
5032 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

iPool—Information-Based Pooling in Hierarchical
Graph Neural Networks

Xing Gao , Wenrui Dai , Member, IEEE, Chenglin Li , Member, IEEE,

Hongkai Xiong , Senior Member, IEEE, and Pascal Frossard , Fellow, IEEE

Abstract— With the advent of data science, the analysis of
network or graph data has become a very timely research
problem. A variety of recent works have been proposed to
generalize neural networks to graphs, either from a spectral
graph theory or a spatial perspective. The majority of these
works, however, focus on adapting the convolution operator to
graph representation. At the same time, the pooling operator also
plays an important role in distilling multiscale and hierarchical
representations, but it has been mostly overlooked so far. In this
article, we propose a parameter-free pooling operator, called
iPool, that permits to retain the most informative features in
arbitrary graphs. With the argument that informative nodes
dominantly characterize graph signals, we propose a criterion
to evaluate the amount of information of each node given
its neighbors and theoretically demonstrate its relationship to
neighborhood conditional entropy. This new criterion determines
how nodes are selected and coarsened graphs are constructed
in the pooling layer. The resulting hierarchical structure yields
an effective isomorphism-invariant representation of networked
data on arbitrary topologies. The proposed strategy achieves
superior or competitive performance in graph classification on a
collection of public graph benchmark data sets and superpixel-
induced image graph data sets.

Index Terms— Graph classification, graph neural networks
(GNNs), graph pooling, hierarchical representation.

I. INTRODUCTION

CONVOLUTION neural networks (CNNs) are efficient to
extract hierarchical representations of signals residing on

regular grids, such as audios and images. With the convolution
and pooling operations, CNNs have achieved state-of-the-art
performance in a variety of applications. With the increasing

Manuscript received 3 January 2020; revised 6 August 2020 and 1 December
2020; accepted 12 March 2021. Date of publication 31 March 2021; date
of current version 2 September 2022. This work was supported in part by
the National Natural Science Foundation of China under Grant 61932022,
Grant 61931023, Grant 61971285, Grant 61871267, Grant 61972256, Grant
61720106001, Grant 91838303, and Grant 61831018; and in part by the
Program of Shanghai Science and Technology Innovation Project under Grant
20511100100. (Corresponding author: Wenrui Dai.)

Xing Gao, Chenglin Li, and Hongkai Xiong are with the Department
of Electronic Engineering, Shanghai Jiao Tong University, Shanghai
200240, China (e-mail: william-g@sjtu.edu.cn; lcl1985@sjtu.edu.cn;
xionghongkai@sjtu.edu.cn).

Wenrui Dai is with the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
daiwenrui@sjtu.edu.cn).

Pascal Frossard is with the Signal Processing Laboratory (LTS4), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
(e-mail: pascal.frossard@epfl.ch).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3067441.

Digital Object Identifier 10.1109/TNNLS.2021.3067441

availability of various forms of network data, recent pioneer
works [1]–[16] have been generalizing convolution neural
networks to irregular structures, including graph and point
cloud data. For instance, convolution operator is extended for
graph signals in the spectral domain on the basis of the spectral
graph theory, to build the so-called spectral graph convolution
neural networks [2]–[5], [10]. On the other hand, several
methods, such as [2], [9], [11], [15], generalize the convolution
operator in the spatial domain to address the basis-dependent
problem where a spectral graph neural network (GNN) trained
on one graph structure fails to transfer properly to other
graph structures. Most of the current attempts for designing
neural network representations of graph data, however, focus
on the convolution operator. The pooling operator is mostly
overlooked, yet it carries an important part of the ability of
GNNs to distill effective hierarchical representations.

Hierarchical representations of network data necessitate a
careful design for all elements of the learning architecture.
In tasks such as graph classification, a global representation
is required in addition to local features in order to predict
the label for an entire graph. For example, all amino acids
(nodes in graph) and their bonds (edges in graph) are con-
sidered to accurately classify a protein (global graph). The
pooling operator is an important component in the construction
of such hierarchical architectures. In the example of image
representation, the pooling operator downsamples data by
flipping the predefined local receptive field and aggregating
information in each receptive field, from left to right and top
to bottom, to take advantage of the inherent spatial order in
lattice structures. However, the design of pooling operation
becomes challenging for the general case of networks with
diverse and irregular topologies and no spatial order of the
nodes. In particular, it is not appropriate to directly generalize
the pooling operator from images to graphs. Even for the
simple pooling operation that downsamples image signals with
stride 2, its counterpart on graphs is formulated as an NP-hard
max-cut problem [17]. In addition, it is still a challenge to
construct a coarsened graph with the pooled features. In other
words, two major problems to generalize the pooling operation
to graphs include: 1) selection and aggregation of information
to characterize the signals residing on graph and 2) coarsening
the structure of graphs in the higher levels of representations.
Graph theory may provide several tools to generalize the
pooling operator to networks with the help of graph cluster-
ing or graph coarsening algorithms [18]–[20]. However, these
methods typically involve high computational complexity led

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8458-7483
https://orcid.org/0000-0003-2522-5778
https://orcid.org/0000-0003-2888-594X
https://orcid.org/0000-0003-4552-0029
https://orcid.org/0000-0002-4010-714X

GAO et al.: iPool—INFORMATION-BASED POOLING IN HIERARCHICAL GNNs 5033

Fig. 1. Illustration of iPool. (a) Proposed neighborhood information gain criterion γ (·) and the prediction function f (·). (b) and (c) Node selection in
accordance with neighborhood information gain criterion to perform graph downsampling and the subsequent coarsened graph construction from selected
nodes, respectively. (c) Two selected nodes are randomly chosen to demonstrate the edge weight computation, with the thickness of lines indicating the scale
of edge weights. Specifically, x(vi) indicates the signal or feature on the node vi , Nh(vi) represents the h-hop neighborhood of the node vi , and P̄l

h implies
an off-diagonal version of the hth power of transmission matrix.

by iterative solutions. This unfortunately prevents GNNs from
simultaneous processing of a batch of graph data on diverse
topologies, which is commonly required in applications such
as graph classification.

In this article, we propose a flexible pooling operator,
called iPool, which can be easily interleaved with diverse
graph convolution operators and can deal with data that come
with arbitrary graphs. iPool is designed to generate a faithful
representation of signals supported on the graph. Therefore,
it first uses a criterion to evaluate the amount of information
carried by each node given observations of its neighbors and
then constructs coarsened graphs accordingly. The benefits of
iPool are summarized as follows.

1) iPool is a parameter-free and stackable building block
to be paired with diverse GNNs.

2) The proposed neighborhood information gain criterion
is interpretable in terms of entropy and it guarantees a
faithful representation of the original graph signal in the
downsampled graph.

