KSR1, the parallel machine that we used for our research.

This chapter may be viewed primarily as a numerical analysis perspective of the KSR1.

As numerical analysts, rather than computer scientists, we focus our attention on issues

concerning numerically intensive processing, and it is beyond the scope of this chapter

to describe technical details in depth. However, a description of the KSR1’s memory

system is inevitable. The main requirement in designing efficient algorithms for the

KSR1 is a clear understanding of its memory system, which differentiates the KSR1 from

most advanced computer architectures. An architectural overview of the KSR1 is given

in Section 2.

Kendall Square Reseach released the KSR1 in 1991. The KSR1 is a virtual shared

memory MIMD computer system designed to run a broad range of mainstream applica-

tions, ranging from numerically intensive computation, to on-line transaction processing

and database management and inquiry [76]. The KSR1 claims to be the first MIMD

shared memory machine which has the scalability1 of highly parallel message passing

systems2. These systems are scalable to large number of processors, but their use re-

quires the management of the complex details of work distribution, data placement,

1Scalability is a term that is used to signify whether a given parallel architecture shows improving
performance for a parallel algorithm as the number of processors increases.

2A typical example of this class the Intel iPSC/1.
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CHAPTER 2. THE KENDALL SQUARE RESEARCH KSR1 18

message generation, and scheduling. On the other hand, true shared memory multipro-

cessors3 offer the simple programming model of a single address space, but they are less

scalable due to the cost of the processor–memory switch. The KSR1 has been designed

to combine the advantages of both categories, providing a user friendly environment and

scalability. A study on the scalability of the KSR1 can be found in [99]. At present, a

KSR1 system contains from 8 to 1088 processors. The KSR1 installed in the Centre for

Novel Computing at the University of Manchester is a 32-processors configuration with 1

gigabyte of memory and 10 gigabytes disk capacity. Its peak computational performance

is 1.28 gigaflops. Each processor is a superscalar 64-bit unit able to issue up to two

instructions every 50 nanoseconds, giving a performance rating of 40 MIPS and a peak

floating point performance of 40 megaflops.

The KSR operating system is an extension of the OSF/1 version of Unix [74]. There

is also an extensive set of programming languages and compilers, including Fortran,

C, C++, Cobol, and assembly language. We consider only the Fortran programming

environment which is discussed in Section 3. The Kendall Square Research also supplies

the KSRlib/BLAS library [77] and the KSRlib/LAPACK library [78]. Both libraries

have been used extensively for our research, and they are also discussed in Section 3.

For applications that require database management capability, the KSR1 supports the

relational database management system ORACLE7.

2.2 Architectural Overview

Unlike typical high-performance computers, which have large pools of main memory and

small caches, the KSR1 has main memory consisting of large, communicating local caches,

each capable of storing 32 megabytes. This feature characterizes the KSR1 as a Cache-

Only Memory Architecture (COMA) system [53, 70]. The programmer perceives the

KSR1 memory system as a collection of processors connected to a shared memory. The

shared memory is addressed by a 64-bit System Virtual Address (SVA). The contents of

SVA locations are physically stored in a distributed fashion, in a collection of local caches.

3A typical example of this class is the CRAY C90.
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Ring:2

Ring:0

Ring:1

Processors

...

...

...

...

Figure 2.2.1: KSR1 hierachy of rings.

The KSR architecture supports an SVA space of 264 bytes; the KSR1 implementation

supports an SVA space of 240 bytes (1 terabyte). There is one local cache for each

processor in the system. Up to 32 processors are connected to a slotted, pipelined ring,

called a Ring:0. The general KSR architecture is a multiprocessor system composed of a

hierachy of rings. The lowest level, Ring:0, consists of a 34 message slots connecting 32

processing cells (processors) and two cells responsible for routing to the next higher layer

ring, Ring:1. A fully populated Ring:1 is composed of the interconnecting cells from 34

Ring:0 rings, providing up to 1088 processors. A fully configured KSR1 is composed of

only two layers. The general KSR architecture provides for a third layer which connects

Ring:1 rings into a Ring:2 layer. Figure 2.2.1 shows the hierarchical ring structure of

the KSR multiprocessor. In what follows we only consider a KSR1 with a single Ring:0

installed. The search engine interconnects the local caches and provides routing and

directory services for the collection of local caches. As a result, all the local caches

behave logically as a single, shared address space. The combination of the local caches

and the search engine is referred to as the ALLCACHE memory system.

As we mentioned earlier, a Ring:0 ring has 34 message slots, where 32 are constructed
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for the 32 processors and the remaining two slots are used for the directory cell connecting

to the Ring:1 ring. Each slot can be loaded with a packet, made up of a 16 byte header

and a 128 byte of data. This is the basic data unit in the KSR1, called a subpage. A

processor in a ring ready to transmit a message waits until an empty slot is available,

which rotates through a ring interface of the processor. A single bit in the header of the

slot identifies an empty slot. The interface between the processor and the ring is provided

by a Cell Interconnect (CI). The role of a CI can be described as follows. If a local cache

cannot satisfy a request from its local processor, a request message is inserted into the

Ring:0 ring when an empty slot is available to its CI. As the request message passes each

CI of the ring, that CI checks to see if the requested data is present in its local cache. If

the data is available in that local cache in the appropriate state, the CI will extract the

request and then will insert a response into the ring. The response will be rotated back

to the requested processor.

ALLCACHE stores data in units of pages and subpages. Pages contain 16 kilobytes

(214 bytes), divided into 128 subpages of 128 (27) bytes. The unit of allocation in local

caches is a page, and each page of SVA space is either entirely represented in the system or

not represented at all. As we mentioned earlier, the unit of transfer and sharing between

local caches is a subpage. The page allocation procedure may be described as follows.

When a processor references an address not found in its local cache, ALLCACHE memory

creates a space for it there by allocating a page. Each local cache can accommodate 2048

(211) pages, or equivalently its capacity is 32 megabytes. The contents of the newly

allocated page are filled as needed, one subspace at a time.

The page allocation procedure is illustrated in Figure 2.2.2, where we suppose that

processor B executes a load instruction for address X and that the corresponding page

is not found in local cache B. In this case, ALLCACHE memory allocates a complete

page in B’s local cache, but only the subpage containing X is copied into local cache B.

All other subpages in that page are marked invalid in local cache B. However, a later

reference by processor B to address Y will not require a new page allocation. In this case,

ALLCACHE memory will find that the page is already allocated, and the search engine
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Figure 2.2.2: The page allocation procedure.

will be instructed to find the required subpage in another cache and copy the address

and data into the already allocated page on local cache B.

The KSR1 processor consists of 12 custom CMOS chips:

• The Co-Execution Unit (CEU) fetches all instructions, controls data fetch and store,

controls instruction flow, and does the arithmetic required for address calculations.

• The Integer Processing Unit (IPU) executes integer arithmetic and logical instruc-

tions.

• The Floating Point Unit (FPU) executes floating point instructions.

• The eXternal Input/output Unit (XIU) performs data management administration

and programmed I/O.

• Four Cache Control Units (CCU) are the interface between the 0.5 megabytes sub-

cache and the 32 megabytes local cache. (The subcache is discussed in the following

paragraph.)

• Four Cell Interconnect Units (CIU) are the interface between a processor and the

Ring:0 ring.
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Figure 2.2.3: The KSR1 processor.

Each processor also contains a 256 kilobytes data cache and a 256 kilobytes instruction

cache, which comprise a first-level cache called the subcache. A clear understanding of

how the subcache works may improve significantly the performance of a code on the

KSR1. This issue is discussed in Section 4. The KSR1 processor is depicted in Figure

2.2.3.

2.3 KSR Fortran

The KSR Fortran [73] is an extended version of Fortran 77, the standard established

by the American National Standards Institute (ANSI). Among the extensions beyond

Fortran 77 are additional data types, allocatable arrays, array syntax, and additional

control statements. KSR Fortran also supports an extended set of intrinsic and exter-

nal procedures, in addition to the basic set of Fortran 77 intrinsic functions. However,

although KSR Fortran includes some elements of Fortran 90, for example allocatable ar-

rays and array syntax, it is far from fulfilling the requirements of Fortran 90 or the High

Performance Fortran (HPF) standard [15]. The above-mentioned language extensions

are discussed later in this section.

The KSR Fortran compiler provides a powerful set of parallel processing capabilities.
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The major parallel constructs of KSR Fortran are pthreads, parallel regions, parallel sec-

tions, and tile families. Low level parallelism is expressed with pthreads, while high level

parallelism is expressed using the other three parallel constructs. The parallel constructs

are expressed as compiler directives that are processed by the KSR Fortran compiler but

ignored by other Fortran compilers. (As we will see later in this section, other Fortran

compilers consider the directives as comments.) This approach supports program porta-

bility. However, correct programs that use the parallel region constract may need minor

code changes to run correctly on other machines4.

2.3.1 Pthreads

A pthread is a sequential flow of control within a process that cooperates with other

pthreads to solve a problem. A program may be divided into multiple chunks of work

which can be run in parallel. Since the assigned work of a pthread is usually executed

on the same processor, cache misses are reduced by controlling what work is assigned to

a pthread. The assignment of work to pthreads can be controlled by teams of pthreads.

A team is a group of pthreads with a team identification number. The execution of a

parallel KSR Fortran program consists of the execution of one or more team of pthreads.

The execution of the program begins with a single pthread, called the program master.

When a pthread encounters a begin-parallel directive, that pthread assembles a team.

The pthread that assembles the team is called team leader and the other pthreads are

team members. Each parallel directive can take an identification number as a parameter.

If so, the specified team will execute the parallel domain. Otherwise, the KSR Fortran

run-time system identifies a team to execute the parallel domain. If needed, the KSR

Fortran run-time system creates a new team. When all the pthreads in this team reach

the end-parallel directive, the team is usually disbanded, and the team members return

to the idle pool. The team leader continues the execution from the next statement after

the end-parallel directive.

Each pthread in a team has a sequence number between 0 (the team leader’s number)

4Changes will be needed if the program depends on the unique identifier of pthreads.
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Figure 2.3.1: Pthread execution pattern.

and n − 1, where n is the number of pthreads in a team. The sequence number of a

pthread may be used to control the assignment of work to particular pthreads. A team of

pthreads can also be created explicity by a call to the library routine IPR CREATE TEAM.

This routine takes as an input argument the desired number of team members, assembles

the requested number of team members, minus one (the team leader), from the idle pool,

and returns the team identification number. Creating explicitly the teams of pthreads

and stating the team identification number in every parallel directive, the user takes

from the run-time system the control of the teams of pthreads. In our codes we used only

one team of pthreads, created explicitly by IPR CREATE TEAM. The team identification

number returned by IPR CREATE TEAM was used as a parameter in each parallel directive,

to order the same team of pthreads to execute the parallel domain. Figure 2.3.1 describes

a typical pthread execution pattern that we used in our implementation.

2.3.2 Parallel Regions

The parallel region construct enables the user to execute in parallel multiple instanti-

ations of a single code segment. Parallel regions are declared by the programmer, by
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enclosing the desired code within PARALLEL REGION and END PARALLEL REGION direc-

tives. The role of a parallel region in a KSR Fortran program may be illustrated by

the following example. Suppose that we use one team of eight pthreads and we wish to

compute the Cholesky factorizations of 16 n×n real symmetric positive definite matrices

Ak, k = 1, . . . , 16. Since we use a team of eight pthreads, we can compute simultaneously

the Cholesky factorizations of the first eight matrices, and then simultaneously the fac-

torizations of the rest matrices. This can be implemented as follows, using the LAPACK

routines SPOTRF and SPOTRI for the Cholesky factorization [1].

C*KSR* PARALLEL REGION (TEAMID = TEAM, PRIVATE = (K,MYNUM))

MYNUM = IPR_MID()

DO K=1,16

IF (MOD(K,NPROCS) .EQ. MYNUM) THEN

CALL SPOTRF(’L’, N, A(1,1,K), LDA, INFO(K))

CALL SPOTRI(’L’, N, A(1,1,K), LDA, INFO(K))

END IF

END DO

C*KSR* END PARALLEL REGION

In the above sample code, each pthread calls the library routine IPR MID which assigns

a sequence number between 0 and 7 to the parameter MYNUM. The parameters K and

MYNUM have been declared as PRIVATE since their values must not be shared within the

parallel region5. The parameter TEAM is the team identification number, which has been

determined earlier by IPR CREATE TEAM. The variable NPROCS represents the number of

processors, and it is assumed to be equal to the number of pthreads. The IF statement

in the body of the DO loop actually determines which pthread will compute the Cholesky

factorization of the matrix Ak. Each pthread computes two Cholesky factorizations.

The call to IPR MID returns the sequence number of the executing pthread in the

team. This number can be used in order to assign work to particular pthreads. If the

5When a program unit encounters a parallel directive, the program unit’s local variables are shared
by default within the parallel routine. This default can be overriden with the PRIVATE parameter of the
parallel directive.
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same team is used to execute several parallel regions sequentially, as it happens in our

codes, a particular pthread can choose work in one parallel region which is consistent

with the choice made in a previous parallel region. In this way, the locality of reference

is maximized, thus reducing cache misses.

2.3.3 Parallel Sections

A parallel section is a group of different code segments that may be run in parallel. The

code segments within a parallel section are called section blocks. If we do not assign

a team of pthreads for the execution of a parallel section the run-time system creates

one pthread for each section block, and in general, each section block is executed on a

different processor. The pthreads that execute the section blocks within a parallel section

run simultaneously.

The code of a parallel section is included within PARALLEL SECTIONS and END PARALLEL

SECTIONS directives. All code within a section must belong to a section block, and the

section blocks may not overlap. In the following code extract a team of 3 pthreads is

being used to compute the inverse of an n× n real matrix A, the singular value decom-

position of a m×n real matrix B, and the spectral decomposition of an n×n symmetric

matrix C simultaneously. The LAPACK routines SGETRF and SGETRI have been for the

matrix inversion, SGESVD for the singular value decomposition, and SSEYV for the spectral

decomposition [1].

C*KSR* PARALLEL SECTIONS ( TEAMID = TEAM )

C*KSR* SECTION

CALL SGETRF ( N, N, A, LDA, IPIV, INFO)

CALL SGETRI ( N, A, IPIV, WORKA, LWORKA, INFOA)

C*KSR* SECTION

CALL SGESVD ( JOBU, JOBVT, M, N, B, LDB, S, U,

& LDU, VT, LDVT, WORKB, LWORKB, INFOB )

C*KSR* SECTION

CALL SSEYV ( JOBZ, UPLO, N, C, LDC, W, WORKC,
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& LWORKC, INFOC)

C*KSR* END PARALLEL SECTIONS

As in the above example, the parallel sections construct should be used for the parallel

execution of a fixed number of independent tasks. It is noteworthy that the above code

extract would be understood by any other Fortran 77 compiler, since the KSR directives

would be considered as comments.

2.3.4 Tile Families

Loop parallelization in KSR Fortran is achieved by tiling, in which the iteration space

defined by a Fortran DO loop is decomposed into groups of iterations. These groups are

called tiles. The group of tiles that make up a loop nest is called a tile family. The loop

indices over which tiling is to occur are specified in tile directives. These indices define

an space, called an iteration space. Tiles in iteration space are mapped onto data in data

space, which is defined by array bounds.

The role of tiling in a KSR Fortran program may be illustrated by a matrix-matrix

multiplication. Consider the following code extract which multiplies a matrix A ∈ Rn×p

with a matrix B ∈ Rp×m using one team of pthreads.

C*KSR* PTILE (I,J, TEAMID = TEAM)

DO I = 1,N

DO J = 1,M

DO K = 1,P

C(I,J) = C(I,J) + A(I,K)*B(K,J)

END DO

END DO

END DO

Figure 2.3.2 shows both the iteration space where the tiles are constructed, and the data

space where data is stored. In the above code extract, tiling has been done only on the

i and j indices and the tiles have been stretched in the k direction (see Figure 2.3.2).
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This means that within a given tile, execution proceeds sequentially in the k direction.

In Figure 2.3.2, the KSR Fortran compilation system uses a tile size of (64, 10).6 The tile

directive PTILE causes the iteration space to be partitioned into rectilinear regions (tiles)

each of which contains enough loop iterations to create a reasonable amount of work for

one processor. Each tile is executed by a pthread, and usually each pthread executes on

a different processor7.

Apart from the tile indices and the team identification number, the user may specify

and other parameters in a tile directive. These parameters fall into two categories: The

efficiency related parameters and the correctness related parameters. The former param-

eters are TILESIZE and (tiling) STRATEGY. A TILESIZE parameter defines a number of

loop iterations in each dimension of the tile. There are four distinct tiling strategies: The

SLICE strategy, MOD strategy, WAVE strategy, and GRAB strategy. The correctness related

tiling parameters (ORDER, PRIVATE, REDUCTION, and LASTVALUE), are generally specified

by the compilation system. The above-mentioned parameters are discussed in detail in

6This tile size ensures that a given data item in array C will be used by only one tile, minimizing in
this way data contention.

7If the number of the pthreads is greater than the number of processors, then the pthreads will not
all execute on different processors.
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[73].

Tiling is accomplished through the use of a Fortran pre-processor (KSR KAP8), the

Fortran compiler (f77), and the parallel run-time system (KSR Presto). The user invokes

the compiler, which in turn invokes KSR KAP and KSR Presto. KSR KAP inserts

tile indices and correctness related tiling parameters where needed. KSR Presto inserts

specifications for efficiency related parameters, and the number of pthreads if the team

identification number has not been specified. There are three types of tiling:

• Fully automatic tiling.

Fully automatic tiling allows a user without any knowledge of how to parallelize

a program to receive the benefits of automatic parallelization. In fully automatic

tiling, KSR KAP tiles the loop nest if possible, inserting a TILE directive immedi-

ately before the DO statement of the outermost loop, and an END TIlE statement

immediately after the terminal statement of that loop. KSP KAP also inserts the

tile indices, and the correctness related parameters where needed. The efficient

related parameters are inserted by KSR Presto.

• Semi-automatic tiling.

Semi-automatic tiling allows the user to influence the efficiency of the KSR For-

tran compilation system’s tiling decisions, while keeping the same assurance and

correctness as with fully automatic tiling. Semi-automatic tiling is recommended

for most applications since it offers the user the maximum amount of control over

tiling, while still assuring correctness [75]. In semi-automatic tiling the user inserts

a PTILE directive immediately before or in the loop nest. The placement of PTILE

affects how KSP KAP tiles the loop and there are certain rules for this placement.

The user may specify tile indices and/or efficiency related parameters; otherwise

the KSR Fortran compilation system will fill these specifications. KSR KAP ana-

lyzes the loop nest and if possible tiles it, replacing the PTILE directive with a TILE

directive. KSP KAP also determines the correctness related parameters.

8Kuck Automatic Parallelizer.
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• Manual tiling.

Manual tiling is used when a user does not wish any help from KSR KAP. In manual

tiling, the user inserts a USER9 TILE directive immediately before the outermost

DO statement, whose DO variable is in the index list, and a END TILE directive

immediately after the terminal statement of that loop. KSR KAP ignores the loop

nest and the directive itself. It does not verify or augment the specified parameters;

hence, specification of incorrect parametes causes incorrect execution of the loop

nest. The use of manual tiling requires a clear understanding of the tiling procedure.

Our experiences with the these different types of tiling are discussed in Section 4.

2.3.5 Compiling, Running, and Timing a KSR Fortran Program

Suppose that one has a correct Fortran 77 program and wishes to run it on the KSR1,

without changing the source code and using more than one processor. If the name of the

program is program.f, this can be done by issuing the command

f77 -kap -para -r8 -O2 program.f -lpresto

In the above command, f77 invokes the Fortran compiler, and the compiler options -kap,

-para, -r8, -O2, and -lpresto perform the following tasks:

• -kap invokes KSR KAP as a preprocessing pass.

• -para links the program with the libraries necessary to support pthreads and asyn-

chronous Input/Output.

• -O2 optimizes the object code. -O2 does global optimization plus automatic loop

unrolling.

• -r8 Makes the default size for both REAL and DOUBLE PRECISION values be 8 bytes.

Otherwise, REAL is 8 bytes and DOUBLE PRECISION 16 bytes.

• -lpresto links the program with the KSR Presto run-time library.

9The statement of the keyword USER is optional in manual tiling and is used to

indicate that the tile family is user-defined.
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If the complilation is successful, KSR KAP produces the following two files:

• program.cmp

This is a transformed source file which contains any directives and restructuring

done by KSR KAP. This file is submitted to the compiler.

• program.out

This is a file which reports what KSR could and could not do for this program and

also explains why.

The results are obtained by running the executable file a.out.

The above described procedure is the simplest way to run any Fortran 77 program on

the KSR1. However, it suffers from the following drawbacks:

• KSR KAP does not recognize parallel regions and parallel sections. Therefore,

these parallel constructs are not included in the .cmp file which is submitted to the

compiler.

• KSR KAP parallelizes every loop, including simple small loops for which the startup

cost may outweight the gain.

• The teams of pthreads are created dynamically during the execution of the program.

This dynamic creation has its own cost, which influences the performance of the

code.

• The user is unaware of the number of processors being used, and therefore perfor-

mance measurements cannot be done.

The tiling of simple, small loops can be avoided if instead of -kap, one uses the

compiler option -kap="-noautotile" and semi-automatic tiling (PTILE). In this case,

KSR KAP tries to tile only the loops that correspond to a PTILE directive, ignoring

the rest. The dynamic creation of the teams of pthreads can be avoided using the KSR

Presto routine IPR CREATE TEAM discussed in Subsection 2.3.1. This is recommended,
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especially when each parallel directive uses the same numbers of pthreads, as happens in

our implementation.

Suppose now that we want to run a program on 16 processors using one team of 16

pthreads10. We assume that the following function

FUNCTION LIB_NUMBER_OF_PROCESSORS()

CHARACTER*20 ENV

CALL GETENV(’PL_NUM_THREADS’,ENV)

READ(ENV,*) NUMTHREADS

LIB_NUMBER_OF_PROCESSORS = NUMTHREADS

END

is an external function of the program. We also assume that before running the program

the following command

setenv PL NUM THREADS 16

has been typed on the command line, and that before the parallel parts of the program

there are the the following statements

NPROCS = LIB_NUMBER_OF_PROCESSORS()

CALL IPR_CREATE_TEAM(NPROCS,TEAM)

When the execution reaches the first statement, the variable NPROCS (the number of

processors) is being set equal to the environmental variable PL NUM THREADS (the number

of pthreads) which is known to be equal to 16. Then, IPR CREATE TEAM assembles from

the idle pool the team members and determines the identification number of the team,

TEAM. Specifying this idendification number in every directive of the parallel constructs,

all the parallel constructs are executed on 16 processors by a team of 16 pthreads. Finally,

it is recommended to use the following command

10Typically the number of pthreads is equal to the number of processors, and each pthread corresponds
to one processor.
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allocate cells -A 16 a.out

for running this parallel program instead of simply a.out. allocate cells partitions

off the requested number of cells (16 for this example) for a parallel program, avoiding

certain loaded cells (-A), and deallocates them after the execution.

A KSR Fortran program may be timed from inside11 using facilities provided in the

libtimer.a library. This can be done by linking the program with the libtimer.a

library, and setting up a timer calling the routine EQTIMER from inside the program. The

specific part of the code which is to be timed, is included between a call of the routine

ETON and a call of the routine ETOFF. The routine PRINTET prints the timer’s information.

The following example demonstrates how to measure the time needed for a matrix-matrix

multiplication.

CALL EQTIMER(1,’ Matrix-matrix multiplication ’)

CALL ETON(1)

C*KSR* PTILE (I,J, TEAMID = TEAM)

DO I = 1,N

DO J = 1,M

DO K = 1,P

C(I,J) = C(I,J) + A(I,K)*B(K,J)

END DO

END DO

END DO

CALL ETOFF(1)

CALL PRINTET()

There can be more than one timers inside a KSR Fortran program, each of them with a

unique identification number. This number is the argument of ETON and ETOFF. Multiple

11As in any Unix system we can use the command time to time a program from the command line.
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calls over the same timer accumulate the timings. We are not aware of any way to save

the elapsed time into a variable.

2.3.6 Language Extensions

KSR Fortran is an extended version of Fortran 77. Among the most interesting language

extensions, from the numerical analysis point of view, are the following:

• Additional data types.

KSR Fortran supports a set of additional data types, as for example INTEGER*1,

LOGICAL*8, REAL*8, and COMPLEX*16. The positive integer after the data type

indicates the number of bytes needed for its representation.

• Allocatable arrays.

An allocatable array is an array whose space can be allocated and deallocated

dynamically during program execution. Allocatable arrays are a standard feature

of Fortran 90 [90]. However, the syntax of statements concerning allocatable arrays

in KSR Fortran is not the standard Fortran 90 syntax. A program can allocate

an allocatable array to the program heap or to the program stack. An allocatable

array is declared as an ordinary Fortran 77 array, but without specifying its bounds

and using the colon notation. (For example REAL A(:,:).) When a program

begins execution, its allocatable arrays are considered not definable and no space is

allocated for them. To allocate space for an allocatable array, the program executes

an ALLOCATE statement, which names the array to be allocated and specifies its

bounds. For example, a 100-by-100 array A is allocated to the program heap by

the following statement

ALLOCATE (A(100,100), STAT = IERR ALLOC)

where IERR ALLOC is the statement’s return status12. The bounds in an ALLOCATE

12If the statement is successful, IERR ALLOC is set to zero. If there is inadequate memory to meet the
request, IERR ALLOC is set to a positive integer.
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statement may also be expressions (for example 2*N,2*N instead of 100,100). Af-

ter an ALLOCATE statement, the named arrays are considered currently allocated.

A currently allocated array becomes not currently allocated when the program exe-

cutes a DEALLOCATE statement for that array. For example the following statement

DEALLOCATE (A, STAT = IERR DEALLOC)

where IERR DEALLOC is the statement’s return status, deallocates the above two

dimensional array A. However, A can subsequently be reallocated with an ALLOCATE

statement.

If a currently allocated array is not deallocated, it becomes undefined when the

subprogram in which it was allocated returns with a RETURN or END statement.

An undefined allocatable array should not be referenced, defined, reallocated, or

deallocated. It is recommended to deallocate an allocatable array before the RETURN

or END statements [73].

For faster execution, a program can allocate an allocatable array to the current

program unit’s stack. The corresponding statement for the above mentioned array

A may be

ALLOCATE STACK(A(100,100), STAT = IERR ALLOC)

Arrays allocated to the stack are unconditionally deallocated when the subprogram

returns. The advantages of using allocatable arrays in KSR Fortan programs are

discussed in Section 4.

• Array Syntax.

A KSR Fortran program can reference multiple elements of an array in a single

assignment statement. The reference can be to all elements of the array or to a

subset of elements. In the former case, we have a reference to a full array, and

in the latter to an array section. KSR Fortran supports an array syntax through

the KSR KAP preprocessor, which converts the array syntax to equivalent tiled DO
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loops. For example the statement A = B, which copies a 100-by-100 real matrix B

into A, will be converted by KSR KAP into

C*KSR* TILE ( II2,II1 )

DO 2 II2=1,100

DO 2 II1=1,100

A(II1,II2) = B(II1,II2)

2 CONTINUE

C*KSR* END TILE

A program references a full array by naming the array without subscripts. For

example, the statement A = 5.*B will multiply all entries of B by 5. The notation

for array sections is similar to the MATLAB and Fortran 90 notation. For example,

if A is a 10-by-10 matrix, the statement B = A(:,1:3) will copy the first three

columns of A into the 10-by-3 matrix B.

The use of array syntax saves programmer’s time from writing trivial loops, im-

proves the readability of the source code, and it is a very helpful facility in writing

codes that deal with matrix blocks.

• Additional control statements.

The most interesting additional control statement provided in KSR Fortran is the DO

WHILE statement. DO WHILE executes a set of statements while a logical expression

is true. The syntax of the DO WHILE statement is

DO label WHILE expression

The parameter label in the above syntax identifies the line number of the terminal

statement of the DO WHILE loop. Another additional control statement is the END

DO statement, which terminates a DO, or DO WHILE LOOP, and is an alternative to

using labels.

• Additional intrinsic and external procedures.
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KSR Fortran supports an extended set of intrinsic and external procedures, in

addition to the basic set of Fortran 77 intrinsic functions. More information on

these procedures can be found in [73].

2.3.7 Numerical Software

Kendall Square Research supplies the KSRlib/BLAS library [77], which contains the

highly optimized for the KSR1 level 3 BLAS routines SGEMM and CGEMM. These routines

can be called either with the standard calling interface or with a slightly different interface

for higher performance. In a non-standard call of SGEMM the user specifies four additional

parameters. These include the number of processors and the team identification number.

A correct specification of the additional parameters may improve the performance of

SGEMM significantly, giving an almost linear speedup. SGEMM is the fastest matrix multiply

on the KSR1 known to us. If these additional parameters are not supplied then there is

no parallelism within SGEMM. At the time of writing, the other routines in KSRlib/BLAS

library do not appear to be highly optimized.

The Kendall Square Research also supplies the KSRlib/LAPACK library [78]. When

this work was begun this library was not available to us, so we used the standard LAPACK

distribution. A few months later, when we gained access to the KSRlib/LAPACK library,

we reran our programs, linking them with the the KSRlib/LAPACK library. We observed

that the timing results were almost identical. However, the performace of the LAPACK

routines may be improved significantly if we modify their source code. We experimented

with the block size in some LAPACK routines (the block size is set in the environmental

routine ILAENV) and we found that a block size of 16 gives the best all round performance

on the KSR1. We also changed all the calls to SGEMM, specifying the four additional

parameters. In Chapter 4 and Chapter 5, we discuss the modifications that we did in

particular LAPACK routines in detail.

The NAG Fortran Library Mark 15 [95] has also been implemented on the KSR1 at

the Centre of Novel Computing at the University of Manchester. All the parallelism in

this implementation is within the KSRlib/BLAS library.



CHAPTER 2. THE KENDALL SQUARE RESEARCH KSR1 38

2.4 Experiences and Remarks

We worked on the KSR1 from the September of 1992 until the September of 1993. We

started by porting codes written in standard Fortran 77 and asking the KSR1 to par-

allelize them automatically. The results were disappointing. Looking at the .out files,

it was clear that the main reason for this was that KSR KAP tiled every loop possible,

including the simple and small loops for which the startup cost outweighs the gain. We

also noticed that some other loops had not been tiled because of the way they were writ-

ten. And of course, parts of the codes that could have been written as parallel regions

and parallel sections had been ignored by KSR KAP. The result was really not very sur-

prising. It is known that there is a long way to go before one can give a program written

in standard Fortran 77 to a parallel computer, and get it to run with a high degree of

parallelism [114]. Thus, we always modified the source codes when we we ported existing

Fortran 77 codes to the KSR1.

The use of parallel regions and parallel sections requires only an understanding of the

purpose of each of these parallel constracts. Correct implementation of parallel regions

and parallel sections can give almost linear speedup.

In our first codes that we wrote from scratch we used semi-automatic tiling. Later

we experimented using manual tiling and in some instances we achieved slightly better

timing results.

In Section 2 we mentioned that each processor contains a 256 kilobytes data cache

and a 256 kilobytes instruction cache. The 256 kilobytes data cache may be perceived as

in Figure 2.4.1. Suppose now that we want to add two 128-by-128 real matrices A and

B. If one declares the matrices A and B as A(128, 128) and B(128, 128), then the length

of these arrays will be 128 kilobytes. This will cause contention and cache misses since

both arrays will compete to map to the same set. But, if one declares the arrays A and

B as A(128, 130) and B(128, 130), then a pad of 2 kilobytes in the SVA will be created

between the two arrays, and the above mentioned problem will be avoided. For the same

reason, when we deal with large matrices whose dimension n is a power of 2, we declare

them as n-by-n + 2. We found that this improves the timing results significantly.
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128 kilobytes per side

2 kb block

64 sets

Figure 2.4.1: The 256 kilobytes data cache inside a subcache.

A drawback of the KSR1 observed during this project was the slowness of compilation.

The compilation of a KSR Fortran program takes a significant amount of time. In some

instances, the compilation of the same code needed an order of magnitude more time on

the KSR1 than it needed on a SUN SPARC workstation. It is therefore a good practice

to create libraries with the object codes of the external subroutines and functions of a

program, and to link them with the program. In many instances during our research,

we had to measure the performance of a code for matrices of various order. Before

“discovering” allocatable arrays, we did a separate compilation for each dimension. Using

allocatable arrays, the recompilation of the same code may be avoided. The size of the

matrices may be given from the command line13, or during the execution using a READ

statement. Finally, we mention that on several occasions the system suddenly broke down

and it needed rebooting to get working again. However, this is not necessarily due to a

hardware error but it could just be incomponent programming.

13As in C programming language.



Chapter 3

Two-sided Procrustes-type problems

3.1 Introduction

In 1962, Hurley and Cattell [69] coined the term Procrustes1 problem to denote a least

squares problem where the independent variable is a matrix. In particular, they called

the problem of approximating a given matrix A by rotating another given matrix B, that

is

min
V T V =In

‖A−BV ‖F , A,B ∈ Rm×n,

where ‖·‖F denotes the Frobenius norm, an orthogonal Procrustes problem. The problem

arises frequently in applications2, and a solution is V = U where U is the orthogonal

factor in the polar decomposition BT A = UH [61]. This result holds for the Frobenius

norm but it does not hold for all unitarily invariant norms. In [88], Mathias shows by

a counter-example that the orthogonal Procrustes problem is not solved by the polar

decomposition for the trace norm, which is equal to the sum of the singular values of a

matrix.

In 1968, Schönemann [107] generalized this problem to its two-sided form: given

1Procrustes was a robber in Hellenic (Greek) mythology. He was in the habit of putting his victims in
a bed, whether they fitted in this bed or not. If they were too long for it, he performed radical surgery on
their legs to fit them exactly on it. If there were too short, he streched their limbs so that they became
the right length. The Athenian hero Theseus fitted Procrustes to his own bed as Procrustes had fitted
others, freeing the road to Athens from South Greece.

2Applications that require the solution of an orthogonal Procrustes problem are discussed in Section
8 in Chapter 4.

40
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two square matrices A and B, find two orthogonal matrices U and V such that UBV

approximates A in a least squares sense. Starting with the singular value decompositions

A = UAΣAV T
A , B = UBΣBV T

B , (3.1.1)

Schönemann proved that the least squares fit to A is UAΣBV T
A , corresponding to V =

VBV T
A and U = UAUT

B .

In this chapter, we consider some possible forms of the above two-sided orthogonal

Procrustes problem that arise when A and B are not necessarily square matrices, and

U and V are required to have other special properties. For example, U and V may be

arbitrary, symmetric, orthogonal, orthogonal with determinant +1, permutation matrices

or some combination of them. Unless otherwise stated, all matrices are assumed to be

real.

3.2 The Most General Problem

The most general problem, which will be referred to as the general two-sided Procrustes

problem can be stated as follows:

The General Two-Sided Procrustes Problem (GTSPP)

Given A and B ∈ Rm×n (m ≥ n), find two arbitrary matrices X ∈ Rm×m

and Y ∈ Rn×n to minimize

‖A−XBY ‖F . (3.2.1)

The problem can be solved as follows. If A = UAΣAV T
A and B = UBΣBV T

B are the

singular value decompositions of A and B, then

‖A−XBY ‖F = ‖UAΣAV T
A −XUBΣBV T

B Y ‖F

= ‖ΣA − UT
AXUB︸ ︷︷ ︸

X̂

ΣB V T
B Y VA︸ ︷︷ ︸

Ŷ

‖F
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= ‖ΣA − X̂ΣBŶ︸ ︷︷ ︸
Ψ

‖F

= ‖ΣA −Ψ‖F , (3.2.2)

and the problem is equivalent to finding the m-by-n matrix Ψ that minimizes (3.2.2).

It is apparent that if rank(A) ≤ rank(B), (3.2.2) is equal to zero when Ψ = ΣA. If

rank(A) > rank(B) = r, then the minimizing Ψ is

Ψ = diag(σ1(A), . . . , σr(A), 0, . . . , 0).

This follows from the following well-known rank r approximation result: If W ∈ Rm×n,

m ≥ n, has the singular value decomposition W = UW ΣW V T
W , then

min
rank(Ω)=r

‖W − Ω‖ =

[
n∑

i=r+1

σi [W ]2
]1/2

, (3.2.3)

and the minimum in (3.2.3) is achieved for the matrix

W ′ = UW diag(σ1(A), . . . , σr(A), 0, . . . , 0)V T
W .

(In fact, W ′ is the minimizer for any unitarily invariant norm, as shown in [67, pages

449-450]).

To summarise, writing rB = rank(B),

min
X,Y arbitrary

‖A−XBY ‖F =





0 if rank(A) ≤ rB

∑n
i=rB+1(σi(A)2)1/2 otherwise.

(3.2.4)

Since we did not impose any restriction on X and Y , (3.2.4) indicates the lowest value

of any two-sided Procrustes problem for given A and B.

If we set Ŷ = In and X̂ = ΨΣ+
B, where Σ+

B is the pseudo-inverse of ΣB, then X =

UAX̂UT
B and Y = VBV T

A is a solution of the GTSPP. Since Y is an orthogonal matrix,

the solution of the following two-sided Procrustes problem

min
X,V T V =In

‖A−XBV ‖F (3.2.5)

has been also obtained, but the problem (3.2.5) can be solved independently as follows.

Assuming that the orthogonal matrix V is known, the matrix X that minimizes

‖A−XBV ‖F is given by

X = A(BV )+ = AV T B+.
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Writing the singular value decompositions of A and B+B as UAΣAV T
A and WΛW T re-

spectively, where Λ = diag(λi) and λi = 0 or 1, we have

‖A−XBV ‖F = ‖UAΣAV T
A − UAΣAV T

A V T B+BV ‖F

= ‖ΣA − ΣA (V T
A V T W )︸ ︷︷ ︸

Z

Λ (W T V VA)︸ ︷︷ ︸
ZT

‖F .

The matrix Z is an orthogonal matrix and setting Z = In we obtain the solution of

(3.2.5), that is V = WV T
A and X = A(WV T

A )T B+. For the above selection of X and V ,

‖A−XBV ‖F =





0, if rank(A) ≤ rB

∑n
i=rB+1(σi(A)2)1/2, otherwise,

where rB is the rank of B.