3) Greedy and local strategies are developed for iPool
based on local computation to implement a computation-
friendly pooling operator.

In more detail, we propose a pooling algorithm to form
hierarchical graph representation with node selection guided
by a neighborhood information gain criterion and structure-
preserved construction of coarsened graphs, as shown in Fig. 1.
In particular, the node signals are predicted from the neighbor
signal values to determine the most informative nodes in
the graph. A coarsened graph is constructed from the most
informative nodes with the topology that maintains consis-
tency with the original graph. Furthermore, we develop two
kinds of pooling schemes, namely greedy and local strategies,
which permit to trade off preservation of graph structure and
information aggregation. We discuss the different aspects of
the iPool operator in detail and demonstrate theoretically under
mild assumptions that the iPool operator plays an equivalent
role as coarsening graphs in terms of maximum entropy.

We resort to graph classification tasks to evaluate the
proposed iPool algorithm. It is shown to outperform the state-
of-the-art graph pooling methods on a collection of public

benchmark data sets and superpixel-induced image graph data
sets. The proposed pooling operator is also promising for
extension to discriminative tasks like graph segmentation and
applications into non-Euclidean data, such as point clouds.

The remainder of this article is organized as follows.
Section II briefly overviews the related work on graph
convolutional neural networks with a specific emphasis on
pooling operations. Section III elaborates the proposed iPool
algorithm, and Section IV discusses its properties of maximum
entropy and invariance to graph isomorphism. Experimen-
tal results are presented in Section V to validate the pro-
posed pooling strategies in graph classification tasks. Finally,
Section VI draws the conclusions.

II. RELATED WORK

We begin with a brief review of graph representation
learning, especially traditional graph coarsening schemes and
recent attempts on graph pooling, which are relevant to the
main problem addressed in this work.

A. Graph Convolutional Networks (GCNs)

GNNs can be traced back to [21]–[23]. With the rise
of CNNs, GCNs have been developed to extend CNNs to
graphs. GCNs are commonly realized in spectral or spatial
domains. Spectral GCNs define convolutions for graphs on
the basis of spectral filtering of graph signals [2]–[5], [10].
For instance, smoothed spectral graph convolution networks
[2] are proposed to achieve constant learning complexity, and
localized spectral graph convolution networks [3], [5], [24]
are designed to further attain linear computational complexity
and localized filters as CNNs with diverse approximations to
the convolution operation, such as the Chebyshev expansion.
On the other hand, spatial GCNs develop the convolution
operation in the spatial domain [2], [9], [11], [25] to address
the basis-dependent problem that a spectral GNN trained on
one graph structure cannot be properly transferred to other
graph structures. Most spatial GCNs generalize the convolu-
tion operation by defining a “message aggregation” scheme to
aggregate information in the neighborhood. In architectures for
spatial GCNs, these convolution layers can be integrated with

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

5034 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

different pooling operators for hierarchical representations of
graph data.

B. Graph Coarsening and Graph Pooling
Hierarchical representations of graph data can be achieved

with variants of graph coarsening algorithms and different
forms of graph pooling operations. Due to high computa-
tional complexity for general graphs, graph coarsening is
commonly achieved with approximate methods, including
multiscale methods [19], [20], [26], kernel K -means [27],
and spectral clustering algorithms [18]. Yet, computational
complexity stays high, so that these methods are mostly
suitable for processing fixed structure graphs off-line, but have
clear limitations in providing an online building block to cope
with graphs of various structures.

Pooling probably provides the most constructive alternative
to develop multiscale representation in GNNs. To begin with,
several global pooling operators are designed to produce an
embedding of an arbitrary graph. For example, SET2SET [28]
computes a global representation by aggregating node informa-
tion through LSTMs. SortPooling [25] sorts the nodes based
on the value of last feature map in a descending manner and
preserves its first k nodes to represent the graph. Furthermore,
several hierarchical pooling operators are proposed to consider
coarsened graph construction for multiscale representation
learning. The gPool algorithm [29] globally selects nodes
according to their footprints obtained from projecting node
features onto a trainable projection vector. SAGPool [30]
resorts to self-attention of nodes to select nodes. They take the
induced subgraph of the original graph or its second power
graph as a coarsened graph. However, gPool and SAGPool
fail to preserve diverse representative nodes in different neigh-
borhoods, on the contrary to their counterparts that work on
grid-like data [31], [32]. Specifically, the selected nodes of
SAGPool concentrate in several specific neighborhoods since
the attention scores of nodes that are calculated with a graph
convolution operation are similar in the same neighborhood.
The nodes preferred by gPool share a specific pattern, repre-
sented by the trainable projection vector. Thereby, information
of the original graph cannot be faithfully represented by the
coarsened graphs.

Inspired by clustering methods, DiffPool [33] softly
assigns nodes with a learnable cluster assignment matrix.
EigenPooling [34] employs spectral clustering to partition
a graph into subgraphs. In each subgraph, information is
aggregated by projecting the signals that it supports onto
its first k eigenvectors. However, they are faced with high
computational complexity or storage complexity. For example,
DiffPool requires an additional branch of GNNs to learn pro-
jection matrices, and the number of parameters is related to the
number of vertices of graph data, which limits its application to
large-scale graphs. For EigenPooling, the eigendecomposition
utilized in spectral clustering and computing eigenvectors of
subgraphs also involves high computational complexity.

Contrary to existing methods, the proposed graph pooling
operator is interpretable in the view of information theory.
iPool leverages the proposed neighborhood information gain
criterion to select informative nodes in each neighborhood,

in order to represent the original graph faithfully. Further-
more, it is parameter-free and “plug and play” and thereby
leads to a fast implementation at both training and testing
phases.

III. IPOOL ALGORITHM

We present in this section the main elements of the proposed
iPool algorithm. We first introduce the general framework
of GNN architectures and define the role of the pooling
algorithm. We later introduce a neighborhood information gain
criterion that drives our iPool algorithm. Finally, we show
how our iPool algorithm can be used to construct hierarchical
representations with both greedy and local strategies.

A. Framework

In this article, we consider learning hierarchical represen-
tations for network data with the help of a neural network
architecture. Such an architecture is typically built on the con-
catenation of several layers, composed of graph convolution
blocks and pooling operators. We focus here on the pooling
operator, which is a key element for effective learning of
hierarchical representations.

We define the notation used in this article, where we employ
capital letters and bold lowercase letters to indicate matrices
and vectors, respectively. The network data at the input of the
learning architecture is represented by an undirected graph
G = (V, E) consisting of the set of vertices V and the set
of edges E . The adjacency matrix A is defined to represent
the topology of the network, which has a nonzero value at
position (i, j) (i.e., Ai j �= 0) only when there is an edge in
E that connects vertices vi and v j in V . Here, A is composed
of unitary values or actual edge weights corresponding to
unweighted or weighted graphs. Let us denote D the diagonal
degree matrix with its element Dii = ∑

j Ai j and P = D−1 A
the transmission matrix of G representing the transmission
probability of each pair of nodes. Furthermore, each vertex
of the graph vi ∈ V might further be attributed a signal
value or feature, which is denoted by xi = x(vi) and
X = [x1, x2, . . . , xn]T for the whole graph. Moreover, for
hierarchical representation of graph data, we use the subscript
l to indicate features or parameters belonging to the lth layer of
the neural networks. For example, for the graph Gl = (Vl, El)
with nl = |Vl| vertices in the lth layer of the neural network,
the i th vertex of the graph is defined as vl,i ∈ Vl , and
xl,i = x(vl,i) ∈ R

dl is the dl-dimensional signal or feature
residing on the node vl,i .

Most of the existing GCNs stack graph convolution layers
to learn a representation or embedding of graph data. The
graph convolution layers are usually designed to follow a
neighborhood message aggregation scheme:

Xl+1 = ω(ξ(Sl , Xl,Wl)) (1)

where Sl ∈ R
nl×nl can be any graph shift operator that

has nonzero values only in the positions corresponding to
edges in the graph and in its diagonal, including but not
limited to Al and Pl . The functions ξ(·) and ω(·), respectively,
denote a data aggregation function and a nonlinear activation

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: iPool—INFORMATION-BASED POOLING IN HIERARCHICAL GNNs 5035

function, and the parameters Wl are learned during the training
of the neural network. The aggregation function ξ(·) varies
in different GCN architectures and is usually selected as
(weighted) summation [33], mean [11], [25], or multilayer
perceptron (MLP) [15].

A key element of these architectures is graph pool-
ing or coarsening operator, which aims at selecting a subset
of data and obtains a version with a reduced dimension that
still represents well the original graph data. These operators
equip the neural networks with the ability to construct a sort
of multiscale representations of network data. However, due to
the diverse structures of graphs and the absence of a regular
grid-like topology in general, it is not possible to predefine
the sampling structure or the local receptive fields on graphs,
as it can be done in image representation learning [17]. The
graph pooling operator has thus to be defined adaptively, yet
in a generic way so that it can accommodate different network
structures.

For Gl = (Vl, El), the graph pooling operator takes its
adjacency matrix Al ∈ R

nl×nl as well as graph signals
Xl ∈ R

nl ×dl as inputs and produces Al+1 ∈ R
nl+1×nl+1 and

Xl+1 ∈ R
nl+1×dl+1 of the coarsened graph Gl+1

Al+1, Xl+1 = φ(Al, Xl) (2)

with φ(·) indicating a specific function corresponding to
different pooling strategies.

The design of effective multiscale representations of graph
data largely relies on the proper choice of the graph pooling
operator. We present below a novel pooling strategy using a
neighborhood information gain criterion.

B. Neighborhood Information Gain Criterion

In order to design a proper pooling operator, one first
needs to define a criterion that governs the selection of
the most important nodes in the graph. The objective is
to coarsen the graph representation while keeping a faithful
representation of the original one, on the basis of the structure
of graph and the signals that it supports. In general, if a
signal residing on one particular node of the graph could
be well predicted from signals supported by other nodes,
this node can probably be removed in the coarsened graph,
with negligible information loss. If we further consider the
typical localization and smoothness properties of most sig-
nals, it is reasonable to limit the node signal prediction
process within the node neighborhood. Therefore, we can
relate the amount of information carried by a graph node,
to the difficulty of predicting the signal value from nodes
in its neighborhood. We, therefore, introduce below a mea-
sure, namely the neighborhood information gain criterion,
in order to quantitatively evaluate the uncertainty or infor-
mation of node signals given observations of the neighbors.
We later use this measure to design a new pooling operator
that eventually preserves the most important nodes in the
graph.

The neighborhood information gain criterion is defined as
the Euclidean distance between the observed signal xl,i =
x(vl,i) and the one predicted from observations at the neighbor

nodes.1 We choose the Euclidean distance as it represents
a common similarity measure that is especially convenient
for high-dimensional vectors that might be present in some
graph data sets. Specifically, with a prediction function f (·)
using information from the neighborhood, the neighborhood
information gain of each node could be formulated as

γ
(
vl,i

) = ‖x
(
vl,i

) − f
(
vl,i

)‖2. (3)

We now have different options for choosing the prediction
function f (·). Among them, neighborhood aggregating func-
tions are promising, in particular when considering the typ-
ical localization and smoothness properties of graph signals.
We therefore choose to predict the node signal as the weighted
average of signals supported on nodes within its k-hop neigh-
borhood. Given that the hth power of transmission matrix Ph

l

is an effective measure of the level of connection or depen-
dence between any pair of nodes reachable with h hops,
we adopt the elements of Ph

l (h = 1, 2, . . . , k) as the weights in
our prediction function f (·) in order to give more confidence
to nodes that have stronger connections. We, however, modify
Ph

l into an off-diagonal transition matrix P̄h
l so that the signal

supported on itself is not considered in the signal prediction of
each node. Finally, the prediction function can be formulated
as

f
(
vl,i

) = 1

k

k∑
h=1

∑
vl, j ∈N h(vl,i)

(
P̄h

l

)
i j

x
(
vl, j

)
(4)

with

P̄h
l = (

D̄h
l

)−1
Āh

l , Āh
l = Ah

l − diag
(

Al
h
)

(5)

where Nh is the h-hop neighborhood, Āh
l is the adjacency

matrix where diagonal values corresponding to the h-hop
circles have been removed [diag(·) returns a diagonal matrix
with the diagonal elements of the input matrix], and D̄h

l is the
corresponding degree matrix. In this way, (3) could be further
formulated as

γ
(
vl,i

) =
∥∥∥∥∥∥x

(
vl,i

) − 1

k

k∑
h=1

∑
vl, j ∈N h(vl,i)

(
P̄h

l

)
i j

× x
(
vl, j

)∥∥∥∥∥∥
2

(6)

and for the whole graph

�(Gl) =|
(

I − 1

k

k∑
h=1

P̄h
l

)
Xl |2 (7)

where I denotes an identity matrix and |·|2 indicates the l2

norm of each row of a matrix. The value of γ will be high
when a node signal is very different from the ones in its neigh-
borhood, which means that the node is more informative and
should be preserved in the pooling operation. In accordance
with the proposed neighborhood information gain criterion,
iPool can then effectively downsample signals and is robust
to noisy signals, given that the previous convolution layers
based on message aggregation [see (1)] perform a series of

1For graph without signals, graph structure is taken as signals, such as
node degree. For isolated nodes, we assign their neighborhood information
gain criteria as the lowest score, i.e., −1, given that their information can be
extracted by previous graph convolution layers.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

5036 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

equivalent low-pass filtering of the graph information. Note
that the definition of the information criterion is local, which is
very important toward low-complexity and possible distributed
implementation.