3.3 The Two-Sided Orthogonal Procrustes Problem

The two-sided orthogonal Procrustes problem is a generalization of Schönemann’s problem

mentioned in the introduction of this chapter. Here, the matrices A and B are rectangular

instead of square, and the problem can be described as follows.

The Two-Sided Orthogonal Procrustes Problem (TSOPP)

Given A and B ∈ Rm×n, find two orthogonal matrices U ∈ Rm×m and

V ∈ Rn×n to minimize

‖A− UBV ‖F . (3.3.1)

The analysis of this problem will be based on the following two theorems, both taken

from [67, pages 432–433]3

Theorem 3.3.1 Let A ∈ Rn×n have the singular value decomposition A = V ΣW T .

Then (a) the problem

3The theorems in [67] deal with complex matrices.
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max{tr AU : U ∈ Rn×n is orthogonal}

has the solution U = WV T , and the value of maximum is σ1(A) + · · · + σn(A), where

{σi(A)} is the set of singular values of A. (b) There exists an orthogonal matrix U ∈ Rn×n

such that AU ∈ Rn×n is a symmetric positive semidefinite matrix. An orthogonal matrix

U is a maximizing matrix for the problem in (a) if and only if AU is positive semidefinite;

a maximizing U is uniquely determined if A is nonsingular. The eigenvalues of AU are

the singular values of A.

Theorem 3.3.2 Let A ∈ Rm×n, B ∈ Rn×m, and q = min{m,n}. Let σ1(A), . . . , σq(A),

and σ1(B), . . . , σq(B), be the singular values of A and B respectively, arranged in nonin-

creasing order. If both AB ∈ Rm×m and BA ∈ Rn×n are positive semidefinite, then there

exists a permutation τ of the integers 1, 2, . . . , q such that

tr AB = tr BA =

q∑

i=1

σi(A)στ(i)(B). (3.3.2)

The functional (·, ·) : Rm×n ×Rm×n → R, where

(M,N) ≡ tr MNT ,

defines an inner product on the vector space Rm×n ×Rm×n and we can write

‖A− UBV ‖2F = (A− UBV,A− UBV ) = ‖A‖2F − 2(A,UBV ) + ‖B‖2F ,

since ‖A‖2F = tr AAT = (A,A). Thus to minimize (3.3.1) we must find orthogonal

matrices U ∈ Rm×m and V ∈ Rn×n that maximize

(A,UBV ) = tr AV T BT UT .

Since the sets of orthogonal matrices in Rm×m and Rn×n are compact, their Carte-

sian product is compact, and so there exist orthogonal matrices U0, V0 that maximize

tr AV T BT UT . These maximizing matrices have the property that

tr(AV T
0 BT )UT

0 ≥ tr(AV T
0 BT )U
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for any orthogonal matrix U ∈ Rm×m, and hence by Theorem 3.3 we know that AV T
0 BT UT

0

is positive semidefinite. Similarly,

tr(AV T
0 BT )UT

0 = tr(BT UT
0 A)V T

0 ≥ tr BT UT
0 AV

for any orthogonal matrix V ∈ Rn×n, and so BT UT
0 AV T

0 is positive semidefinite. Thus the

two matrices AV T
0 and BT UT

0 satisfy the hypotheses of Theorem 3.3 and if q = min{m,n}

then

max
UT U=I,V T V =I

tr AV T BT UT = tr AV T
0 BT UT

0

=

q∑

i=1

σi(AV T
0 )στ(i)(B

T UT
0 )

=

q∑

i=1

σi(A)στ(i)(B)

for some permutation τ of the integers 1, . . . , q, since the singular values are orthogonally

invariant. Horn and Johnson show in [67, page 436] that the maximum value of the sum

is achieved for the identity permutation τ , and we can conclude that

max
UT U=I,V T V =I

tr AV T BT UT =

q∑

i=1

σi(A)σi(B),

where the singular values of A and B are both arranged in decreasing order.

Using this result for the TSOPP, we find for A,B ∈ Rm×n and q = min{m,n} that

min
UT U=I,V T V =I

‖A− UBV ‖F =

[
‖A‖2F − 2

q∑

i=1

σi(A)σi(B) + ‖B‖2F

]1/2

=

[
q∑

i=1

σ2
i (A)− 2

q∑

i=1

σi(A)σi(B) +

q∑

i=1

σ2
i (B)

]1/2

=

[
q∑

i=1

[σi(A)− σi(B)]2
]1/2

. (3.3.3)

We consider now the singular value decompositions of A and B

A = UAΣAV T
A and B = UBΣBV T

B .

Since the Frobenius norm is orthogonally invariant and

‖ΣA − ΣB‖F =

[
q∑

i=1

[σi(A)− σi(B)]2
]1/2

,
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we can write

‖ΣA − ΣB‖F = ‖UA(ΣA − ΣB)V T
A ‖F

= ‖UAΣAV T
A − UA(UT

BUB)ΣB(V T
B VB)V T

A ‖F

= ‖A− (UAUT
B )B(VBV T

A )‖F , (3.3.4)

and thus from (3.3.3) minimizing matrices U and V are UAUT
B and VBV T

A , respectively.

Provided parallel changes are made in the orthogonal matrices, the singular value

decompositions are invariant. Thus the minimizing orthogonal matrices U = UAUT
B and

V = VBV T
A are certainly not unique.

3.4 The Two-sided Rotation Procrustes Problem

A rotation matrix is an orthogonal matrix with determinant +1. The two-sided rotation

Procrustes problem can be stated as follows:

The Two-Sided Rotation Procrustes Problem (TSRPP)

Given A and B ∈ Rm×n (m ≥ n), find two rotation matrices U and V ,

m-by-m and n-by-n respectively, to minimize

‖A− UBV ‖F . (3.4.1)

The problem of finding only the left rotation matrix in (3.4.1), that is

min
UT U=Im,det(U)=+1

‖A− UB‖F , (3.4.2)

arises in the estimation of the attitude of a satellite [56, 121]. This application is discussed

in Section 8 in Chapter 4.

Assuming that the minimizing rotation matrix V in (3.4.1) is fixed, and setting M =

BV , the minimizing rotation matrix U can be found as follows. Since

‖A− UM‖2F = tr AT A− 2 tr MAT U + tr MT M,
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the problem is equivalent to finding the rotation matrix U that maximizes tr MAT U .

If the polar decomposition of MAT is MAT = ZP , where Z is orthogonal and P is

symmetric positive semidefinite (Z is uniquely defined and P is positive definite if MAT

is nonsingular), and if NDNT is the spectral decomposition of P with the diagonal

elements of D arranged in decreasing order, then

tr(MAT U) = tr(ZPU)

= tr(ZNDNT U)

= tr(NT UZN︸ ︷︷ ︸
X

D)

= tr(XD)

=
m∑

i=1

dixii. (3.4.3)

The above sum is a linear function of the nonnegative numbers d1, . . . , dm, and its maxi-

mum is attained when the diagonal elements of X attain their maximum values. Because

X is an orthogonal matrix, all entries of X are between −1 and 1, so with no restrictions

on det(U) (3.4.3) is maximized when xii = 1, xij = 0, i 6= j. Because det(U) is required

to be +1,

det(X) = det(NT UZN) = det(N)2 det(U) det(Z) = det(Z).

If det(Z) = −1, then det(X) must be −1 as well, and since d1 ≥ . . . ≥ dm,

X0 =



 Im−1 0

0 −1





is a solution. Obviously X0 = Im is a solution when det(Z) = +1. Thus the rotation

matrix U that minimize (3.4.1) is

U = NX0N
T ZT .

Similarly, if we assume that U is fixed and set M ′ = UB, the minimizing rotation

matrix V is given by

V = N ′X ′
0N

′T Z ′T ,
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where Z ′P ′ is the polar decomposition of AT M ′, P ′ = N ′D′N ′T is the spectral decompo-

sition of P ′, and

X ′
0 =








 In−1 0

0 −1



 , if det(Z ′) = −1,

In, otherwise.

The above solutions of the left and right one-sided rotation Procrustes problems sug-

gest the following iterative procedure for the solution of the TSRPP. First set V = In

and determine U as the solution of

min
UT U=Im,det(U)=+1

‖A− U(BV )‖F ,

then fix U and determine V as the solution of

min
V T V =In,det(V )=+1

‖A− (UB)V ‖F ,

repeating the process until it converges. Each step of the iteration will reduce (or not

change) the value of the norm and so convergence, not necessarily to the global minimum,

is assured.

This approach of repeatedly fixing one matrix and minimizing over the other has been

referred to as a flip-flop algorithm by Van Loan. This approach has the advantage that

it can utilize the known solutions of the one-sided Procrustes problems for the solution

of the corresponding two-sided ones. On the other hand, a flip-flop algorithm does not

guarantee convergence to a global minimum. However, in our numerical experiments

this approach almost always yielded global minimizing matrices to the GTSPP and the

TSOPP, where to global minimum is known. This observation encourages us to use flip-

flop algorithms for the investigation of two-sided Procrustes problems where an analytical

expression of the minimizing matrices cannot be found.
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3.5 Permutation Problems

Another two-sided Procrustes problem of interest is the following:

The Two-Sided Permutation-Orthogonal

Procrustes Problem (TSPOPP)

Given A and B ∈ Rm×n, m ≥ n, find an m-by-m permutation matrix P

and an orthogonal matrix V ∈ Rn×n to minimize

‖A− PBV ‖F . (3.5.1)

When V ≡ In, the above problem takes a simple form that occurs in the context of

multidimensional scaling [48]. Here, A and B may refer to the same (or similar) objects

but in different orders. By minimizing ‖A − PB‖F , subject to P being a permutation

matrix, one can test whether there is some similarity between the samples. If the samples

consist of the same objects in different orders, ‖A− PB‖F will be zero modulo roundoff

for the optimal permutation matrix P .

Since

‖A− PB‖2F = tr AT A + tr BT B − 2 tr PBAT ,

minimizing ‖A − PB‖F is equivalent to maximizing trPBAT . The scalar tr PBAT is a

linear function of the elements of P . Since maximizing this function is the key for further

investigation of Procrustes-type permutation problems, we discuss this independently.

3.5.1 Maximizing the Trace of PA

Given A ∈ Rn×n, we wish to find the n-by-n permutation matrix P that maximizes the

trace of PA. The problem can be posed as a linear programming problem, as we now

explain. If instead of a permutation matrix, P was required to be a doubly-stochastic

matrix, that is matrix of non-negative elements whose rows and columns sum to unity,
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the problem could be stated as

maximize
n∑

i=1

n∑

j=1

pijaji (3.5.2)

subject to

n∑

j=1

pij = 1, i = 1, . . . , n,

n∑

i=1

pij = 1, j = 1, . . . , n,

pij ≥ 0, i, j = 1, . . . , n.

The maximum must occur at a vertex of the feasible region bounded by the constraints

and this vertex corresponds to a permutation matrix, a special case of a doubly stochastic

matrix. This fact is explained by the theory of total unimodularity in [97].

The problem can be solved by the simplex method, but first it must be written as a

linear programming problem in standard form, that is

minimize cT x

subject to Mx = b, x ≥ 0.

Setting c = vec(A) and x = vec(P T ), where vec(A) ∈ Rn2

denotes the columns of A

strung out into one long vector, we observe that the objective function (3.5.2) can be

written as cT x and the problem is equivalent to minimizing −cT x subject to Mx = b,
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where M is the 2n-by-n2 matrix

M =





1, . . . , 1︸ ︷︷ ︸
n

0, . . . , 0 . . . 0, . . . , 0

0, . . . , 0 1, . . . , 1︸ ︷︷ ︸
n

. . . 0, . . . , 0

. . . . . . . . . . . .

0, . . . , 0 0, . . . , 0 . . . 1, . . . , 1︸ ︷︷ ︸
n

In In . . . In





,

and b is the 2n-vector (1, . . . , 1)T .

The solution of the problem, and therefore the permutation matrix P , can now be

easily obtained as a straightforward application of the simplex method. The following

MATLAB function solves the problem of maximizing the trace of PA, where A is any

square real matrix and P is the required permutation matrix of the same dimensions. The

function uses the MATLAB function simplex.m written by Philip Gill of the University

of California at San Diego.

function P = maxtrace(A)

% This function evaluates the permutation

% matrix P that maximizes trace(PA).

% A is a given square real matrix.

[m,n] = size(A);

if m ~= n

error( ’ Matrix A must be a square matrix ’ )

end
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% Construction of the matrix M.

M = zeros(2*n,n*n);

for i=1:n

for j = 1 + (i-1)*n:i*n

M(i,j) = 1;

end

end

for i=0:n:(n-1)*n

M(n+1:2*n,i+1:i+n) = eye(n);

end

% Construction of the vector b.

b = ones(2*n,1);

% Construction of the vector c.

c = -A(:);

% Solution of the linear programming problem.

x = simplex(M,b,c);

% Construction of the required permutation matrix P

% from the vector x given by the simplex method.

P = zeros(n);

P(:) = x;

P = P’;

Observing the special structure of M , one may ask if there is a simpler way to solve



CHAPTER 3. TWO-SIDED PROCRUSTES-TYPE PROBLEMS 53

this problem than by applying the simplex method, which does not exploit the structure

of M . The key to the answer is the similarity of the permutation problem with the

assignement problem which is a special case of the transportation problem. Both problems

arise frequently in operational research [24, 115].

Informally, the assignment problem can be described as follows. Assuming that the

numerical scores are available for the performance of each of n persons on each of n jobs,

the assignment problem is the quest for an assignment of persons to jobs so that the sum

of n scores so obtained is as large as possible. The close relation between the problem of

finding the permutation matrix P which maximizes the trace of PA, and the assignment

problem is clarified by the following example.

Suppose that 3 individuals are available for 3 jobs. A rating matrix R = (rij) is a

square matrix which indicates the performance of the ith individual on the jth job in

some units. Let R be

R =





2 5 1

3 1 8

4 1 2




.

The permutation matrix P that maximizes the trace of PR is

P =





0 0 1

1 0 0

0 1 0




,

which gives also the solution to the assignment problem. According to P , reading P

columnwise, the best total performance of this group would be achieved if the first indi-

vidual did the second job, the second individual the third, and the third individual the

first.

In 1955, Kuhn [82] introduced a method of solving the assignment prolem based

on the ideas of two Hungarian mathematicians, J. Egerváry [38] and König [81], and

termed his method the Hungarian method for the assignment problem. In his analysis,

the rating matrix consists of positive integers. Since then, several other techniques for

solving the problem have been developed. Among the people who have made significant

contributions are Dwyer [36], Flood [41], Votaw and Orden [120]. In 1982, Papadimitriou
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Figure 3.5.1: A bipartite graph.

and Steiglitz [97], exploiting advantages given by graph theory, presented a new version

of the Hungarian algorithm. Their work is based on Kuhn’s ideas but but they follow a

different approach to the solution of the assignment problem using exclusively terms and

tools from graph theory.

Papadimitriou and Steiglitz consider two sets of n vertices, V = {V1, . . . , Vn}, and

U = {U1, . . . , Un}. The Vi vertex stands for the ith individual and the Uj vertex for the jth

job. They also consider the set of the edges E = {Eij, i = 1, . . . , n, j = 1, . . . , n}, where

Eij is the numerical score of the ith individual on jth job. They write the assignment

problem as a bipartite graph. A bipartite graph is a graph B = (W,E) that has the

following property. The set of vertices W can be partitioned into two sets, V and U ,

and each edge in E has one vertex in V and one in U . Thus the above example can be

written as in Figure 3.5.1.

A matching M of a graph G = (W,E) is a subset of the edges with the property that

no two edges of M share the same vertex. In the above example, M1 = {E13, E22} and

M2 = {E12, E23, E31} are matchings, and M2 is a maximum matching since a matching

of G obviously can never have more than 6/2 = 3 edges. Given a graph, the matching

problem is to find a maximal matching. In our problem, we look for the maximal matching

that gives us the maximum sum of the lengths of its edges. This problem can be solved by

the Hungarian method, which solves the assignment problem in its bipartite graph form

with 2n nodes, in O(n3) arithmetic operations. For a detailed description and analysis of

the Hungarian method for the assignment problem in its bipartite graph form, see [97].
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Figure 3.5.2: A maximal matching.

Having applied the Hungarian algorithm for the above example, we obtain the max-

imal matching depicted in Figure 3.5.2. From this graph, we can constuct the optimal

permutation matrix P , setting Pij = 1 if Vj is joined to Ui. Thus, the required permuta-

tion matrix is

P =





0 0 1

1 0 0

0 1 0




.

A Fortran 77 routine for the Hungarian algorithm, written by Carpaneto and Toth,

is given in [20]. This routine can be also obtained from the netlib distribution system

(file TOMS/548).

3.5.2 Solving the TSPOPP

The link between the TSPOPP

min
V T V =In,P permutation

‖A− PBV ‖F , (3.5.3)

and the TSOPP

min
UT U=Im,V T V =In

‖A− UBV ‖F , (3.5.4)

where A, B are given m-by-n real matrices, is clear by examining the above forms (3.5.3)

and (3.5.4). The only difference is that U is a general orthogonal matrix while P is a

permutation matrix, a special case of an orthogonal matrix. Gower [48] suggests the

following approximate noniterative solution to minimizing (3.5.3) based on a suggestion

first made by Schönemann in 1968 [107].
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1. Find U and V for the TSOPP.

2. Estimate P as the nearest permutation matrix to U .

Step 2 is equivalent to minimizing ‖U − P‖F , where all the matrices are m-by-m. Since

‖U − P‖F = tr(U − P )T (U − P )

= tr(UT − P T )(U − P )

= tr(UT U − UT P − P T U + P T P )

= tr(I − UT P − P T U + I)

= 2m− 2 tr P T U,

the problem is equivalent to maximizing trP T U for which we can use the methods of

the previous subsection. Schönemann [107], who first suggests this method, says: It is

hoped that eventually superior alternatives will emerge. Investigating this noniterative

method, we found many examples where the method fails to solve the TSPOPP (3.5.3).

A typical one is the following.

Suppose the 4-by-3 matrices A and B

A =





2 9 0

1 4 1

7 5 5

7 8 7





, B =





1 4 1

2 9 0

7 8 7

7 5 5





.

Matrix B has the same entries with A but its rows are in a different order. Solving the

problem as a TSOPP by the SVD approach described in Section 3 gives the orthogonal

matrices

U =





0.6277 0.7293 0.1453 −0.2304

−0.7625 0.6277 0.1566 0.0082

0.0082 −0.2304 0.9683 −0.0962

0.1566 0.1453 0.1294 0.9683





, V =





−0.0175 0.1695 0.9854

0.1695 0.9718 −0.1642

0.9854 −0.1642 0.0457




,

and ‖A− UBV ‖F is equal to zero modulo roundoff errors as expected. For the singular

value decompositions, we used the subroutine DGESVD from LAPACK [1]. The permuta-

tion matrix P which maximizes trP T U is the identity matrix I4 and ‖A−I4UV ‖F ≈ 8.53.
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But if V = I3 and

P =





0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0





,

‖A − PBV ‖F = 0 and the need for another approach to the solution of the problem is

now apparent.

The problem of minimizing ‖A − PBV ‖F is equivalent to maximizing trPBV AT .

Gower [48] suggests the following iterative procedure for its solution, which is an example

of a flip-flop algorithm as mentioned in Section 3.4. First fix P and determine V as the

solution of the orthogonal Procrustes problem

min
V T V =I

‖A− (PB)V ‖F ; (3.5.5)

then fix V and determine P by the method discussed in the previous section, repeating

the process until it converges.

Since the convergence of an iterative method to the global optimum depends on its

initial value, we thought of modifying Gower’s suggestion by beginning with V = In,

and determining P at the initial stage of the method. Then, determine V and repeat

the process until it converges. The reason is, that in many applications B has the same

entries with A, or slightly perturbed, and its rows are in a different order [22]. In that

case, this iterative method would first determine the permutation matrix which matches

the same or slightly different rows and then it would determine the orthogonal matrix

V . If the entries of A and B are the same, the solution to the orthogonal Procrustes

problem will be the identity matrix and the iterative procedure will stop. If the rows are

slightly different, the method will determine an orthogonal matrix V , and then finding

again the same permutation matrix P , it will stop. In that case Gower’s suggestion (for

the iterative method) does not always work since it converges to local optima different

than the global ones. The following algorithm, describes our iterative approach to the

solution of TSPOPP.

Algorithm 1
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Given A and B ∈ Rm×n (m ≥ n) and a tolerance epsilon > 0, this

algorithm computes an m-by-m permutation matrix P and an orthogonal

matrix V ∈ Rn×n that minimize ‖A− PBV ‖F .

k = 0;

Vk ≡ In;

Find the permutation matrix Pk that maximizes tr PkBAT ;

ρk = ‖A− PkB‖F ;

while ρk > ǫ

k = k + 1;

Find the permutation matrix Pk that maximizes tr PkBVk−1A
T ;

ρk = ‖A− PkBVk−1‖F ;

if (ρk−1 − ρk) ≤ ǫ, quit, end;

Compute the polar decomposition of (PkB)T A;

Set Vk equal to the orthogonal factor of the polar decomposition;

ρk = ‖A− PkBVk‖F ;

end

As we mentioned in Section 3.4, the convergence to the global optimum is not always

assured for Algorithm 1. Nevertheless, a large number of numerical experiments made us

feel certain that Algorithm 1 is a reliable way to compute P and V , especially when A

and B have the same or slightly different entries and their rows are in a different order.

The following numerical examples are representatives of a large number of numerical

experiments on the TSPOPP.

We first consider the 4-by-3 matrices A and B which have the same entries but their

rows are in a different order.

A =





2.0000 9.0000 0.0000

1.0000 4.0000 1.0000

7.0000 5.0000 5.0000

7.0000 8.0000 7.0000





, B =





7.0000 8.0000 7.0000

7.0000 5.0000 5.0000

1.0000 4.0000 1.0000

2.0000 9.0000 0.0000





.
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One solution to the TSOPP is

U =





0.7518 0.3160 −0.2720 −0.5109

−0.2424 0.6824 0.6338 −0.2720

0.5874 −0.2992 0.6824 0.3160

0.1764 0.5874 −0.2424 0.7518





, V =





−0.4157 0.7791 0.4693

0.7791 0.0388 0.6257

0.4693 0.6257 −0.6231




.

for which ‖A−UBV ‖F is equal to zero modulo roundoff error. The nearest permutation

matrix P to U is the identity matrix I4 and ‖A − PBV ‖F ≈ 11.96. Algorithm 1 with

error tolerance ǫ = 10−14, gives

P =





0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0





, V =





1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000




,

and ‖A− PBV ‖F is obviously zero. It is worth noting that for this numerical example,

Algorithm 1 does not enter its while loop.

If we perturb now some entries of B, such that

A =





2.0000 9.0000 0.0000

1.0000 4.0000 1.0000

7.0000 5.0000 5.0000

7.0000 8.0000 7.0000





, B =





7.3000 7.7000 6.6000

7.0000 4.8000 5.1000

1.0000 4.2000 1.0000

1.6000 9.0000 0.5000





,

then the matrices U and V for the TSOPP are

U =





0.7444 0.3359 −0.2861 −0.5012

−0.2605 0.6981 0.6108 −0.2677

0.5883 −0.2871 0.7020 0.2806

0.1787 0.5633 −0.2286 0.7736





, V =





−0.4044 0.8243 0.3962

0.7316 0.0315 0.6810

0.5489 0.5653 −0.6158




,
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and ‖A − UBV ‖F ≈ 0.55. The matrices P and V given by Algorithm 1 with the same

error tolerance in 3 iterations are

P =





0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0





, V =





0.9972 −0.0281 0.0696

0.0321 0.9979 −0.0570

−0.0678 0.0591 0.9959




,

and ‖A − PBV ‖F ≈ 0.64. As expected, the permutation matrix P is the same as in

previous numerical example. And here Schönemann-Gower’s suggestion fails to provide

a better solution than Algorithm 1, since it yields the matrices

P =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





, V =





−0.4031 0.7980 0.4480

0.7625 0.0222 0.6466

0.5061 0.6022 −0.6175




,

and ‖A− PBV ‖F ≈ 11.85.

In the last numerical example for the TSPOPP, A and B are the following random

matrices

A =





2.0000 9.0000 0.0000

1.0000 4.0000 1.0000

7.0000 5.0000 5.0000

7.0000 8.0000 7.0000





, B =





10.0000 6.0000 5.0000

2.0000 9.0000 1.0000

8.0000 2.0000 3.0000

4.0000 1.0000 1.0000





.

Here the matrices U and V for the TSOPP are

U =





−0.0315 0.9886 0.1347 −0.0590

0.5734 0.1382 −0.7221 0.3614

0.1227 −0.0161 0.5179 0.8464

0.8094 −0.0570 0.4383 −0.3866





, V =





0.9166 0.1544 0.3688

−0.0496 0.9592 −0.2783

−0.3967 0.2368 0.8869




,
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Figure 3.5.3: A possible form of the TSPOPP.

and ‖A− UBV ‖F ≈ 1.35. The nearest permutation matrix P to U is

P =





0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0





,

for which ‖A− PBV ‖F ≈ 11.88. Again, Schönemann-Gower’s suggestion fails to give a

better solution than Algorithm 1 which yields

P =





0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0





, V =





0.9211 0.1588 0.3555

−0.0690 0.9652 −0.2523

−0.3832 0.2079 0.9000




,

and ‖A− PBV ‖F ≈ 3.92 for the same error tolerance in 3 iterations.

Finally, to illustrate a possible application of Algorithm 1 for the TSPOPP consider

the following problem, where the data are artificial and they have been constructed so

that an exact solution exists. Similar problems are encountered in multivariate analysis

[22] when one wishes to test whether two measurements correspond to the same sample.

Let the 6-by2 matrices
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A =





3.5355 53.0330

−7.0711 35.3553

−10.6066 81.3173

10.6066 74.2462

−7.0711 21.2132

−21.2132 63.6396





, B =





10.0000 20.0000

20.0000 30.0000

30.0000 60.0000

40.0000 3.0000

50.0000 6.0000

60.0000 4.0000





,

where A and B may represent two measured samples. Solving the TSPOPP for A

and B using Algorithm 1 with error tolerance ǫ = 10−14, we find the following results

P =





0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 1 0 0 0





, V =



 0.7071 0.7071

−0.7071 0.7071



 ,

and ‖A− PBV ‖F ≈ 0 in 2 iterations. One can notice that the orthogonal matrix V

is the Givens rotation 

 cos(π/4) sin(π/4)

− sin(π/4) cos(π/4)



 .

In the the two-dimensional space the above problem may be illustrated by Figure 3.5.3

where ◦’s stand for the entries of A (with coordinates in the x′y′ plane), and •’s for the

entries of B (with coordinates in the xy plane).

The TSPOPP is certainly a nontrivial problem and investigation of it stopped with

Schönemann’s suggestion in 1968. Unfortunately we cannot claim that Algorithm 1 is the

ultimate solution since there is no way to guarrantee global convergence. Nevertheless, it

is certainly a step which might help researchers in multivariate analysis to find acceptable

solutions to this notorious problem.

3.5.3 A Two-Sided Permutation Problem

In this subsection we consider the following problem:
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The Two-Sided Permutation Procrustes Problem (TSPPP)

Given A,B ∈ Rm×n, m ≥ n, find two permutation matrices P ∈ Rm×m

and Q ∈ Rn×n to minimize

‖A− PBQ‖F . (3.5.6)

The TSPPP can be viewed as the problem of revealing a presumed pattern by per-

muting the rows and columns of an observed data matrix. Such problems arise in a

number of situations, as for example in Guttman’s radex theory [49], in certain areas of

scaling [25, 51], and in cluster analysis problems [21, 118].

Since

‖A− PBQ‖F = tr AT A− 2 tr QT BT P T A + tr BT B,

the problem is equivalent to maximizing trQT BT P T A and the problem may be treated

as a straight-forward application of the following flip-flop algorithm.

Algorithm 2

Given A and B ∈ Rm×n (m ≥ n) and a tolerance epsilon > 0, this

algorithm computes an m-by-m permutation matrix P and an n-by-n

permutation matrix Q that minimize ‖A− PBQ‖F .

k = 0;

Pk ≡ Im (or Qk ≡ In);

Find the permutation matrix Qk that maximizes tr QT
k BT A

(or Find the permutation matrix P that maximizes tr PkBAT );

ρk = ‖A− PkBQk‖F ;

while ρk > ǫ

k = k + 1;

Find the permutation matrix Pk that maximizes tr PkBQk−1A
T

(or Find the permutation matrix Qk that maximizes tr QT
k BT P T

k−1A);
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ρk = ‖A− PkBQk−1‖F (or ρ = ‖A− Pk−1BQk‖F );

if (ρk−1 − ρk) ≤ ǫ, quit, end;

Find the permutation matrix Qk that maximizes tr QT
k BT P T

k A

(or Find the permutation matrix Pk that maximizes tr PkBQkA
T );

ρk = ‖A− PkBQk‖F ;

end

Since a flip-flop algorithm does not guarantee global convergence and the choice of the

initially fixed matrix may affect the efficiency of the algorithm, we suggest that one may

apply Algorithm 2 twice, that is for both P and Q initially fixed. The following numerical

example confirms the usefulness of this idea. Assume the following 5-by-5 matrices

A =





32 14 3 63 50

24 22 1 56 4

94 16 28 75 81

19 72 42 90 54

71 85 10 96 58





, B =





58 96 85 10 71

81 75 16 28 94

4 56 22 1 24

54 90 72 42 19

50 63 14 3 32





.

The matrices A and B have the same entries but their rows and columns are in

different orders.

If we first fix P ≡ Im, and apply Algorithm 2 with error tolerance ǫ = 10−14 for the

solution of the TSPPP, the algorithm terminates in 3 iterations finding the permutation

matrices

P =





0 0 1 0 0

0 0 0 0 1

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0





, Q =





0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

1 0 0 0 0





,

and ‖A − PBQ‖F ≈ 93.7977. But if we initially fix Q ≡ In then Algorithm 2 with

the same error tolerance terminates in six iterations finding the exact solution to this

TSPPP, that is
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P =





0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0





, Q =





0 0 0 0 1

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0





,

and ‖A− PBQ‖F = 0.

3.6 The Two-Sided Symmetric Procrustes Problem

The one-sided symmetric Procrustes problem (OSSPP)

min
X=XT

‖AX −B‖F , A,B ∈ Rm×n (3.6.1)

arises in the determination of the strain matrix of an elastic structure. The problem has

been solved by Higham [63], and we will describe his solution later in this section. The

problem can be extended to its two-sided form.

The Two-Sided Symmetric Procrustes Problem (TSSPP)

Given A,B ∈ Rm×n, m ≥ n, find two symmetric matrices X ∈ Rm×m

and Y ∈ Rn×n to minimize

‖A−XBY ‖F . (3.6.2)

It is a well-known result that any matrix A ∈ Rn×n can be expressed in the form

A = S1S2, (3.6.3)

where S1, S2 ∈ Rn×n are symmetric matrices [54, 116]. However, it is an open question

if, for given A,B ∈ Rm×n, there exist symmetric matrices X ∈ Rm×m and Y ∈ Rn×n so

that A = XBY . Clearly rank(A) ≤ rank(B) is necessary and if A ∈ Rn×n and B = In,

the answer is given trivially by (3.6.3).
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We consider first the full-rank case, that is rank(A) = rank(B) = n. The system

A = XBY , where X,Y are symmetric matrices, has mn equations in 1
2
m(m + 1) +

1
2
n(n + 1) unknowns and thus there should be infinitely many solutions since it has

1
2
((m−n)2 +(m+n)) degrees of freedom. If we assume that the matrix Y is nonsingular

and set Z = Y −1, then the system A = XBY may be written as

AZ −XB = 0. (3.6.4)

Equation (3.6.4) is a generalized Sylvester equation where the unknown matrices are

symmetric. Equation (3.6.4) may be written as a homogeneous system

Cx = 0, (3.6.5)

where the coefficient matrix C is (mn)-by-(1
2
m(m + 1) + 1

2
n(n + 1)). For example, if

m = n = 2,



 a11 a12

a21 a22







 z11 z12

z12 z22



−



 x11 x12

x12 x22







 b11 b12

b21 b22



 = 0

may be written as

a11z11 + a12z12 − b11x11 − b21x12 = 0,

a11z12 + a12z22 − b12x11 − b22x12 = 0,

a21z11 + a22z12 − b11x12 − b21x22 = 0,

a21z12 + a22z22 − b12x12 − b22x22 = 0,

or equivalently





a11 a12 0 −b11 −b21 0

0 a11 a12 −b12 −b22 0

a21 a22 0 0 −b11 −b21

0 a12 a22 0 −b12 −b22





︸ ︷︷ ︸
C





z11

z12

z22

x11

x12

x22





︸ ︷︷ ︸
x

= 0.
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Since every homogeneous system with more unknowns than equations has a nontrivial

solution, there exists a vector x ∈ null(C), x 6= 0, so that Cx = 0. The vector x is not

unique since every vector in the nullspace of C satisfies (3.6.5). The same approach may

be followed when rank(A) ≤ rank(B), assuming again that the matrix Y is invertible.

It is worth noting that if B = In we can use the above method to decompose a given

A ∈ Rn×n into a product of two symmetric matrices without using the companion matrix

as in [54, 116]. Although, the above method is based on an assumption, that is the matrix

Y is invertible, it always yielded in our numerical experiments symmetric matrices X and

Y so that A = XBY . (The arbitrary entries of the matrix Z have been selected so that

the matrix Y be nonsingular.)

But if rank(A) > rank(B) there are no symmetric matrices X and Y so that A =

XBY , since rank(A) > rank(XBY ) for any X ∈ Rm×m and Y ∈ Rn×n. In this case

the solution of the homogeneous system (3.6.5) corresponds to a singular Z and hence

we cannot obtain X by its inversion. At this point it is necessary to describe Higham’s

solution to the OSSPP [63].

Higham considers the OSSPP in the form (3.6.1). If the singular value decomposion

of A is

A = P



 Σ

0



QT ,

then

‖AX −B‖2F = ‖P



 Σ

0



QT X −B‖2F

= ‖



 Σ

0



QT XQ− P T BQ‖2F

= ‖



 Σ

0



Y − C‖2F

= ‖ΣY − C1‖2F + ‖C2‖2F ,
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where Y = QT XQ and

C =



 C1

C2



 = P T BQ, C1 ∈ Rn×n.

Thus, the OSSPP reduces to minimizing the quantity

‖ΣY − C1‖2F =
n∑

i=1

(σiyii − cii)
2 +

∑

j>i

((σiyij − cji)
2 + (σjyij − cji)

2), (3.6.6)

where the required symmetry of Y has been assumed. The variables yij, j ≥ i, in (3.6.6)

are uncoupled, so it suffices to minimize independently each of the terms (σiyii − cii)
2

and (σiyij − cji)
2 + (σjyij − cji)

2), j > i. The general solution is given by

yij =






σicij + σjcji

σ2
i + σ2

j

, σ2
i + σ2

j 6= 0,

arbitrary, otherwise,

and the required solution is X = QY QT .

If the OSSPP is given in the form

min
X=XT

‖XA−B‖F , A,B ∈ Rm×n, m ≥ n,

then since ‖XA − B‖F = ‖AT X − BT‖F , the problem is equivalent to finding the sym-

metric matrix X that minimizes ‖AT X −BT‖F , where AT , BT ∈ Rn×m, n ≤ m. If

AT = P
[

Σ 0
]
QT

is the singular value decomposition of AT , then using the invariance of the Frobenius

norm under orthogonal transformations we have

‖AT X −BT‖2F = ‖P
[

Σ 0
]
QT X −BT‖2F

= ‖
[

Σ 0
]
QT X − P T BT‖2F

= ‖
[

Σ 0
]
QT XQ− P T BT Q‖2F

≡ ‖
[

Σ 0
]


 Y11 Y12

Y T
12 Y22



−



 C11 C12

C21 C22



 ‖2F

= ‖ΣY11 − C11‖2F + ‖ΣY12 − C12‖2F .
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Here, Y11 ∈ Rn×n is symmetric and Y12 ∈ Rn×(m−n) is arbitrary, so the minimum is

achieved when the entries of Y11 are given by

yij =






σicij + σjcji

σ2
i + σ2

j

, σ2
i + σ2

j 6= 0,

arbitrary, otherwise, 1 ≤ i ≤ j ≤ n,

(3.6.7)

and the entries of Y12 are given by

yij =






cij

σi

, σi 6= 0,

arbitrary, otherwise, 1 ≤ i ≤ n, n + 1 ≤ j ≤ m.

The submatrix Y22 is arbitrary. The required symmetric matrix X is given by X =

QY QT .

Since we can find the left and the right symmetric matrices that minimize the OSSPP,

we can apply the following flip-flop algorithm to attempt to solve the TSSPP when

rank(A) > rank(B).

Algorithm 3

Given A and B ∈ Rm×n (m ≥ n) and a tolerance epsilon > 0, this

algorithm computes a symmetric matrix X ∈ Rm×m and a symmetric

matrix Y ∈ Rn×n that minimize ‖A−XBY ‖F .

k = 0;

Xk ≡ Im (or Yk ≡ In);

Find the symmetric matrix Yk that minimizes ‖A−BYk‖F
(or Find the symmetric matrix X that minimizes ‖A−XkB‖F ;

ρk = ‖A−XkBYk‖F ;

while ρk > ǫ

k = k + 1;

Find the symmetric matrix Xk that minimizes ‖A−XkBYk−1‖F
(or Find the symmetric matrix Yk that minimizes ‖A−Xk−1BYk‖F );

ρk = ‖A−XkBYk−1‖F (or ρ = ‖A−Xk−1BYk‖F );

if (ρk−1 − ρk) ≤ ǫ, quit, end;

Find the symmetric matrix Yk that minimizes ‖A−XkBYk‖F
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(or Find the permutation matrix Xk that minimizes ‖A−XkBYk‖F );

ρk = ‖A−XkBYk‖F ;

end

For the same reasons explained in Subsection 3.5.3 it may be recommended to apply

Algorithm 3 twice, that is for both X and Y initially fixed. During our numerical

experiments, for rank(A) ≤ rank(B), Algorithm 3 always converged to zero, no matter

which of X and Y had been fixed initially. (In this the solution may be obtained by

solving the Sylvester equation (3.6.4).) But there is usually a difference in the number of

iterations. A typical numerical example is the following. Consider the 3-by-2 matrices

A =





87 3

93 57

41 23




, B =





7 42

52 9

70 94




,

where rank(A) = rank(B) = 2. If we apply Algorithm 3 for the solution of the

TSSPP fixing initially X ≡ Im, with error tolerance ǫ = 10−14, we obtain the following

results in 76 iterations (rounded here to four decimal digits)

X =





−1.0406 1.1796 0.3390

1.1796 0.8845 0.3564

0.3390 0.3564 0.2024




, Y =



 1.1193 0.0478

0.0478 0.5847



 ,

and ‖A −XBY ‖F = 8.9 × 10−15. But if we first fix Y ≡ In and apply Algorithm 3

with the same error tolerance, we obtain the following results, this time in 125 iterations,

X =





2.1286 −1.0367 0.7733

−1.0367 1.0413 0.9631

0.7733 0.9631 −0.1284




, Y =



 0.5601 0.5141

0.5141 −0.0313



 ,

and ‖A − XBY ‖F = 9.2 × 10−15. The number of iterations is certainly a drawback

of Algorithm 3. For larger matrices the number of iterations increases enormously. For

example, in a numerical experiment for A,B ∈ R5×5 Algorithm 3 required 43712 itera-

tions. Therefore, one may think that it would be better to solve the homogeneous system
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(3.6.5), constructing the coefficient matrix C from A and B. It is remarkable that in our

numerical experiments for rank(A) ≤ rank(B), Algorithm 3 always converged but with

a very disappointing linear convergence. But this fact encouraged us to apply Algorithm

3 for the TSSPP when rank(A) > rank(B). In this this case, the matrix Z given by

the solution of the homogeneous system (3.6.5), was always found to be singular (or very

close to singular due to rounding errors), and therefore we cannot solve the TSSPP using

the solution of (3.6.5).

It is remarkable that during our numerical experiments we noticed that Algorithm

3 needed a much smaller number of iterations when rank(A) > rank(B) and always

converged to the same limit, no matter which of X and Y had been fixed initially. The

following numerical example demonstrates this observation. Let

A =





10 83

52 58

58 44




, B =





16 16

65 65

14 14




.

Here, rank(A) = 2 and rank(B) = 1. Fixing X first, Algorithm 3 yields the following

results with error tolerance ǫ = 10−14 in 4 iterations.

X =





0.2409 0.5530 0.2436

0.5530 0.5173 0.6171

0.2436 0.6171 0.2418




, Y =



 0.5381 0.5381

0.5381 0.5381



 ,

and ‖A−XBY ‖F ≈ 52.7304. Fixing Y first, Algorithm 3 gives the following results

with the same error tolerance in 2 iterations.

X =





0.2593 0.5951 0.2621

0.5951 0.5566 0.6640

0.2621 0.6640 0.2602




, Y =



 0.5000 0.5000

0.5000 0.5000



 ,

and ‖A − XBY ‖F ≈ 52.7304. It is worth noting that in both cases Algorithm 3

yielded the same minimum in different number of iterations and the same behaviour of

Algorithm 3 has been noticed in a large number of numerical experiments with larger

matrices, no matter which of X or Y has been initially fixed.
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Problem Tools for solution

GTSPP Singular value decomposition.
TSOPP Singular value decomposition.

Polar decomposition and
TSRPR spectral decomposition of

a symmetric matrix.
TSPOPP Polar Decomposition and

Hungarian algorithm.
TSPPP Hungarian algorithm.
TSSPP Singular value decomposition.

Table 3.7.1: Two-sided Procrustes Problems and tools for their solution.

3.7 Concluding Remarks

In this chapter we discussed some possible forms of the two-sided Procrustes problems.

From these problems only the TSGPP and the TSOPP can be always solved analyt-

ically. For the rest of them, iterative flip-flop algorithms seem to be efficient methods

in most cases. When rank(A) ≤ rank(B), a solution to the TSSPP may be found by

solving a homogeneous system.

Table 7.1 summarizes the tools needed for our methods, in order to solve the two-

sided Procrustes problems discussed in this chapter. (Table 7.1 does not include tools

for the solution of the homogeneous system in the TSSPP.) Three of them, that is the

singular value decomposition, the polar decomposition, and the spectral decomposition

of a symmetric matrix, are among the most important decompositions in numerical linear

algebra. Apart from tools for the solution of the two-sided Procrustes problems discussed

in this chapter, they are important tools in many applications that arise in various sci-

entific fields. The discussed two-sided Procrustes problems occupy a small part in the

spectrum of their applications. Their importance motivated us to focus our attention on

parallel algorithms for these decompositions. In the following chapters we discuss the de-

velopment of new parallel algorithms for these decompositions and their implementation

on the KSR1. These parallel algorithms may be used for the solution of these two-sided

Procrustes, especially when the matrices A and B are large dense matrices.
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The Hungarian algorithm has been developed for the solution of the assignment prob-

lem, a problem which arises mainly in operational research [24, 115]. The Hungarian

algorithm, as developed by Kuhn [82] and studied and improved by other researchers

(see for example [97]), is not suitable for parallel computation. An algorithm with a

parallel potential for the assignment problem is the auction algorithm, developed by

Bertsekas [10]. Parallel implementations of the auction algorithm on a shared memory

machine are discussed in [11]. We did not implement the auction algorithm on the KSR1.

In the following chapters we discuss parallel methods for the polar decomposition,

the spectral decomposition of a symmetric matrix, and the singular value decomposition.

The discussion commences with the polar decomposition, a decomposition that turned

out to play a key role in our research.



Chapter 4

The Polar Decomposition

4.1 Introduction

Every nonzero complex number z has a unique polar representation z = pu, where p is

a positive real number and u is a complex number of modulus 1. If z = 0, then z still

has a polar representation with p = 0, but u is no longer uniquely determined. This

representation can be generalized to any matrix A ∈ Cm×n. Assuming that m ≥ n, any

matrix A ∈ Cm×n may be written as

A = UH, (4.1.1)

where U ∈ Cm×n has orthonormal columns (U∗U = In), and H ∈ Cn×n is Hermitian

positive semidefinite. The matrix H has the same rank as A and is uniquely determined

as H = (A∗A)1/2, where G1/2 denotes the unique Hermitian positive semidefinite square

root1 of the Hermitian positive semidefinite matrix G. If A has full rank, then U is

uniquely determined and H is positive definite. If A is real, then both U and H may

be taken to be real. Analogously, if m < n, then A may be written as A = HU , where

UU∗ = Im and H = (AA∗)1/2. The factorization (4.1.1) is known as the polar form or

polar decomposition of the matrix A.

The polar decomposition was introduced by Autonne in 1902 [4]. Autonne showed

that every nonsingular A ∈ Cn×n can be written as A = UH, where U ∈ Cn×n is unitary

1Given a matrix A, a matrix X for which X2 = A is called a square root of A.

74
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and H ∈ Cn×n is positive definite. Autonne extended his ideas to the singular value

decomposition in 1915 [5]. However, his pioneering work on these two closely associated

decompositions seems to have been overlooked by his contemporary researchers. Winter

and Murnaghan [125], claiming to be unaware of Autonne’s prior work, rediscovered the

polar decomposition in 1931. They additionally observed that one may always write

A = GU = UH (the same unitary U) if and only if A is normal. Finally, in 1935,

Williamson [124] published a complete version of the polar decomposition for a rectan-

gular complex matrix. Williamson acknowledged the fundamental contributions of both

Autonne and Winter–Murnaghan to the evolution of the polar decomposition.

This chapter is devoted entirely to the polar decomposition and is structured in the

following way. Section 2 introduces the properties of the polar decomposition. Section

3 is a survey of the existing sequential algorithms. Section 4 concetrates on the rela-

tionship between the polar decompostion and the matrix sign function. In Section 5 we

present a new parallel algorithm for computing the polar decomposition. In Section 6 we

discuss its implementation on the KSR1 and in Section 7 we present our experimental

results. In Section 8 we present some applications from various scientific fields, where

the polar decomposition plays an important role. Finally in Section 9 we summarize our

conclusions.

4.2 Properties of the Polar Decomposition

There is a close relationship between the polar decomposition and the singular value

decomposition. Let A ∈ Cm×n, m ≥ n, have the singular value decomposition

A = PΣQ∗, (4.2.1)

where P ∈ Cm×m and Q ∈ Cn×n are unitary and

Σ = diag(σ1, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Inserting Q∗Q = In before Σ,

A = P (Q∗Q)ΣQ∗ = PQ∗

︸︷︷︸
U

QΣQ∗

︸ ︷︷ ︸
H

,
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we obtain the polar factors

U = PQ∗ and H = QΣQ∗. (4.2.2)

If A ∈ Cn×n, and A = UH is its given polar decomposition, one may construct the sin-

gular value decomposition A = (UQ)ΣQ∗ using the spectral decomposition H = QΣQ∗.

This is a worthwhile observation because it suggests a parallel method for computing the

singular value decomposition. Presupposing the existence of an efficient parallel algorithm

for the polar decomposition, one may obtain an effective parallel algorithm for the singu-

lar value decomposition using a parallel algorithm for solving the symmetric eigenvalue

problem. This observation deserves attention, since the singular value decomposition is

one of the most important tools in numerical linear algebra. This suggestion is being

investigated in the next chapter of this thesis.

The following Lemma (4.2.1), taken from [61], summarises some elementary properties

of the polar decomposition. λ(A) and σ(A) denote, respectively, the set of the eigenvalues

and the set of the singular values of A ∈ Cn×n. κ2 = ‖A‖2‖A−1‖2 = σ1/σn is the 2-norm

condition number. Recall that A ∈ Cn×n is said to be normal if A commutes with its

Hermitian adjoint, that is A∗A = AA∗.

Lemma 4.2.1 Let A ∈ Cn×n have the polar decomposition A = UH. Then

(i) λ(H) = σ(A) = σ(H).

(ii) κ2(A) = κ2(H).

(iii) A is normal if and only if UH = HU .

Proof. (i) Let H = QΣQ∗ be the spectral decomposition of the Hermitian polar

factor H. As we mentioned earlier, the singular value decomposition of A can be written

as

A = (UQ)ΣQ∗,

and therefore λ(H) = σ(A) = σ(H).

(ii) It is immediate from (i) since σ(A) = σ(H).
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(iii) If A is normal, then H2 = UH2U∗. Now H2 and UH2U∗ are both positive

semidefinite matrices and H and UHU∗ are their respective positive semidefinite square

roots. It is known [67, Theorem 7.2.6, page 405] that the square root of a positive

semidefinite matrix is unique, and therefore H = UHU∗, that is UH = HU . If U and

H commute, then AA∗ = (UH)(UH)∗ = (HU)(HU)∗ = (HU)(U∗H) = H2, A∗A =

(UH)∗(UH) = HU∗UH = H2, and hence A is normal. �

The unitary polar factor possesses two significant approximation properties. The

possession of these properties explains the widespread use of the polar decomposition

in various applications. The discussion of these applications is deferred until Section 8.

The first approximation property is that the unitary polar factor is the closest unitary

matrix to a given matrix in both the Frobenius and the 2-norm. To be more specific, let

A ∈ Cm×n (m ≥ n), and let A = UH be its polar decomposition. Then

‖A− U‖ = min{ ‖A−Q‖ : Q∗Q = I, Q ∈ Cm×n }

for both the Frobenius and the 2-norm; if m = n then the result is true for any unitarily

invariant norm [39].

The second approximation property of the unitary polar factor is that it solves the

orthogonal Procrustes problem,

min{ ‖A−BQ‖F : Q∗Q = I, Q ∈ Cm×n }, A,B ∈ Cm×n,

which arises in numerous applications2. The solution to this problem is the unitary polar

factor of the matrix B∗A.

The Hermitian polar factor also possesses noteworthy properties. These properties

are summarised in Lemma (4.2.2) taken from [61]. In this work, Higham defines for any

Hermitian matrix B,

δ(B) = min{‖E‖2 : B + E is Hermitian positive semidefinite}.

We denote by λn the smallest eigenvalue of a n× n matrix with only real eigenvalues.

Lemma 4.2.2 Let A ∈ Cn×n be Hermitian with polar decomposition A = UH. Then

2See Section 8.
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(i) δ(A) = max{0,−λn(A)} = 1
2
‖A−H‖2.

(ii) 1
2
(A + H) is a best Hermitian positive semidefinite approximation to A in the 2-

norm.

(iii) For any Hermitian positive (semi-)definite X ∈ Cn×n,

‖A−H‖2 ≤ 2‖A−X‖2.

(iv) H and A have a common set of eigenvectors.

In Section 8 we discuss an application of the polar decomposition in optimization,

where the Hessian matrix in Newton’s method for the minimization of F (x), F : Rn → R,

may be replaced by its polar factor.

4.3 Sequential Algorithms

As we mentioned in the previous section, the polar decomposition can be computed

using the singular value decomposition. This approach provides a numerically stable way

to compute the polar factors, providing that the singular value decomposition has been

computed in a stable way. The standard approach to the computation of the singular

value decomposition is the Golub–Reinsch algorithm [46], as implemented in LAPACK [1].

If A ∈ Cm×n, (m ≥ n), the computation proceeds in the following stages:

1. The matrix A is reduced to bidiagonal form: A = P1BQ∗
1, where P1 and Q1

are unitary, and B is real and upper bidiagonal, so that B is nonzero only on

the main diagonal and the first superdiagonal.

2. The singular value decomposition of the bidiagonal matrix B is computed:

B = P2ΣQ∗
2, where P2 and Q2 are orthogonal and Σ is the diagonal matrix of

the singular values of A. The singular vectors of A are then P = P1P2 and

Q = Q1Q2, that is the singular value decomposition of A is A = PΣQ∗.
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If m≫ n, it is more efficient to first perform a QR factorization of A, and then to compute

the singular value decomposition of the n-by-n matrix R; if A = QR and R = UΣV ∗,

then the singular value decomposition of A is given by A = (QU)ΣV ∗ [47, Sec. 5.4.5].

Once the singular value decomposition has been computed, the polar factors of A can be

obtained as

U = P



 In

0



Q∗, H = QΣQ∗. (4.3.1)

The Golub–Reinsch SVD algorithm is not well-suited for parallel computation. An-

other basic drawback of this approach to compute the polar decomposition is that the

algorithm requires a fixed number of floating point operations (somewhat more than 22n3

flops), regardless of the proximity of A to its unitary polar factor. In certain applications,

especially in aerospace computations [8, 13], the columns of A are nearly orthogonal and

there is a need for an algorithm that takes this fact into account. (These applications

are discussed in Section 8). In 1971, Björck and Bowie [13], realizing the importance of

devising an algorithm oriented to this problem, showed that the iteration

Ak+1 = Ak



I +
1

2
Tk +

3

8
T 2

k + · · ·+ (−1)p



 −1/2

p



 T p
k



 , A0 = A, (4.3.2)

where Tk = I − A∗
kAk, converges locally to U with order p + 1. (For p = 1, (4.3.2) is an

inner Schulz iteration). The algorithm works for rectangular matrices but the sequence

converges only if ‖I − A∗A‖ < cp for certain constants cp.

Higham [61] considers the iteration

X0 = A ∈ Cn×n, nonsingular,

Xk+1 =
1

2

(
Xk + X−∗

k

)
, k = 0, 1, . . . , (4.3.3)

where X−∗
k denotes (X−1

k )∗, and shows that the sequence converges quadratically to the

unitary polar factor of A. The algorithm is based on the Newton iteration to compute

the square root of a scalar. Although (4.3.3) is quadratically convergent, convergence

can be slow initially, for example when A is an ill–conditioned matrix. The speed of

convergence can be improved by scaling the iterates Xk ← γkXk, so that iteration (4.3.3)



CHAPTER 4. THE POLAR DECOMPOSITION 80

can be written as

Xk+1 =
1

2

(
γkXk +

1

γk

X−∗
k

)
. (4.3.4)

From this point on, iteration (4.3.4) will be referred to as Higham’s method. Higham

finds very fitting that the optimum scaling factor γk is

γk = (σmax (Xk) σmin (Xk))
−1/2 ,

where σmin and σmax are the smallest and the largest singular values of Xk respectively.

In practice, the exact computation of γk is too expensive, and Higham suggests as a good

approximation the scaling factor

γ̂k =

(‖X−1
k ‖1‖X−1

k ‖∞
‖Xk‖1‖Xk‖∞

)1/4

.

A thorough analysis of scaling the Newton iteration is given in [80].

In [66], Higham and Schreiber propose another algorithm to compute the polar de-

composition of an arbitrary matrix. The idea is to use Higham’s method for square

matrices and to apply it to the triangular matrix obtained from a complete orthogonal

decomposition of the original matrix. This decomposition requires rank decision. They

also suggest switching from Higham’s method to Schulz iteration once ‖X∗
kXk−I‖1 ≤ 0.1,

to maximize the amount of matrix-matrix multiplications.

In [42], Gander devises an iteration similar to (4.3.3) using Halley’s iteration to com-

pute the square root. This cubically convergent iteration,

Xk+1 = Xk (X∗
kXk + 3I) (3X∗

kXk + I)−1 , (4.3.5)

is more general than (4.3.3) since it is not confined to square matrices. Gander also

proposes a family of iteration methods that contain (4.3.2) (for p = 1), (4.3.3), and

(4.3.5), as special cases [43]. These methods converge globally and they do not need rank

decisions. On the other hand , they require the numerical formation of X∗
kXk, which may

cause loss of information in Xk.
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4.4 The Matrix Sign Function and the Polar Decom-

position

The matrix sign function is a relatively recent concept in linear algebra. It was intro-

duced by Roberts [101] in 1971 for the solution of the algebraic Riccati equation and

the Lyapunov equation. From then on, a number of papers have been written about the

matrix sign function since it can be used for the solution of many problems in control

theory. Although Roberts defined the matrix sign function via a contour integral, the

most propitious definition is the following.

Let A ∈ Cn×n have no pure imaginary eigenvalues and

A = T



 P 0

0 N



T−1 (4.4.1)

be its Jordan canonical form. P and N in are in block diagonal form with, respectively,

positive and negative real part eigenvalues. Then the sign of A is given by

sign(A) = T



 I 0

0 −I



T−1, (4.4.2)

where I and −I in (4.4.2) have the same dimensions with P and N in (4.4.1). Apparently,

sign(A) is uniquely defined and nonsingular since its eigenvalues are ±1. Throughout this

section we assume that A has no pure imaginary eigenvalues.

The following Lemma 4.4.1 summarizes some elementary properties of the matrix sign

function.

Lemma 4.4.1 Let A ∈ Cn×n and S = sign(A). Then,

(i) S is involutary (S2 = I).

(ii) S−1 = S.

(iii) A commutes with S (AS = SA).
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Proof.

(i)

S2 = SS = T



 I 0

0 −I



T−1T



 I 0

0 −I



T−1 = T−1T = I.

(ii) It is immediate from (i).

(iii)

AS = T



 P 0

0 N



T−1T



 I 0

0 −I



T−1

= T



 P 0

0 −N



T−1

= T



 I 0

0 −I







 P 0

0 N



T−1

= T



 I 0

0 −I



(
T−1T

)


 P 0

0 N



T−1

= SA. �

For the computation of the matrix sign function, Roberts proposed the Newton iter-

ation

Yk+1 =
1

2

(
Yk + Y −1

k

)
, Y0 = A. (4.4.3)

Iteration (4.4.3) converges globally and quadratically to sign(A), and is derived by ap-

plying Newton’s method to the equation A2 = I.

Lemma 4.4.2 If

Yk+1 =
1

2

(
Yk + Y −1

k

)
, Y0 = A,

and S = sign(A), then YkS = SYk for every k = 0, 1, . . ..

Proof. By induction. For k = 0 the request is true from Lemma (4.4.1)(iii). Assume

that it is true for k = n. Then for k = n + 1,

Yk+1S =
1

2

(
Yk + Y −1

k

)
S
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=
1

2

(
YkS + (YkS)−1

)

=
1

2

(
SYk + S−1Y −1

k

)

=
1

2

(
SYk + SY −1

k

)

= S

(
1

2

(
Yk + Y −1

k

))

= SYk+1. �

If α is a real number, then α can be written as α = sign(α) |α|, where sign(α) = ±1 is

the familiar sign of a scalar. The polar decomposition can be viewed as a generalization of

this scalar decomposition to complex matrices, with sign(α) replaced by the unitary polar

factor, and |α| replaced by the Hermitian one. In [64], Higham points out that the matrix

sign function can be also considered as a generalization of this scalar decomposition and

based on this observation investigates the relation between the polar decomposition and

the matrix sign function. For this purpose, Higham defines the matrix sign decomposition

A = SN, S = sign(A), A ∈ Cn×n.

As we mentioned earlier, S = sign(A) is uniquely defined and so is the matrix sign decom-

position. The matrix N is given by N = S−1A = SA. (S−1 = S from Lemma 4.4.1(ii)).

The following lemma summarizes two elementary properties of the matrix N .

Lemma 4.4.3 Let A ∈ Cn×n have the matrix sign decomposition

A = SN, S = sign(A), A ∈ Cn×n.

Then, the matrix N has the following properties:

(i) N commutes with S (SN = NS).

(ii) The eigenvalues of N have strictly positive real part (Re λi(N) > 0).

(iii) N = (A2)1/2

Proof. (i) Let

A = T



 P 0

0 W



T−1
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be the Jordan canonical form of A, and

sign(A) = T



 I 0

0 −I



T−1.

The matrices P and W are in block diagonal form and they contain the eigenvalues of A

with positive and negative part respectively. Since N = SA, N can be written as

N = T



 P 0

0 −W



T−1,

and therefore

NS = T



 P 0

0 −W



T−1T



 I 0

0 −I



T−1

= T



 P 0

0 W



T−1

= A

= SN.

(ii) It is immediate since

N = T



 P 0

0 −W



T−1,

is the Jordan canonical form of N .

(iii) Inasmuch as SN = NS and S2 = I , A2 = SNSN = S2N2 = N2. Since A has

no pure imaginary eigenvalues, A2 is nonsingular and has no real, negative eigenvalues.

Therefore (see [62, Theorem 4]), N can be uniquely given as N = (A2)1/2. �

Lemma 4.4.3(iii) suggests an alternative definition of the matrix sign function:

sign(A) = A(A2)−1/2, (4.4.4)

and thus the matrix sign decomposition can be written as:

A = sign(A)(A2)1/2. (4.4.5)
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Matrix sign decomposition A = SN S2 = I λi(S) = ±1 Re λi(N) > 0
Polar decomposition A = UH U∗U = I |λi(U)| = 1 λi(H) > 0

Table 4.4.1: Similarities between the polar decomposition and the matrix sign decompo-
sition

Definition (4.4.4) is attributed to Higham [64] who first observed and investigated the

similarities between the polar decomposition and the matrix sign function. Writing the

polar decomposition of A ∈ Cn×n as

A = UH = U(A∗A)1/2, (4.4.6)

the analogies between (4.4.4) and (4.4.6) can be easily observed in Table 4.4.1.

The following Lemma 4.4.4 shows clearly a direct link between the matrix sign function

and the polar decomposition.

Lemma 4.4.4 For any nonsingular A ∈ Cn×n,

sign







 0 A

A∗ 0







 =







 0 U

U∗ 0







 .

Proof. Let A = V ΣW ∗ be the singular value decomposition of A, and

T =

√
2

2



 V −V

W W



 .

We observe that



 0 A

A∗ 0



 can be written as



 0 A

A∗ 0



 = T



 Σ 0

0 −Σ



T ∗. (4.4.7)

Since T ∗ = T−1 (T is a unitary matrix), (4.4.7) is the Jordan canonical form of



 0 A

A∗ 0



.

Therefore from the definition of the matrix sign function,

sign(A) = T



 I 0

0 −I



T ∗ =



 0 V W ∗

WV ∗ 0



 =



 0 U

U∗ 0



 .
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Lemma 4.4.4 can also be proved via the matrix sign decomposition

sign







 0 A

A∗ 0







 =



 0 A

A∗ 0











 0 A

A∗ 0




2




−1/2

.

It can be easily verified by direct calculations that







 0 A

A∗ 0




2




−1/2

=



 (AA∗)−1/2 0

0 (A∗A)−1/2



 ,

and since H = (A∗A)1/2,

sign







 0 A

A∗ 0







 =







 0 U

U∗ 0







 . �

Lemma 4.4.4 allows us to derive various formulae and iterations for the matrix sign func-

tion from the corresponding ones for the polar decomposition. For example, if we apply

the Newton iteration (4.4.3) to



 0 A

A∗ 0



, we obtain the following Newton iteration for

computing U :

Yk+1 =
1

2

(
Yk + Y −∗

k

)
, Y0 = A ∈ Cn×n, (4.4.8)

which is Higham’s method (4.3.3).

In [96], Pandey, Kenney and Laub present a parallel algorithm for the matrix sign

function. This work is based on previous work by Kenney and Laub [79], where a family

of Padé iterations for the computation of sign(A) is derived. Their methods are based

on the observation that for any nonzero real x,

sign(x) =
x

|x| =
x√

1− (1− x2)
.

Setting ξ = 1− x2,

sign(x) =
x√

1− ξ
= x(1− ξ)−1/2.

(1− ξ)−1/2 can be expressed via the hypergeometric function as

(1− ξ)−1/2 =2 F1

(
1

2
, 1, 1, ξ

)
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where 2F1

(
1
2
, 1, 1, ξ

)
belongs to the family of hypergeometric functions

2F1(α, β, γ, ξ) =
+∞∑

n=0

(α)n(β)n

n!(γ)n

ξn,

where (a)n = (a)(a+1) . . . (a+n− 1) with (a)0 = 1. 2F1

(
1
2
, 1, 1, ξ

)
can be approximated

by Padé approximants (see for example [6]). Kenney and Laub exploit this observation

and they derive iterations for computing sign(A) of the form

Xk+1 = Xkπr

(
X2

k

)
ρs

(
X2

k

)−1
, X0 = A, (4.4.9)

where πr and ρs and polynomials of degree r and s respectively. In the same work, they

show that for r = s and r = s− 1 these iterations converge globally to sign(A) with rate

of convergence r + s + 1.

In [96], Pandey, Kenney and Laub derive an explicit partial fraction form for the

iteration (4.4.9) with r = s− 1. The iteration is

Xk+1 =
1

p
Xk

p∑

i=1

1

ξi

(
X2

k + α2
i I

)−1
, X0 = A, (4.4.10)

where

ξi =
1

2

(
1 + cos

(
(2i− 1)π

2p

))
, α2

i =
1

ξi

− 1, i = 1 : p. (4.4.11)

This iteration converges globally to sign(A) with rate of convergence 2p. Since each

fraction can be evaluated on a separate processor in parallel, iteration (4.4.10) is suitable

for parallel computation. Substituting

Xk :=



 0 Xk

X∗
k 0



 (4.4.12)

into (4.4.10), we find that Xk+1 has the same block 2-by-2 form (4.4.12) as Xk. Thus,

equating (1, 2) blocks on both sides we obtain, using Lemma 4.4.4, the iteration

Xk+1 =
1

p
Xk

p∑

i=1

1

ξi

(
X∗

kXk + α2
i I

)−1
, X0 = A. (4.4.13)

Being aware of the link between the matrix sign function and the polar decomposition

as established in Lemma 4.4.4, we conclude that for any full rank matrix A ∈ Cm×n,



CHAPTER 4. THE POLAR DECOMPOSITION 88

iteration (4.4.13) converges globally to the unitary polar factor U of A with rate of

convergence 2p. Iteration (4.4.13) is derived by Higham [64] in the way described here.

Finally, it is useful to observe the relationship between the Newton iteration (4.4.8)

and iteration (4.4.13). For p = 1, iteration (4.4.13) is

Xk+1 = 2Xk(X
∗
kXk + I)−1. (4.4.14)

If A ∈ Cn×n, nonsingular, and

Yk+1 =
1

2

(
Yk + Y −∗

k

)
, Y0 = A,

then

Y −∗
k+1 =

(
1

2

(
Yk + Y −∗

k

)∗
)−1

=

(
1

2

(
Y ∗

k + Y −1
k

))−1

= 2
(
(Y ∗

k Yk + I) Y −1
k

)−1

= 2Yk (Y ∗
k Yk + I)−1 . (4.4.15)

Equation (4.4.15) indicates the relationship between iteration (4.4.13) and iteration (4.4.14).

If we set Yk = Xk in (4.4.15) then

Xk+1 = Y −∗
k+1. (4.4.16)

This result can be generalized for any p which is a power of 2. In this case, itera-

tion (4.4.13) can be derived by combining log2 p + 1 steps of (4.4.8) and expressing the

result in partial fraction form. Namely, if we set Xk = Yk in (4.4.13) as above, then

Xk+1 = Y −∗
k+log2 p+1, (4.4.17)

and therefore one step of (4.4.13) is equivalent to log2 p + 1 Newton iterates.

4.5 A Parallel Algorithm for the Polar Decomposi-

tion

Iteration (4.4.13) is endowed with inherent high-level parallelism. Apart from the p

matrix inversions, which can be carried out simultaneously at every step, iteration (4.4.13)
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is also rich in matrix–matrix multiplications. Matrix–matrix multiplications can also be

performed in parallel in a very efficient way on most parallel computers. Implementation

details are discussed in the next section.

As we mentioned in Section 3, the convergence of the Higham’s iteration (4.4.8) can

be accelerated by scaling the iterates X ← γXk, where γk is either the optimum scaling

factor

γk = (σmax (Yk) σmin (Yk))
−1/2 , (4.5.1)

or its computationally less expensive estimate

γ̂k =

(‖Y −1
k ‖1‖Y −1

k ‖∞
‖Yk‖1‖Yk‖∞

)1/4

. (4.5.2)

In [80], Kenney and Laub present an in–depth analysis of scaling the Newton iteration.

A notable result in this work is that with the optimal scaling parameter (4.5.1), Yk = U

where k is the number of distinct singular values of A, that is, exact convergence is

obtained in k ≤ n iterations. The computation of the optimal scaling parameter (4.5.1)

is expensive because it requires the singular value decomposition of Yk at each step.

The computation of the scaling parameter (4.5.2) is less expensive, and it can also be

performed in parallel as shown in the following section. Practical experience shows that

even using the approximate scaling parameter γ̂k, convergence results are satisfactory,

and convergence is almost always obtained in ten iterations or less (to a convergence

tolerance of 10−16 or greater).

The relation between Higham’s method and iteration (4.4.13) suggests the application

of the above scaling policy to iteration (4.4.13). Its scaled version can be written as

Xk+1 =
1

p
µkXk

p∑

i=1

1

ξi

(
µ2

kX
∗
kXk + α2

i I
)−1

, X0 = A ∈ Cm×n, (4.5.3)

where µk is given by (4.5.1) or (4.5.2). The effect of scaling is the same as if we scaled

only one in log2 p + 1 Higham iterates since as we mentioned above, one step of (4.4.13)

is equivalent to log2 p+1 Higham steps. Hence, the increased opportunity for parallelism

causes a decline in the effectiveness of scaling. Futhermore, the computation of the scaling

parameter µk requires the inversion of Xk. This is an extra cost, since we do not form

X−1
k during the course of iteration.
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Lemma 4.5.1 indicates a worthy of note advantage of ( 4.5.3) over Higham’s method:

having necessarily formed X∗
kXk in the beginning of each iteration, we can evaluate

cheaply the upper bound in the inequality

‖Xk − U‖F ≤ ‖X∗
kXk − I‖F , A = UH,

and thus terminate the iteration in a reliable and timely fashion. Note that we are using

here the fact that each Xk has the same polar factor U as A.

Lemma 4.5.1 Let A ∈ Cm×n have the polar decomposition A = UH. Then

‖A∗A− I‖F
1 + ‖A‖2

≤ ‖A− U‖F ≤ ‖A∗A− I‖F . (4.5.4)

Proof. Let A = PΣQ∗ be the singular value decomposition of A, so that U = PQ∗

is its unitary polar factor. Substituting A and U in (4.5.4),

‖A− U‖F = ‖PΣQ∗ − PQ∗‖F = ‖Σ− I‖F ,

and

‖A∗A− I‖F = ‖QΣP ∗PΣQ∗ −QQ∗‖F = ‖Σ2 − I‖F .

It is a well-known result, that for every matrix D ∈ Cm×n and F ∈ Cn×m, ‖DF‖F ≤

‖D‖F‖F‖2 [67]. Thus,

‖Σ2 − I‖F ≤ ‖Σ− I‖F‖Σ + I‖2,

and since

‖Σ + I‖2 ≤ 1 + ‖A‖2,

it follows that the left inequality in (4.5.4 holds.

For the right inequality in (4.5.4) it suffices to show that ‖Σ − I‖F ≤ ‖Σ2 − I‖F , or

equivalently,

(σi − 1)2 ≤ (σ2
i − 1)2 = (σi − 1)2(σi + 1)2, for every i = 1, . . . , n. (4.5.5)

Since σi ≥ 0 for every i = 1, . . . , n, (4.5.5) always holds. �

The presense ofX∗
kXk is also a drawback since by forming X∗

kXk numerically one can

lose information on Xk. The above mentioned disanvantages of iteration (4.5.3) suggest



CHAPTER 4. THE POLAR DECOMPOSITION 91

that the iteration is potentially numerically unstable when A is ill conditioned. This is

not a totally unexpected observation, since there are many examples in numerical linear

algebra where there is a tradeoff between parallelism and numerical stability [31].

To examine the stability we need a tool to measure the quality of an approximate

polar factor. We assume for the rest of this section that A is a square matrix (certain of

the inequalities below do not hold for rectangular A.) Given a unitary approximation V

to the unitary polar factor U of A, we are interested in the nearest perturbed matrix to

A, A+E, whose exact unitary polar factor is the matrix V . This thought leads naturally

to the following definition of the backward error of V :

β(V ) = min{‖E‖F : V is the unitary polar factor of A + E}

= min{‖E‖F : V ∗(A + E) is Hermitian positive semidefinite}.

Lemma 4.5.2 indicates how we can evaluate β(V ), or at least an lower bound for it.

Lemma 4.5.2 Let A ∈ Cm×n and let U ∈ Cm×n be unitary. Then

min{ ‖E‖F : V ∗(A + E) is Hermitian } =
1

2
‖A∗V − V ∗A‖F

and the minimum is achieved for Eopt = 1
2
(V A∗V −A). If V ∗(A+Eopt) = 1

2
(A∗V +V ∗A)

is positive semidefinite then Eopt solves

min{ ‖E‖F : V ∗(A + E) is Hermitian positive semidefinite }.

Proof. Any matrix B ∈ Cn×n can be written as

B =
1

2
(B + B∗) +

1

2
(B −B∗),

where 1
2
(B + B∗) is the Hermitian part of B and 1

2
(B − B∗) is the skew-Hermitian part

of B. If V ∗E = G + K, where G = G∗ and K = −K∗, then

V ∗(A + E) = V ∗A + V ∗E = V ∗A + G + K.

The requirement that V ∗(A + E) is Hermitian implies that

2K = A∗V − V ∗A,
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and therefore

V ∗E = G +
1

2
(A∗V − V ∗A).

Hence

‖E‖2F = ‖V ∗E‖2F = ‖G‖2F + 1
4
‖A∗V − V ∗A‖2F ,

and since G is arbitrary, the minimizing E is achieved when G = 0. This establishes

the first part. The second part is immediate since the set of allowable E in the second

minimization problem is a subset of the first. �

Lemma 4.5.2 states that given a unitary approximation V to U , the best choice for

H is

H =
1

2
(A∗V + V ∗A) ,

assuming that H is positive semidefinite. Moreover, if H is positive semidefinite, the

backward error of V is given by

β(V ) =
1

2
‖A∗V + V ∗A)‖F ;

otherwise the quantity 1
2
‖A∗V + V ∗A)‖F is a lower bound of β(V ), that is

β(V ) >
1

2
‖A∗V + V ∗A)‖F .

We can also observe that if A, V ∈ Cn×n then

A− V H = A− V

(
1

2
(A∗V + V ∗A)

)

= A− 1

2
V A∗V − 1

2
A

=
1

2
(A− V A∗V ) ,

and hence

‖A− V H‖F =
1

2
‖A∗V − V ∗A‖F . (4.5.6)

Equation (4.5.6) shows that β(V ) is always greater than or equal to the residual of the

approximate polar decomposition.

A computed approximation Û to U is usually unitary only to within roundoff, but

with V = Û all the inequalities in Lemma 4.5.2 are still true to within roundoff. It is
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therefore reasonable to use the following formula for the computation of the Hermitian

polar factor

Ĥ =
(Û∗A)∗ + Û∗A

2
. (4.5.7)

Formula (4.5.7) does not suggest any innovation in computing the Hermitian polar factor.

This choice has been used in [61, 66]. However the present justification is independent

and new.

The stability properties of (4.5.3) are clearly illustrated by its performance on the

10× 10 Vandermonde matrix A, with

aij =

(
j − 1

n− 1

)i−1

, n = 10.

This matrix has a 2–norm condition number κ2(A) = 1.52×10−7. All computations were

done using MATLAB on a Sun Sparc workstation with unit roundoff u ≈ 1.1×10−16. To

investigate the behaviour of iteration (4.5.3), we implemented the iteration both with

and without scaling. The approximate scaling factor (4.5.2) (with Yk replaced by Xk)

has been used for the scaled version but scaling is done only while ‖X∗
kXk − I‖F > 10−2.

The reason is that after this point convergence is fast, and there is no need for extra

computational cost caused by the forming of the scaling factor. In the unscaled iteration

we scaled the original matrix to have unit Frobenius norm, for reasons explained later in

this section. Iterations are terminated when ‖X∗
kXk− I‖F ≤ nu. Table 4.5.1 summarizes

some characteristic results for the behaviour of iteration (4.5.3). It also displays results

for both the unscaled and scaled Newton iteration for comparison. The Hermitian polar

factor has been computed using the formula (4.5.7) and it is positive semidefinite; thus

we can evaluate β(Û).