C. iPool

With the neighborhood information gain criterion defined
above, the pooling operator identifies the nodes to be pre-
served that have the higher information gain and permits to
adaptively downsample the graph while preserving the local
characteristics of graph signals. We describe below greedy and
local versions of the pooling algorithm and then show how we
construct coarsened graphs after pooling, in order to build a
multiscale representation of network data.

1) Greedy iPool Strategy: On the basis of the neighborhood
information gain, nodes are assigned different priorities to
construct coarse graph globally. We adopt the downsampling
method mentioned in [25], [29] that a part of nodes in
the original graph are selected. In order to approximate the
information of the graph, the pooling should preserve the
nodes that cannot be well represented by their neighbors.
In other words, the nodes with relative high neighborhood
information gain have to be preserved in the construction of
a coarsened graph. Specifically, the graph nodes are reordered
based on the value of their neighborhood information gain.
The greedy strategy then generalizes the k-max pooling and
greedily selects the top nl+1 = ρ × |Vl | nodes that have the
highest information gain

idx = rank(�(Gl), nl+1) (8)

where ρ is the pooling ratio and rank represents the global
ranking operator.

2) Local iPool Strategy: Pooling can also be implemented
locally, and nodes can be selected within each receptive field,
similar to what is done for images. However, the receptive
field is hardly predefined for graph data due to their diverse
topology. Considering the inherent neighborhood of each node
in graphs, we take it as the equivalent receptive field of
the node. The local iPool strategy leads to a relatively even
distribution of the selected nodes over the original graph
based on a normalized information gain in each neighborhood.
Specifically, the neighborhood information gain of each node
is first normalized by the average neighborhood information
gain of its neighbors

γ
(
vl,i

) = γ
(
vl,i

)
∑

vl, j ∈N(vl,i)
(
P̄l

)
i j
γ
(
vl, j

) . (9)

Subsequently, the nodes are ordered and selected globally in
terms of the normalized neighborhood information gain

idx = rank
(
�(Gl), nl+1

)
. (10)

In this way, we ignore the information of nodes that can
be well predicted in each neighborhood and preserve their
relatively informative neighbors in the coarsened graph. This
solution takes into consideration the amount of information
of nodes in their respective neighborhoods and avoids a
computationally intensive iterative selection process.

3) Coarsened Graph Construction: The above iPool ver-
sions select the nodes to be preserved, and we can now
construct a coarsened graph with the selected nodes.

Instead of directly taking the induced graph formed by
selected nodes, such as SAGPool [30], we exploit the relation-
ship between the neighborhood of selected nodes to build their
connections in order to keep consistency with the structure
of original graphs. An induced graph directly deletes edges
connected to nonselected nodes and loses some important
structural information. For instance, among direct neighbors
of an arbitrary node vl,i , some nodes together with vl,i belong
to a well-connected cluster with many common neighbors,
while other nodes belong to other clusters with few links with
vl,i . Without connections to nonselected nodes, such structural
information cannot be effectively characterized. To address
this problem, for a pair of selected nodes, their connection
in the coarsened graph is built based on their edge weight in
the original graph and the overlap of their neighborhoods

(Al+1)i j = λ(Al + I)idx[i],idx[j]

+(1 − λ)
2|Ñ(

vl,idx[i]
) ∩ Ñ

(
vl,idx[j]

)|
|Ñ(

vl,idx[i]
)| + |Ñ(

vl,idx[j]
)| (11)

where idx[i] indicates the index of the i th selected nodes in
Gl , Ñ (vl,i) represents the expanded one-hop neighborhood of
vl,i composed of vl,i and its direct neighbors, and |·| is the
cardinality of a set. The hyperparameter λ is introduced to
adjust the contribution of two parts. In this way, two nodes
tend to have a large edge weight in the coarsened graph, if their
neighborhoods have dense interconnections in the original
graph.

For the graph signal, it takes the signal supported on selected
nodes in the original graph

Xl+1 = Xl[idx, :]. (12)

Like the max-pooling operator for grid-like data, the gra-
dient of the output of iPool Xl+1 directly propagates back to
its previous layer for the selected nodes and zeros for other
nodes. Mathematically, with δ indicating the gradient, we have

(δXl)i =
{
(δXl+1)m, i ∈ idx and i = idx[m]

0, others.
(13)

Note that the iPool operator takes as inputs the adjacency
matrix and node features of the graphs and produces the
adjacency matrix and node features of coarsened graphs in the
forward propagation, as it is the common case for hierarchical
graph models. Then, it back-propagates gradients according to
(13) during the training phase of the neural network to enable
the end-to-end learning of the networks. It is generic enough
to be integrated in diverse architectures.

IV. PROPERTIES OF IPOOL

In this section, we will discuss the relationship between
the neighborhood information gain and the neighborhood
conditional entropy and derive some properties of iPool.

Ideally, in order to maximally preserve the information of
signals residing on the original graph, the nl+1 nodes from

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: iPool—INFORMATION-BASED POOLING IN HIERARCHICAL GNNs 5037

Gl = (Vl , El) with |Vl | = nl (nl > nl+1) should be selected by
optimizing the following objective:

max
π∈� H

(
xl,π1 , xl,π2 , . . . , xl,πnl+1

)
(14)

where π represents a specific permutation of nodes in Vl and
πi indicates the i th node in the permutation.

However, there are several challenges to directly com-
pute the optimal solution. First, due to the diversity of
signals on different graphs, it is intractable to model the
joint distribution of node signals of arbitrary graphs with
a universe distribution and thereby is difficult to design a
general pooling strategy. Furthermore, to obtain the optimal
solution, one has to solve an NP-hard problem. In contrast with
the intractable joint distribution, it is much easier to model
the conditional distribution of a node signal given signals
supported on its neighbor nodes, especially for the locality
and smoothness of the most graph signals, with a bell-shaped
function centered on the mean of its neighbor signals such
as Gaussian distributions and Laplacian distributions. Conse-
quently, we discuss the two strategies of iPool as two kinds
of constructive approximate solutions to this optimization
problem.

We first introduce neighborhood conditional entropy of node
signals for graph data and further discuss its relationship with
the proposed neighborhood information gain.

A. Neighborhood Conditional Entropy

The neighborhood information gain is defined as the
deviation between the observed signal and the predicted
signal based on signals in the neighborhood. Empirically,
this deviation reflects the uncertainty of one signal value
given other values in its neighborhood. In information
theory, the entropy is designed to quantify the uncer-
tainty, and the conditional entropy is specifically utilized to
measure the amount of information of one variable given
values of the other variable(s). Generalized to graph signals,
we arrive at the neighborhood conditional entropy by con-
sidering variables as signals supported on nodes in a k-hop
neighborhood

H
(

xl,i |
{
xl, j

}
N k(vl,i)

)
= H

(
xl,i

) − I
(

xl,i ;
{
xl, j

}
N k(vl,i)

)
(15)

where H (·) is the entropy and I (·) represents the mutual
information. Here, we show that the proposed neighborhood
information gain has a close relationship with the neighbor-
hood conditional entropy under a certain assumption on the
conditional distribution.

Proposition 1: Let us assume that the components of
neighborhood conditional distribution of each node are
independent and that each component satisfies a Gaussian
distribution p(xl,i,z |{xl, j }N k (vl,i)) ∼ N (μl,i,z , σ

2
l,i) or a Laplace

distribution p(xl,i,z |{xl, j }N k (vl,i)) ∼ Laplace(μl,i,z, bl,i), with
mean μl,i = [μl,i,1, μl,i,2, . . . , μl,i,dl] = f (vl,i) and vari-
ation σ 2

l,i (or scale parameter bl,i), and the neighborhood
information gain γ (vl,i) of each node is an approxi-
mate empirical estimation of its neighborhood conditional
entropy.

Proof:
1) If the conditional distribution is a Gaussian distribution,

the neighborhood conditional entropy is

H
(

xl,i |
{
xl, j

}
N k(vl,i)

)
= E

[
− log p

(
xl,i |

{
xl, j

}
N k(vl,i)

)]
= E

[
− log�dl

z=1 p
(

xl,i,z |
{
xl, j

}
N k(vl,i)

)]
= dl

(
ln

(√
2πσl,i

)
+ 1

2

)
. (16)

Since xl,i,z |{xl, j }N k (vl,i) ∼ N (μl,i,z , σ
2
l,i), we have

xl,i,z − f (vl,i,z)|{xl, j }N k (vl,i) ∼ N (0, σ 2
l,i), for z =

1, 2, 3, . . . , dl . Thereby, σl,i can be estimated as

σ̂l,i =
√√√√ 1

dl

dl∑
z=1

(
xl,i,z − f

(
vl,i,z

))2 = 1√
dl
γ
(
vl,i

)
. (17)

Correspondingly, the empirical estimation of the
neighborhood conditional entropy is dl(ln((2π/dl)

1/2 ·
γ (vl,i))+ 1/2).

2) Similarly, for Laplacian distribution as the conditional
distribution

H
(

xl,i |
{
xl, j

}
N k(vl,i)

)
= dl

(
ln

(
2bl,i

) + 1
)

= dl

(
ln

(√
2σl,i

)
+ 1

)
(18)

with the relationship between standard variation and scale
parameter σl,i = √

2bl,i . σl,i can be estimated in the same way
as the Gaussian distribution, with σ̂l,i = (1)/(dl)

1/2γ (vl,i), and
thereby, the neighborhood conditional entropy dl(ln((2/dl)

1/2 ·
γ (vl,i))+ 1).

For both cases, the empirical estimation of the neighbor-
hood conditional entropy can be uniformly represented as
dl ln γ (vl,i)+ cl , with cl denoting a constant.

Proposition 1 implies that, under the moderate assump-
tion that the components of the conditional distribution are
independent and from the same type (not strictly identical)
distribution, Gaussian distributions or Laplacian distributions,
the neighborhood information gain criterion used in iPool
is actually an estimation of the neighborhood conditional
entropy to preserve the graph information during pooling. This
observation motivates the choice of the formulation of the
neighborhood information gain criterion.

B. Maximum Entropy

With the relationship between neighborhood information
gain and neighborhood conditional entropy, we further demon-
strate that the greedy strategy and local strategy of iPool
provide two constructive approximations to coarsen graphs in
accordance with the maximum entropy strategy.

Based on the chain rule, the objective function [see (14)]
of the ideal maximum entropy strategy can be unfolded as

H
(

xl,π1 , xl,π2 , . . . , xl,πnl+1

)
= H

(
xl,π1 , xl,π2 , . . . , xl,πnl+1

, . . . , xl,πnl

)
−H

(
xl,πnl+1+1 , . . . , xl,πnl

|xl,π1 , xl,π2 , . . . , xl,πnl+1

)
. (19)

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

5038 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Since the entropy H (xl,π1, xl,π2 , . . . , xl,πnl
) is constant for a

given graph, we can then express the target [see (14)] as

min
π∈� H

(
xl,πnl+1 +1 , . . . , xl,πnl

|xl,π1 , xl,π2 , . . . , xl,πnl+1

)
. (20)

The greedy iPool strategy resorts to a greedy algorithm to
solve it. Again, based on the locality of signals, if the Markov
blanket of each variable is its k-hop neighbors, the greedy
iPool strategy actually coarsens graphs according to a lower
approximation of the objective function [see (20)]

H
(

xl,πnl+1 +1 , . . . , xl,πnl
|{xl, j

}πnl+1

j=π1

)

=
nl∑

i=nl+1+1

H
(

xl,πi |
{
xl, j

}πi−1

j=π1

)
(21.1)

≥
nl∑

i=nl+1+1

H
(

xl,πi |
{
xl, j

}πi−1

j=π1

⋃ {
xl, j

}
N k(vl,πi)

)
(21.2)

=
nl∑

i=nl+1+1

H
(

xl,πi |
{
xl, j

}
N k(vl,πi)

)
(21.3)

where (21.1) is the chain rule unfolding and (21.3) is on
the basis of the Markov blanket assumption. We can unfold
(21.1) in such order that a node whose neighbors are mostly
contained in {xl, j }πi−1

j=π1
is first unfolded. With the expansion

of chain rule, more nodes are in {xl, j }πi−1
j=π1

and the neighbors
of most nodes are contained. Thereby, (21.2) is a reasonable
approximation to (21.1). Selecting the top nl+1 nodes with
the largest neighborhood information gain globally, the greedy
iPool strategy minimizes (21.3) the approximation of the
objective function [see (20)].

Alternatively, the local iPool strategy directly optimizes
(20) with a heuristic algorithm. Intuitively, the deleted nodes
(xl,πnl+1+1 , . . . , xl,πnl

) should be ones that are best predicted,
i.e., the nodes with the smallest neighborhood information
gain γ , in different neighborhoods. The local iPool strategy
implements a fast procedure to globally select nodes according
to the normalized neighborhood information gain. This is
because, through normalization within each neighborhood,
γ of the relatively uninformative and the rather informative
nodes within each neighborhood will be rescaled to less than
1 and greater than 1, respectively. It avoids the iterative node
selection and neighborhood information criterion update that
is computational-intensive and time-consuming.

C. Invariance to Graph Isomorphism

We now further show that iPool is invariant to isomorphic
graphs so that the GNNs consisting of iPool combined with
other components that are also invariant to graph isomorphism
will produce invariant representations for isomorphic graphs.