Table 4.5.1 shows that the scaled version of iteration (4.5.3) is unstable for all p, since

the backward error is seven order of magnitude larger than we would like. This behaviour

is explained by the fact that some of the matrices Ci = µ2
kX

∗
kXk +A2

i I are ill conditioned,

as illustrated in the fourth column of Table 4.5.1. (This column reveals the maximum

2–norm condition number over all terms i and iterations k). These ill conditioned terms

appear when µkXk is ill conditioned and has norm greatly exceeded 1. The fact that Ci

is symmetric positive definite allows us to express k2(Ci) in terms of the singular values
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Iteration Scaling Iters β(Û)/‖A‖F maxi,k κ2(µ
2
kX

∗
kXk + α2

i I)
Newton unscaled 29 8.10E-12 –

scaled 8 4.10E-16 –
p = 1 unscaled 29 3.15E-16 2.00E+00

scaled 8 1.37E-09 9.21E+06
p = 2 unscaled 15 5.74E-16 6.83E+00

scaled 5 6.95E-09 5.37E+07
p = 4 unscaled 10 1.22E-15 2.63E+01

scaled 4 2.40E-09 2.33E+08
p = 8 unscaled 8 2.22E-15 1.04E+02

scaled 4 6.00E-09 9.49E+08
p = 16 unscaled 6 9.64E-15 4.15E+02

scaled 3 3.60E-09 3.82E+09

Table 4.5.1: Behaviour on a 10× 10 Vandermonde matrix.

of Xk, that is

κ2(Ci) =
(µkσmax(Xk))

2 + α2
i

(µkσmin(Xk))2 + α2
i

≤ (µkσmax(Xk))
2

mini α2
i

+ 1. (4.5.8)

For the scaled iteration the best bound that holds for all k is ‖µkXk‖2 ≤ κ2(A)1/2 (with

equality when k = 0), and so the best bound for κ2(Ci) is of order κ2(A). It is apparent

that if A is ill conditioned, κ2(Ci) can be large.

Without using scaling, κ2(Ci) is nicely bounded, provided ‖X0‖2 is not too large,

because then all the Xk are not large in norm. This follows from the observation that

with no scaling σmax(Xk) ≤ 1 for all k ≥ 1, which is clear for iteration (4.4.16) and

therefore follows for iteration (4.4.10). If p = 16 then mini α
2
i = 2.41× 10−3 and (4.5.8)

(with µk ≡ 1) yields κ2(Ci) ≤ 416 for all i and all k ≥ 1; this is a sharp inequality, as

can be seen from the p = 16 entry in Table 4.5.1.

The initial scaling X0 ← X0/‖X0‖F ensures that σmax(X0) ≤ 1. When X0 is nearly

unitary this scaling tends to increase ‖X0−U‖F , since ‖Q‖F =
√

n for unitary Q. Alter-

native initial scalings that do not have this disadvantage are X0 ← (‖X0‖F /‖XT
0 X0‖F )X0

(which solves the minimization problem minα ‖I−(αX0)
∗(αX0)‖F ), X0 ←

√
nX0/‖X0‖F ,

or simply no scaling. The unit Frobenius norm scaling has the advantage of giving the

smallest bound for κ2(Ci) when k = 0. In our implementation we do not apply initial

scaling to matrices that are close to orthogonal, that is matrices with 2-norm condition
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number less than 1.01.

It is clear that there is a tradeoff between stability and scaling. Scaling can drastically

improve the speed of convergence but on the other hand it can seriously effect the stability

of (4.5.3) when A is ill conditioned; ironically this is the situation where scaling is most

necessary. On the contrary, Higham’s method with scaling is always almost stable in

practice [61]. But the instability of (4.5.3) does not effect its practical functionality for

two reasons. First, as we will see in Section 8, in certain applications A is nearly unitary

and therefore well conditioned. Second, a certain level of instability may be tolerated,

when the polar decomposition is not demanded to high accuracy.

Our parallel algortithm for computing the polar decomposition can be described as

follows.

Algorithm Parallel Polar.

Given a nonsingular matrix A ∈ Cn×n and a convergence tolerance tol,

this algorithm computes the polar decomposition A = UH. The algo-

rithm uses iteration (4.5.3) and requires p processors.

X: = A

if “scaling is not required”, X: = X/‖X‖F , end

Compute the coefficients ξi, α2
i (i = 1, . . . , p) in (4.4.11).

repeat

(1) Compute C: = X∗X using parallel matrix multiply.

ρ: = ‖C − I‖F
if ρ ≤ tol, goto (5), end

if ρ ≤ 10−2 and “scaling is required”

(2) Compute W : = C−1.

µ: = ((‖W‖∞‖W‖1) (‖X‖∞‖X‖1))1/4

else

µ: = 1

end if
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Form Ci: = µ2C + α2
i I on each processor i, (i = 1, . . . , p).

(3) Compute Ti: = C−1
i on each processor i, (i = 1, . . . , p).

S: =
∑p

i=1 Ti.

(4) Compute X: = µ
p
XS, using parallel matrix multiply.

end

(5) U : = X

Compute H1: = U∗A using parallel matrix multiply.

H: = 1
2
(H∗

1 + H1) (“best H” by Lemma 4.5.2).

4.6 Implementation on the KSR1

We coded the algorithm Parallel Polar in KSR Fortran. As we mentioned in Chapter

2, KSR Fortran provides high-level and low-level facilities for defining parallel programs.

From the high-level ones we used parallel regions and tile families. Parallel sections, the

third high-level parallel construct, has not been used in our implementation. We also

used the same team of pthreads for all the parallel constructs in our code. The source

code for Algorithm Parallel Polar is given in Appendix A.

For the matrix–matrix multiplications we used the highly optimized level 3 BLAS

routine SGEMM. This routine is supplied by Kendall Square Research in the KSRlib/BLAS

Library [77]. SGEMM superseded our implementation in KSR Fortran of Algorithm 6.3.2

in [47] for parallel matrix multiplication on a shared–memory computer. A non–standard

call of SGEMM is the following:

CALL SGEMM(TRANSA, TRANSB, M, N, L, ALPHA, A, LDA, B, LDB,

& BETA, C, LDC, CT, NCELL, TEAMID, PS)

The additional parameters CT, NCELL, TEAMID, and PS are utilized to increase perfor-

mance. CT is a temporary array allocated by the user, NCELL is the number of processors,

TEAMID is the identification number of the team of threads, and PS is a parallel partition-

ing configuration parameter. The meaning of PS is the following: matrix C is partitioned
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Matrix size n
256 512 1024

1 proc (PS = 1) 23 25 27
2 proc (PS = 1) 43 48 53
4 proc (PS = 2) 73 82 92
8 proc (PS = 3) 112 119 139
16 proc (PS = 4) 197 244 302

Table 4.6.1: Timing results for SGEMM (Mflops) for the default value of PS.

Matrix size n
256 512 1024

1 proc (PS = 1) 1.00 1.00 1.00
2 proc (PS = 1) 1.85 1.91 1.94
4 proc (PS = 2) 3.13 3.27 3.35
8 proc (PS = 3) 4.80 4.96 5.06
16 proc (PS = 4) 8.47 9.75 11.00

Table 4.6.2: Speedups for SGEMM for the default value of PS.

in PS “horizontal” strips of rows, each row being treated by different set of processors.

Tables 4.6.1 and 4.6.2 give the timing results and the speedups respectively for various

numbers of processors and matrix sizes for the default value of PS, that is

PS = INT(SQRT(FLOAT(NCELL*M/N)) + 0.5).

PS can be set to any integer value between 1 and the number of processors. For square

matrices of order 1024, the best performance of SGEMM has been observed when PS has

been set equal to 1. Tables 4.6.3 and 4.6.4 illustrate the better performance of SGEMM in

both megaflops and speedups, when PS has been set to 1 instead of its default value. It

is remarkable that for matrices of order 1024 there is a performance increase of about

27%. We also observe in Table 4.6.3 that SGEMM runs at 384 megaflops on 16 processors

for a matrix of order 1024, which is over half the peak megaflop rate.

The matrices Ci = µ2
kX

∗
kXk +α2

i I in (4.5.3) are symmetric positive definite. For their

inversion at step (3) of the algorithm, we used the LAPACK routines SPOTRF and SPOTRI

from the KSRlib/LAPACK Library [78]. During our numerical experiments we did not

observe any difference in the timing results using either the KSRlib/LAPACK Library
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Matrix size n
256 512 1024

1 proc 23 25 27
2 proc 43 48 53
4 proc 75 93 103
8 proc 129 170 206
16 proc 210 261 384

Table 4.6.3: Timing results for SGEMM (Mflops) with PS = 1.

Matrix size n
256 512 1024

1 proc 1.00 1.00 1.00
2 proc 1.85 1.91 1.94
4 proc 3.17 3.65 3.77
8 proc 5.49 6.67 7.49
16 proc 8.93 10.23 14.00

Table 4.6.4: Speedups for SGEMM with PS = 1.

or the standard LAPACK distribution [1]. SPOTRF computes the Cholesky factorization

of a real symmetric positive definite matrix, while SPOTRI computes its inverse using the

Cholesky factorization. The inversion of the matrix X at step (2) is necessary only when

scaling is required. We do the inversion in parallel using the LAPACK routine SGETRF to

compute the LU factorization of the general matrix X, and SGETRI to compute its inverse

using the LU factors. SGETRF is the right-looking level 3 BLAS version of the blocked LU

algorithm. The parallelization of SGETRF and SGETRI has been achieved by introducing

parallel processing at the level 3 BLAS layer. It is therefore desirable to have level 3

BLAS operations on biggest possible matrices. This can be achieved by changing the

block size, which is otherwise determined by the enviromental enquiry routine ILAENV.

We experimented with the block size in the LAPACK routines mentioned above and found

that a block size of 16 gives the best all-round performance on the KSR1. Therefore all

our results are for a block size of 16. Table 4.6.5 summarizes the timing results for

the matrix inversion for various number of processors and matrix sizes, when parallel

processing is being exploited at the level 3 BLAS layer only. Figure 4.6.1 illustrates the
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Matrix size n
256 512 1024

proc 1 10.7 12.3 14.9
proc 2 11.6 15.4 21.2
proc 4 13.2 18.5 27.3
proc 8 13.8 20.5 31.8
proc 16 14.4 22.6 39.3

Table 4.6.5: Timing results for SGETRF/SGETRI (Mflops)

Figure 4.6.1: SGETRF/SGETRI performance for the KSR1.

same timing results.

We formed X∗X in step (1) of the algorithm using SGEMM because we found this to be

faster in parallel, for the KSRlib/BLAS Library, than SSYRK (which takes advantage of

symmetry but is not highly optimized in this library). Consequently, our implementation

of Algorithm Parallel Polar does not fully exploit the symmetry of X∗X.

As we mentioned in Chapter 2, loop parallelization in KSR Fortran is achieved by

tiling in which execution of a single do loop is transformed into parallel execution of

multiple tiles, or groups of loop iterations. In our first codes that we wrote for Algorithm

Parallel Polar, we used semi-automatic tiling. Later we experimented using manual tiling
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and in some instances we achieved slightly better timing results. In the source code for

Algorithm Parallel Polar given in Appendix A, we use manual tiling. Tiling has been

avoided for small loops, as for example in the evaluation of the coefficients ξi and α2
i ,

because the startup cost outweighs the gain.

For the simultaneous inversions in step (3) of the algorithm Parallel Polar, we used

parallel regions. All the 2-dimensional arrays have been declared as N -by-N + 2 in the

main program, for the reasons explained in Section 4 in Chapter 4. We found that there

was a significant improvement in the running times of our codes when we used N + 2

instead of N .

4.7 Experimental Results

We compared the performance of three methods for computing the polar decomposition

on the KSR1.

(1) The SVD method that first computes the SVD and then forms U and H according

to (4.3.1). We compute the SVD using LAPACK’s routine SGESVD using one processor.

We found that the run time was larger when we used more than one processor with

fully automatic parallelization by the compiler; this is apparently because the compiler

parallelizes every DO loop and the startup costs for the small DO loops are significant.

(2) Algorithm Parallel Polar for p > 1, both with and without scaling.

(3) The Newton iteration (4.3.3) with and without scaling, with the inversions done

in parallel using LAPACK’s SGETRF and SGETRI and with H computed as in Algorithm

Parallel Polar. Scaling is done only while ‖Yk+1 − Yk‖F > 10−2‖Yk‖F .

We used real matrices of dimension up to 1024, and all the results presented here

are for this maximum dimension. For each dimension we generated random matrices

A = PDQT , where P and Q are random orthogonal matrices and D = diag(σi), with

exponentially distributed singular values σi = αi (0 < α < 1), so that κ2(A) = α1−n. We

chose a range of condition numbers κ2(A) = 1.01, 10, 104, 108 and 1012, to observe the

effect of the condition number on the behaviour of the iterative methods. The matrices

with κ2(A) = 1.01 are such that ‖A− U‖2 ≈ 0.01, so they are moderately close to being
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κ2(A) Time β(Û)/‖A‖F Iters Speedup Scalings
1.01E0 204.82 4.3E-16 1 7.58 OFF
1.0E01 580.36 9.3E-16 3 7.62 OFF
1.0E04 1130.03 5.3E-15 6 7.69 OFF
1.0E08 1767.03 1.0E-14 9 7.74 OFF
1.0E12 2248.80 1.4E-14 12 7.78 OFF
1.01E0 286.34 4.3E-16 1 6.71 1
1.0E01 491.11 8.8E-16 2 6.59 1
1.0E04 775.92 3.1E-13 3 6.21 2
1.0E08 1085.83 2.4E-09 4 5.93 3
1.0E12 1124.59 2.0E-05 4 5.81 4

Table 4.7.1: Algorithm Parallel Polar with 8 processors, n = 1024.

orthogonal. We used the convergence tolerance tol = nu, where u ≈ 1.1 × 10−16 is the

unit roundoff for single precision arithmetic on the KSR1.

All the results reported were obtained using version 1.0 (March 1993) of the KSR

Fortran compiler.

The timings for the SVD method are all between 9400 and 9500 seconds; as expected

the condition number has little effect on the times.

Timings (in seconds) for Algorithm Parallel Polar with p = 8 and 16 processors are

given in Tables 4.7.1 and 4.7.2. (We did not have access to all 32 processors of our KSR1

configuration). The speedup is defined as the time for iteration (4.5.3) with a given value

of p implemented on a single processor divided by the time for Algorithm Parallel Polar

implemented on p processors. The column headed “scalings” indicates either that no

scaling was attempted (“OFF”), or states the number of iterations on which scaling was

used (which is the number of times the inversion step (2) of the algorithm is executed).

Timings for the Newton iteration on 16 processors are given in Table 4.7.3; the speedup

is the run time for the iteration with 16 processors divided by the run time for the same

iteration with 1 processor.

We make several observations.

(1) Algorithm Parallel Polar with p = 8 or 16 is between 8 and 51 times faster

than the SVD approach, the greater speedups being for well-conditioned matrices. It is

also between two and four times faster than the parallel implementation of the Newton
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κ2(A) Time β(Û)/‖A‖F Iters Speedup Scalings
1.01E0 184.17 4.3E-16 1 15.15 OFF
1.0E01 425.26 8.1E-16 2 15.26 OFF
1.0E04 1025.48 8.3E-15 5 15.39 OFF
1.0E08 1320.96 1.9E-14 7 15.42 OFF
1.0E12 1868.04 2.6E-14 10 15.48 OFF
1.01E0 243.08 2.7E-16 1 13.28 1
1.0E01 554.07 8.2E-16 2 13.19 1
1.0E04 647.08 3.2E-13 3 12.79 2
1.0E08 717.82 2.3E-09 3 11.82 3
1.0E12 1144.05 2.0E-05 5 11.56 3

Table 4.7.2: Algorithm Parallel Polar with 16 processors, n = 1024.

κ2(A) Time β(Û)/‖A‖F Iters Speedup Scalings
1.01E0 1862.22 3.4E-14 10 2.28 OFF
1.0E01 2356.81 5.4E-14 13 2.28 OFF
1.0E04 3739.51 2.6E-12 21 2.29 OFF
1.0E08 6262.17 6.8E-09 34 2.29 OFF
1.0E12 8500.59 3.2E-05 47 2.30 OFF
1.01E0 745.23 2.3E-14 4 2.30 1
1.0E01 1133.31 3.4E-14 6 2.30 4
1.0E04 1490.46 3.3E-14 8 2.31 5
1.0E08 1664.81 3.2E-14 9 2.31 6
1.0E12 1862.53 3.2E-14 10 2.32 7

Table 4.7.3: Newton iteration with 16 processors, n = 1024.
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iteration (4.3.3) when both iterations are scaled. The speed is a consequence of the high-

level parallelism and the implementation’s richness in level 3 BLAS operations. For the

first entry in Table 4.7.2 (p = 16, κ2(A) = 1.01) our code is running at a speed of about

140 megaflops.

(2) The speedups for Algorithm Parallel Polar without scaling are close to optimal.

When scaling is used, the inversions at step (2) of the algorithm degrade the speedup

because matrix inversion using LAPACK’s SGETRF and SGETRI is not highly parallel (we

measured an execution rate of only 39.3 megaflops for inversion of a matrix of size 1024

on 16 processors). Similarly, the speedups for the Newton iteration are poor because the

iteration is dominated by matrix inversions.

(3) The backward errors for Algorithm Parallel Polar are as predicted by the anal-

ysis in Section 2. The maximum backward error without scaling is of order 102u,

which is consistent with the convergence tolerance tol = nu = 1024u and the bound

maxi,k κ2(Ci) ≤ 416 mentioned in Section 2. The backward errors with scaling are all

approximately κ2(A)u/5.

(4) Algorithm Parallel Polar takes good advantage of well-conditioned or nearly or-

thogonal A, requiring only one iteration if A is sufficiently close to being orthogonal.

(5) Increasing p beyond 16 in iteration (4.5.3) produces diminishing improvements in

the number of iterations, particularly for well-conditioned A. If more than 16 processors

are available (and the KSR1 supports up to 1088 processors) the most promising way to

improve our timing results is to use more than one processor to execute each of the parallel

segments of Algorithm Parallel Polar. For example, the simultaneous Cholesky factoriza-

tions would be executed faster if we implemented the parallel algorithm of George, Heath

and Liu for computing the Cholesky factorization on a shared memory computer [44].

4.8 Applications of the Polar Decomposition

The polar decomposition plays a key role in the solution of various problems which arise

in a wide range of applications. In this section we discuss some representative applications

from disparate scientific areas. An in-depth analysis of these applications is beyond the
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scope of this section. However, our aim is to show why the polar decomposition can

be considered as one of the most important tools provided by linear algebra to applied

sciences.

We start our discussion with an application encountered in aerospace computations [8,

13]. The motion of a missile can be described by a system of differential equations. Solving

this system by a step-wise procedure, we obtain the direction cosine matrix (DCM). The

DCM is a matrix of transformations between an orthogonal axis system fixed with respect

to the missile and the inertial system. The DCM is widely used in aerospace science and

technology for purposes such as navigation, attitude control and simulation. Having set

carefully the initial conditions, the DCM is orthogonal at the outset of computations.

But since the DCM has to be updated at every time step, unavoidable computational

errors may compel the DCM to drift away from orthogonality after a number of steps.

Since orthogonality is a certain requirement for a proper DCM, it is reasonable to adjust

the erroneous DCM after a fixed small number of steps. This can be accomplished by

replacing the erroneous matrix by its closest orthogonal matrix in the Frobenius norm,

that is, its unitary polar factor.

The polar decomposition can also be used in estimating the attitude of a satel-

lite [56, 121]. The problem can be mathematically expressed as follows: Given two

sets of real vectors {v1, . . . , vn}, and {u1, . . . , un} (n ≥ 2) find the orthogonal matrix T

with determinant +1 (i.e. the rotation matrix), which brings the first set into the best

least squares coincidence with the second. {ui} are the direction cosines of objects as

observed in a satellite fixed frame of reference, and {vi} are the direction cosines of the

same objects in a known frame of reference. The required rotation matrix T , which car-

ries the known frame of reference into the satellite fixed frame of reference, is the solution

to the minimization problem

min
T ∗T=I, det(T )=+1

‖V − TU‖F , (4.8.1)

where the columns of V and U are the vectors {vi} and {ui} respectively. The mini-

mization problem (4.8.1) is equivalent to finding the rotation matrix T that maximizes

tr(T ∗UV ∗). The solution of the problem requires at this stage the polar decomposition
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of UV ∗.

The Löwdin problem arises in quantum chemistry [45]. Here, a basis of unit vectors

{v1, . . . , vn} for Cn is given, and an orthogonalization of this basis is required for compu-

tational and theoretical purposes. These vectors contain valuable information from the

known subsystems and their alteration results in loss of information. Thus, the aim is to

orthogonalize the {v1, . . . , vn}, changing the vectors as little as possible. If {e1, . . . , en}

is an orthonormal basis for Cn, the problem can be stated as follows: Find a matrix

B ∈ Cn×n such that Bvi = ei, to minimize the least squares deviation

n∑

i=1

‖vi − ei‖2.

If B = UH is the polar decomposition of the invertible matrix B, then

n∑

i=1

‖vi − ei‖2 =
n∑

i=1

‖B−1ei − ei‖2

=
n∑

i=1

‖(H−1 − U)U−1ei‖2

= ‖H−1 − U‖2F , (4.8.2)

since ‖A‖2F =
∑n

i=1 ‖Agi‖2 for any A ∈ Cn×n and {g1, . . . , gn} orthonormal basis for

Cn. Goldstein and Levy [45] show that all the orthogonalization matrices have the same

Hermitian factor and therefore the problem is equivalent to finding unitary matrix U

to minimize (4.8.2). This is a form of the well known orthogonal Procrustes problem,

which can be solved with the aid of the polar decomposition. (Goldstein and Levy do

not observe this similarity and suggest an independent solution). Finally, the solution

to (4.8.2) is U = I, and the solution to the Löwdin problem is B = H, where H is the

Hermitian polar factor of any orthogonalization matrix. Orthogonalization matrices can

be obtained, for example, by the Gram–Schmidt orthogonalization procedure.

The unitarily constrained total least squares problem arises frequently in many ap-

plications in signal processing [3]. The problem in its general form can be described

as follows: Given two matrices of noisy measurements A,B ∈ Cm×n, (m > n), esti-

mate a unitary matrix X ∈ Cn×n such that AX = B. The problem has a unique

analytical solution. This solution is in fact the same as the solution to the orthogonal
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Procrustes problem and therefore it can be obtained by using the polar decomposition.

Arun [3] studies three signal processing applications where the above mentioned problem

emerges. The first is the problem of estimating the translation and rotation of a rigid

body between two time instants which arises in many computer vision applications (see

for example [14, 27]). The second is the problem of retrieving multiple sinusoids with

closely spaced frequencies from estimated convariances. The problem arises in a wide

range of signal processing applications [72]. The covariance sequence is usually estimated

from time series data. However, there are some sensor array applications and certain

applications in astronomical star bearing estimation and interference spectroscopy where

the covariance information is directly available. Finally, the third problem concentrates

on finding the directions of arrival of multiple radiating sources using a sensor array.

Schreiber and Parlett [110] use the polar decomposition for the computation of block

reflectors. Block reflectors are orthogonal, symmetric matrices with possibly more than

one negative eigenvalue. They are a generalization of the Householder transformations

that are extensively used in matrix computations. Moreover, they have similar uses with

Householder transformations and therefore they can be used to compute various basic

factorizations, as for example the QR factorization. Block reflectors can also be used in

computing optimal error bounds for the approximate eigenvalues of a symmetric matrix,

and in reducing a square matrix to block upper Hessenberg form by explicit orthogonal

similarity transformations. In [110] Schreiber and Parlett present three algorithms for

computing block reflectors. All these algorithms require the employment of the polar

decomposition, and the role played by the polar decomposition of a matrix in these

methods is revealed.

As we mentioned in Section 2 (Lemma 4.2.2), if A ∈ Cn×n is Hermitian with polar

decomposition A = UH, then the matrix 1
2
(A + H) is a best Hermitian positive semidef-

inite approximation to A in the 2-norm. In [61] Higham suggests a possible utilization

of this property in optimization theory. Newton’s method for the minimization of F (x),

F : Rn → R, requires the computation of the search direction vector pk at each stage.

This vector is a solution of the system Gkpk = −gk, where gk = ∇F (xk) is the gradient
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vector and

Gk =

(
∂2F

∂xi∂xj

(xk)

)

is the (symmetric) Hessian matrix. Higham suggests the replacement of Gk with its

Hermitian polar factor H in order to avoid troubles that occur when Gk is not positive

definite. In that case, pk, if defined, might not be a descent direction. The new equation

Hkpk = −gk may be solved by use of the Cholesky factorization.

The problem of comparing two sets of coordinates X and Y whose rows refer to the

same samples of populations, is encountered very frequently in multidimensional scaling in

statistics [48]. These sets of coordinates X and Y may arise from different ordinations of

the same data, or from the same ordination method used on two sets of data pertaining to

the same objects. If X,Y ∈ Rm×n, (m ≥ n), the problem is equivalent to the orthogonal

Procrustes problem

min
U∗U=In

‖Y −XU‖F ,

and hence its solution can be obtained using the polar decomposition of the matrix X∗Y .

Finally, in factor analysis the orthogonal Procrustes problem is encountered in the

theory of unique rotational resolution and in conducting a factor analytic research [22].

Both cases are of particular interest to researchers in behavioural and life sciences. In

the former case a factor matrix V0 is first extracted from a correlation matrix R. Then

the aim of the researcher is to find the rotation L producing the unique matrix in which

the factors correspond to the matrix Vh. Vh consists of determiners in scientific data with

properties of general interest. This can be stated as the classical orthogonal Procrustes

problem

min
L∗L=I

‖Vh − V0L‖F .

The latter case is associated with a special problem which arises when one needs to resort

to dovetailing two or more factors analyses together. A detailed discussion on the above

mentioned factor analysis problem is given [22].
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4.9 Conclusions

Iteration (4.5.3) for computing the unitary polar factor of A ∈ Cm×n,

Xk+1 =
1

p
Xk

p∑

i=1

1

ξi

(X∗
kXk + α2

i I)−1, X0 = A, (4.9.1)

has inherent high-level parallelism that enables it to be implemented efficiently on the

KSR1, with run times an order of magnitude smaller than are obtained using our im-

plementation of the LAPACK SVD routine. With scaling, this iteration is two to four

times as fast as the scaled Newton iteration (4.3.4) (which is applicable only to square

matrices). We would expect the iteration to be successful on other shared memory paral-

lel computers with a relatively small number of processors (indeed, this has already been

demonstrated for the Cray Y-MP with 4 processors by Pandey, Kenney and Laub [96],

who used the matrix sign function analogue of iteration (4.9.1)). As is often the case

in numerical linear algebra, there is a tradeoff between speed and stability [31]: faster

convergence is obtained when scaling is used, but this usually makes the backward error

proportional to κ2(A). In some applications this is not an issue because A is known a

priori to be well-conditioned or nearly unitary. In general, if high accuracy is important

it is better to use the unscaled iteration, which is at worst about twice as slow as the

scaled version for p = 8 or 16, but which is still at least as fast as the Newton iteration

and which has excellent stability.



Chapter 5

A New Approach to Computing the

SVD

5.1 Introduction

In the previous chapter we presented a parallel algorithm for computing the polar de-

composition. If A = UH is the polar decomposition of A ∈ Cm×n (m ≥ n), and

H = V ΣV ∗ (5.1.1)

is the Schur decomposition of the Hermitian positive semidefinite factor H (with the

diagonal entries of Σ in descending order), then the singular value decomposition (SVD)

of A is

A = (UV )ΣV ∗.

This above observation suggests a new approach to computing the SVD. Provided that

an efficient parallel algorithm for the polar decomposition is available, we can obtain the

SVD by computing the decomposition (5.1.1) in parallel. It can be shown that if the

polar and Schur decompositions are computed in a stable way, the computed SVD is

stable too. The numerical stability of this approach has been investigated in [65]. On a

new parallel machine, as for example the KSR1, we start off with little software and we

want to build library routines. In this chapter, our objective is to develop an efficient

109
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parallel symmetric eigensolver for the KSR1, so that our parallel algorithm for the polar

decomposition can be used to obtain an effective parallel SVD solver.

The SVD is one of the most important decompositions in numerical linear algebra

with many scientific and engineering applications. These include chemical titration ex-

periments [112], manipulability and sensitivity of industrial robots [117], digital image

processing [2, 23], neural networks [18, 86] and matrix nearness problems [107]. The SVD

is also a particularly revealing complete orthogonal decomposition and it can be used for

the solution of rank-deficient least squares problems. Such problems arise frequently in

regression analysis in statistics [34, 52, 55, 87, 100, 102]. Some and these problems are of

particular interest, since they require the SVD of very large data matrices. Such problems

are encountered in econometrics [33, 105].

In this chapter we confine ourselves to real matrices. Problem (5.1.1) is a symmetric

eigenvalue problem (SEP), a problem that has been discussed extensively in the literature.

A complete presentation can be found in [98]. We focus our attention on Jacobi methods

for solving the symmetric eigenvalue problem. These methods attract current attention

because they are inherently parallel. The Jacobi method was first proposed in 1846

[71]. Although it was a well-known technique for computing eigensolutions, it did not

receive much attention until the advent of automatic machines. In 1946, one hundred

years later, the method was rediscovered and described in [7]. In the following twenty

years, the classical Jacobi method and its variants were studied by many researchers,

including Henrici [40, 59], Forsythe [40], and Wilkinson [122, 123]. The bulk of this

research work was focused on the convergence properties of the methods. Prior to the

QR algorithm (1961), the Jacobi technique was the standard method for solving dense

symmetric eigenvalue problems. The QR algorithm, although more complex, eclipsed

Jacobi methods because it is more economical, and until 1992 it was believed to offer

the same reliability on serial machines. In 1992, Demmel and Veselić [30] announced

that the Jacobi technique is more accurate than the QR algorithm when a symmetric

positive definite matrix happens to well-determine its small eigenvalues. (A matrix well-

determines its eigenvalues if small relative pertubations to the entries lead to small relative
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pertubations in the eigenvalues.) The emergence of parallel computers brought the Jacobi

methods back into the limelight, since certain features of these methods make them

particularly well-suited to a multiprocessor system. The first parallel Jacobi method

appeared in 1971 [104]. During the 1980s, when more users had access to parallel systems,

many researchers focused their attention on parallel Jacobi methods. Variations of these

methods have been investigated for use on parallel architectures by various authors,

including Eberlein [37] for hypercubes, Brent and Luk [16] for multiprocessor arrays,

Schreiber [109] for systolic arrays, and Modi and Pryce [91] for the DAP. The Jacobi

algorithm seems to be falling out of favour, once again, in 1990’s probably because of

its very fine grained model of computing. However, block Jacobi methods do not suffer

from this drawback, and this observation motivated us to develop parallel block Jacobi

methods especially for the KSR1. We are not aware of any previous work related to

Jacobi methods on shared memory computers and especially on the KSR1.

We briefly mention two other well-known ways to compute the SVD of A ∈ Cm×n given

a Hermitian eigensolver. One involves computing the eigensystem of A∗A; we reject this

method on the grounds that it is numerically unstable unless A is well-conditioned [47,

Sec. 8.3.2] The second approach is to compute the eigensystem of the (m + n)× (m + n)

matrix [ 0
A∗

A
0
], from which A’s SVD can be “read off” [47, p. 427]. Because of the expanded

dimension this approach is substantially slower for large dimensions on the KSR1 than

the method we propose (this can be seen from the results in Section 11), and the storage

requirements may in any case be prohibitive.

This chapter is structured as follows. Section 2 introduces the classical Jacobi method.

Section 3 discusses cyclic Jacobi methods and Section 4 surveys and examines threshold

strategies for these methods. Section 5 introduces parallel Jacobi algorithms, and Sec-

tion 6 and Section 7 discuss and examine two schemes designed to improve the performace

of a parallel Jacobi algorithm. In Section 8 we present two block Jacobi algorithms, and

in Section 9 we discuss the implementation of scalar and block parallel Jacobi algorithms

on the KSR1. In Section 10 we report numerical and timing results for the SEP, and in

Section 11 numerical and timing results for the SVD. Section 12 is devoted to applications
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of the SVD. Finally in Section 13 we state our conclusions.

5.2 The Classical Jacobi Method

In the classical method of Jacobi [71]1, a real n-by-n symmetric matrix A is converted

into a diagonal matrix by a sequence of similarity transformations

Ak+1 = JT
k AkJk, k = 0, 1, . . . , (5.2.1)

where A0 = A, and each Jk is a rotation in the (p, q) plane through an angle θ. These

rotations have the form

J(p, q, θ) =





p q

1 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...

p 0 · · · c · · · s · · · 0

...
...

. . .
...

...

q 0 · · · −s · · · c · · · 0

...
...

...
. . .

...

0 · · · 0 · · · 0 · · · 1





(5.2.2)

and they eliminate the off-diagonal entry a
(k)
pq (and hence a

(k)
qp ), affecting only entries in

rows and columns p and q. Throughout this chapter c and s represent the scalar quantities

cos θ and sin θ respectively. These plane rotations are called Jacobi rotations and they

are no different from Givens rotations. The purpose of the classical Jacobi method is to

produce a sequence of matrices Ak and Jk such that

lim
k→∞

Ak = D and lim
k→∞

J1J2 . . . Jk = V,

where D is a diagonal matrix representing the eigenvalues of A, and V is an orthogonal

matrix with columns the eigenvectors of A.

The basic step in the classical Jacobi algorithm, which will be called the (p, q) sub-

problem, involves three procedures:

1In the original paper [71], plane rotations were used to diagonalize a real 7-by-7 matrix.
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1. The determination of an index pair (p, q) that satisfies 1 ≤ p < q ≤ n.

2. The computation of a cosine-sine pair (c, s) such that



 a
(k+1)
pp a

(k+1)
pq

a
(k+1)
qp a

(k+1)
qq



 =



 c s

−s c




T 

 a
(k)
pp a

(k)
pq

a
(k)
qp a

(k)
qq







 c s

−s c



 (5.2.3)

is diagonal.

3. The overwriting of Ak with Ak+1 = JT
k AkJk where Jk is the rotation matrix

J(p, q, θ) in (5.2.2).

Since the Frobenius norm is preserved by orthogonal transformations, (5.2.3) implies that

a(k)
pp

2
+ a(k)

qq

2
+ 2a(k)

pq

2
= a(k+1)

pp

2
+ a(k+1)

qq

2
+ 2a(k+1)

pq

2
= a(k+1)

pp

2
+ a(k+1)

qq

2
.

Furthermore, if we denote

off(A) =

√√√√√
n∑

i=1

n∑

j=1

j 6=i

a2
ij,

the “norm” of the off-diagonal entries of a given n-by-n matrix A, we observe that

off(Ak+1)
2 = ‖Ak+1‖2F −

n∑

i=1

a
(k+1)
ii

2

= ‖Ak‖2F −
n∑

i=1

a
(k)
ii

2
+ (a(k)

pp

2
+ a(k)

qq

2 − a(k+1)
pp

2 − a(k+1)
qq

2
)

= off(Ak)
2 − 2a(k)

pq

2
, (5.2.4)

and in this way sequence (5.2.1) converges to a diagonal form with each Jacobi step. The

number of Jacobi rotations necessary to produce a diagonal form is theoretically infinite

since we cannot, in general, solve a polynomial equation in a finite number of steps [123].

However, we may terminate the iterations when the off-diagonal entries are negligible to

working accuracy.

In the classical Jacobi method, the off-diagonal entry of Ak of maximum modulus

is annihilated at each step. If this entry is in the (p, q) position, then Jk corresponds

to a rotation in the (p, q) plane and the angle θ is chosen so as to reduce a
(k)
pq to zero.

This entry will be made, in general, nonzero by subsequent rotations. Having determined
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the index pair (p, q), the classical Jacobi method proceeds to the computation of the

cosine-sine pair (c, s) that diagonalize the 2-by-2 submatrix


 a
(k)
pp a

(k)
pq

a
(k)
qp a

(k)
qq





in (5.2.3). This 2-by-2 symmetric Schur decompostion can be accomplished by computing

the cosine-sine pair (c, s) that solves the equation

0 = a(k+1)
pq = a(k)

pq (c2 − s2) + (a(k)
pp − a(k)

qq )cs. (5.2.5)

If a
(k)
pq = 0, the cosine-sine pair (c, s) = (1, 0) clearly satisfies (5.2.5). If a

(k)
pq 6= 0 and

a
(k)
pp 6= a

(k)
qq , then (5.2.5) may be written as

2a
(k)
pq

a
(k)
qq − a

(k)
pp

=
2cs

c2 − s2
= tan 2θ,

since

tan 2θ =
2 cos θ sin θ

cos2 θ − sin2 θ
, θ 6= kπ ± π

4
, k = 0, 1, . . . ,

and the rotation angle θ is

θ =
1

2
arctan

2a
(k)
pq

a
(k)
qq − a

(k)
pp

.

In practice there is no need for explicit evaluation of the rotation angle θ since we are

interested only in computing the cosine-sine pair (c, s). If we define

τ =
a

(k)
qq − a

(k)
pp

2a
(k)
pq

and x = s/c,

then (5.2.5) can be written in quadratic form as

x2 + 2τx− 1 = 0. (5.2.6)

The choice of the smaller of the two roots,

x =
sign(τ)

|τ |+
√

1 + τ 2
,

ensures that −π/4 < θ ≤ π/4. As we will see in the convergence analysis of the method,

this choice plays a significant role in the convergence of the method. Having computed

the quantity x, the cosine-sine pair (c, s) is resolved from the formulae

c = 1/
√

1 + x2 and s = xc.
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The final stage of the (p, q) subproblem is the overwriting of Ak with Ak+1 = JT
k AkJk.

As we mentioned earlier in this section, only the rows and columns p and q of Ak are

altered during the procedure. If we exploit symmetry, the update can be implemented

in 6n flops. The classical Jacobi method is summarized in the following algorithm. (We

assume that the reader is familiar with the MATLAB notation which is used extensively

in the algorithms given in this chapter.)