Proposition 2: For any isomorphic graphs Gl = (Vl, El , Xl)
and G′

l = (V ′
l , E ′

l , X ′
l), the iPool will produce the same

coarsened graphs.
Proof: Please refer to Appendix.

As demonstrated in Proposition 2, the iPool algorithm is
invariant under graph isomorphism. It is the foundation for a
pooling operator to be used in graph classification tasks since

Fig. 2. Hierarchical graph convolution network architectures. The network
is composed of a stack of convolution modules, graph pooling layers,
a readout module, as well as a prediction module. (a) Network architecture.
(b) Convolution module I. (c) Convolution module II.

it guarantees that isomorphic graphs will be classified into the
same category.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed
pooling schemes in graph classification tasks and compare
with a collection of graph pooling operators. Although clas-
sification tasks are well studied on grid-like data, graph clas-
sification is more challenging with diverse graph signals and
arbitrary irregular graph topologies that graph signals reside
on. To correctly classify a graph, an effective representation
considering jointly the topology and signal information of
the graph is necessary. We evaluate the proposed pooling
operator in multiscale representations of graph data and show
its potentiality in graph classification tasks.

A. Graph Classification on Benchmark Data Sets

We conduct experiments to classify graphs on five widely
used public benchmark graph data sets (ENZYMES, D&D,
PROTEINS, NCI1, and NCI109).2 Statistics and properties of
these data sets are presented in Table I. In the experiments,
node categorical features are adopted as graph signals.

1) Network Architecture: We evaluate the proposed pooling
algorithms in the context of deep graph convolution networks.
Specifically, the hierarchical graph convolution networks used
in the experiments consist of two convolution modules, two
graph pooling layers, a readout module, as well as a prediction
module, as shown in Fig. 2(a). The adopted graph convolution
layer follows the common message propagation and aggrega-
tion schemes with the specific formation:

X (m+1)
l = ReLU

(
ψ

(
Al X (m)

l Wl

))
, X (0)

l = Xl (22)

2Data sets could be downloaded from https://ls11-www.cs.tu-dortmund.de/
staff/morris/graphkerneldatasets

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: iPool—INFORMATION-BASED POOLING IN HIERARCHICAL GNNs 5039

TABLE I

GRAPH CLASSIFICATION ACCURACIES WITH TENFOLD CROSS VALIDATION. RESULTS OF BASELINE METHODS WITH “†” ARE
CITED FROM THEIR ORIGINAL PUBLICATIONS

where ReLU denotes the rectified linear unit activation func-
tion and ψ(·) indicates an l2 normalization function to stabilize
and accelerate the training process. Three such graph convo-
lution layers are concatenated to form a convolution module
in order to produce node features on the basis of information
within three-hop neighborhoods, as shown in Fig. 2(b)

Xl+1 = Concat
(

X (1)
l , X (2)

l , X (3)
l

)
. (23)

A pooling layer follows a convolution module and coarsens
graphs in accordance with the iPool operators, as introduced in
Section III. In addition to convolution and pooling modules,
a readout module is utilized to attain graph embeddings of
different coarsened versions and these graph embeddings are
concatenated to produce the final graph representation

hG = Concat(η(Xl)|l = 2, 4) (24)

where η(·) indicates an elementwise operator to aggregate
information of all nodes along each dimension of features.
Specifically, an elementwise sum operator and an elementwise
max operator are adopted on all the data sets. A prediction
module is finally added to the architecture for graph classi-
fication. It consists of two fully connected (FC) layers and a
soft-max layer to make the prediction of the graph category
based on the graph representation hG . No batch normalization
layer is adopted in the neural networks.

2) Experimental Settings: In the experiments, we adopt the
same network architecture on all the data sets, where each
convolution layer consists of 64 hidden neurons. The pooling
ratio is set as 0.5, i.e., 50% of nodes per graph deleted
after a pooling layer. These networks are optimized with
the Adam optimizer [35], with the following hyperparameters
tuned through grid search for each data set: learning rate
∈ {1e−3, 1e−4, 1e−5} and weight decay ∈ {0, 3e−5, 1e−4}.
For all the data sets, one-hop neighborhood is adopted in
computing the neighborhood information gain, i.e., k = 1 in
(6), and λ is set as 0.6 in calculating edge weight [see (11)].
We implement the proposed model in Pytorch [36]. Like [33],
we evaluate the models with tenfold cross validation (stratified

sampling) on all of the data sets and report the best average
accuracy.

3) Baseline Models: We compare the proposed methods
with a collection of graph representation learning methods,
especially state-of-the-art graph pooling operators for deep
GNNs. Several GNNs are first taken into consideration, includ-
ing PSCN [9] and ECC [6]. Then, two recent global pooling
schemes are compared: SET2SET [28] exploits LSTMs to
globally aggregate node information and produces a fixed-
length graph embedding and SortPooling [25] performs global
pooling by selecting a fixed number of nodes per graph accord-
ing to the value of last channel of feature maps. Both of them
do not construct the coarsened graphs. Hierarchical pooling
methods are further considered: gPool [29] and SAGPool [30]
resort to heuristic strategies, node footprint and self-attention,
to select nodes, and these heuristic measures need to be
optimized together with GCNs. Specifically, a node footprint
is obtained by protecting features of nodes to a trainable
vector, and the self-attention score of the node is computed
with a graph convolution operator. Both of them take the
induced subgraph of the original graph or its second power
graph as the coarsened graph. Furthermore, DiffPool [33]
learns an assignment matrix with an extra GCN to cluster
nodes and produces coarsened graphs with a fixed size that
is proportional to the size of the largest graph in the data set
rather than the size of each graph. In order to make the average
size of coarsened graphs consistent with those produced by
the other methods on most data sets, we set the pooling ratio
as 0.25 for DiffPool. Results of SET2SET, DiffPool, gPool,
and SAGPool are reimplemented and compared under the
same network architecture used for iPool with their respective
hyperparameters (learning rate and weight decay) obtained
through grid search, and the results of other baseline models
are cited from their respective publications.

B. Graph Classification on MNIST and CIFAR-10 Data Sets

In addition to graph benchmark data sets, we further
consider graphs from real-world data sets that are more

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

5040 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Fig. 3. Illustration of selected nodes and corresponding coarsened graphs produced by different pooling methods on a graph of the ENZYMES data set.
Graph signals with node categories are indicated by different node colors, and selected nodes are indicated with red hexagons. (a) DiffPool. (b) gPool.
(c) SAGPool. (d) iPool-local. (e) iPool-greedy.

challenging in terms of signal variation and graph category.
We choose two popular image data sets, MNIST [37] and
CIFAR-10 [38],3 which contain 70 000 28 × 28 images and
60 000 32 × 32 images, respectively.

We construct a graph from the superpixels of each image
with a procedure similar to the one used in [39] and [40].
Specifically, for each image, we adopt the superpixels com-
puted in [39] with the SLIC algorithm [41]. Each superpixel
is represented as a node, and the intensity and coordinates
of superpixels, which are, respectively, the average intensity
and coordinates of pixels covered by each superpixel, form
the node signal. From these nodes, a k-nearest neighbor graph
is subsequently constructed that vi and v j is connected with
an edge if vi is one of the k-nearest neighbors of v j or v j is
one of the k-nearest neighbors of vi in terms of the Euclidean
distance of their coordinates, with k = 8. The edge weight is
computed as the Gaussian kernel distance

(A)i, j =
⎧⎨
⎩ e

− ‖c(vi)−c(v j)‖2
2

σi σ j , vi ∈ N
(
v j

)
or v j ∈ N(vi)

0, others
(25)

with

σi = 1

k

∑
v j ∈N(vi)

‖c(vi)− c
(
v j

)‖2 (26)

where N(vi) represent the neighborhood of node vi composed
of its k-nearest neighbors and c(vi) indicates its coordinate.
In this way, we construct a weighted graph with a symmetric
and nonnegative adjacency matrix for each image and corre-
spondingly obtain a graph-version MNIST data set with 40–75

3These two data sets have been chosen to address the lack of large-scale
graph data sets, rather than to improve on the state-of-the-art computer vision
algorithms with GNNs.

nodes per graph and a graph-version CIFAR-10 data set with
graph size in 85–150.

1) Network Architecture: To evaluate the versatility of the
proposed pooling operators, we adopt two widely used net-
work architectures with different graph convolution operators.
The first network is the same as the one used on bench-
mark data sets, except that the number of hidden neurons
is increased to 128 per convolution layer in consideration
of the difficulty on these data sets. Besides, another net-
work is built on GraphSage [11] that has achieved signif-
icant performance on node-level tasks. Specifically, a con-
volution module is composed of two graph convolution
layers as commonly used on node-level tasks, as shown
in Fig. 2(c), each of which is adopted as a mean aggregator of
GraphSage

g(m)
(
vl,i

) = MEAN
{

x (m)
(
vl, j

)
, vl, j ∈ N

(
vl,i

)}
(27)

x (m+1)(vl+1,i
) = ReLU

(
ψ

(
Wl,s x (m)

(
vl,i

)||Wl,n g(m)
(
vl,i

)))
(28)

where Wl,s and Wl,n are learnable parameters, “||” indicates
concatenation along the channel dimension, and ReLU as well
as ψ(·) denote the rectified linear unit activation function and
the l2 normalization function, respectively. We use X (m)

l =
[x (m)(vl,1), x (m)(vl,2), . . . , x (m)(vl,nl)]T to represent the graph
features produced by the mth graph convolution layer in the lth
graph convolution module, with X (0)

l = Xl and Xl+1 = X (2)
l .

2) Experimental Settings: Due to the large scale of these
data sets, we are able to evaluate the generalization of models
by splitting the data sets into training set, validation set,
and testing set following the common procedure with the
ratio 55 000:5000:10000 and 45 000:5000:10 000 on MNIST
and CIFAR-10, respectively. The model achieved the best

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: iPool—INFORMATION-BASED POOLING IN HIERARCHICAL GNNs 5041

Fig. 4. Illustration of selected nodes produced by different pooling schemes under GraphSage network architecture on a graph of the MNIST data set. The
color of the node indicates the intensity of node (superpixel), and nodes with red hexagons are the selected ones to form a coarsened graph. (a) Original
graph. (b) gPool. (c) SAGPool. (d) iPool-local. (e) iPool-greedy.

TABLE II

GRAPH CLASSIFICATION RESULTS ON THE MNIST AND CIFAR-10 DATA SETS

performance on the validation set is evaluated on the testing
set. To eliminate the impact of network initialization, we repeat
the evaluation procedure three times with different random
seeds. The mean and standard variation of the test results in
terms of accuracy (acc) and micro-F1 are reported.

The pooling ratio is 0.5 for all the models, including
DiffPool. Since original graphs are weighted graphs, we set λ
in calculating edge weight of the coarsened graph [see (11)]
as 0.8 to preserve information encoded in the edge weight of
the original graph. The learning rate is initialized as 1e−3 and
decays with scale 0.1 per 50 epochs. The other settings are
the same as those in Section V-A.

C. Experimental Results and Analysis

We evaluate the classification performance of various base-
line models on five graph benchmark data sets and two
superpixel-induced data sets (MNIST and CIFAR-10). Even
without any learning parameters, the proposed iPool algo-
rithms still achieve competitive or superior performance com-
pared with several GNNs as well a collection of graph pooling
operators on the graph benchmark data sets, as presented
in Table I. Furthermore, under two kinds of network archi-
tectures, iPool achieves superior performance over the other
hierarchical graph pooling operators on the more complex
MNIST and CIFAR-10 data sets (composed of graphs from ten
categories) in terms of accuracy and micro-F1 scores, as shown
in Table II.

The local iPool strategy outperforms its greedy counter-
part on all the data sets, except for MNIST. Preserving
informative nodes within each neighborhood, the local iPool

strategy preserves better the structure of the graph while
maintaining information of graph signals. As shown in Fig. 3,
the local strategy prefers informative nodes from different
neighborhoods, and thereby, the structure of coarsened graphs
is more consistent with that of the original graphs. Since the
background nodes are uninformative on MNIST, the greedy
iPool strategy globally ignores them and thereby performs
better. As an ablation study, we substitute the l1 norm in
computing neighborhood information gain for the l2 norm.
It achieves competitive performance but degrades a bit on most
data sets, as presented in Table I.

Compared with node-selection-based pooling schemes
including gPool and SAGPool, the local iPool strategy obtains
the best performance on almost all the data sets. In accor-
dance with the proposed neighborhood information gain,
iPool performs better in selecting informative nodes. For
example, compared with the selection of informative nodes
by iPool, gPool prefers the pattern composed of green and
navy blue nodes but loses information of yellow nodes,
as shown in Fig. 3, for its selection guided by the inner
product of node signal and a trainable vector that deter-
mines the specific pattern. In addition, SAGPool ignores
several informative nodes to discriminate the number but
preserves numerous noninformative background nodes on the
MNIST data set, as shown in Fig. 4. In contrast, iPool
strategies select all of the informative nodes that make
up the number, especially the greedy iPool that effectively
selects informative nodes as well as their surrounding nodes.
Furthermore, as it directly takes the induced graph formed by
the selected nodes, SAGPool loses part of structural informa-
tion. Considering the overlap of neighborhood, iPool, espe-

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

5042 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

TABLE III

NUMBER OF PARAMETERS OF DIFFERENT GRAPH POOLING OPERATORS

TABLE IV

GRAPH CLASSIFICATION RESULTS ON THE REDUCED MNIST AND

CIFAR-10 DATA SETS UNDER GRAPHSAGE

NETWORK ARCHITECTURE

cially the local iPool strategy, preserves better the structural
information.