Algorithm Classical Jacobi.

Given a symmetric A ∈ Rn×n and a convergence tolerance tol > 0, this

algorithm overwrites A with V T AV . The algorithm terminates when

off(V T AV ) ≤ tol. On successful exit, the matrix V T AV contains the

eigenvalues of the original matrix A, and the orthogonal matrix V is the

matrix of the eigenvectors of A.

V : = In;

eps = tol‖A‖F ;

while off(A) ≥ eps

Find the index pair (p, q), 1 ≤ p < q ≤ n such that |apq| = maxi6=j |aij|;

Compute the cosine-sine pair (c, s) for the index pair (p, q)

and form the matrix R =



 c s

−s c



;

Update the p and q rows of A: A([p q], : ) = RT A([p q], : );

Update the p and q columns of A: A(: , [p q]) = A(: , [p q])R;

Update the p and q columns of V : V (: , [p q]) = V (: , [p q])R;

end

A single pass throught the body of the while loop in Algorithm Classical Jacobi is

called a sweep. In the above algorithm each sweep requires N = 1
2
n(n−1) Jacobi updates.

If A is a symmetric n-by-n matrix and apq is the off-diagonal entry of maximum modulus,

then
n∑

i=1

n∑

j=1

j 6=i

a2
ij ≤ (n2 − n)a2

pq, (5.2.7)
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and (5.2.7) can be written in terms of sweeps as

off(A)2 ≤ 2Na2
pq. (5.2.8)

From (5.2.4) we have that

2a(k)
pq

2
= off(Ak)

2 − off(Ak+1)
2,

and since from (5.2.8)

off(Ak)
2 ≤ 2Na(k)

pq

2
,

we conclude that

off(Ak+1)
2 ≤

(
1− 1

N

)
off(Ak)

2.

Having denoted by A0 the original matrix A, it follows by induction that

off(Ak)
2 ≤

(
1− 1

N

)k

off(A0)
2. (5.2.9)

According to (5.2.9), the classical Jacobi method converges at a linear rate. It is also

interesting to observe that if k = rN , then

off(ArN)2 ≤
(

1− 1

N

)rN

off(A0)
2 < e−roff(A0)

2.

The above inequality shows that for r > 2 ln(1/ǫ),

off(ArN)2 < ǫ2off(A0)
2. (5.2.10)

However, (5.2.10) gives a considerable underestimate of the rate of convergence. The

covergence of the classical Jacobi method becomes more rapid in the later stages. In

[108], Schönhage shows that for k large enough, there is a constant µ such that

off(Ak+N) ≤ µ off(Ak)
2.

This behaviour is called asymptotic quadratic convergence [98].

The choice of θ plays an important role in the convergence theory for the classical

Jacobi process. There is a rigorous analysis in [123], where Wilkinson shows that the con-

dition −π/4 < θ ≤ π/4, ensures convergence of the classical method to a fixed diagonal



CHAPTER 5. A NEW APPROACH TO COMPUTING THE SVD 117

matrix. This choice also prevents the nearly converged diagonal entries from interchang-

ing, keeping them within their Gershgorin discs. A rigorous theory for the prediction of

the required number of sweeps for a given tolerance has not been developed. However,

in [16], Brent and Luk argue heuristically that the number of sweeps is proportional to

log(n). This view is in accordance with our numerical results and seems generally to be

the case in practice.

5.3 Cyclic Schemes

In the classical Jacobi method the searching for the largest off-diagonal element is time-

consuming. Since every sweep requires 1
2
n(n − 1) searches, the classical method is par-

ticularly slow when n is large. This drawback of the original method motivated the

development of cyclic Jacobi methods. In a cyclic Jacobi scheme, each sweep consists of

N = 1
2
n(n − 1) consecutive elements of the array ((p, q) : 1 ≤ p < q ≤ n), where each

pair occurs exactly once. The most common examples are the row cyclic and the column

cyclic Jacobi methods2 that have been analysed by Forsythe and Henrici in [40]. In the

row cyclic Jacobi method we take the N index pairs sequentially in the order

(1, 2), (1, 3), . . . , (1, n); (2, 3), (2, 4), . . . , (2, n); . . . ; (n− 1, n),

and then we return to the (1, 2) pair again. The row cyclic Jacobi method is described

by the following algorithm.

Algorithm Row Cyclic.

Given a symmetric A ∈ Rn×n and a convergence tolerance tol > 0, this

algorithm iteratively overwrites A with V T AV . The algorithm termi-

nates when off(V T AV ) ≤ tol. On successful exit, the matrix V T AV

contains the eigenvalues of the original matrix A, and the orthogonal

matrix V is the matrix of the eigenvectors of A.

V : = In;

2In [123], Wilkinson refers to the row cyclic method as the special serial Jacobi method.
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eps = tol‖A‖F ;

while off(A) ≥ eps

for p = 1: n− 1

for q = p + 1: n

Compute the cosine-sine pair (c, s) for the index pair (p, q)

and form the matrix R =



 c s

−s c



;

Update the p and q rows of A: A([p q], : ) = RT A([p q], : );

Update the p and q columns of A: A(: , [p q]) = A(: , [p q])R;

Update the p and q columns of V : V (: , [p q]) = V (: , [p q])R;

end

end

end

The row cyclic Jacobi method, since it does not require off-diagonal search, is consid-

erably faster than the classical method. Forthsythe and Henrinci [40] have shown that

the ultimate rate of convergence of the row cyclic method is quadratic, provided that

−π/4 < θ ≤ π/4. However for this choice of θ, it is not known whether every cyclic

Jacobi method, other than the row and column cyclic methods, converges to a fixed

diagonal matrix. In [57], Hansen discuss the possibility that occasionally cyclic Jacobi

methods may not perform well. In [17], Brodlie and Powell report a computer calculation

where a cyclic Jacobi method failed to converge due to rounding errors, and they propose

a new bound for the angle restriction. The convergence of any cyclic Jacobi method in

exact arithmetic can be guaranteed, if at the kth step the index pair (i, j) is chosen so

that

a
(k)
ij

2 ≥ the average of
{

a(k)
pq

2
: p < q

}
= off(Ak)

2/(n(n− 1)). (5.3.1)

In this case,

off(Ak+1)
2 ≤

(
1− 2

n(n− 1)

)
off(Ak)

2, (5.3.2)

since

2a
(k)
ij

2
= off(Ak)

2 − off(Ak+1)
2.
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Inequality (5.3.2) implies that

lim
k→∞

off(Ak) = 0,

and hence condition (5.3.1) ensures convergence to diagonal form for any cyclic Jacobi

method.

5.4 Threshold Jacobi Methods

As we mentioned in Section 2, each Jacobi update can be implemented in 6n flops if we

exploit symmetry. Since every sweep requires 1
2
n(n − 1) Jacobi updates, the cost of a

single sweep is 3n3+O(n2) flops. This number may be reduced, if we skip the annihilation

of entries much smaller than the general level of off-diagonal elements. In this case, since

off(Ak+1) = off(Ak)
2 − 2a(k)

pq

2
,

little progress is made in performing the (p, q) rotation at the kth step. This observation

led to threshold Jacobi methods, variants of the row cyclic Jacobi method. Threshold

Jacobi methods annihilate the off-diagonal entries in a row order, skipping rotations

when |a(k)
pq | is less than some threshold value τ . Provided that threshold strategies are

applied with the row cyclic ordering, the convergence of a threshold Jacobi method is

guaranteed [40]. Threshold Jacobi methods differ in the way that they determine τ .

Wilkinson [123] suggests the threshold values 2−3, 2−6, 2−10 and 2−18 for each of

the first four sweeps, and the smallest permissible (machine-dependent) number for the

subsequent sweeps. The process is terminated when 1
2
n(n − 1) successive entries are

skipped. As Wilkinson states in [123], convergence is guaranteed with this variant since

there can only be a finite number of iterations corresponding to any given threshold.

However, the improvement in speed is modest. This is due to the fact that the threshold

values are not determined dynamically during the course of the iteration, and hence are

independent of the matrix.

Rutishauser [103] suggests for the first three sweeps the threshold value

τ =
1

5

n∑

i=2

i−1∑

j=1

|a(k)
ij |/n2, (5.4.1)
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where Ak is the updated matrix in the beginning of each sweep. For the rest of the

sweeps, τ is set to zero.

Modi [92] suggests the calculation of the threshold value

τ = 10−s

n∑

i=1

n∑

j=1

j 6=i

a
(k)
ij

2
,

at the start of each sweep3. Modi gives as typical values of s the numbers 2, 4, and 6 for

the first three sweeps, and infinity for the rest.

The more interesting technique for determining the threshold value is the variable

threshold strategy of Kahan and Corneil [26]. Initially the threshold value is set to

τ =
√

ω/N, (5.4.2)

where

ω =
n∑

i=2

i−1∑

j=1

a
(k)
ij

2
,

and

N =
1

2
n(n− 1).

τ is the true root mean square (RMS) of the off-diagonal entries. At each actual rotation

ω is reduced by a
(k)
ij

2
and τ is recomputed at the cost of 1 multiplication, 1 division, and

1 square root per rotation.

The variable threshold strategy updates the threshold value at every actual rotation.

This update may cause problems when rotations are performed simultaneously on dif-

ferent processors. Since our purpose is to develop fast parallel Jacobi methods for the

KSR1, this observation motivated us to investigate variants of the Kahan-Corneil strat-

egy suitable for parallel environments. The simplest idea is to calculate τ in (5.4.2) only

at the start of each sweep and not after update, in order to minimize communication.

This calculation is economical since the quantity off(Ak) =
√

2ω is calculated at the start

of each sweep for the convergence test. Surprisingly, this modification is competitive with

the Kahan-Corneil strategy. This strategy will be called modified Kahan-Corneil (modi-

fied KC) strategy. As the following numerical examples demonstrate, there are instances

where the modified KC strategy performs better than the original one.

3To make the threshold test scale independent, we need to take the square root of Modi’s value.
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n = 8 n = 16 n = 32
Rotations 140 720 2976

Row Cyclic Sweeps 5 6 6

Rotations 132 650 2746
Wilkinson Reduction 6% 10% 8%

Sweeps 5 6 6
Rotations 131 643 2110

Rutishauser Reduction 6% 11% 29%
Sweeps 5 6 5
Rotations 135 503 2786

Modi Reduction 4% 30% 6%
Sweeps 6 6 6
Rotations 84 337 1456

Kahan-Corneil Reduction 40% 53% 51%
Sweeps 9 10 10
Rotations 80 350 1354

Modified KC Reduction 43% 51% 55%
Sweeps 13 15 14

Table 5.4.1: Comparison of five threshold strategies.

We incorporated the Wilkinson, Rutishauser, Modi, Kahan-Corneil and modified KC

threshold strategies in algorithm Row Cyclic. We implemented the new algorithms in

MATLAB on a SUN SPARC workstation. The iterations were terminated when off(Ak) ≤

nu‖A‖F , where the unit roundoff error u ≈ 1.1 × 10−16. We first examined the matrix

defined by

aij =





i + j if i 6= j,

i2 + n otherwise,

for n = 8, 16, and 32. The results are summarized in Table 5.4.1, which also includes

results for the row cyclic Jacobi method for comparison. Table 5.4.1 reports the number

of actual Jacobi rotations, the reduction in actual rotations with relation to the row cyclic

Jacobi method, and the number of sweeps.

Similar behaviour has been observed in a large number of numerical experiments

with random symmetric matrices of various order. According to Table 5.4.1, the fastest

threshold strategies are the Kahan-Corneil and the modified KC. These two strategies

seem to follow closely the progress of the Jacobi process, determining dynamically the

next threshold value in a very efficient way. Moreover, they were found to be as as accurate

as the slower ones. The increase in the number of sweeps, especially in the modified KC,
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does not mean any extra cost; the real cost of any Jacobi method is determined by the

number of actual rotations. The behaviour of the modified KC strategy encouraged us

to develop threshold strategies for parallel Jacobi methods based on this pattern.

5.5 Parallel Jacobi Methods

Jacobi methods are ideally suited for parallel implementation, since each rotation affects

only two rows and two columns. This feature of Jacobi methods may be exploited in

order to eliminate more than one entry at a time. (Because of symmetry only the entries

above the main diagonal need be considered). For example, if A is a 4-by-4 symmetric

matrix, and J is a matrix of the form

J =





c1 0 s1 0

0 c2 0 s2

−s1 0 c1 0

0 −s2 0 c2





, ci = cos θi, si = sin θi, i = 1, 2, (5.5.1)

then JT AJ would have zero entries in positions (1, 3) and (2, 4), provided that the an-

gles θ1, θ2, have been chosen properly. The calculation of the cosine-sine pairs (ci, si),

i = 1, 2, and the corresponding rotations, may be performed simultaneously on different

processors. A matrix of the type (5.5.1) will be called a compound Jacobi rotation.

The above example can be generalized for symmetric matrices of order n ≥ 4. We

observe that the maximun number of off-diagonal entries that can be annihilated by a

compound Jacobi rotation is ⌊n/2⌋, where ⌊x⌋ is the greatest integer less than or equal to

x. A compound Jacobi rotation that annihilates ⌊n/2⌋ off-diagonal entries will be called

a complete Jacobi rotation. If we define m = ⌊(n + 1)/2⌋, then 2m− 1 distinct complete

Jacobi rotations are needed in order to annihilate each of the off-diagonal entries exactly

once. A sequence of 2m−1 Jacobi updates that eliminates each of the off-diagonal entries
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exactly once will be called a sweep4. Note that

2m− 1 =





n if n is odd,

n− 1 if n is even.

For the rest of this chapter n will be assumed to be even for convenience.

Two Jacobi rotations J(p1, q1, θ1) and J(p2, q2, θ2) are said to be disjoint if the indices

p1, q1, p2, and q2 are all distinct. A complete Jacobi rotation J can be considered as a

product of n/2 disjoint Jacobi rotations, that is,

J =

n/2∏

i=1

J(pi, qi, θi), {pi, qi} ∩ {pj, qj} = Ø, i 6= j.

The first problem that we face in designing a parallel Jacobi method is the construction

of the n − 1 complete Jacobi rotations that together annihilate each off-diagonal entry

exactly once during a sweep. This combinatorial problem leads to the notion of Jacobi

sets: the partition of the
(

n
2

)
2-subsets of the integers {1, . . . , n} into n − 1 sets of

n/2 distinct unordered pairs. Each of the n − 1 Jacobi sets corresponds to a complete

Jacobi rotation. For example, if n = 4 then there are three Jacobi sets {(1, 2), (3, 4)},

{(1, 3), (2, 4)}, and {(1, 4), (2, 3)}, that correspond respectively to the complete Jacobi

rotations




c1 s1 0 0

−s1 c1 0 0

0 0 c2 s2

0 0 −s2 c2





,





c1 0 s1 0

0 c2 0 s2

−s1 0 c1 0

0 −s2 0 c2





, and





c1 0 0 s1

0 c2 s2 0

0 −s2 c2 0

−s1 0 0 c1





.

Several schemes have been developed for the generation of the n − 1 Jacobi sets.

Some of them have been designed especially for the particular architecture of the target

machine. For example, for distributed memory machines, it is desirable that each Jacobi

set be obtained from the previous Jacobi set by messages from neighbouring processors.

Schemes that refer to parallel architectures based on the distributed memory model are

4This definition of sweep is not different than the one we gave in Section 2. As we will see later in
this section, when we state Algotithm Parallel Jacobi, the annihilation of each of the off-diagonal entries
exactly once requires a single pass throught the body of a while loop.
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not of our interest, since our target machine is the KSR1. The following two schemes are

suitable for the KSR1.

The first scheme was presented by Sameh [104] in 1971. This schemes determines the

n/2 index pairs in the n− 1 Jacobi sets

jac.set(k) = {(pki, qki), i = 1, . . . , n/2} , k = 1, . . . , n− 1,

using the following algorithm.

Algorithm Sameh.

Given the order of a symmetric matrix n and an integer k ≤ n − 1 the

following algorithm computes the kth Jacobi set,

jac.set(k) = {(pki, qki), i = 1, . . . , n/2} , k = 1, . . . , n− 1,

according to Sameh’s scheme.

i: = 1;

if k ≤ n/2− 1

for l = n/2− k + 1: n− k

qki = l;

if n/2− k + 1 ≤ l and l ≤ n− 2k

pki = n− 2k + 1− l;

else if n− 2k < l and l ≤ n− k − 1

pki = 2n− 2k − l;

else

pki = n;

end if

i: = i + 1;

end

else

for l = n− k: 3n/2− k − 1

qki = l;

if l < n− k + 1
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pki = n;

else if n− k + 1 ≤ l and l ≤ 2n− 2k − 1

pki = 2n− 2k − l;

else

pki = 3n− 2k − 1− l;

end if

i = i + 1;

end

end

It is noteworthy that when k = n − 1, the Jacobi set given by Sameh’s scheme

corresponds to a complete Jacobi rotation of a special structure. For example, if n = 8

and k = 7, the 7th Jacobi set is

jac.set(7) = {(8, 1), (7, 2), (6, 3), (5, 4)} ,

and the corresponding complete Jacobi rotation J7 has the form

J7 =





c1 s1

c2 s2

c3 s3

c4 s4

−s4 c4

−s3 c3

−s2 c2

−s1 c1





. (5.5.2)

Complete Jacobi rotations of the form (5.5.2) play an important role in a reduced cyclic

Jacobi scheme that we discuss in the following section.

Perhaps the simplest way to generate the n − 1 Jacobi sets is to visualize a chess

tournament with n players in which everybody must play everybody else exactly once.

The following example is taken from [47]. Suppose that we have n = 8 players and in

round one we have the following four games
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Figure 5.5.1: A merry-go-round scheme for players 2 through 8.

1 3 5 7

2 4 6 8

These games correspond to the Jacobi set

jac.set(1) = {(1, 2), (3, 4), (5, 6), (7, 8)} .

To set up rounds 2 to 7, player 1 stays put and players 2 through 8 embark on a merry-

go-round, as illustrated in Figure 5.5.1. These operations can be encoded in a pair

(top, bot) of integer vectors top(1: n/2) and bot(1: n/2). During round k, top(i) plays

bot(i), i = 1, . . . , n/2, and the pairs {(top(i), bot(i)), i = 1, . . . , n/2} constitute the kth

Jacobi set. The following algorithm describes how the next pair (top, bot) can be obtained

from the current pair (top, bot).

Algorithm Tournament.

Given a pair of integer vectors (top, bot) that correspond to a Jacobi

set, this algorithm updates (top, bot) in order to determine the the next

Jacobi set.

m = length(top)

for k = 1: m

if k = 2

new.top(k) = bot(1)

else if k > 2

new.top(k) = top(k − 1)

end if

if k = m

new.bot(k) = top(k)
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else if k > 2

new.bot(k) = bot(k + 1)

end if

end

new.top(1) = 1

top = new.top

bot = new.bot

As we mentioned earlier in this section, each sweep requires n − 1 steps in order to

annihilate each off-diagonal entry exactly once. These steps will be called Jacobi steps.

Each Jacobi step is associated with a Jacobi set. This Jacobi set may be determined

either by Algorithm Sameh or Algorithm Tournament. The first task of each Jacobi step

is the allocation of the n/2 distinct index pairs, the elements of the associated Jacobi set,

to different processors, taking full advantage of the particular architecture of the target

machine. If the number of processors P is less than n/2, then each Jacobi step should

allocate the n/2 index pairs to different processors more than once. Hence, systems with

many processors may be more appropriate than systems with fewer processors when n is

large.

Suppose that the local cache of processor A on the KSR1 accommodates the index

pair (p, q), and the entries a
(k)
pp , a

(k)
qq , and a

(k)
pq of the updated matrix Ak. Having computed

the corresponding cosine-sine pair (c, s), processor A has two alternatives:

1. Update the p and q rows, and then the p and q columns of Ak,

2. Embed c and s into the corresponding positions of an n-by-n identity matrix,

constructing the Jacobi rotation J(p, q, θ). If the other processors do the same,

after n/2 embeddings the identity matrix will be transformed to a complete

Jacobi rotation.

In the first alternative, processor A will execute a load instruction for the addresses of the

rows and columns p and q. If the corresponding page(s) is (are) not found in processor

A’s local cache, then ALLCACHE memory will allocate the page(s) that contain(s) these
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addresses in processor A’s local cache. The addresses and the data of the updated rows

and columns p and q will reside in processor A’s local cache until another processor

references their addresses. If n is large, this procedure will keep the Search Engine very

busy since there will be a large number of transfer demands. We also note that when

operating on pairs of rows and columns we cannot exploit higher level BLAS. Using up

to 16 processors on the KSR1, we found that even for modest n, for example n = 64,

this procedure is very slow. (In Section 9 we report an example where this alternative

requires 210.03 seconds for a 64-by-64 symmetric matrix, while the second alternative

discussed in the following paragraph requires 8.13 seconds).

The second alternative was found to be more suitable for the KSR1 when we use up to

16 processors. Having filled up the complete Jacobi rotation Jk using all the processors,

the updated matrix Ak+1 = JT
k AkJk can be formed using parallel matrix multiply. This

technique is used in the following algorithm.

Algorithm Parallel Jacobi .

Given a symmetric A ∈ Rn×n and a convergence tolerance tol > 0, this al-

gorithm iteratively overwrites A with V T AV . The algorithm terminates

when off(V T AV ) ≤ tol. On successful exit, the matrix V T AV contains

the eigenvalues of the original matrix A, and the orthogonal matrix V is

the matrix of the eigenvectors of A. The number of processors is P .

V : = In;

eps = tol‖A‖F ;

while off(A) ≥ eps

for i = 1: n− 1 (n− 1 iterations are required for a sweep)

Generate the ith Jacobi set jac.set(i) = {(pil, qil), l = 1, . . . , n/2},

using Sameh’s algorithm or the Tournament scheme;

J : = In;

for l = 1: n/2

On processor k = 1 + ((l − 1) mod P ):
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p = min(pil, qil)

q = max(pil, qil)

Compute the cosine-sine pair (c, s), and embed c and s

into the corresponding positions in J ;

end (of the parallel section)

end

Form A = JT AJ using parallel matrix multiply;

Form V = V J using parallel matrix multiply;

end

end

In Section 9 we present some numerical results concerning the performance of Algo-

rithm Parallel Jacobi. These results clearly indicate that Algorithm Parallel Jacobi is

a suitable algorithm for solving symmetric eigenproblems when P ≪ n. In this case a

block version of Algorithm Parallel Jacobi may be appropriate. Parallel block Jacobi

algorithms are discussed in Section 8.

5.6 A Reduced Cyclic Jacobi Method

As we mentioned in the previous section, if we use Sameh’s scheme to generate the n− 1

Jacobi sets for each sweep, the (n − 1)st Jacobi set corresponds to a complete Jacobi

rotation of the form (5.5.2). If Ak is the updated matrix after n− 2 Jacobi steps within

a sweep, then the complete Jacobi rotation that corresponds to the (n− 1)st Jacobi set

annihilates the entries on the anti-diagonal of Ak. Moreover, the first n− 2 Jacobi steps

in a sweep never annihilate entries on the anti-diagonal. Omitting the (n − 1)st Jacobi
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step in every sweep, the original matrix A converges to a pattern of the form

X =





x11 x1n

x21 x2,n−1

x31 x3,n−2

. .

. .

xn−2,3 xn−2,n−2

xn−1,2 xn−1,n−1

xn1 xnn





. (5.6.1)

Since the matrix X has been produced after a sequence of orthogonal similarity trans-

formations, the matrix X has the same set of eigenvalues as the original matrix A. The

elimination procedure may terminate when

offx(Ak) :=

√√√√√
n∑

i=1

n∑

j=1

j 6=i,n+1−i

a
(k)
ij

2 ≤ eps,

with eps being chosen according to the requirement for accuracy. Note that we added

the subscript x in order not to confuse offx(Ak) with off(Ak).

The special structure of the matrix X in (5.6.1) can be exploited in order to obtain the

eigenvalues of A. Indeed, the characteristic equation det(X − λI) = 0 can be factorized

to give

(xii − λ)(xn+1−i,n+1−i − λ)− x2
i,n+1−i = 0, i = 1, . . . , n/2. (5.6.2)

The eigenvalues of the original matrix A can be obtained by solving the quadratic equa-

tions (5.6.2), which must have real roots since the original matrix A is symmetric.

The quadratic equations (5.6.2) can be written as

λ2 − (xii + xn+1−i,n+1−i)λ + xiixn+1−i,n+1−i − x2
i,n+1−i = 0, i = 1, . . . , n/2. (5.6.3)

If we set

bi := xii + xn+1−i,n+1−i, and ci := xiixn+1−i,n+1−i − x2
i,n+1−i, i = 1, . . . , n/2, (5.6.4)
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then the eigenvalues of A may be obtained from the formulae

λi1 =
1

2

(
bi +

√
b2
i − 4ci

)
, λi2 =

ci

λi1

, i = 1, . . . , n/2. (5.6.5)

We also observe that the n/2 quadratic equations in (5.6.3) may be solved simultaneously

and hence the scheme is suitable for parallel computation. The above scheme has been

suggested by Modi in [92], where it is called a reduced cyclic Jacobi method. We will refer

to this method as the X method5.

The algorithm given in [92] does not compute the matrix V of the eigenvectors of

the original matrix A. In order to compute this matrix we have to update the matrix V

during the elimination procedure, as we do in Algorithm Parallel Jacobi. The iterative

procedure converges to a matrix X of the form (5.6.1), and if A is the original matrix

and V is the updated matrix of the eigenvectors at the end of the iterative procedure,

then

X = V T AV.

As we mentioned earlier in this section, the complete Jacobi rotation that corresponds to

(n − 1)st Jacobi set annihilates the entries on the anti-diagonal of the updated matrix.

Thus, we can construct a complete Jacobi rotation R such that

D = RT XR,

where D is a diagonal matrix which contains the eigenvalues of A. The matrix V whose

columns are the eigenvectors of A will be V := V R. The following algorithm describes

how the eigenvalues, and optionally the matrix of the eigenvectors of a symmetric matrix,

can be obtained using this method.

Algorithm X

5In [92], Modi sets in (5.6.5) λi2 = bi − λi1 instead of λi2 = ci/λi1. Our choice is numerically better
since there is less chance of cancellation errors.
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Given a symmetric A ∈ Rn×n and a tolerance tol > 0, this algorithm

first reduces the original matrix to a matrix of the form (5.6.1), and then

computes the n eigenvalues of A. On succesful exit, if the computation

of the matrix V of the eigenvectors is required, the matrix V T AV con-

tains the eigenvalues of the original matrix A. Otherwise, the algorithm

computes a vector which contains the eigenvalues of A. The number of

processors is P .

if the computation of V is required, V : = In;

eps = tol‖A‖F ;

while
√∑n

i=1

∑n
j=1

j 6=i,n+1−i

a2
ij ≥ eps

for i = 1: n− 2 (we omit the (n− 1)st Jacobi step)

Generate the ith Jacobi set jac.set(i) = {(pil, qil), l = 1, . . . , n/2},

using Sameh’s scheme;

J : = In;

for l = 1: n/2

On processor k = 1 + ((l − 1) mod P ):

p = min(pil, qil);

q = max(pil, qil);

Compute the cosine-sine pair (c, s) that corresponds

to the index pair (p, q), and embed c and s into

the corresponding positions of J ;

end (of the parallel section)

end

Form A: = JT AJ using parallel matrix multiply;

if the computation of V is required,

form V : = V J using parallel matrix multiply;

end if

end
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end (of while loop)

if the computation of V is required

J : = In;

for l = 1: n/2

On processor k = 1 + ((l − 1) mod P ):

p = l;

q = n + 1− l;

Compute the cosine-sine pair (c, s) that corresponds

to the index pair (p, q), and embed c and s into

the corresponding positions of J ;

end (of the parallel section)

end

Form A: = JT AJ using parallel matrix multiply;

Form V : = V J using parallel matrix multiply;

else

Form the vectors b and c as in (5.6.4) using P processors

(This can be accomplished on the KSR1 with tiling);

for i = 1: n/2

On processor k = 1 + ((i− 1) mod P ):

λi1 = 1
2

(
bi +

√
b2
i − 4ci

)
;

λi2 = ci/λi1;

end (of the parallel section)

end

end

If the computation of the eigenvectors is not required, the reduction of one step per

sweep necessitates the solving of n/2 quadratic equations. The extra cost of solving

the n/2 quadratic equations on the KSR1 is negligible in comparison with the cost of

a Jacobi step. For example, for a symmetric matrix of order 64, a Jacobi step needs
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Parallel Jacobi X Method

sweep O(off(A)) sweep O(offx(A)) sweep O(offx(A))
0 105 0 105 8 10−4

1 105 1 105 9 10−5

2 104 2 104 10 10−6

3 103 3 103 11 10−7

4 102 4 102 12 10−8

5 10−4 5 100 13 10−9

6 10−10 6 10−2 14 10−10

7 - 7 10−3

Table 5.6.1: Convergence for Algorithms Parallel Jacobi and X.

0.05 seconds, while the simultaneous solution of the quadratic equations requires less

than 0.01 seconds. Provided that Algorithm X and Algorithm Parallel Jacobi require

the same number of sweeps, the former algorithm is faster when we also compute the

eigenvectors. This happens because algorithm X skips a Jacobi step per sweep and applies

only one Jacobi step (the (n− 1)st Jacobi step), after the iterative procedure. However,

we have reason to doubt whether Algorithm X is faster than Algorithm Parallel Jacobi.

During our numerical experiments we observed that Algorithm X needs more sweeps

than algorithm Parallel Jacobi for the same accuracy requirements. (The Jacobi sets in

Algorithm Parallel Jacobi have been generated using Sameh’s scheme). A typical example

is the following: If A is the 64-by-64 symmetric matrix defined by

aij =





i + j if i 6= j,

i2 + 64 otherwise,

and tol = 1.1 × 10−16, then Algorithm X needs 14 sweeps, while algorithm Parallel

Jacobi needs only 6. The progress of convergence of the two algorithms is illustrated

in Table 5.6.1, where we observe that the ultimate convergence rate for algorithm X

is linear. The same behaviour of the two algorithms has been noticed in a number

of numerical experiments. Our conclusion is that the X method, although attractive in

theory, it is not of practical importance since it requires more sweeps. These extra sweeps

cause unnecessary delay in the convergence of a Parallel Jacobi method. The convergence

properties of the X method are not discussed in [92].
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5.7 The Davies-Modi Method

In [28], Davies and Modi suggest the replacement of the final sweep(s) of a Jacobi method

by a direct scheme. This scheme is applicable only when the eigenvalues are known

to be distinct. This is not a serious drawback of the method since many symmetric

matrices arising in applications have distinct eigenvalues. (In Section 10 we investigate the

performance of the Davies-Modi scheme on matrices with multiple and close eigenvalues).

We state the Davies-Modi method for completing symmetric eigenvalue problems

without explanation. The underlying theory, which is based on some pertubation theory,

is given in [28]. If A is an n-by-n symmetric matrix, we apply a Jacobi method up

to the point at which the updated matrix Ak is close-to-diagonal. Then we apply the

Davies-Modi method that constructs a nearly orthogonal matrix U such that

UUT ≈ In, and UAkU
T ≈ ∆,

where ∆ is a nearly diagonal matrix of the approximate eigenvalues.

The Davies-Modi scheme can be described as follows: We first write Ak as

Ak = A0 + A1, (5.7.1)

where A0 is diagonal and A1 has zeros on its main diagonal. Solving for the skew-

symmetric matrix R the equation

A0R−RA0 = A1,

we obtain

rij =






a
(k)
ij

a
(k)
ii − a

(k)
jj

i 6= j,

0 i = j.

(5.7.2)

Then we write

1

2
(RA1 − A1R) = B0 + B1,

where B0 is diagonal and B1 has zeros on its main diagonal. Here we observe that RA1

is the transpose of −A1R, since R is skew-symmetric, that is R = −RT , and A1 is

symmetric. Thus the matrix B1 is symmetric. Then we solve the equation

A0W −WA0 = B1,
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for the skew-symmetric matrix W , and we obtain

wij =






bij

a
(k)
ii − a

(k)
jj

i 6= j,

0 i = j.

(5.7.3)

Defining X = R + W , the matrix U is given by

U = eX =
∞∑

k=0

1

k!
Xk.

If sufficient terms are taken, the matrix U will be orthogonal to machine precision. In

practice, the method performs well for k = 3, that is

U = In + X +
1

2
X2 +

1

6
X3. (5.7.4)

If α = max
{
|a(k)

ij |: i 6= j
}

, δ = min
{
|a(k)

ii − a
(k)
jj |: i 6= j

}
, and

ǫ = max
{
n3α4/δ4, n2α3/δ2, n2α4/δ3

}
,

Davies and Modi suggest the application of their scheme from the point at which ǫ < 10−k,

with k = 3. Provided that ǫ ≤ n3/16(n− 1)4, the Gershgorin discs, with centers a
(k)
ii and

radii
∑

j 6=i |a
(k)
ij |, are disjoint at the stage when the Modi-Davies method is applied [28].

This also ensures that the updated matrix Ak is diagonally dominant.

For the computation of δ Modi [92] suggests a procedure with the following steps:

1. Extract the vector d = (a
(k)
11 , . . . , a

(k)
nn );

2. Form two matrices, one with all rows equal to dT and the other with all columns

equal to d, and take their difference;

3. Replace the zero diagonal entries by a large constant;

4. Find the minimum of the absolute values of the entries of this matrix.

We investigated the performance of the above scheme on the KSR1. We used tiling to

form the vector d, and the two matrices in step 2. We also used tiling to form the (n−1)-

by-(n − 1) triangular matrix of the difference of their sub-diagonal entries, and to find

the minimum of the absolute values of these entries. We compared this method with the

following procedure:
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1. Extract the vector d = (a
(k)
11 , . . . , a

(k)
nn );

2. Order the elements of the vector d in descending order;

3. Find the minimum difference a
(k)
ii − a

(k)
i+1,i+1, i = 1, . . . , n− 1.

In our implementation on the KSR1, we used tiling for the steps 1 and 3. For the sorting

in step 2, we used a modification of Bubble Sort 6. We tested the performance of the

two methods for the vectors d, di = sin(i), i = 1, . . . , n, for various values of n. We

chose these vectors because their elements are unordered. We found that the second

procedure is faster than Modi’s procedure. For example, for n = 1024 and using 16

processors, Modi’s procedure needs 0.75 seconds to determine δ, while the method based

on the sorting procedure requires 0.22 seconds. Figure 5.7.1 illustrates the performance

of the two methods, for various values of n between 64 and 1024. It is clear that the

second scheme is more suitable for the KSR1. For the determination of α we used tiling.

The computation of the quantities α, δ, and ǫ, is not necessary in the first stages of the

elimination procedure. Usually, the condition for applying the direct method is satisfied

after the fourth sweep. The Davies-Modi method may be combined with algorithm

Parallel Jacobi giving the following algorithm.

Algorithm Davies-Modi.

Given a symmetric A ∈ Rn×n and a convergence tolerance tol > 0, this

algorithm overwrites A with V T AV using the Davies-Modi scheme. On

successful exit, the diagonal of V T AV contains the eigenvalues of the

original matrix A, and the columns of V are the eigenvectors of A.

V : = In;

eps = tol‖A‖F ;

MODI: = FALSE;

SWEEP : = 0;

while off(A) ≥ eps and MODI = FALSE

6We are aware that Bubble Sort is not the fastest sorting method but it can be easily implemented in
Fortran. The development of parallel sorting methods for the KSR1 is beyond the scope of this thesis.
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Figure 5.7.1: Performance of two methods for determining δ.

SWEEP := SWEEP + 1;

Update A and V as in algorithm Parallel Jacobi;

if SWEEP ≥ 4

α = max {|aij|: i 6= j};

δ = min {|aii − ajj|: i 6= j};

ǫ = max {n3α4/δ4, n2α3/δ2, n2α4/δ3};

if ǫ < 10−3, MODI: = TRUE;

end if

end

Express A = A0 + A1 as in (5.7.1);

Compute R as in (5.7.2);

Compute B = 1
2
(RA1 − A1R);

Compute W as in (5.7.3);

Compute X = R + W ;

Compute U as in (5.7.4);

A = UAUT ;

V = UT V ;

end
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We also incorporated the Davies-Modi method in various Jacobi schemes with thresh-

old strategy that we investigated on the KSR1. Our conclusion, based on lots of numerical

tests, is that the incorporation of this scheme inside a parallel Jacobi method improves

the timing results significantly, preserving the accuracy of results. Numerical and tim-

ing results concerning the incorporation of the Davies-Modi method in various Jacobi

schemes are given in Section 9 and Section 10.

5.8 Block Jacobi Methods

One of the important requirements in exploiting a high performance computer is to

avoid unecessary memory references. In the KSR1, data flows among local caches, and

between each processor and its local cache. Performance of algorithms can be dominated

by the amount of memory traffic, rather than the number of operations involved. This

cost provides considerable motivation to devise block versions of the Jacobi algorithms

discussed in the previous sections, in order to minimize data movement. It is well known

that block algorithms are advantageous for systems with few processors [12, 32]. In

almost every modern computer, computation is much cheaper than input/output. This

is particularly so in high performance environments where the data transfer rate is low

compared to the arithmetic speed.Given a d-by-d matrix block, the cost of data movement

is O(d2), whereas typically O(d3) operations are required. The O(d) ratio of work to

storage means that processors with an O(d) ratio of computing speed to input/output

bandwidth can be tolarated [113]. Furthermore block algorithms usually lead to programs

that are rich in matrix-vector and matrix-matrix operations, in which case we can exploit

higher level BLAS. Parallel Jacobi methods are of particular interest to us, since we are

interested in large symmetric eigenproblems, and we do not have access to more than 16

processors on the KSR1.

Scalar Jacobi algorithms can be viewed as repeatedly solving 2-by-2 eigenvalue prob-

lems. Block Jacobi algorithms repeatedly solve larger eigenvalue problems. For example,
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if we write the n-by-n symmetric matrix A as

A =





A11 A12 · · · A1k

A21 A22 · · · A2k

...
...

...

Ak1 Ak2 · · · Akk





, Aij ∈ Rr×r,

where n = rk, then the (p, q) subproblem may involve the computation of the 2r-by-2r

Schur decomposition



 App Apq

Aqp Aqq



 =



 Vpp Vpq

Vqp Vqq







 Dpp 0

0 Dqq







 Vpp Vpq

Vqp Vqq




T

. (5.8.1)

(In this section, we also discuss block Jacobi methods in which the complete Schur de-

composition (5.8.1) may not be necessary). The corresponding block Jacobi rotation

is

J =





Irr · · · 0 · · · 0 · · · 0

...
. . .

...
...

...

0 · · · Vpp · · · Vpq · · · 0

...
...

. . .
...

...

0 · · · Vqp · · · Vqq · · · 0

...
...

...
. . .

...

0 · · · 0 · · · 0 · · · Irr





. (5.8.2)

Note that throughout this section the block size is assumed to be r, and every n × n

matrix is assumed to be a block k × k matrix where n = rk. The following lemma

indicates the reduction in off(A) when we apply the block Jacobi rotation J to A.

Lemma 5.8.1 If A is an n-by-n symmetric matrix, V is a block Jacobi rotation of the

form (5.8.2), and (5.8.1) holds, then

off(JT AJ)2 = off(A)2 −
(
2‖Apq‖2 + off(App)

2 + off(Aqq)
2
)
.

Proof. If we set B = JT AJ , then



 Bpp 0

0 Bqq



 =



 Vpp Vpq

Vqp Vqq




T 

 App Apq

Aqp Aqq







 Vpp Vpq

Vqp Vqq



 ,
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and since the Frobenius norm is preserved by orthogonal transformations ‖B‖F = ‖A‖F ,

and

‖Bpp‖2F + ‖Bqq‖2F = 2‖Apq‖2F + ‖App‖2F + ‖Aqq‖2F .

If we define the sets P and Q as

P = {(p− 1)r + 1, (p− 1)r + 2, . . . , pr} , and Q = {(q − 1)r + 1, (q − 1)r + 2, . . . , qr} ,

then

n∑

i=1

b2
ii =

∑

i6∈P∪Q

a2
ii +

∑

i∈P

b2
ii +

∑

i∈Q

b2
ii

=
∑

i6∈P∪Q

a2
ii + ‖Bpp‖2F + ‖Bqq‖2F

=
∑

i6∈P∪Q

a2
ii + 2‖Apq‖2F + ‖App‖2F + ‖Aqq‖2F

=
∑

i6∈P∪Q

a2
ii + 2‖Apq‖2F +

∑

i∈P

a2
ii + off(App)

2 +
∑

i∈Q

a2
ii + off(Aqq)

2

=
n∑

i=1

a2
ii + 2‖Apq‖2F + off(App)

2 + off(Aqq)
2,

and hence

off(B)2 = ‖B‖2F −
n∑

i=1

b2
ii

= ‖A‖2F −
n∑

i=1

a2
ii − 2‖Apq‖2F − off(App)

2 − off(Aqq)
2

= off(A)2 − (2‖Apq‖2F + off(App)
2 + off(Aqq)

2).

In this section we present two block Jacobi methods. Both methods are based on

Algorithm Parallel Jacobi, given in Section 5. We will refer to these methods as Method

1 and Method 2.

Method 1 is similar to a block Jacobi method for the SVD discussed in [119]. In

Method 1, instead of quitting when off(A) is small enough, we use a block analogue of

this test:

OFF(A) =

√√√√√
k∑

i=1

k∑

j=1

j 6=i

‖Aij‖2F .
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By terminating when OFF(A) is small the final matrix A will be nearly block diagonal.

The diagonalization process is then completed by computing, in parallel, the Schur de-

compositions of the diagonal blocks. In Algorithm Parallel Jacobi the 2-by-2 subproblems

are exactly diagonalized. In Method 1, a complete diagonalization of the subproblems

may not be necessary. So instead of computing the Schur decomposition (5.8.1), it might

be sufficient to compute



 Bpp Bpq

Bqp Bqq



 =



 Vpp Vpq

Vqp Vqq




T 

 App Apq

Aqp Aqq







 Vpp Vpq

Vqp Vqq



 ,

where

‖Bpq‖F ≤ θ‖Apq‖F , (5.8.3)

for some fixed 0 ≤ θ < 1. Justification for this suggestion is given later in this section. We

can also incorporate a threshold in Method 1, and, as we show in Lemma 2.2, convergence

can be ensured. In Method 1, we skip the (p, q) subproblem if

‖Apq‖F < τ,

where the threshold τ satisfies

τ ≤ tol‖A‖F /k, tol > 0.

Before stating an algorithm for Method 1, we wish to specify the following problem,

which arises when we want to implement a block Jacobi method on the KSR1. Consider,

for convenience, the 4-by-4 block (symmetric) matrix

A =





A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44





,

and a system with two processors, p1 and p2. We send the block matrices

A1 =



 A11 A12

A21 A22



 , and A2 =



 A33 A34

A43 A44



 ,
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Figure 5.8.1: The first alternative.
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identity  matrix   J.

Processors   p1  and  p2   embed   V     and    V     into  the
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Figure 5.8.2: The second alternative.
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to processors p1 and p2 respectively, and we ask them to compute the block matrices

V1 =



 V11 V12

V21 V22



 , and V2 =



 V33 V34

V43 V44



 .

The block matrices V1 and V2 may either satisfy a condition of the form (5.8.3), or actually

diagonalize A1 and A2. The question which arises at this point is: Is it better to update

the corresponding block rows and columns of A on p1 and p2, or to embed the blocks

Vij into the corresponding positions of an identity matrix, building a 4-by-4 complete

block Jacobi rotation J , and then use both processors (parallel multiply) to form JT AJ .

These alternatives are illustrated in Figures 5.8.1 and 5.8.2. respectively. Thoughout

this chapter we will refer to these ways of implementation as the first and the second

alternatives. Method 1 may be sketched in the following algorithm.

Algorithm Method 1.

Given block k-by-k (symmetric) matrix A ∈ Rn×n, a tolerance tol > 0,

and a threshold τ ≤ tol‖A‖F /k, this algorithm first converts A into a

block diagonal matrix, and then diagonalizes the block entries of the

diagonal matrix. On successful exit, the matrix V T AV contains the

eigenvalues of the original matrix, and the columns of the orthogonal

matrix V are the eigenvectors of A. The number of processors is P .

V : = In;

eps = tol‖A‖F ;

while OFF(A) ≥ eps

for i = 1: k − 1

Generate the ith Jacobi set jac.set(i) = {(pil, qil), l = 1, . . . , n/2},

using Sameh’s algorithm or the Tournament scheme;

if the second alternative is being used J : = In;

for l = 1: n/2

On processor ps = 1 + ((l − 1) mod P ):

p = min(pil, qil)
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q = max(pil, qil)

if ‖Apq‖F > τ , either apply the first

alternative to update the p and q block rows and

columns of A and the p and q block columns of V ,

or the second alternative to compute J ;

end (of the parallel section)

end

if the second alternative is being used, then

Form A = JT AJ using parallel matrix multiply;

Form V = V J using parallel matrix multiply;

end if

end

end

%

% Second Stage of Method 1: The block diagonal matrix A is converted

% into a diagonal matrix, and the orthogonal matrix V is updated.

%

if the second alternative is being used J : = In;

for i = 1: k/2

On processor ps = 1 + (i− 1) mod P :

Compute the Schur decomposition


 A2i−1,2i−1 A2i−1,2i

A2i,2i−1 A2i,2i



 = Vi



 D2i−1,2i−1 0

0 D2i,2i



V T
i ;

if the first alternative is being used, then

Update the (2i− 1)st and (2i)th block rows and columns of A,

and the 2i− 1 and 2i block columns of V ;

else

Embed the block Vi into the corresponding position of J ;

end if
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end (parallel section)

end

if the second alternative is being used, then

Form A = JT AJ using parallel matrix multiply;

Form V = V J using parallel matrix multiply;

end

As in scalar Jacobi methods, in block Jacobi methods we denote by a block sweep

a single pass through the while loop. The following lemma ensures the convergence of

Algorithm Method 1 in finite number of steps.

Lemma 5.8.2 Algorithm Method 1 terminates after a finite number of block sweeps.

Proof. If no subproblems are solved during a particular block sweep, then we have

‖Aij‖F ≤ τ for all i and j, 1 ≤ i < j ≤ k. Hence,

OFF(A)2 =
k∑

i=1

k∑

j=1

j 6=i

‖Aij‖2F ≤ k(k − 1)τ 2 ≤ k(k − 1)

k2
tol2‖A‖2F ≤ tol2‖A‖F

⇒ OFF(A) ≤ tol‖A‖F ,

and termination is achieved. Assume now that the subproblem (p, q) is solved during a

block sweep and the corresponding Jacobi rotation is an orthogonal matrix of the form

(5.8.2). If we set B = JT AJ (A is the updated matrix), then



 Bpp Bpq

Bqp Bqq



 =



 Vpp Vpq

Vqp Vqq




T 

 App Apq

Aqp Aqq







 Vpp Vpq

Vqp Vqq



 ,

and since the Frobenius norm is preserved by orthogonal transformations

‖Bpp‖2F + ‖Bqq‖2F + 2‖Bpq‖2F = ‖App‖2F + ‖Aqq‖2F + 2‖Apq‖2F ,

and ‖A‖F = ‖B‖F . Provided that ‖Bpq‖F ≤ θ‖Apq‖F , for a fixed 0 ≤ θ < 1,

‖Bpp‖2F + ‖Bqq‖2F ≥ ‖App‖2F + ‖Aqq‖2F + 2‖Apq‖2F (1− θ2).
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Thus,

OFF(B)2 = ‖B‖2F −
k∑

i=1

‖Bii‖2F

= ‖A‖2F −
∑

i6=p,q

‖Aii‖2F − (‖Bpp‖2F + ‖Bqq‖2F )

≤ ‖A‖2F −
∑

i6=p,q

‖Aii‖2F − (‖App‖2F + ‖Aqq‖2F + 2‖Apq‖2F (1− θ2))

= OFF(A)2 − 2‖Apq‖2F (1− θ2)

≤ OFF(A)2 − 2τ 2(1− θ2). (5.8.4)

Inequality (5.8.4) implies that after ρ block sweeps, in each of which at least one sub-

problem is necessarily solved, the sum of norms of the off-diagonal blocks of the original

matrix A, OFF(A), is diminished at least by

ρτ
√

1− θ2.

Hence, it follows that the condition OFF(A) ≤ tol‖A‖F must be satisfied after a finite

number of steps.

Lemma 5.8.2 clearly states that condition (5.8.3) is sufficient to ensure the conver-

gence of Algorithm Method 1. Thus, it may not be necessary to compute the Schur

decomposition of the block matrix



 App Apq

Aqp Aqq



 , (5.8.5)

but simply a block matrix 

 Bpp Bpq

Bqp Bqq



 , (5.8.6)

such that

‖Bpq‖F ≤ θ‖Apq‖F . (5.8.7)

During our numerical experiments, we observed that the number of block sweeps is

a mildly increasing function of θ. The number of block sweeps has been observed to be

usually minimal so long as θ ≤ 0.25. The block matrix (5.8.6) can be computed via any

scalar Jacobi algorithm, parallel or serial. In our implementation we solve this subproblem



CHAPTER 5. A NEW APPROACH TO COMPUTING THE SVD 148

Sweep OFF(A) OFF(A)
1 1.79E+03 1.95E+03
2 5.95E+02 7.00E+02
3 3.19E+01 4.93E+01
4 1.03E-01 3.25E+00
5 3.60E-06 4.86E-01
6 4.03E-11 9.48E-02
7 1.95E-02
8 4.03E-03
9 8.32E-04
10 1.71E-04
11 3.41E-05
12 4.93E-11

Table 5.8.1: Numerical results for the partial Jacobi method.

on one processor using Algorithm Row Cyclic. We keep sweeping until condition (5.8.7)

is satisfied. The fact that the subproblems are increasingly block diagonal as the iteration

progresses encourages us to apply a threshold strategy. We found that Corneil-Kahan

and Modified KC threshold strategies work well in this context. We will refer to the

above method for solving the block 2-by-2 subproblem as the partial Jacobi method.

Although in the (p, q) subproblem we are interested in reducing the norm of Apq,

we eliminate all the off-diagonal entries of the matrix block (5.8.5) and not only on the

entries of Apq. Eliminating only the entries of Apq increases the number of sweeps. This

result is illustrated in Table 8.1 for the 64-by-64 symmetric matrix A,

aij =





i + j if i 6= j,

i2 + 64 otherwise.

(The above matrix A is a matrix block in a subproblem and not the original symmetric

matrix). For this symmetric matrix, Algorithm Method 1 needs 6 sweeps if the partial

Jacobi method is applied on the off-diagonal entries in the (p, q) subproblem, and 12

sweeps if it is applied only on the entries of Apq.

However, since the Schur decomposition of the block matrix (5.8.5) corresponds to

θ ≈ 0, and hence Lemma 5.8.2 holds, the following question arises at this point: Is

the partial Jacobi method faster than the LAPACK routine SSEYV, which computes the
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Schur decomposition of a real symmetric matrix and also drives the updated matrix to a

diagonal, instead of a block diagonal, form? The answer depends mainly on the size of the

block matrix in a subproblem. It also depends on the value of θ and the threshold strategy

but not in the same scale. Our conclusion, drawn by numerous numerical examples, is

that it is better to use the partial Jacobi method with θ = 0.25 for subproblems with

size less than or equal to 8, and SSYEV for larger subproblems. Numerical and timing

results for Algorithm Method 1 are reported in the next section, where we discuss the

implementation of this algorithm on the KSR1.

Method 2, in its simplest form, is a block version of Algorithm Parallel Jacobi. The

only difference is that instead of solving repeatedly 2-by-2 eigenvalue problems inside the

while loop, Method 2 solves larger eigenvalue problems. The main difference between

Method 1 and Method 2, is that Method 2 terminates when off(A) < tol‖A‖F , computing

always the Schur decomposition of the subproblems. Hence, Method 2 drives the updated

matrix to a diagonal form. As for Method 1, the matrices A and V can be updated on

each processor (first alternative), or the processors embed the matrix block rotations into

a complete block Jacobi rotation J , and then they cooperate to form JT AJ and V J

(second alternative). We can also apply a threshold strategy to Method 2, and since

the updated matrix is driven to a diagonal form, we can also incorporate the Davies-

Modi scheme into Method 2. As we show in Section 10, this scheme always improves the

timing results. We experimented with various forms of Method 2 on the KSR1, using 16

processors, and our main experimental observations may be summarized as follows:

1. For relatively small n (for example n = 64), it is better to use the second

alternative, and not to use threshold strategy.

2. The larger the n, the more preferable the first alternative with a suitable

threshold strategy.

3. The Davies-Modi scheme always improves the timing results.

4. Method 2 is the fastest method known to us for solving large symmetric eigen-

problems on the KSR1.
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The algorithm for Method 2 is given in the next section, where we discuss its imple-

mentation on the KSR1 in detail. Numerical and timing results for Method 2 are given

in Section 10.

5.9 Implementing Jacobi methods on the KSR1

In this section we discuss the implementation of the parallel Jacobi methods presented

in the previous sections on the KSR1. We also report some numerical and timing results

in order to state the advantages and disadvantages of these methods when they are

implemented on the KSR1. Throughout this section the number of processors is assumed

to be 16, which was the maximum number of processors available to us. The variable

tol in the algorithms discussed in the previous sections is always set to nu, where u ≈

1.1 × 10−16 is the unit roundoff error for single precision arithmetics. For the matrix-

matrix multiplications we used the highly optimized level 3 BLAS routine SGEMM supplied

by Kendall Square Research in the KSRlib/BLAS Library [77]. For the generation of

symmetric random matrices we used the LAPACK routine SLATMR [29]. From the parallel

constructs provided by KSR Fortran, we used pthreads, parallel regions, and tile families.

We started with the implementation of Algorithm Parallel Jacobi. Algorithm Parallel

Jacobi was found to be extremely slow when we wish to update A and V on each processor

(first alternative). For example, for the 64-by-64 symmetric matrix A defined by

aij =





i + j if i 6= j,

i2 + 64 otherwise,
(5.9.1)

Algorithm Parallel Jacobi with the first alternative requires 210.03 seconds without

threshold strategy, and 175.43 seconds if we incorporate the Modified KC threshold strat-

egy. On the other hand, the same algorithm with the second alternative requires 8.13

seconds. This performance was expected for the reasons explained in Section 5.

We investigated the performance of the following algorithms:

1. Algorithm Parallel Jacobi (PJ) (as given in Section 5) .

2. Algorithm Parallel Jacobi with modified KC threshold strategy (PJKC).
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Algorithm Sweeps Seconds
PJ 6 8.13
PJKC 10 14.12
PJDM 5 6.79
PJKCDM 7 9.47

Table 5.9.1: Timing results for four scalar parallel Jacobi algorithms.

3. Algorithm Parallel Jacobi with Davies-Modi scheme (PJDM).

4. Algorithm Parallel Jacobi with modified KC threshold strategy and Davies-

Modi scheme (PJKCDM).

In order to generate the Jacobi sets we used both schemes, that is Sameh’s algorithm

and the Tournament scheme. Since the timing results were almost identical for both

schemes, we report the timing results for Sameh’s algorithm. Table 9.1 reports the

number of sweeps and the run times in seconds that the above algorithms need in order to

compute the eigenvalues and the eigenvectors of the 64-by-64 matrix A in (5.9.1). Similar

timing results have been observed in numerous numerical experiments with symmetric

random matrices generated by SLATMR. We observe that the fastest algorithm is Algorithm

PJDM which requires the smallest number of sweeps. That was expected, since the most

expensive part of the above algorithms is the formation of the products JT AJ and V J ,

which occurs n−1 times at each sweep. Therefore, it is not surprising that the threshold

strategy does not improve the timing results, since it increases the number of sweeps.

However, even Algorithm PJDM becomes very slow when n is much greater than the

number of processors. For example, for n = 128, a rather modest value of n, Algorithm

PJDM requires 52.98 seconds and it is about 12 times slower than SSYEV on one processor.

(Timing results for SSEYV are given in Table 10.1.) Therefore, scalar parallel Jacobi

methods are not suitable for solving large symmmetric eigenvalue problems on KSR1

configurations with a modest number of processors. Nevertheless, Algorithm PJDM may

perform better on systems with more processors. The source code for Algorithm PJDM

is given in Appendix A.1.

We started the implementation of the parallel block Jacobi methods on the KSR1
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Sweep θ = 1.0E − 10 θ = 0.25 θ = 0.50 θ = 0.75
1 1.74E+03 4 1.79E+03 2 1.85E+03 1 1.85E+03 1
2 4.85E+02 4 5.95E+02 2 6.91E+02 1 6.91E+02 1
3 2.29E+01 3 3.19E+01 1 6.25E+01 1 6.25E+01 1
4 5.51E-02 3 1.03E-01 1 4.35E-01 1 4.35E-01 1
5 2.00E-06 2 3.60E-06 1 3.54E-05 1 3.54E-05 1
6 2.72E-11 2 4.03E-11 1 4.43E-11 1 4.43E-11 1

Run Time 12.58 4.40 4.32 4.32

Table 5.9.2: Some numerical and timing results for Method 1

with Algorithm Method 1. Since the number of processors is P = 16, we consider the

original matrix as a block 32-by-32 matrix. For example, each block in a 64-by-64 matrix

is 2-by-2, and the matrix blocks in the subproblems are 4-by-4. In general, if

A =





A11 A12 · · · A1,32

A21 A22 · · · A2,32

...
...

...

A32,1 A32,2 · · · A32,32





, Aij ∈ Rr×r,

then the block size is r = n/32, and the size of the subproblems is 2r. Since each

Jacobi set consists of 16 index pairs, the corresponding 16 subproblems may be solved

simultaneously. Note that the same arrangement will be used for Method 2.

As we mentioned in the previous section, we can either diagonalize the matrix block

(5.8.5) in the (p, q) subproblem, or we can apply a Row Cyclic Jacobi method (the

partial Jacobi method) until the condition (5.8.7) is satisfied. We also stated that the

latter approach is preferable for subproblems with size less or equal to 8. In order to

investigate the role of θ in the partial Jacobi method, we experimented with different

values of θ ∈ (0 1). Table 9.2 reports some numerical and timing results for the 64-by-64

matrix A given in (5.9.1). The left column for each θ reports the quantity OFF(A), and

the right column the maximum number of sweeps for the partial Jacobi method at each

block sweep. Table 9.2 also reports the run times. Similar results have been observed in

a number of numerical experiments with 64-by-64 symmetric random matrices generated

by SLATMR. We observe that Method 1 requires the same number of sweeps for each of



CHAPTER 5. A NEW APPROACH TO COMPUTING THE SVD 153

these four values of θ. However, for larger eigenproblems, the number of sweeps has been

observed to be a mildly increasing function of θ. The choice θ = 0.25 seems to be a good

choice in practice, since it usually keeps the number of block sweeps at a minimum level.

We also observe in Table 9.2, that the choices θ = 0.50, and θ = 0.75, have the same

effect on the stages of convergence and the timing results. As expected, very small values

of θ, as for example θ =1.0E-10, cause unnecessary delay in Algorithm Method 1, since

they require more iterations for the subproblems.

As we mentioned in the previous section, when the size of the subproblems is greater

that 8, it is preferable to use the LAPACK routine SSYEV instead of the partial Jacobi

method for the subproblems. But in this case, Method 1 becomes a variant of Method

2, since the diagonalization of the subproblems drives the original symmetric matrix to

a diagonal form, instead of a block diagonal form. Since Method 1 with the partial

Jacobi method is not suitable for large matrices, we do not discuss the technical details

concerning its implementation on the KSR1. However, the implementation of Method 1

with the partial Jacobi method is similar to the implementation of Method 2, which is

discussed in the following paragraphs. The source code for Method 1 with the partial

Jacobi method is given in Appendix A.2

Method 2 has been designed especially for large symmetric matrices. Our purpose

was to develop a fast symmetric eigensolver for the KSR1 exploiting:

1. The particular architecture of the KSR1.

2. The highly optimized level 3 BLAS routines in the KSRlib/BLAS Library [77].

3. The Davies-Modi scheme.

4. A suitable threshold strategy that minimizes the number of the matrix-matrix

multiplications.

In our implementation we used the first alternative for Method 2. The second alternative

is not suitable for Method 2 for the following reasons:

1. Since Method 2 deals exclusively with large matrices, the formation of JT AJ

and V J , which occurs k − 1 times at each block sweep, is time consuming.
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2. The second alternative does not exploit the special structure of the complete

block Jacobi rotation J .

We experimented with various threshold strategies and we found that a block version

of the modified KC threshold strategy gives the best all-round performance for Method

2. In the scalar case, if we follow the modified KC threshold strategy, we skip the

annihilation of the entry a
(j)
pq at the jth update, if |a(j)

pq | <
√

ω/N , where ω = 1
2
off(Aj)

2,

and N = 1
2
n(n− 1). In Method 2, having determined the 2r-by-2r matrix block

M =



 App Apq

Aqp Aqq





for the (p, q) subproblem, we skip the solution of the (p, q) subproblem if

1

2
off(M) =

2r∑

i=2

i−1∑

j=1

m2
ij <

2r(2r − 1)

2

ω

N
. (5.9.2)

Provided that we use P processors and 2r = n/P , (5.9.2) can be written as

n/P∑

i=2

i−1∑

j=1

m2
ij <

1

P

(n/P )− 1

n− 1
ω. (5.9.3)

The threshold (5.9.3) is computed in the beginning of each block sweep. Since the compu-

tation of off(A) is necessary for the convergence test, the cost of computing the threshold

(5.9.3) is negligible. Method 2 may be outlined in the following algorithm.

Algorithm Method 2.

Given a large n-by-n symmetric matrix A and a tolerance tol > 0, this

algorithm computes the eigenvalues and the eigenvectors of A. On suc-

cessful exit, the updated diagonal matrix A contains the eigenvalues of

the original matrix A, and the columns of the orthogonal matrix V are

the eigenvectors of the original matrix. The number of processors is P .

V : = In;

eps = tol‖A‖F ;

SWEEP : = 0;
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MODI: = FALSE;

while off(A) > eps and MODI = FALSE

SWEEP = SWEEP + 1;

Compute the threshold (5.9.3);

for set = 1: 2P − 1

Determine the P subproblems using Sameh’s algorithm or

the tournament scheme, and send the matrix block Mi

to processor Pi (i = 1, . . . , P );

On processor Pi:

if the half sum of squares of the off-diagonal

entries of Mi is greater or equal to threshold, then

Compute the Schur decomposition Mi = ViDiV
T
i ;

Use Vi to update the ith block columns of A and V ,

and the ith block row of A;

end if

end (parallel section)

end

if SWEEP > 9 then

Compute the quantities α, δ, and ǫ as in Algorithm Davies-Modi;

if ǫ < 10−3, MODI = TRUE;

end if

end

if off(A) > eps, compute the matrices A and V as in Algorithm Davies-Modi.

Note that in the above algorithm, the quantities α, δ, and ǫ are computed after the

9th block sweep for the reasons explained in Section 7. The ith block column of A in the



CHAPTER 5. A NEW APPROACH TO COMPUTING THE SVD 156

above algorithm is the n-by-2r matrix block





A1p A1q

A2p A2q

...
...

Akp Akq





, Aij ∈ Rr×r, (5.9.4)

where (p, q) is the index pair that corresponds to the ith subproblem (i = 1, . . . , P ).

Similarly, the ith block row of A is the 2r-by-n matrix block



 Ap1 · · · Apk

Aq1 · · · Aqk



 , Aij ∈ Rr×r. (5.9.5)

The construction of the matrix blocks (5.9.4) and (5.9.5) can be accomplished using the

array syntax, a language extension of KSR Fortran discussed in Chapter 2.

The main parallel part of Algorithm Method 2, that is the part of the algorithm stated

as parallel section7, has been implemented in KSR Fortran using two parallel regions. In

the first parallel region, each processor Pi is instructed to perform the following tasks:

1. To construct the matrix block Mi that corresponds to the ith index pair of

the current Jacobi set.

2. To check whether condition (5.9.3) is satisfied, and if so to set a logical vari-

able THR(i) equal to FALSE and return. Otherwise, to compute the Schur

decomposition Mi = ViDiV
T
i , and use Vi to update the ith block columns of

A and V .

In the second parallel region, if the value of the logical variable THR(i) is TRUE,

processor Pi updates the ith block row of A. In our implementation we used a team of 16

pthreads. Tiling has been used where it was necessary, that is in big loops. The source

code for Algorithm Method 2 is given in Appendix A.3. Numerical and timing results

for Method 2 and some of its variants are presented in the following section.

7This is not the parallel construct of KSR Fortran.
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5.10 Numerical and Timing Results for the SEP

We start this section discussing a modified form of the LAPACK symmetric LAPACK

eigensolver SSYEV and investigating its performance on the KSR1. SSEYV computes the

eigenvalues and, optionally, the eigenvectors of a symmetric matrix A. The computation

proceeds in the following stages:

1. The decomposition A = QTQT is computed, where Q is an orthogonal matrix,

and T is a symmetric tridiagonal matrix.

2. The eigenvalues and eigenvectors of T are computed. This is equivalent to

factorizing T as T = SΛST , where S is orthogonal and Λ is diagonal.

The diagonal entries of Λ are also the eigenvalues of A. The columns of Z = QS are the

eigenvectors of A, and hence the Schur decomposition of A is A = ZΛZT [1].

Using SSYEV for solving symmetric eigenproblems, the only calls to the highly op-

timized level 3 BLAS routine SGEMM are made from the LAPACK routine SLARFB. The

purpose of SLARFB is to apply a block reflector or its transpose, to a matrix. We modified

SLARFB adding the four additional parameters to the calls of SGEMM from the body of this

routine. This modification allows us to use more than one processors for SSYEV8. Table

10.1 reports the run times in seconds for standard SSYEV on one processor, and for the

modified SSYEV on 16 processors for various values of n. The symmetric dence matrices

for these measurements have been generated using the LAPACK routine SLATMR, and

their entries follow the uniform distribution. Similar timings have been observed in a

number of numerical experiments with symmetric random matrices, and thus the timing

results displayed in Table 10.1 can be considered as typical.

As we mentioned in the previous section, Method 2 has been designed especially for

large matrices. Table 10.2 reports the run times for Method 2, as stated in Algorithm

Method 2, for the same symmetric random matrices as in Table 10.1. As expected,

Method 2 is slower than SSYEV and modified SSYEV for n = 64, n = 128, and n = 256.

8If we do not specify the four extra parameters in the calls of SGEMM, then there is no parallelism
within SGEMM. In this case, SSYEV cannot take any advantage of the use of more than one processors.
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Order Standard SSYEV Modified SSYEV

64 0.71 0.29
128 5.58 1.78
256 40.51 17.01
512 369.56 148.53
1024 2534.84 1150.37

Table 5.10.1: Timing results for SSEYV.

Order Method 2
64 24.58
128 39.51
256 96.47
512 145.35
1024 518.20

Table 5.10.2: Timing results for Method 2.

On the other hand, Method 2 is about as fast as modified SSYEV for n = 512, and

significantly faster than modified SSYEV for n = 1024. In order to have a fair comparison

between SSYEV and Method 2, our timings include the sorting of the eigenvalues, and the

corresponding exchange of columns for the orthogonal matrix V . The Frobenius norm of

the 1024-by-1024 random symmetric matrix in Table 10.2 is about 5.0E + 03.

In order to illustrate the effect of the Davies-Modi scheme and the threshold strat-

egy’s on timing results, we report some numerical and timing results for some variants

of Method 2, for the above 1024-by-1024 random symmetric matrix. We consider the

following variants of Algorithm Method 2:

1. Algorithm Method 2 without the Davies-Modi scheme and threshold strategy

(Variant 1).

2. Algorithm Method 2 without the Davies-Modi scheme (Variant 2).

3. Algorithm Method 2 without the Davies-Modi scheme and with the threshold

strategy applied only in the first 6 block sweeps (Variant 3).

4. Algorithm Method 2 without the threshold strategy (Variant 4).
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Sweep off(A)
0 5.0E+03
1 1.8E+03
2 7.9E+02
3 4.5E+02
4 2.5E+02
5 1.2E+02
6 4.5E+01
7 1.8E+01
8 7.2E+00
9 2.5E+00
10 9.7E-01
11 3.2E-01

Final off(A) 3.8E-10

Run Time 518.20

Table 5.10.3: Numerical and timing results for Method 2.

Sweep off(A)
0 5.0E+03
1 1.2E+03
2 7.4E+02
3 2.6E+01
4 1.8E-01
5 3.6E-06
6 9.1E-12

Run Time 2131.22

Table 5.10.4: Numerical and timing results for Variant 1.

Table 10.3 reports the progress of convergence, the final off(A) (after the application

of the Davies-Modi scheme), and the run time in seconds for Method 2, as stated in

Algorithm Method 2. According to Table 10.3, the condition for the Davies-Modi scheme

to be used, is satisfied at the 11th block sweep.

Table 10.4 reports the progress of convergence and the run time in seconds for Vari-

ant 1. We observe that Variant 1 is about four times slower than Method 2. Variant

1 requires less block sweeps than Method 2. But since there is no threshold strategy,

Variant 1 requires more matrix-matrix multiplications than Method 2. Matrix-matrix
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Sweep off(A) Sweep off(A)
0 5.0E+03 13 2.0E-02
1 1.8E+03 14 5.0E-03
2 7.9E+02 15 1.2E-03
3 4.5E+02 16 2.9E-04
4 2.5E+02 17 6.6E-05
5 1.2E+02 18 1.4E-05
6 4.5E+01 19 2.7E-06
7 1.8E+01 20 4.6E-07
8 7.2E+00 21 8.6E-08
9 2.5E+00 22 1.2E-08
10 9.7E-01 23 2.0E-09
11 3.2E-01 24 3.5E-10
12 8.6E-02

Run Time 1201.25

Table 5.10.5: Numerical and timing results for Variant 2.

multiplications is the most time consuming part of Method 2 and this explains the slow-

ness of Variant 1. During our experiments with various threshold strategies for Method

2, we noticed that the adopted threshold strategy keeps the number of matrix-matrix

multiplications at a minimum level. However, applying only the threshold strategy with-

out Davies-Modi scheme (Variant 2), Method 2 requires a large number of block sweeps

and this causes significant delay. As Table 10.5 illustrates, the absence of Davies-Modi

scheme in Variant 2 increases significantly the run time.

As we mentioned in Section 7, the Davies-Modi scheme theoretically fails when the

original symmetric matrix has multiple eigenvalues. We experimented with Method 2 on

various symmetric matrices with multiple eigenvalues. In some instances the execution

of our program was stopped due to division by zero. In other instances, Method 2 kept

sweeping until the Davies-Modi condition was satisfied. But in this case, the final values of

off(A), ‖V T V −In‖F , and ‖A−V DV T‖F /‖A‖F , where D is the nearly diagonal matrix of

the computed eigenvalues and V the matrix of the eigenvectors, are not satisfactory. For

example, for a 64-by-64 symmetric randon matrix with one eigenvalue with multiplicity

16, Method 2 gave the following results:

off(A) = 1.74E−01, ‖V T V−In‖F = 2.32E−01, and ‖A−V DV T‖F /‖A‖F = 1.16E−01.
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t Sweeps off(A) ‖V T V − In‖F ‖A− V DV T‖F /‖A‖F
−1 4 2.19E-14 1.68E-14 6.86E-15
3 4 2.82E-13 5.96E-13 4.30E-13
6 5 3.06E-10 6.41E-10 2.80E-10
9 5 1.49E-07 3.32E-07 2.22E-07
12 6 3.60E-04 7.50E-04 4.00E-04

Table 5.10.6: Numerical results with matrices with close eigenvalues.

The above results clearly state the ineffectiveness of Method 2 for matrices with multiple

eigenvalues. Similar behaviour of Method 2 has been observed in a number of numerical

experiments with other symmetric matrices with multiple eigenvalues. We also experi-

mented with matrices with some eigenvalues close to each other. Table 10.6 reports some

numerical results for the above-mentioned 64-by-64 symmetric matrix whose 16 identi-

cal eigenvalues have been perturbed by the addition of the quantities α × 10−t, where

α ∈ [ 0 1 ] is a random number from the uniform distribution, and t = 3, 6, 9, 12 and −1.

(t = −1 corresponds to a matrix with different eigenvalues). Table 10.6 indicates that

Method 2 may be inefficient for matrices with a number of almost identical eigenvalues.

Thus it might be better in this case to avoid Davies-Modi scheme, which makes Method 2

unstable. On the other hand Variant 2, which avoids the Davies-Modi scheme, requires a

large number of block sweeps. In this case, the best compromise is to apply the threshold

strategy during the m first block sweeps, and then to disengage the threshold procedure

from the program (Variant 3). A number of numerical experiments showed that m = 6

is a good choice in practice. Table 10.7 reports some numerical and timing results for

Variant 3 for the same 1024-by-1024 symmetric random matrix. We observe that even

without Davies-Modi scheme, Method 2 is a little faster than modified SSEYV for this

matrix.

Table 10.8 reports the progress of convergence and the run time in seconds for Variant

4 for the same 1024-by-1024 matrix. As expected, Variant 4 requires the smallest number

of sweeps since the application of the threshold strategy increases the number of block

sweeps. However, it is noteworthy that Variant 4 is something less than three times

slower than Method 2. This timing result seems to be weird at first sight. One may



CHAPTER 5. A NEW APPROACH TO COMPUTING THE SVD 162

Sweep off(A)
0 5.0E+03
1 1.8E+03
2 7.9E+02
3 4.5E+02
4 2.5E+02
5 1.2E+02
6 4.5E+01
7 2.3E+00
8 7.1E-04
9 3.0E-11

Run Time 1014.07

Table 5.10.7: Numerical and timing results for Variant 3.

expect from 16 processors to need the same time to update up to 16 block rows and

block columns, and the threshold strategy not to effect the timing results. Moreover,

since Variant 4 requires less sweeps than Method 2, Variant 4 may be expected to be

faster than Method 2. This situation may be explained as follows. Each block column

and block row is updated on a separate processor by a pthread. The application of the

threshold strategy causes some pthreads to remain idle. These idle pthreads proceed

to a barrier and wait for the busy pthreads, which update the block columns or rows,

to join them. The overall data movement inside the memory system of the KSR1 is

reduced because of the application of the threshold strategy. The time required from 16

processors to update all the block columns and rows has always been measured to be

less than the time needed for updating only some of them. For example, consider the

64-by-64 matrix A given in (5.9.1). Because of the threshold startegy, the first block row

update of Method 2 involves 7 block row updates, and 0.07 seconds are needed for this

update. Variant 4 updates 16 block rows in the first update in 0.15 seconds.

In Table 10.9 we summarize the timing results for Method 2 and its variants for the

same 1024-by-1024 symmetric random matrix. The right column of Table 10.9 states the

reduction in run time for each approach in comparison with Variant 1, which takes no

advantage of either Davies-Modi scheme or the threshold strategy. Similar timing results

have been observed in a number of numerical experiments with other large symmetric
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Sweep off(A)
0 5.0E+03
1 1.2E+03
2 7.4E+02
3 2.6E+01
4 1.8E-01

Final off(A) 6.3E-11

Run Time 1455.00

Table 5.10.8: Numerical and timing results for Variant 4.

Method Run Time Reduction
Method 2 518.20 76%
Variant 1 2131.22 -
Variant 2 1201.25 44%
Variant 3 1014.07 52%
Variant 4 1455.00 32%

Table 5.10.9: Timing results for Method 2 and its variants.

random matrices. According to Table 10.9, the fastest variant of Method 2 is Variant

3. This variant of Method 2 may be used as an alternative of Method 2 when we deal

with large symmetric matrices, with identical or almost identical eigenvalues, in order to

avoid stability problems due to Davies-Modi scheme.

5.11 Numerical and Timing Results for the SVD

As we mentioned in the introduction of this chapter, our purpose is to compute the

SVD from the polar decomposition. In Chapter 4 we presented a parallel algorithm for

computing the polar decomposition. In Section 4.8 we presented timing results for 1024-

by-1024 random matrices with various 2-norm condition numbers. According to these

results, using 16 processors, the polar decomposition of these matrices can be computed

in the best case in 184.17 seconds (when the matrix is close to orthogonal and scaling is

not used), and in the worst case in 1868.04 seconds (when the 2-norm condition number

of the matrix is 1012 and scaling is not used). Thus, given a 1024-by-1024 matrix A, the
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run time needed for the computation of the polar decomposition

A = UH,

on the KSR1 using 16 processors, is expected to be between 200 and 2000 seconds.

Having obtained the polar factors U and H of A, we may continue to compute the

spectral decomposition

H = V DV T , (5.11.1)

of the Hermitian positive semidefinite factor H. For the computation of the above spectral

decomposition, we may use either Method 2 (or in case of multiple or almost identical

eigenvalues Variant 3), or the modified LAPACK symmetric eigensolver SSYEV. In the

former case, the required run time is about 520 seconds (or about 1020 seconds for Variant

3), and in the latter case about 1150 seconds, both times being essentially independent

of the eigenvalue distribution. Having obtained the spectral decomposition (5.11.1), we

can compute the SVD of A,

A = (UV )DV T ,

in 5.6 seconds using the highly optimized level 3 BLAS routine SGEMM. The total run

times are given in Figure 5.11.1.

As we mentioned in Section 3.3, the standard approach to the computation of the SVD

is the Golub-Reinsch algorithm [46], as implemented in LAPACK. The corresponding

LAPACK routine is SGESVD discussed in Section 3.3. It is beyond the scope of this

thesis to develop a highly optimized version of this sophisticated routine for the KSR1.

However, we did the following modifications in order to exploit the highly optimized level

3 BLAS routine SGEMM, and use more than one processors:

1. We added the additional parameters to the calls of SGEMM.

2. We set the block size equal to 16 in the routines that make calls to SGEMM9.

(The same approach has been followed for the matrix inversions in Algorithm Parallel

Polar (SGETRF, SGETRI), and the symmetric eigenvalue problem (SSEYV).) From the set

9Having experimented with the block size in the routines that make calls to SGEMM, we found that a
block size of 16 gives the best all-round performance on the KSR1.
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Figure 5.11.1: Computing the SVD via the Polar Decomposition and the SEP.

of LAPACK routines that are necessary for SGESVD, only three routines make calls to

SGEMM. These are, the driver routine SGESVD, SLARFB discussed in modified SSYEV, and

SGEBRD. SGEBRD reduces a general m-by-n matrix A to upper or lower bidiagonal form B

by an orthogonal transformation QT AP = B. The matrices Q and P are represented as

products of elementary reflectors. Without any modification, SGESVD needs about 9500

seconds to compute the SVD of a 1024-by-1024 matrix on one processor. The best timing

result that we achieve for this dimension, using the modified SGESVD, was 7549.02 seconds

on 16 processors.

According to the above mentioned timings, the fastest way known to us to compute the

SVD of a large dense matrix on the KSR1 is to compute first its polar decomposition using

Algorithm Parallel Polar, and then to compute the Schur decomposition of its symmetric

positive semidefinite factor using Algorithm Method 2. However, this combination should

be avoided for matrices whose 2-norm condition number is close to 1, although it is

more than 10 times faster than the modified SGESVD. In this case, the eigenvalues of H
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(which are the singular values of A) are clustered around 1, and thus the application of

the Davies-Modi scheme may cause numerical instability, if not failure due to division

by zero. But even when we use Algorithm Variant 3 or modified SSYEV for the Schur

decomposition, this approach still gives better timings than the modified SGESVD, the

SVD solver in LAPACK. Thus this new approach to computing the SVD seems to be

suitable for applications where the SVD of large dense matrices is required.

5.12 Applications of the SVD

In this section we discuss some applications of the SVD. This section is divided into two

subsections. In the first subsection we discuss the use of the SVD in regression analysis.

In the second subsection we discuss some less well-known applications of the SVD.

5.12.1 The SVD in Regression Analysis

In this subsection we discuss the use of the SVD in multiple linear regression, with special

reference to the problems of collinearity and near collinearity. The greatest source of

difficulties in using least squares for solving multiple linear regression problems is the

existence of collinearity in many data sets [87]. Most of the modifications of the ordinary

least squares approach are attempts to deal with the problem of collinearity. Among

these modifications is the method of principal components [34, 52, 55].

We assume that the model is known and of the form

Y = Xβ + e, (5.12.1)

where Y , e ∈ Rn, X ∈ Rn×p (n ≥ p), and β ∈ Rp. The matrix X, consisting of

nonstochastic entries, is given. The vector Y consists of the measurements yi, and the

vector e is the error term. The errors ei are assumed to be uncorrelated, of zero mean and

constant variance σ2, the value of which is not known. The object of regression analysis

is to estimate the coefficients βi, as well as σ2, to predict the value of y for any future

regressor variables x = (x1 x2 . . . xp), and to estimate the error of such a predicted value.
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Assuming that the rank of the matrix X in (5.12.1) is r, the SVD of X may be written

as

X = UΘV T , (5.12.2)

where U ∈ Rn×r, Θ ∈ Rr×r, (Θ = diag(θ1, θ2, · · · , θr), θ1 ≥ θ2 ≥ . . . θr > 0), and

V T ∈ Rr×p, since in practice one needs only the first r columns of the orthogonal factors

U and V . Introducing (5.12.2) into (5.12.1), we obtain

Y = UΘV T β + e.

Written in this form, the model is referred to as the principal component regression

model and the procedure of carrying out the regression of Y on X using the SVD of X is

called principal components regression. The columns of the matrix W = XV = UΘ are

called the principal components of the matrix X and their practical importance may be

illustrated by the following example, taken from [100].

The first column of the 6-by-4 matrix

X =





.1781 −.5232 .0591 −.0610

.4499 −.2093 .7780 .3012

−.1480 .3009 −.2106 −.0534

−.0574 .0654 .1206 −.0572

−.7820 −.3270 −.2105 −.7323

.3593 .6933 −.5368 .6029





reports the average minimum daily temperature, the second the average maximum daily

temperature, the third the total rainfall, and the fourth the total growing degree days.

The above data have been measured at six different locations and the purpose of this

research is to relate environmental conditions to cultivar-by-environment interactions in

sorghum. The variables that corresponds to each column have been centered to have zero

mean, and standardized to have unit sum of squares. The SVD of X is

X = UΘV T ,
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where

U =





−.1140 .3089 −.8107 .2598

.2519 .7076 .3397 −.3195

.0076 −.3032 .2774 .5681

−.0281 .0278 .3266 .3566

−.7354 −.2350 .0655 −.4815

.6180 −.5060 −.1986 −.3855





, V =





.5949 .3362 −.3832 .6214

.4518 −.5407 .6580 .2657

.0048 .7687 .6390 −.0265

.6647 .0610 −.1090 −.7366





,

and

Θ = diag(1.4970, 1.2449, .4541, .0579).

The first column of U , u1, the first column of V , v1, and the first singular value θ1 =

1.4970, give the best rank-1 approximation of X,

X1 = θ1u1v
T
1 .

The goodness of fit of X1 to X is measured by

θ2
1∑4

i=1 θi

= .56,

or the sum of squares of the differences between the entries of X and X1, the lack of fit,

is 44% of the total sum of squares of the entries in X. The rank-2 approximation to X

is obtained by adding to X1 the matrix X2 = θ2u2v
T
2 , and X1 + X2 has goodness of fit

θ2
1 + θ2

2∑4
i=1 θi

= .95.

In terms of approximating X with the rank-2 matrix X1 + X2, the goodness of fit of .95

is interpreted that the sum of squares of discrepancies between X and X1 + X2 is 5% of

the total sum of squares of all entries in X. In terms of geometry of the data vectors,

the goodness of fit of .95 means that 95% of the dispresion of the cloud of points in the

original four-dimensional space, in reality, very nearly fall on a two dimensional plane.

Because of the relatively small size of the third and fourth singular values, the last two

dimensions contain little of dispersion and can safely be ignored in the interpretation of

the data.
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Each column of V contains the coefficients that define one of the principal components

as a linear function of the original variables. The first vector vT
1 = (.5949, .4518, .0048, .6647)

has similar first, second, and fourth coefficients with the third coefficient being near zero.

Thus, the first principal component is essentially the average of the three temperature

variables. The second column vT
2 = (.3362,−.5407, .7687, .0610) gives heavy positive

weight to third variable, heavy negative weight to second, and moderate positive weight

to first. Hence, the second principal component will be large for those observations that

have high raifall and large difference between the maximun and minimum daily tempera-

tures. The interpretation of the third and fourth principal components is not meaningful

since they account for only 5% of the total dispersion.

The principal components vectors for the above example are the columns of the matrix

W =





−0.1707 0.3845 −0.3681 0.0151

0.3771 0.8808 0.1542 −0.0185

0.0114 −0.3775 0.1260 0.0329

−0.0420 0.0346 0.1483 0.0207

−1.1008 −0.2925 0.0297 −0.0279

0.9252 −0.6299 −0.0902 −0.0223





.

The sum of squares of the first, second, third, and fourth principal components are θ2
1,

θ2
2, θ2

3 and θ2
4 respectively. These sum to 4.0, the total sum of squares of the original

four variables after their standardization. The proportion of the total sum of squares

accounted for by the first principal component is θ2
1/

∑4
i=1 θi = .56 or 56%. The first

two principal components account for (θ2
1 + θ2

2)/
∑4

i=1 θi = .95 or 95% of the total sum

of squares of the four original variables. Each of the original vectors in X is a vector in

six-dimensional space, and together the four vectors define a four-dimensional subspace.

These vectors are not orthogonal. The four vectors in W , the principal component

vectors, are linear functions of the original vectors and as such, they fall in the same four-

dimensional subspace. Moreover, the principal component vectors are orthogonal. The

first component vector has the largest possible sum of squares and defines the direction of

the first principal component axis. This axis coincides with the major axis of the ellipsoid
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Figure 5.12.1: The first two principal components.

of observations. The second principal component has the largest possible sum of squares

of all vectors orthogonal to the first and so on.

The plot of the first two principal components for the above example is given in Figure

5.13.1. We observe that locations 5 and 6 differ from each other primarily in the first

principal component. This component was noted earlier to be mainly a temperature

difference. Thus, location 6 is the warmer and has the longer growing season. The

other four locations differ primarily in the second principal components which reflects

the amount of rainfall and the difference in maximum and minimum daily temperature.

Location 2 has the highest raifall and tends to have a large difference in maximum

and minimum daily temperature. Location 6 is also the lowest in the second principal

component, indicating a lower rainfall and small difference between the maximum and

minimum temperature. Hence, location 6 appears to be relatively hot, dry environment

with little diurnal temperature variation.

The above example has been chosen for purposes of illustration and the data matrix

X has small size (6× 4). However, in reality, the data matrices that arise in the applica-

tions of regression analysis have much larger size. Hence, the need for fast and reliable
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methods for the computation of the SVD is apparent. Such examples are encountered in

various fields of the scientific research. These include seismology [19], demography [85],

research in education [111], environmental research [58], anthropometric and physical fit-

ness measurements [52], and social-economic research [89]. Applications with very large

data matrices are mainly encountered in econometrics [105]. The principal component

method is also used in correspondence analysis [50, 84]. Correspondence analysis itself

has numerous applications. One of the most interesting applications of correspondence

analysis is the analysis of lexical data, where the computation of the SVD of very large

data matrices is required [9].

5.12.2 Some Less Well-known Applications of the SVD

In this subsection we discuss four less-known applications of the SVD. The first of these

applications arises in chemistry and is discussed in [112]. In chemical titration experi-

ments a known substance, which is called titrant, is being added to an unknown substance

or mixture. Gradually, the substances in the mixture change for some initial state through

possible intermediate states to a final state, with the fraction of each substance in each

state being controled by the concentration of titrant. After each addition of titrant, al-

lowing sufficient time for the mixture to equilibrate, a sprectrum of the mixture is taken.

The spectrum of the mixture is the sum of the spectra of the individual species, and the

amplitude of a spectrum of a species is proportional to the concentration of that species.

The object of a titration experiment is the identification of the unknown substances in

the original mixture.

The measured optical spectra are stored in successive columns of the matrix A, so

that the entry aij is the optical absorbance of the mixture at the ith wavelength in the

jth spectrum. The target decomposition is

A = DF T + E,

where each column of D is a difference spectrum associated with one of the transitions,

the corresponding column of F is the appropriate transition curve, and E is the matrix
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of the experimental errors. The transition curve is given by the function

f(pH; pK) = 1/(1 + 10pK−pH),

where pH = − log10 [H+] ([H+] is the concentration of protons of hydrogen ions), and

pK is the value of pH at which half the sites of a given indicator are saturated.

In many examples, the basic spectrum, namely the final column of D, raises the

effective rank of A without adding any information. The work required of the user is

proportional to the effective rank of A, and it is current practice to subtract a reference

spectrum from all the columns of A. This reference spectrum is usually the initial spec-

trum of A or the average of all spectra in A, and the effective rank of A is reduced by

one.

The required matrices D and F are determined using the SVD of A ∈ Rm×n, (m ≥ n),

A = DF T + E = UΣV T , U ∈ Rm×n, Σ, V ∈ Rn×n. (5.12.3)

Assuming that a reference spectrum has been subtracted from the columns of A, the rank

of the matrix DF T + E in (5.12.3) is n − 1. However, the matrix DF T is typically low

rank. In order to deduce the matrices D and F , only the first r columns of U , Σ, and V

(and rows of Σ) are retained. The value of r is chosen such that

n∑

i=r+1

σ2
ii ≤ mnσ2 <

n∑

i=r

σ2
ii,

where σ2 is the variance of each entry of A, and the corresponding truncated r × r

matrices are Ū , Σ̄, and V̄ . The columns of V̄ are linear combinations of the columns

of F and the matrix F is determined by a series of curve-fitting operations. The curve-

fitting operations, the most difficult and time-consuming phase of a titration experiment,

determine a matrix H of parameters which satisfies the relation

V̄ T = HF T . (5.12.4)

It follows directly from (5.12.4) that

D = ŪΣ̄H.
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A matrix A with hundreds of entries in each dimension is likely to be encountered

in a titration experiment with Gaussian absorbance peaks, and Henderson-Hasselback

transition curves [112]. The size of A can sometimes be limited by processing only the

data of a submatrix at a time. However, this may not be necessary if one uses a fast

algorithm on a parallel machine for the computation of the SVD, as for example one of

the methods discussed in Section 10.

An application of the SVD to manipulability and sensitivity of industrial robots is

discussed in [117]. In designing and evaluating industrial robots, it is important to find

optimum configurations, or postures, and locate optimum points in the workspace for the

anticipated tasks. The ideal manipulator would have no sigularities or degeneracies in its

workspace in order to obtain full mobility throughout its range of motion. However, this

is not always achievable in practice and a measure of the nearness to the degeneracy is

needed. This measure is called manipulability. In [117], Togai defines the manipulability

M of a robot arm as the condition number of its Jacobian, and proposes the 2-norm

condition number for its measurement. The best conditioning possible in terms of ma-

nipulability occurs when M = σmax(J)/σmin(J) = 1. This situation corresponds to the

ideal manipulator, and the corresponding optimum points in the workspace are called

isotropic points. These points may or may not exist for a given design. In [117], Togai

does not give any information about the dimensions of the Jacobian matrix J .

In [2], Andrew and Patterson investigate the use of the SVD for the solution of the

following problem which arises in digital image compression: Given a gray level image

A of dimension n × n with t bits for the gray level of each of the n2 pixels, store an

approximation to A in less than tn2 bits. If

A = UΣV T , U, Σ, V ∈ Rn×n,

is the SVD of A, then the image A may be approximated by the outer-product expansion

A ≈
r∑

k=1

σkukv
T
k .

Generally, r needs to be rather large in order to approximate A well. However, more
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recent research in digital image processing has shown that factorizations of the form

A = XΩY T ,

where the orthogonal matrices X and Y are independent of A (Hamadard transform and

Discrete Cosine transform), are more suitable than the SVD for the solution of the above

problem [23].

In [18], Broomhead and Lowe discuss a least squares problem that arises in Radial

Basis Function Networks (RBFN). In neural networks there are two learning processes

which are known as supervised and unsupervised learning. The mechanics of RBFN

architecture uses the supervised learning procedure. A neural network has two phases,

which are called training and testing. During the training phase in a supervised learning

process, the network is being fed with input vectors and their corresponding output

vectors which are also known. The output vectors constitute a k× n matrix O. A k×m

matrix R which is associated with the matrix I whose rows are the input vectors, is also

given [60]. Solving the following least squares problem

O = RΛ, (5.12.5)

we obtain a m×n matrix Λ. The entries of the computed matrix Λ are the values of the

weighted connections between each column of R and each row of O, and they provide

important information about the neural network. For the solution of the least squares

problem (5.12.5) one may uses the SVD of R. The matrix R is usually a large dense

matrix [86].

5.13 Conclusions

In this chapter we discussed a new parallel approach to computing the SVD. The first

step of this approach involves the computation of the polar decomposition of a given

matrix A ∈ Rm×n,

A = UH. (5.13.1)
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The polar decomposition (5.13.1) can be computed using Algorithm Parallel Polar, a

parallel algorithm for computing the polar decomposition presented in Chapter 4. The

second step involves the spectral decomposition

H = V ΣV T (5.13.2)

of the symmetric positive semidefinite factor H. The SVD of A,

A = (UV )ΣV T , (5.13.3)

is obtained at the third step by parallel multiplication of the orthogonal matrices U and

V .

We investigated various parallel methods for the decomposition (5.13.2) on the KSR1.

A parallel block Jacobi method, Method 2, was found to be the fastest method to compute

(5.13.2) for large symmetric matrices. This method performs well for large dense symmet-

ric matrices with distinct eigenvalues, but it must be avoided for symmetric matrices with

multiple or close eigenvalues. But even in this case, using a variant of Method 2 (Variant

3) or the modified LAPACK symmetric eigensolver SSYEV for the second step, the SVD

can be obtained in less time than using the modified LAPACK SVD solver SGESVD. The

above described approach to computing the SVD is the fastest stable method we know

for computing the SVD of large dense matrices on the KSR1. (The numerical stability

of this approach has been investigated in [65].)

Applications of the SVD have also been discussed in this chapter. Some of them deal

with large data matrices, and thus the need for a fast SVD solver is apparent.



Chapter 6

Concluding Remarks and Future

Work

As we mentioned in the introduction of this thesis, this work was motivated by a class

of two-sided Procrustes-type problems. The investigation of these problems revealed

the necessary tools for their solution. Among them there are three of the most basic

decompositions in numerical linear algebra, the SVD, the polar decomposition, and the

spectral decomposition of a symmetric matrix.

The importance of the above-mentioned decompositions in both theoretical numerical

linear algebra and applications, and also our interest in parallel computing motivated us

to focus our attention on parallel algorithms for these decompositions. The availability of

a 32-processors configuration KSR1 at the Centre for Novel Computing at the University

of Manchester provided us with a powerful tool for our research.

We started our research on parallel algorithms for these decompositions with the polar

decomposition. Having derived a parallel algorithm for this decomposition and imple-

mented it with satisfactory results on the KSR1, we observed the relation between the

polar decomposition and the SVD. This observation led our reserach to investigating par-

allel algorithms for the symmetric eigenvalue problem. The outcome of our research on

the symmetric eigenvalue problem was the development of two parallel block Jacobi Al-

gorithms, which turned out to be the fastest way known to us to compute the eigenvalues

176



CHAPTER 6. CONCLUDING REMARKS AND FUTURE WORK 177

and the eigenvectors of a large dense symmetric matrix on the KSR1. The combination

of our parallel algorithm for computing the polar decomposition and these parallel block

Jacobi methods, was found to be the fastest stable method we know for computing the

SVD of large dense matrices on the KSR1.

We considered it necessary to include a separate chapter for the KSR1. As a pioneer

user of the KSR1, we found it fascinating to explore the capabilities of this advanced

parallel system. We do not claim that we developed the best software for the solution of

our problems on the KSR1. Even in the late days of this project we discovered new ways

to improve our existing codes. We have no doubt that users with a deeper knowledge of

the KSR1 would be able to achieve better timing results for our parallel algorithms.

Applications have also been discussed in this thesis. The wide variety of these appli-

cations indicates the practical importance of our methods. It would be pleasure for us

if one of our algorithms will be used for the solution of a problem in applications. For

example, the main problem in statistical analysis of lexical data [9] is the compution of

the SVD of very large dense matrices, where the new approach for computing the SVD

described in Chapter 5 would may help.

Finally, we would like to refer to our future research plans. The satisfactory timing

results for the two block Jacobi algorithms discussed in the previous chapter (Method 2

and Variant 3), stimulated us to to investigating similar block Jacobi methods for the

SVD on the KSR1. It is also among our future plans to rewrite our codes using exclusively

low-level parallel constructs (pthreads). This requires a deep knowledge of the hardware

of the KSR1, a knowledge that we will try to obtain.



Appendix A

Listings of KSR Fortran Routines

A.1 The source code for Algorithm PJDM

The following KSR Fortran code refers to Algorithm PJDM discussed in page 151.

SUBROUTINE PJDM (N, A, LDA, EIG, V, SWEEP, OFFA,
& NPROCS, TEAM)

* .. Scalar Arguments ..
INTEGER N, LDA, SWEEP, NPROCS, TEAM
REAL OFFA

* ..
* .. Array Arguments ..

REAL A(LDA,*), V(LDA,*), EIG(*)
* ..
* Purpose
* =======
*
* PJDM computes all eigenvalues and eigenvectors of a
* real symmetric matrix A using Algorithm PJDM.
*
* Reference
* =========
* P. Papadimitriou.
* Parallel Solution of SVD-Related Problems, with Applications.
* Ph.D. Thesis, Dept. of Mathematics, University of Manchester, 1993.
* (Chapter 5, Section 9).
*
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of rows and columns of the matrix A.
*
* A (input) REAL array, dimension (LDA,N).
* On entry, the symmetric matrix A.
*
* On exit, the diagonal of A contains the eigenvalues
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* of the original matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >=max(1,N).
*
* EIG (output) REAL array, dimension (N).
* The eigenvalues in descending order.
*
* V (output) REAL array, dimension (LDA,N).
* On exit, the columns of V are the eigenvectors
* of the original matrix A.
*
* SWEEP (output) INTEGER
* On exit, the number of required sweeps.
*
* OFFA (output) REAL
* On exit, the Frobenius norm of the off-diagonal
* entries of the updated matrix A.
*
* NPROCS (input) INTEGER
* The number of processors.
*
* TEAM (input) INTEGER
* The identification number of the team of the p_threads.
*
* ========================================================
*
* .. Parameters ..
* Parameter NX must be set equal to the dimension of
* the original matrix.

INTEGER N2, PS, NX
PARAMETER (NX = 64, PS = 1, N2 = NX/2)
REAL ONE, ZERO
PARAMETER ( ONE = 1., ZERO = 0.)

* ..
* .. Local Scalars ..

LOGICAL MODI
INTEGER SET, MYNUM
REAL FG, RM, TOL

* .. Local Arrays ..
INTEGER INDEX(NX), TOP(N2), BOT(N2)
REAL JC(NX,NX), B1(NX,NX), CT(NX,NX)

*
* .. Arrays for the Davies-Modi Scheme ..
*

REAL A1(NX,NX), V1(NX,NX), VA1(NX,NX), B(NX,NX),
& W(NX,NX), X(NX,NX), U(NX,NX), X2(NX,NX),
& VC(NX)

*
* .. External Subroutines ..
*

EXTERNAL SGEMM, SAMEH, LOCAL, INITLS, SYM2,
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& SORT01, ADDMAT, ADXMAT, SORT02
*
* .. External Functions ..
*

REAL OFF, SLAMCH
LOGICAL MODDAV

* EXTERNAL OFF, MODDAV, SLAMCH
* ..
* .. Intrinsic Functions ..

INTRINSIC FLOAT
* ..
* .. Executable Statements ..
*
* .. Compute the Frobenius norm of A ..
*

CALL EVNORM(A,N,RM,TEAM)
*
* .. Compute the tolerance ..
*

TOL = FLOAT(N)*RM*SLAMCH(’E’)
*
* .. Set U and V to the N x N identity matrix ..
*

CALL INITLS(U,N,TEAM)
CALL INITLS(V,N,TEAM)

*
* .. Compute the Frobenius norm of the off-diagonal elements
* of A ..
*

OFFA = OFF(A,N,TEAM)
*
* .. Initialize the counter SWEEP ..
*

SWEEP = 0
*
* .. Initialize the logical variable MODI ..
*

MODI = .FALSE.
*
* .. Keep iterating until the Frobenius norm of the
* off-diagonal entries of A is less than TOL or
* the condition for applying the Davies-Modi Scheme
* is satisfied ..
*

DO 100 WHILE ((OFFA .GT. TOL) .AND. (.NOT. MODI))
*

SWEEP = SWEEP + 1
*

DO 30 SET = 1,N-1
*
* .. Set JC to the N x N identity matrix ..
*
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CALL INITLS(JC,N,TEAM)
*
* .. Determine the SETth Jacobi Set ..
*

CALL SAMEH(SET,N,N2,TOP,BOT)
*
* .. Solve the subproblems in parallel and
* build the complete Jacobi rotation JC ..
*
C*KSR* PARALLEL REGION(TEAMID = TEAM, PRIVATE = (K, MYNUM))

MYNUM = IPR_MID()
DO K=1,N2

IF (MOD(K,NPROCS) .EQ. MYNUM)
& CALL LOCAL(K,A,JC,N,TOP,BOT)

END DO
C*KSR* END PARALLEL REGION
*
* .. Update the matrices A and V ..
*

CALL SGEMM(’T’,’N’, N, N, N, 1.,JC, N, A, N,0.,B1,N,
& CT,NPROCS,TEAM,PS)
CALL SGEMM(’N’,’N’,N,N,N,1.,B1,N,JC,N,0.0,A,N,

& CT,NPROCS,TEAM,PS)
CALL SGEMM(’N’,’N’,N,N,N,1.,V,N,JC,N,0.,V,N,

& CT,NPROCS,TEAM,PS)
*
30 CONTINUE

*
* .. Compute the Frobenius norm of the off-diagonal entries ..
*

OFFA = OFF(A,N,TEAM)
*
* .. Check if the condition for applying the Davies-Modi
* method is satisfied ..
*

IF (SWEEP .GE. 4) MODI = MODDAV(A,VC,N,TEAM)
*
100 CONTINUE

*
* .. Apply the Davies-Modi Method ..
*

A1 = A
*
C*KSR* TILE(I, TEAMID = TEAM)

DO I=1,N
A1(I,I) = ZERO

END DO
C*KSR* END TILE
*
C*KSR* TILE ( J, I, TEAMID = TEAM )

DO J=1,N
DO I=1,N
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IF (I .EQ. J) THEN
V1(I,J) = ZERO

ELSE
V1(I,J) = A(I,J)/(A(I,I)-A(J,J))

END IF
END DO

END DO
C*KSR* END TILE
*

CALL SGEMM(’N’,’N’,N,N,N,1.,V1,N,A1,N,0.,VA1,N,
& CT,NPROCS, TEAM,PS)

*
CALL ADXMAT(VA1,B,N,TEAM)

*
C*KSR* TILE ( J, I, TEAMID = TEAM )

DO J=1,N
DO I=1,N

IF (I .EQ. J) THEN
W(I,J) = ZERO

ELSE
W(I,J) = B(I,J)/(A(I,I)-A(J,J))

END IF
END DO

END DO
C*KSR* END TILE
*

CALL ADDMAT(V1,W,X,N,TEAM)
CALL ADDMAT(U,X,U,N,TEAM)

*
CALL SGEMM(’N’,’N’,N,N,N,0.5,X,N,X,N,0.,X2,N,CT,NPROCS,

& TEAM, PS)
*

CALL ADDMAT(U,X2,U,N,TEAM)
*

FG = 1./3.
*

CALL SGEMM(’N’,’N’,N,N,N,FG,X2,N,X,N,0.,X,N,CT,NPROCS,
& TEAM, PS)

*
CALL ADDMAT(U,X,U,N,TEAM)

*
CALL SGEMM(’N’,’N’,N,N,N,1.,U,N,A,N,0.,X2,N,CT,NPROCS,

& TEAM,PS)
CALL SGEMM(’N’,’T’,N,N,N,1.,X2,N,U,N,0.,A,N,CT,NPROCS,

& TEAM,PS)
CALL SGEMM(’N’,’T’,N,N,N,1.,U,N,V,N,0.,V,N,CT,NPROCS,

& TEAM,PS)
*
* .. Form the vector of the eigenvalues ..
*

DO I=1,N
EIG(I) = A(I,I)
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END DO
*
* .. Sort the vector of the eigenvalues in descending order ..
*

CALL SORT01(EIG,INDEX,N,TEAM)
*
* .. Permute the columns of V in order to agree with EIG ..
*
C*KSR* TILE ( J,I, TEAMID = TEAM )

DO J=1,N
DO I=1,N

X2(I,J) = V(I,J)
END DO
END DO

C*KSR* END TILE
*
C*KSR* TILE ( J,I, TEAMID = TEAM )

DO J=1,N
DO I=1,N

V(I,J) = X2(I,INDEX(J))
END DO

END DO
C*KSR* END TILE
*
* .. Compute the Frobenius norm of the off-diagonal entries
* of the nearly diagonal matrix A.
*

OFFA = OFF(A,N,TEAM)
*
*
* End of PJDM
*

END

SUBROUTINE LOCAL(K, A, JC, N, TOP, BOT)
*
* .. Scalar Arguments ..
*

INTEGER K, N, N2
* ..
* .. Array Arguments ..

INTEGER TOP(*), BOT(*)
REAL A(N,*), JC(N,*)

*
* Purpose
* =======
*
* LOCAL solves the (p,q) subproblem on the K-th processor
* and embeds a 2 x 2 orthogonal matrix into a complete
* Jacobi rotation. (p,q) is K-th index pair of the current
* Jacobi set.
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*
* .. Local Scalars ..
*

INTEGER P, Q
*
* .. Local Arrays ..

REAL BLOCK(2,2)
* ..
* .. External Subroutines ..

EXTERNAL SYM2
* ..
* .. Intrinsic Functions ..
*

INTRINSIC MIN, MAX
*
* .. Executable Statements ..
*

P = MIN(TOP(K),BOT(K))
Q = MAX(TOP(K),BOT(K))

*
BLOCK(1,1) = A(P,P)
BLOCK(2,2) = A(Q,Q)
BLOCK(1,2) = A(P,Q)
BLOCK(2,1) = A(Q,P)

*
CALL SYM2(BLOCK)

*
JC(P,P) = BLOCK(1,1)
JC(P,Q) = BLOCK(1,2)
JC(Q,P) = BLOCK(2,1)
JC(Q,Q) = BLOCK(2,2)

*
* End of LOCAL
*

END

SUBROUTINE SAMEH(K,N,N2,TOP,BOT)
*
* .. Scalar Arguments ..

INTEGER K, N, N2
* .. Array Arguments ..

INTEGER TOP(*), BOT(*)
*
* Purpose
* =======
*
* SAMEH computes the K-th Jacobi set using
* Sameh’s scheme.
*
* .. Local Scalars ..

INTEGER L, I, J
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*
* .. Executable Statements ..
*

L = 1
*

IF (K .LE. N2-1) THEN
DO 10 I=N2-K+1,N-K
IF ((N2-K+1 .LE. I) .AND. (I .LE. N-2*K)) THEN
J = N - 2*K +1 -I

ELSE IF ((N-2*K .LT. I) .AND. (I . LE. N-K-1)) THEN
J = 4*N2-2*K-I

ELSE
J = N

END IF
TOP(L) = J
BOT(L) = I
L = L + 1

10 CONTINUE
*

ELSE
*

DO 20 I=4*N2-N-K,3*N2-K-1
IF ( I .LT. N-K+1) THEN
J = N

ELSE IF ((N-K+1 .LE. I) .AND. (I .LE. 4*N2-2*K-1)) THEN
J = (4*N2 -2*K) - I

ELSE
J = (6*N2 - 2*K -1) - I

END IF
TOP(L) = J
BOT(L) = I
L = L + 1

20 CONTINUE
*

END IF
*
* End of SAMEH
*

END
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A.2 The source code for Algorithm Method 1

The following KSR Fortran code refers to Algorithm Method 1 discussed in page 144.

SUBROUTINE METHOD1 (N, A, LDA, THETA, EIG, V, SWEEP, OFFA,
& NPROCS, TEAM)

*
* .. Scalar Arguments ..

INTEGER N, LDA, SWEEP, NPROCS, TEAM
REAL THETA, OFFA

* ..
* .. Array Arguments ..

REAL A(LDA,*), V(LDA,*), EIG(*)
* ..
* Purpose
* =======
*
* METHOD1 computes all eigenvalues and eigenvectors of a
* real symmetric matrix A using Algorithm Method 1.
*
* Reference
* =========
* P. Papadimitriou.
* Parallel Solution of SVD-Related Problems, with Applications.
* Ph.D. Thesis, Dept. of Mathematics, University of Manchester, 1993.
* (Chapter 5, Section 8).
*
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of rows and columns of the matrix A.
*
* A (input) REAL array, dimension (LDA,N).
* On entry, the symmetric matrix A.
*
* On exit, the diagonal of A contains the eigenvalues
* of the original matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >=max(1,N).
*
* THETA (input) REAL
* The parameter theta for the Partial Jacobi Method. 0 < THETA < 1.
*
* EIG (output) REAL array, dimension (N).
* The eigenvalues in descending order.
*
* V (output) REAL array, dimension (LDA,N).
* On exit, the columns of V are the eigenvectors
* of the original matrix A.
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*
* SWEEP (output) INTEGER
* On exit, the number of required sweeps.
*
* OFFA (output) REAL
* On exit, the Frobenius norm of the off-diagonal
* entries of the updated matrix A.
*
* NPROCS (input) INTEGER
* The number of processors.
*
* TEAM (input) INTEGER
* The identification number of the team of the p_threads.
*
* ========================================================
*
* .. Parameters ..
* Parameter NX must be set equal to the dimension of
* the original matrix.

INTEGER NX, N2, PS
PARAMETER (NX = 64, N2 = 16, PS = 1)

* ..
* .. Local Scalars ..

INTEGER SET, MYNUM, NB, NB2
REAL EPS, RM, TOL, TH

* .. Local Arrays ..
INTEGER TOP(N2), BOT(N2), INDEX(NX),

& NEWTOP(N2), NEWBOT(N2)
REAL P(NX,NX), JC(NX,NX), B1(NX,NX), CT(NX,NX)

* .. External Subroutines ..
EXTERNAL EVNORM, INITLS, OFFBLC, LOCAL, SGEMM,

& MUSIC, LOCALX, SORT01
* .. External Functions ..

REAL SLAMCH, OFF
EXTERNAL SLAMCH, OFF

* .. Intrinsic Functions ..
INTRINSIC FLOAT

* ..
* .. Executable Statements ..
*
* .. Compute the tolerance and the threshold ..
*

CALL EVNORM(A,N,RM,TEAM)
EPS = SLAMCH(’E’)
TOL = FLOAT(N)*RM*EPS
TH = TOL/32.

*
*
* .. Compute the size of the subproblems ..

NB = N/NPROCS
* .. Compute the block size ..

NB2 = NB/2
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*
* .. Set the matrix V to the N x N identity matrix ..
*

CALL INITLS(V,N,TEAM)
* ..
* .. Initialize the vectors TOP and BOT ..
*

DO I=1,N2
TOP(I) = 2*I-1
BOT(I) = 2*I

END DO
*
* .. Compute the Frobenius norm of the off-diagonal
* blocks of A ..
*

CALL OFFBLC(A,N,NB,NPROCS,OFFA,TEAM)
*
* .. Initialize the counter SWEEP ..
*

SWEEP = 0
*
* .. Keep iterating until OFF(A) is less than TOL ..
*

DO 100 WHILE (OFFA .GT. TOL)
*

WRITE(*,1000) SWEEP, OFFA
1000 FORMAT(1X,I5,E12.4)

SWEEP = SWEEP + 1
*

DO 30 SET = 1, 2*NPROCS - 1
*
* .. Initialize the Complete Jacobi Rotation JC ..

CALL INITLS(JC,N,TEAM)
*
* .. Solve the subproblems in parallel using the
* Partial Jacobi Method and build the complete
* Jacobi rotation JC ..
C*KSR* PARALLEL REGION(TEAMID = TEAM, PRIVATE = (K, MYNUM))

MYNUM = IPR_MID()
DO K=1,NPROCS
IF (MOD(K,NPROCS) .EQ. MYNUM)

& CALL LOCAL(K,A,JC,N,N2,NB,NB2,TOP,BOT,TH,THETA)
END DO

*C*KSR* END PARALLEL REGION
* ..
* .. Update the matrices A and V ..
*

CALL SGEMM(’T’,’N’,N,N,N,1.,JC,N,A,N,0.0,B1,N,
& CT,NPROCS,TEAM,PS)
CALL SGEMM(’N’,’N’,N,N,N,1.,B1,N,JC,N,0.0,A,N,

& CT,NPROCS,TEAM,PS)
CALL SGEMM(’N’,’N’,N,N,N,1.,V,N,JC,N,0.,V,N,
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& CT,NPROCS,TEAM,PS)
*
* .. Compute the next Jacobi set ..

CALL MUSIC(TOP,BOT,N2,NEWTOP,NEWBOT,TEAM)
*
30 CONTINUE

*
* .. Compute OFF(A) ..

CALL OFFBLC(A,N,NB,NPROCS,OFFA,TEAM)
*
100 CONTINUE

*
* .. End of the first part of Algorithm Method 1 ..
*
* .. The matrix A is nearly block diagonal at this point ..
*
* .. Initialize the vectors TOP and BOT ..
*

DO I=1,N2
TOP(I) = 2*I-1
BOT(I) = 2*I

END DO
*
* .. Initialize the complete Jacobi Rotation JC ..
*

CALL INITLS(JC,N,TEAM)
*
*
* .. Solve the subroblems on the block diagonal using
* SSYEV and build the complete Jacobi rotation JC ..
*
C*KSR* PARALLEL REGION(TEAMID = TEAM, PRIVATE = (K, MYNUM))

MYNUM = IPR_MID()
DO K=1,NPROCS
IF (MOD(K,NPROCS) .EQ. MYNUM)

& CALL LOCAL(K,A,JC,N,N2,NB,NB2,TOP,BOT)
END DO

C*KSR* END PARALLEL REGION
*
* .. Update A nad V ..
*

CALL SGEMM(’T’,’N’,N,N,N,1.,JC,N,A,N,0.0,B1,N,
& CT,NPROCS,TEAM,PS)
CALL SGEMM(’N’,’N’,N,N,N,1.,B1,N,JC,N,0.0,A,N,

& CT,NPROCS,TEAM,PS)
CALL SGEMM(’N’,’N’,N,N,N,1.,V,N,JC,N,0.,V,N,

& CT,NPROCS,TEAM,PS)
*
* .. Form the vector of the eigenvalues ..
*

DO I=1,N
EIG(I) = A(I,I)
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END DO
*
* .. Sort the vector of the eigenvalues in descending order ..
*

CALL SORT01(EIG,INDEX,N,TEAM)
*
* .. Permute the columns of V in order to agree with EIG ..
*
C*KSR* TILE ( J,I, TEAMID = TEAM )

DO J=1,N
DO I=1,N

P(I,J) = V(I,J)
END DO

END DO
C*KSR* END TILE
*
C*KSR* TILE ( J,I, TEAMID = TEAM )

DO J=1,N
DO I=1,N

V(I,J) = P(I,INDEX(J))
END DO

END DO
C*KSR* END TILE
*
* .. Compute the Frobenius norm of the off-daigonal
* entries of A ..
*

OFFA = OFF(A,N,TEAM)
*
* End of METHOD1
*

END

SUBROUTINE LOCAL(K,A,JC,N,N2,NB,NB2,TOP,BOT,TH,THETA)
*
* .. Scalar Arguments ..

INTEGER K, N, N2, NB, NB2
REAL TH, THETA

* .. Array Arguments ..
INTEGER TOP(N2), BOT(N2)
REAL A(N,N), JC(N,N)

*
* Purpose
* =======
*
* LOCAL solves the K-th subproblem using the partial
* Jacobi method and builds the complete Jacobi rotation JC
* which corresponds to the current Jacobi step.
*
* .. Parameters ..
* Parameter NX must always be set to the size of the
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* the subproblem.
INTEGER NX
PARAMETER (NX = 4)
REAL ZERO
PARAMETER(ZERO = 0.)

*
* .. Local Scalars ..

INTEGER I, J, P, Q, P1, Q1, P2, Q2
REAL DF

* .. Array Scalars ..
REAL BLOCK(NX,NX), BL(NX,NX)

* ..
* .. External Subroutines ..

EXTERNAL PARJAC
*
* .. Intrinsic Functions ..

INTRINSIC MIN, MAX
*
* .. Executable Statements ..
*

P = (MIN(TOP(K),BOT(K))-1)*NB2
Q = (MAX(TOP(K),BOT(K))-1)*NB2

*
P1 = P + 1
Q1 = Q + 1
P2 = P + NB2
Q2 = Q + NB2

*
BLOCK(1:NB2,1:NB2) = A(P1:P2,P1:P2)
BLOCK(1:NB2,NB2+1:2*NB2) = A(P1:P2,Q1:Q2)
BLOCK(NB2+1:2*NB2,1:NB2) = A(Q1:Q2,P1:P2)
BLOCK(NB2+1:2*NB2,NB2+1:2*NB2) = A(Q1:Q2,Q1:Q2)

*
DF = ZERO

*
DO I=NB2+1,NB

DO J=1,NB2
DF = DF + BLOCK(I,J)**2

END DO
END DO

*
IF (DF .LE. (TH**2)) RETURN

*
CALL PARJAC(BLOCK,NB,BL,THETA)

*
JC(P1:P2,P1:P2) = BL(1:NB2,1:NB2)
JC(P1:P2,Q1:Q2) = BL(1:NB2,NB2+1:2*NB2)
JC(Q1:Q2,P1:P2) = BL(NB2+1:2*NB2,1:NB2)
JC(Q1:Q2,Q1:Q2) = BL(NB2+1:2*NB2,NB2+1:2*NB2)

*
* End of LOCAL
*
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END

REAL FUNCTION DIAG (A, N, K, NB, TEAM)
*
* .. Scalar Arguments ..

INTEGER K, N, TEAM
* .. Array Arguments ..

REAL A(N,N)
*
* Purpose
* =======
*
* DIAG computes the sum of squares of the off-diagonal
* entries of the K-th NB x NB block on the block diagonal
* of A.
*
* .. Parameters ..

REAL ZERO
PARAMETER(ZERO = 0.)

* .. Local Scalars ..
INTEGER I, J
REAL SUM

* ..
* .. Executable Statements ..
*

SUM = ZERO
*
C*KSR* TILE ( I,PRIVATE=( J ),REDUCTION=( SUM ), TEAMID = TEAM)

DO 2 I=(K-1)*NB+2,K*NB
DO 2 J=(K-1)*NB+1,I-1

SUM = SUM + A(I,J) ** 2
2 CONTINUE

C*KSR* END TILE
*

SUM = 2 * SUM
*

DIAG = SUM
*
* End of DIAG
*

END

SUBROUTINE PARJAC(A,NB,V,THETA)
*
* .. Scalar Arguments ..

INTEGER NB
REAL THETA

* .. Array Arguments ..
REAL A(NB,NB), V(NB,NB)

*
* Purpose
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* =======
*
* PARJAC solves a subproblem using the
* partial Jacobi method ..
*
* .. Parameters ..
* Parameter NX must always be set to size
* of the subproblem ..

INTEGER NX, NS
PARAMETER (NX = 4, NS = NX/2)
REAL ZERO
PARAMETER (ZERO = 0.)

*
* .. Local Scalars ..

INTEGER I, J, P, Q
LOGICAL OKEY
REAL TOL, SUM

* .. Local Arrays ..
REAL AR(NS,NX), SH(NS,NS), AC(NX,NS), VC(NX,NS)

*
* .. External Subroutines ..

EXTERNAL SGEMM
*
* .. Executable Statements ..
*

DO 10 I=1,NB
DO 10 J=1,NB

IF (I .EQ. J) THEN
V(I,J) = 1.

ELSE
V(I,J) = 0.

END IF
10 CONTINUE

*
SUM = ZERO

*
DO 20 I=NS+1,NB

DO 20 J=1,NS
SUM = SUM + A(I,J)**2

20 CONTINUE
*

TOL = SUM*(THETA**2)
*

SWEEP = 0
*

DO 100 WHILE( SUM .GE. TOL)
*

SWEEP = SWEEP + 1
*

DO 30 P = 1,NB-1
DO 30 Q = (P+1),NB

*
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SH(1,1) = A(P,P)
SH(1,2) = A(P,Q)
SH(2,1) = A(Q,P)
SH(2,2) = A(Q,Q)

*
CALL SYM2(SH)

*
AC(:,1) = A(P,:)
AC(:,2) = A(Q,:)
CALL SGEMM(’N’,’N’,4,2,2,1.,AC,4,

& SH,2,0.,AC,4)
A(:,P) = AC(:,1)
A(:,Q) = AC(:,2)

*
AR(1,:) = A(P,:)
AR(2,:) = A(Q,:)
CALL SGEMM(’T’,’N’,2,4,2,1.,SH,2,

& AR,2,0.,AR,2)
A(P,:) = AR(1,:)
A(Q,:) = AR(2,:)

*
VC(:,1) = V(:,P)
VC(:,2) = V(:,Q)

*
CALL SGEMM(’N’,’N’,4,2,2,1.,VC,4,

& SH,2,0.,VC,4)
V(:,P) = VC(:,1)
V(:,Q) = VC(:,2)

*
30 CONTINUE

*
SUM = ZERO

DO 40 I=NS+1,NB
DO 40 J=1,NS

SUM = SUM + A(I,J)**2
40 CONTINUE

*
100 CONTINUE

*
* End of PARJAC
*

END

SUBROUTINE LOCALX(K,A,JC,N,N2,NB,NB2,TOP,BOT)
*
* .. Scalar Arguments ..

INTEGER K, N, N2, NB, NB2
* .. Array Arguments ..

REAL A(N,N), JC(N,N)
INTEGER TOP(N2), BOT(N2)
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*
* Purpose
* =======
*
* LOCALX computes the Schur decomposition of
* the K-th block on the block diagonal of A,
* and builds the complete Jacobi rotation JC.
*
* .. Parametes ..
* Parameter NX must be set equal to the
* size of the subproblem.

INTEGER NX, LWORK
PARAMETER(NX = 4, LWORK = 3*NX - 1)

* .. Scalar Arguments ..
INTEGER P, Q, P1, Q1, P2, Q2, INFO

* .. Array Arguments ..
REAL W(NX), WORK(LWORK), BLOCK(NX,NX)

* ..
* .. External Subroutines ..

EXTERNAL SSYEV
* .. Executable Statements ..
*

P = (MIN(TOP(K),BOT(K))-1)*NB2
Q = (MAX(TOP(K),BOT(K))-1)*NB2

*
P1 = P + 1
Q1 = Q + 1
P2 = P + NB2
Q2 = Q + NB2

*
BLOCK(1:NB2,1:NB2) = A(P1:P2,P1:P2)
BLOCK(1:NB2,NB2+1:2*NB2) = A(P1:P2,Q1:Q2)
BLOCK(NB2+1:2*NB2,1:NB2) = A(Q1:Q2,P1:P2)
BLOCK(NB2+1:2*NB2,NB2+1:2*NB2) = A(Q1:Q2,Q1:Q2)

*
CALL SSYEV(’V’,’U’,NB,BLOCK,NB,W,WORK,LWORK,INFO)

*
JC(P1:P2,P1:P2) = BLOCK(1:NB2,1:NB2)
JC(P1:P2,Q1:Q2) = BLOCK(1:NB2,NB2+1:2*NB2)
JC(Q1:Q2,P1:P2) = BLOCK(NB2+1:2*NB2,1:NB2)
JC(Q1:Q2,Q1:Q2) = BLOCK(NB2+1:2*NB2,NB2+1:2*NB2)

*
* End of LOCALX
*

END

SUBROUTINE OFFBLC(A,N,NB,NPROCS,OFFA,TEAM)
*
* .. Scalar Arguments ..
*

INTEGER N, NB, TEAM, NPROCS
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REAL OFFA
* .. Array Arguments ..

REAL A(N,*)
*
* Purpose
* =======
*
* OFFBLC computes the Frobenius norm of
* the off-diagonal blocks.
*
* .. Parameters ..

REAL ZERO
PARAMETER (ZERO = 0.)

*
* .. Local Scalars ..
*

INTEGER I
REAL SUM

* ..
* .. External Functions ..

REAL DIAG, OFF
EXTERNAL OFF

* ..
* .. Executable Statements ..
*

OFFA = OFF(A,N,TEAM)**2
SUM = ZERO

*
DO I=1,NPROCS

SUM = SUM + DIAG(A,N,I,NB,TEAM)
END DO

*
OFFA = SQRT(OFFA-SUM)

*
* End of OFFBLC
*

END

A.3 The Source Code for Algorithm Method 2

The following KSR Fortran code refers to Algorithm Method 2 discussed in page 154.

SUBROUTINE METHOD2 (N , A, LDA, EIG, V, SWEEP,
& OFFA, NPROCS, TEAM)

* .. Scalar Arguments ..
INTEGER N, LDA, SWEEP, NPROCS, TEAM
REAL OFFA

* ..
* .. Array Arguments ..

REAL A(LDA,*), V(LDA,*), EIG(*)
* ..
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* Purpose
* =======
*
* METHOD2 computes all eigenvalues and eigenvectors of a
* real symmetric matrix A using Algorithm Method 2.
*
* Reference
* =========
* P. Papadimitriou.
* Parallel Solution of SVD-Related Problems, with Applications.
* Ph.D. Thesis, Dept. of Mathematics, University of Manchester, 1993.
* (Chapter 5, Section 9).
*
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of rows and columns of the matrix A.
*
* A (input) REAL array, dimension (LDA,N).
* On entry, the symmetric matrix A.
*
* On exit, the diagonal of A contains the eigenvalues
* of the original matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >=max(1,N).
*
* EIG (output) REAL array, dimension (N).
* The eigenvalues in descending order.
*
* V (output) REAL array, dimension (LDA,N).
* On exit, the columns of V are the eigenvectors
* of the original matrix A.
*
* SWEEP (output) INTEGER
* On exit, the number of required sweeps.
*
* OFFA (output) REAL
* On exit, the Frobenius norm of the off-diagonal
* entries of the updated matrix A.
*
* NPROCS (input) INTEGER
* The number of processors.
*
* TEAM (input) INTEGER
* The identification number of the team of the p_threads.
*
* ========================================================
*
* .. Parameters ..



APPENDIX A. LISTINGS OF KSR FORTRAN ROUTINES 198

*
* Parameter NX must be set equal to the dimension
* of the original matrix.

INTEGER NX, NP, NB, NB2, PS
PARAMETER (NX = 64, NP = 16, NB = NX/NP,

& NB2 = NB/2, PS = 1)
REAL ONE, ZERO
PARAMETER ( ONE = 1., ZERO = 0.)

* ..
* .. Local Scalars ..

INTEGER SET, MYNUM
LOGICAL MODI
REAL FC, TOL, RM, THRESH, OMEGA

* ..
* .. Local Arrays ..
* ..

INTEGER TOP(NP), BOT(NP), INDEX(NX),
& P(NP), Q(NP)

* ..
LOGICAL THR(NP)

* ..
REAL CT(NX,NX), PP(NX,NX), BL(NP,NB,NB), VC(NX)

* ..
* .. Arrays for Davies-Modi Scheme ..
* ..

REAL A1(NX,NX), V1(NX,NX), VA1(NX,NX), B(NX,NX),
& W(NX,NX), X(NX,NX), U(NX,NX), X2(NX,NX)

* ..
* .. External Subroutines ..

EXTERNAL EVNORM, INITLS, UPDATE_COLUMNS,
& UPDATE_ROWS, MUSIC, SGEMM, ADXMAT,
& SORT01

*
* .. External Functions ..

REAL OFF, SLAMCH
LOGICAL MODDAV
EXTERNAL OFF, MODDAV, SLAMCH

* ..
* .. Intrinsic Functions ..

INTRINSIC FLOAT
* ..
*
* .. Executable Statements ..
*
* .. Compute the Frobenius norm of A ..
*

CALL EVNORM(A,N,RM,TEAM)
*
* .. Compute the tolerance ..
*

TOL = FLOAT(N)*RM*SLAMCH(’E’)
* .. Set U and V to the N x N identity matrix ..
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*
CALL INITLS(V,N,TEAM)
CALL INITLS(U,N,TEAM)

*
* .. Initialize the vectors TOP and BOT ..
*
C*KSR* TILE ( I, TEAMID = TEAM )

DO 4 I=1,NPROCS
TOP(I) = I * 2 - 1
BOT(I) = I * 2

4 CONTINUE
C*KSR* END TILE
*
* .. Compute the Frobenius norm of the off-diagonal
* entries of A ..
*

OFFA = OFF(A,N,TEAM)
*
* .. Compute PR and AR for the threshold ..

PR = FLOAT(N*(N-1)/2)
AR = NB*(NB-1)/2

*
* .. Initialize the counter SWEEP ..

SWEEP = 0
* .. Initialize the logical variable MODI ..

MODI = .FALSE.
*
* .. Keep iterating until the Frobenius norm of the
* off-diagonal entries of A is less than TOL or
* the condition for applying the Davies-Modi scheme
* is satisfied ..
*

DO 100 WHILE ((OFFA .GT. TOL) .AND. (.NOT. MODI))
*

WRITE(*,1020) SWEEP, OFFA
1020 FORMAT(1X,I5,E12.4)

*
SWEEP = SWEEP + 1

*
* .. Compute the threshold ..
*

OMEGA = (OFFA**2)/2
THRESH = AR*(OMEGA/PR)

*
DO 30 SET=1, 2*NPROCS-1

* .. Initialize the logical vector THR ..
DO I=1,NPROCS

THR(I) = .TRUE.
END DO

*
*
* .. Update the block columns of A and V ..



APPENDIX A. LISTINGS OF KSR FORTRAN ROUTINES 200

*
C*KSR* PARALLEL REGION( TEAMID = TEAM, PRIVATE = (K, MYNUM ))

MYNUM = IPR_MID()
DO K=1,NPROCS

IF (MOD(K,NPROCS) .EQ. MYNUM)
& CALL UPDATE_COLUMNS(K,A,V,N,NB,NB2,NPROCS,TOP,BOT,
& THRESH,SWEEP,P, Q, BL, THR)

END DO
C*KSR* END PARALLEL REGION
*
* .. Update the block rows of A ..
*
C*KSR* PARALLEL REGION( TEAMID = TEAM, PRIVATE = (K, MYNUM ))

MYNUM = IPR_MID()
DO K=1,NPROCS

IF ((MOD(K,NPROCS) .EQ. MYNUM) .AND. THR(K))
& CALL UPDATE_ROWS (K,A,N,NB,NB2,NPROCS,TOP,BOT,
& P,Q,BL,THR)

END DO
C*KSR* END PARALLEL REGION
*
* .. Compute the next Jacobi set using the
* Tournament scheme ..
*

CALL MUSIC (TOP,BOT,NPROCS,TEAM)
*

30 CONTINUE
*
* .. Compute the Frobenius norm of the off-diagonal entries ..
*

OFFA = OFF(A,N,TEAM)
*
* .. Check whether the condition for applying the Davies-Modi
* method is satisfied ..
*

IF (SWEEP .GE. 10) MODI = MODDAV(A,VC,N,TEAM)
*
100 CONTINUE

*
* .. Apply the Davies-Modi Method ..
*

A1 = A
*
C*KSR* TILE(I, TEAMID = TEAM)

DO I=1,N
A1(I,I) = ZERO

END DO
C*KSR* END TILE
*
C*KSR* TILE ( J, I, TEAMID = TEAM )

DO J=1,N
DO I=1,N



APPENDIX A. LISTINGS OF KSR FORTRAN ROUTINES 201

IF (I .EQ. J) THEN
V1(I,J) = ZERO

ELSE
V1(I,J) = A(I,J)/(A(I,I)-A(J,J))

END IF
END DO

END DO
C*KSR* END TILE
*

CALL SGEMM(’N’,’N’,N,N,N,1.,V1,N,A1,N,0.,VA1,N,CT,NPROCS,
& TEAM,PS)

*
CALL ADXMAT(VA1,B,N,TEAM)

*
C*KSR* TILE ( J, I, TEAMID = TEAM )

DO J=1,N
DO I=1,N

IF (I .EQ. J) THEN
W(I,J) = ZERO

ELSE
W(I,J) = B(I,J)/(A(I,I)-A(J,J))

END IF
END DO

END DO
C*KSR* END TILE
*

CALL ADDMAT(V1,W,X,N,TEAM)
CALL ADDMAT(U,X,U,N,TEAM)

*
CALL SGEMM(’N’,’N’,N,N,N,0.5,X,N,X,N,0.,X2,N,CT,NPROCS,

& TEAM, PS)
*

CALL ADDMAT(U,X2,U,N,TEAM)
*

FG = 1./3.
*

CALL SGEMM(’N’,’N’,N,N,N,FG,X2,N,X,N,0.,X,N,CT,NPROCS,
& TEAM, PS)

*
CALL ADDMAT(U,X,U,N,TEAM)

*
CALL SGEMM(’N’,’N’,N,N,N,1.,U,N,A,N,0.,X2,N,CT,NPROCS,

& TEAM,PS)
CALL SGEMM(’N’,’T’,N,N,N,1.,X2,N,U,N,0.,A,N,CT,NPROCS,

& TEAM,PS)
CALL SGEMM(’N’,’T’,N,N,N,1.,U,N,V,N,0.,V,N,CT,NPROCS,

& TEAM,PS)
* .. Form the vector of the eigenvalues ..
C*KSR* TILE ( I , TEAMID = TEAM)

DO 6 I=1,N
EIG(I) = A(I,I)

6 CONTINUE
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C*KSR* END TILE
*
* .. Sort the vectors of the eigenvalues in descending order ..
*

CALL SORT01 (EIG,INDEX,N, TEAM)
*
* .. Permute the columns of V in order to agree with EIG ..
*
C*KSR* TILE ( J,I, TEAMID = TEAM )

DO J=1,N
DO I=1,N

PP(I,J) = V(I,J)
END DO

END DO
C*KSR* END TILE
*
C*KSR* TILE ( J,I, TEAMID = TEAM )

DO J=1,N
DO I=1,N

V(I,J) = PP(I,INDEX(J))
END DO

END DO
C*KSR* END TILE
*
* .. Compute the Frobenius norm of the off-diagonal entries
* of the nearly diagonal matrix A ..
*

OFFA = OFF(A,N,TEAM)
*
* End of METHOD2
*

END

SUBROUTINE UPDATE_COLUMNS(K, A, V, N, NB, NB2, NPROCS,
& TOP, BOT,THRESH,SWEEP,P,Q,BL, THR)

*
* .. Scalar Arguments ..

INTEGER K, N, NB, NB2, NPROCS, SWEEP
REAL THRESH

* .. Array Arguments ..
INTEGER TOP(NPROCS), BOT(NPROCS), P(NPROCS), Q(NPROCS)
REAL A(N,N), V(N,N), BL(NPROCS,NB,NB)
LOGICAL THR(NPROCS)

*
* Purpose
* ======
*
* UPDATE_COLUMNS performs the following tasks:
*
* 1) Constructs the matrix block that corresponds to the
* K-th index pair of the current Jacobi set.
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* 2) Checks whether the threshold condition is satisfied
* and if updates the logical variable THR(K).
* 3) If THR(K) is TRUE, computes the Schur Decomposition
* of SH and updates the K-th block columns of A and V.
*
* .. Parameters ..
* Parameter NX must be set to the size of the original
* matrix.

INTEGER NX, NS, LWORK
PARAMETER(NX = 64, NS = NX/16, LWORK = 3*NX-1)
REAL ZERO
PARAMETER (ZERO = 0.)

* ..
* .. Local Scalars ..
*

INTEGER I, J, P1, P2, Q1, Q2
REAL SS

*
* .. Local Arrays ..

REAL SH(NS,NS), AS(NX,NS), VS(NX,NS),
& W(NS), WORK(LWORK)

*
* .. Executable Statements ..
*

P(K) = (MIN (TOP(K), BOT(K))-1)*NB2
Q(K) = (MAX (TOP(K), BOT(K))-1)*NB2

*
P1 = P(K)+1
P2 = P(K)+NB2
Q1 = Q(K)+1
Q2 = Q(K)+NB2

*
BL(K,1:NB2,1:NB2) = A(P1:P2,P1:P2)
BL(K,1:NB2,NB2+1:NB) = A(P1:P2,Q1:Q2)
BL(K,NB2+1:NB,1:NB2) = A(Q1:Q2,P1:P2)
BL(K,NB2+1:NB,NB2+1:NB) = A(Q1:Q2,Q1:Q2)

*
SS = ZERO

*
DO J=1,NB-1

DO I=J+1,NB
SS = SS + BL(K,I,J)*BL(K,I,J)

END DO
END DO

*
IF (SS .LT. THRESH) THEN

THR(K) = .FALSE.
RETURN

END IF
*

SH = BL(K,:,:)
*



APPENDIX A. LISTINGS OF KSR FORTRAN ROUTINES 204

CALL SSYEV(’V’,’U’,NB,SH,NB,W,WORK,LWORK,INFO)
*

BL(K,:,:) = SH
*

AS(1:N,1:NB2) = A(1:N,P1:P2)
AS(1:N,NB2+1:NB) = A(1:N,Q1:Q2)
VS(1:N,1:NB2) = V(1:N,P1:P2)
VS(1:N,NB2+1:NB) = V(1:N,Q1:Q2)

*
CALL SGEMM(’N’,’N’,N,NB,NB,1.,AS,N,SH,

& NB,0.,AS,N)
*

CALL SGEMM(’N’,’N’,N,NB,NB,1.,VS,N,SH,
& NB,0.,VS,N)

*
A(1:N,P1:P2) = AS(1:N,1:NB2)
A(1:N,Q1:Q2) = AS(1:N,NB2+1:NB)
V(1:N,P1:P2) = VS(1:N,1:NB2)
V(1:N,Q1:Q2) = VS(1:N,NB2+1:NB)

*
* End of UPDATE_COLUMNS
*

END

SUBROUTINE UPDATE_ROWS(K, A, N, NB, NB2, NPROCS,
& TOP, BOT, P, Q, BL, THR)

*
* .. Scalar Arguments ..

INTEGER K, N, NB, NB2, NPROCS
* .. Array Arguments ..

INTEGER TOP(NPROCS), BOT(NPROCS), P(NPROCS), Q(NPROCS)
REAL A(N,N), BL(NPROCS,NB,NB)
LOGICAL THR(NPROCS)

*
* Purpose
* =======
*
* UPDATE_ROWS updates the K-th block row of A.
*
* .. Parameters ..
* Parameter NX must be set equal to the size of A.

INTEGER NX, NS
PARAMETER(NX = 64, NS = NX/16)

* ..
* .. Local Scalars ..

INTEGER P1, P2, Q1, Q2
* .. Local Arrays ..

REAL RG(NS,NX), BLCK(NS,NS)
*
* .. Executable Statements ..
*
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P1 = P(K)+1
P2 = P(K)+NB2
Q1 = Q(K)+1
Q2 = Q(K)+NB2

*
RG(1:NB2,:) = A(P1:P2,:)
RG(NB2+1:NB,:) = A(Q1:Q2,:)

*
BLCK = BL(K,:,:)

*
CALL SGEMM(’T’,’N’,NB,N,NB,1.,BLCK,NB,RG,NB,0.,RG,NB)

*
A(P1:P2,:) = RG(1:NB2,:)
A(Q1:Q2,:) = RG(NB2+1:NB,:)

*
* End of UPDATE_ROWS
*

END

A.4 Auxiliary Routines

The following KSR Fortran routines are used by the codes given in Appendix A.1, Ap-
pendix A.2, and Appendix A.3.

SUBROUTINE MUSIC (TOP, BOT, M, TEAM)
*
* .. Scalar Arguments ..

INTEGER M, TEAM
* .. Array Arguments ..

INTEGER TOP(M), BOT(M)
*
* Purpose
* =======
*
* MUSIC computes the next Jacobi set using the
* Tournament scheme.
*
* .. Parameters ..

INTEGER NP
PARAMETER (NP = 16)

*
* .. Local Scalars ..

INTEGER I, K
* .. Local Arrays ..

INTEGER NEWTOP(NP), NEWBOT(NP)
*
* .. Executable Statements ..
*
C*KSR* TILE ( K, TEAMID = TEAM )

DO 2 K=1,M
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*
IF (K .EQ. 2) THEN

NEWTOP(K) = BOT(1)
ELSE IF (K .GT. 2) THEN

NEWTOP(K) = TOP(K-1)
END IF

*
IF (K .EQ. M) THEN

NEWBOT(K) = TOP(K)
ELSE

NEWBOT(K) = BOT(K+1)
END IF

*
2 CONTINUE

C*KSR* END TILE
*
C*KSR* TILE ( I , TEAMID = TEAM)

DO 3 I=1,M
TOP(I) = NEWTOP(I)
BOT(I) = NEWBOT(I)

3 CONTINUE
C*KSR* END TILE
*

TOP(1) = 1
*
* End of MUSIC
*

END

SUBROUTINE INITLS(A,N,TEAM)
*
* .. Scalar Arguments ..

INTEGER N, TEAM
* .. Array Arguments ..

REAL A(N,*)
*
* Purpose
* =======
* INITLS creates the N x N identity matrix A
*
* .. Parameters ..

REAL ONE, ZERO
PARAMETER(ONE = 1., ZERO = 0.)

*
* .. Executable Statements ..
*
C*KSR* TILE ( J,I, TEAMID = TEAM )

DO 3 J=1,N
DO 3 I=1,N

IF (I .EQ. J) THEN
A(I,J) = ONE
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ELSE
A(I,J) = ZERO

END IF
3 CONTINUE

C*KSR* END TILE
*
* End of INITLS
*

END

SUBROUTINE SORT01 (A, INDEX, N, TEAM)
*
* .. Scalar Arguments ..
*

INTEGER N, TEAM
* .. Array Arguments ..
*

INTEGER INDEX(*)
REAL A(*)

*
* Purpose
* =======
*
* SORT01 sorts the elements of the vector A in
* descending order. On exit, the vector INDEX
* contains the positions of the elements of A
* before sorting. For example, INDEX(I) = J
* means that the I-th element of the sorted
* vector was the J-th element of the original
* vector.
*
C*KSR* TILE ( I , TEAMID = TEAM )

DO 2 I=1,N
INDEX(I) = I

2 CONTINUE
C*KSR* END TILE
*

DO 20 K=N,2,(-1)
DO 10 I=1,K-1

IF (A(I) .LT. A(I+1)) THEN
TEMP = A(I)
ITEMP = INDEX(I)
A(I) = A(I+1)
INDEX(I) = INDEX(I+1)
A(I+1) = TEMP
INDEX(I+1) = ITEMP

END IF
10 CONTINUE
20 CONTINUE

*
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* End of SORT01
*

END

LOGICAL FUNCTION MODDAV(A,VECTOR,N,TEAM)
*
* .. Scalar Arguments ..
*

INTEGER N, TEAM
* .. Array Arguments ..

REAL A(N,*), VECTOR(*)
*
* Purpose
* =======
*
* MODDAV checks whether the condition for
* applying the Davies-Modi scheme is satisfied.
*
* .. Intrinsic Functions ..

INTRINSIC FLOAT, ABS
* ..
* .. Local Scalars ..

REAL ALPHA, DELTA, EPSLON, E1, E2, E3
* ..
* .. Executable Statements ..

MODDAV = .FALSE.
*

ALPHA = ABS (A(2,1))
*
C*KSR* TILE ( J,PRIVATE=( I ),REDUCTION=( ALPHA ), TEAMID = TEAM )

DO 2 J=1,N-1
DO 2 I=J+1,N

ALPHA = MAX (ALPHA, ABS (A(I,J)))
2 CONTINUE

C*KSR* END TILE
*
C*KSR* TILE ( I , TEAMID = TEAM)

DO 3 I=1,N
VECTOR(I) = A(I,I)

3 CONTINUE
C*KSR* END TILE
*

CALL SORT02(VECTOR,N)
*

DELTA = ABS (VECTOR(2) - VECTOR(1))
*
C*KSR* TILE ( I,REDUCTION=( DELTA ), TEAMID = TEAM )

DO 4 I=2,N-1
DELTA = MIN (DELTA, ABS (VECTOR(I+1) - VECTOR(I)))

4 CONTINUE
C*KSR* END TILE
*
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E1 = FLOAT (N ** 3) * (ALPHA ** 4) / (DELTA ** 4)
E2 = FLOAT (N ** 2) * (ALPHA ** 3) / (DELTA ** 2)
E3 = FLOAT (N ** 2) * (ALPHA ** 4) / (DELTA ** 3)

*
EPSLON = MAX (E1, E2, E3)

*
IF (EPSLON .LT. 1.0E-03) MODDAV = .TRUE.

*
* End of MODDAV
*

END

SUBROUTINE ADDMAT(A,B,C,N,TEAM)
*
* .. Scalar Arguments ..

INTEGER N, TEAM
* .. Array Arguments ..

REAL A(N,*), B(N,*), C(N,*)
*
* Purpose
* =======
* ADDMAT adds two square matrices.
*
* .. Local Scalars ..

INTEGER I, J
*
C*KSR* TILE(J,I, TEAMID = TEAM)

DO 10 J=1,N
DO 10 I=1,N

C(I,J) = A(I,J) + B(I,J)
10 CONTINUE

C*KSR* END TILE
*
* End of ADDMAT
*

END

SUBROUTINE ADXMAT(A,C,N,TEAM)
*
* .. Scalar Arguments ..

INTEGER N, TEAM
* .. Array Arguments ..

REAL A(N,*), C(N,*)
*
* Purpose
* =======
*
* ADXMAT computes (1/2)( A + A’).
*
* .. Local Scalars ..
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INTEGER I, J
*
* .. Executable Statements ..
*
C*KSR* TILE(J,I, TEAMID = TEAM)

DO 10 J=1,N
DO 10 I=1,N

C(I,J) = 0.5*(A(I,J) + A(J,I))
10 CONTINUE

C*KSR* END TILE
*
* End of ADXMAT
*

END

SUBROUTINE SORT02 (A, N)
*
* .. Scalar Arguments ..

INTEGER N
* .. Array Arguments ..

REAL A(*)
*
* Purpose
* =======
*
* SORT01 sorts the elements of the vector A in
* descending order.
*
* .. Local Scalars ..
*

INTEGER I, J, K
REAL TEMP

* ..
* .. Executable Statements ..
*

DO 20 K=N,2,(-1)
DO 10 I=1,K-1

IF (A(I) .LT. A(I+1)) THEN
TEMP = A(I)
A(I) = A(I+1)
A(I+1) = TEMP

END IF
10 CONTINUE
20 CONTINUE

*
* End of SORT02
*

END

SUBROUTINE EVNORM (A, N, NOR, TEAM)
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*
* .. Scalar Arguments ..

INTEGER N, TEAM
REAL NOR

* .. Array Arguments ..
REAL A(N,*)

*
* Purpose
* =======
*
* EVNORM computes the Frobenious norm of a matrix.
*
* .. Intrinsic Functions ..

INTRINSIC SQRT
* ..
* .. local Scalars ..

INTEGER I, J
*

NOR = 0.
C*KSR* TILE ( J,I,REDUCTION=( NOR ),TEAMID = TEAM )

DO 2 J=1,N
DO 2 I=1,N

NOR = NOR + A(I,J) ** 2
2 CONTINUE

C*KSR* END TILE
*

NOR = SQRT (NOR)
*
* End of EVNORM
*

END

REAL FUNCTION OFF (A, N, TEAM)
*
* .. Scalar Arguments ..

INTEGER N, TEAM
* .. Array Arguments ..

REAL A(N,*)
*
* OFF computes the Frobenius norm of
* the off-diagonal entries of a symmetric
* matrix A.
*
* .. Parameters ..

REAL ZERO
PARAMETER (ZERO = .0)

* ..
* .. Intrinsic Functions ..

INTRINSIC SQRT
* ..
* .. Local Scalars ..
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INTEGER I, J
REAL SUM

*
* .. Executable Statements ..
*

SUM = ZERO
*
C*KSR* TILE ( J,PRIVATE=( I ),REDUCTION=( SUM ), TEAMID = TEAM )

DO 2 J=1,N-1
DO 2 I=J+1,N

SUM = SUM + A(I,J) ** 2
2 CONTINUE

C*KSR* END TILE
*

OFF = SQRT (2*SUM)
*
* End of OFF
*

END

SUBROUTINE SYM2(SH)
*
* .. Array Arguments ..

REAL SH(2,2)
*
* Purpose
* =======
*
* SYM2 computes the orthogonal factor of
* the symmetric Schur decomposition
* of the 2 x 2 matrix SH.
*
* .. Intrinsic Functions ..

INTRINSIC ATAN, COS, SIN, SQRT
* ..
* .. Local Scalars ..

REAL P4, C, S, TAU, T, SIGNT
*
* .. Executable Statements ..
*

P4 = ATAN(1.0)
*

IF (ABS(SH(2,2)-SH(1,1)) .LE. 1.1E-16) THEN
C = SQRT(2.)/2.
S = C

ELSEIF (ABS(SH(1,2)) .GT. 1.1E-16) THEN
TAU = (SH(2,2) - SH(1,1))/(2*SH(1,2))
SIGNT = TAU/ABS(TAU)
T = SIGNT/(ABS(TAU) + SQRT(1.0 + TAU**2))
C = 1.0/SQRT(1 + T**2)
S = T*C

ELSE
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C = 1.0
S = 0.0

END IF
*

SH(1,1) = C
SH(2,2) = C
SH(1,2) = S
SH(2,1) = -S

*
* End of SYM2
*

END

LOGICAL FUNCTION MODDAV(A,VECTOR,N,TEAM)
*
* .. Scalar Arguments ..
*

INTEGER N, TEAM
* .. Array Arguments ..

REAL A(N,*), VECTOR(*)
*
* Purpose
* =======
*
* MODDAV checks whether the condition for
* applying the Davies-Modi scheme is satisfied.
*
* .. Intrinsic Functions ..

INTRINSIC FLOAT, ABS
* ..
* .. Local Scalars ..

REAL ALPHA, DELTA, EPSLON, E1, E2, E3
* ..
* .. Executable Statements ..

MODDAV = .FALSE.
*

ALPHA = ABS (A(2,1))
*
C*KSR* TILE ( J,PRIVATE=( I ),REDUCTION=( ALPHA ), TEAMID = TEAM )

DO 2 J=1,N-1
DO 2 I=J+1,N

ALPHA = MAX (ALPHA, ABS (A(I,J)))
2 CONTINUE

C*KSR* END TILE
*
C*KSR* TILE ( I , TEAMID = TEAM)

DO 3 I=1,N
VECTOR(I) = A(I,I)

3 CONTINUE
C*KSR* END TILE
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*
CALL SORT02(VECTOR,N)

*
DELTA = ABS (VECTOR(2) - VECTOR(1))

*
C*KSR* TILE ( I,REDUCTION=( DELTA ), TEAMID = TEAM )

DO 4 I=2,N-1
DELTA = MIN (DELTA, ABS (VECTOR(I+1) - VECTOR(I)))

4 CONTINUE
C*KSR* END TILE
*

E1 = FLOAT (N ** 3) * (ALPHA ** 4) / (DELTA ** 4)
E2 = FLOAT (N ** 2) * (ALPHA ** 3) / (DELTA ** 2)
E3 = FLOAT (N ** 2) * (ALPHA ** 4) / (DELTA ** 3)

*
EPSLON = MAX (E1, E2, E3)

*
IF (EPSLON .LT. 1.0E-03) MODDAV = .TRUE.

*
* End of MODDAV
*

END
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