With only basic elements of graphs, iPool does not involve
any learnable parameter, which makes training easy and
reduces storage complexity. As listed in Table III, the number
of parameters in DiffPool is dependent on both the number of
nodes nl+1 and the dimension of features dl . While the number
of parameters in SET2SET is quadratic to the dimension of
features, gPool and SAGPool reduce it to be linear to the
feature dimension. The large number of parameters, such as
O(dl × nl+1) in DiffPool, relies on a large number of labeled
data to train. As presented in Table IV, with only 500 graphs
per category as reduced training sets, iPool still achieves the
best performance on reduced MNIST and CIFAR-10 data sets
in terms of both metrics on the same validation and test
sets. Furthermore, compared with the results achieved with
the full training set, the performance degradation of iPool is
the least among these hierarchical graph pooling operators.
These suggest that the proposed parameter-free iPool opera-
tor alleviates the need for training data and leads to better
generalization.

Furthermore, iPool is also competitive in terms of compu-
tational complexity. Specifically, the complexity of computing
neighborhood information gain is O(|Vl |2dl) (dl denotes the
feature dimension) with dense implementation or O(|El |dl)
with spare implementation, for k = 1 used in the experiments.
The computational complexity of coarsened graph construction
is O(|Vl+1|2ul), where ul is the maximum node degree. Over-
all, the computational complexity of forward propagation is
O(|Vl |2dl +|Vl+1|2ul) = O(|Vl |2(dl +ρ2 ul)) with the pooling
ratio 0 < ρ < 1. At the backward propagation, it directly back-
propagates the gradient without any computation and thereby
with a constant complexity O(1). In contrast, the computa-
tional complexity of DiffPool is O(|Vl |3ρ+|Vl|3ρ2 +|Vl|2ρdl)
for both forward and backward propagations. For gPool,
the computation is dominated by coarsened graph construction

TABLE V

RUNNING TIME (SEC/EPOCH) OF NETWORKS WITH DIFFERENT GRAPH
POOLING OPERATORS AT THE TRAINING PHASE (g/L INDICATES THE

GREEDY/LOCAL STRATEGY OF IPOOL)

O(|Vl |3ρ2) at forward propagation and O(|Vl |dl) at backward
propagation. SAGPool achieves a relatively low computational
complexity O(|Vl |2) for both forward and backward propaga-
tions by directly taking the induced graph as coarsened graphs
at the expense of structural information loss. Thus, for large-
scale graphs (usually |Vl |
 dl), iPool will be faster than
DiffPool and competitive with gPool and SAGPool at forward
propagation. At backward propagation during the training
phase, iPool is the fastest one. In addition, we further compare
the practical training time (including forward and backward
propagation) of the networks with the same architecture except
for adopting different pooling layers on a workstation (GPU:
GeForce GTX 1080 Ti and CPU: Intel Xeon E5-1620 V4).
As listed in Table V, the running time of iPool is competitive
with gPool and SAGPool and is less than DiffPool and
SET2SET. We finally note that the running time may vary
a lot with the implementation and the computational settings.
Our relative comparison, however, confirms the computational
complexity analysis provided earlier, where iPool is shown to
be among the low-complexity methods.

VI. CONCLUSION

We have proposed in this article a parameter-free, low com-
plexity, and interpretable graph pooling operator for GNNs,
which improves their capability of distilling hierarchical rep-
resentations of graph and network data. The new operator
has interesting properties in practice, in that it is mostly
based on local computations, it leads to invariance properties
under graph isomorphism, and it produces coarsened graphs
that faithfully represent the original graph. The proposed
iPool solution further permits to achieve superior or com-
petitive performance on several graph classification data sets.
An interesting future direction is to explore other neigh-
borhood prediction functions to make the neighbor informa-
tion gain in line with more general conditional distribution
of nodes. It is also worthwhile to utilize the proposed
pooling operation with other convolution schemes, such as
GINs [15], and to apply it to other tasks, including link
prediction.

APPENDIX

PROOF OF PROPOSITION 2

Since Gl � G′
l , there exists an edge-preserving bijection

t : Vl −→ V ′
l . (29)

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: iPool—INFORMATION-BASED POOLING IN HIERARCHICAL GNNs 5043

For ∀vl,i ∈ Vl , there is v ′
l,m = t (vl,i) ∈ V ′

l and their
neighborhood information gains are, respectively

γ
(
vl,i

) = ‖ x
(
vl,i

) − f
(
vl,i

) ‖2

=
∥∥∥∥∥∥x

(
vl,i

) − 1

k

k∑
h=1

∑
vl, j ∈N h(vl,i)

(
P̄h

l

)
i j

× x
(
vl, j

)∥∥∥∥∥∥
2

(30)

γ
(
v ′

l,m

) = ‖x
(
v ′

l,m

) − f
(
v ′

l,m

)‖2

=
∥∥∥∥∥∥x

(
v ′

l,m

) − 1

k

k∑
h=1

∑
v ′

l,n∈N h(v ′
l,m)

(
P̄

′h
l

)
mn

× x
(
v ′

l,n

)∥∥∥∥∥∥
2

.

(31)

Since t (·) is edge-preserving, Nh(vl,i) = Nh(v ′
l,m) and any

edge (vl,i , vl, j) ∈ El shares the same weights with its counter-
part (v ′

l,m , v
′
l,n) ∈ E ′

l

(Al)i j = (
A′

l

)
mn
,

(
Ah

l

)
i j

=
(

A
′h
l

)
mn(

P̄h
l

)
i j

=
(

P̄
′h
l

)
mn
. (32)

Therefore,

f
(
vl,i

) = f
(
v ′

l,m

)
, γ

(
vl,i

) = γ
(
v ′

l,m

) ∀vl,i ∈ Vl (33)

and it holds true also for the normalized neighborhood infor-
mation gain. Note that the ranking function takes only the
value of (normalized) neighborhood information gain of nodes
under consideration and that vl,i has the same ranking as
t (vl,i). Then

Vl+1 = V ′
l+1, El+1 = E ′

l+1, Xl+1 = X ′
l+1. (34)

Thus, the iPool operator is invariant to isomorphism.

ACKNOWLEDGMENT

This work was partially performed at the Signal Processing
Laboratory (LTS4), École Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland, when Xing Gao visited Prof.
Pascal Frossard under the support of China Scholarship
Council (CSC).

REFERENCES

[1] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond Euclidean data,” IEEE Signal
Process. Mag., vol. 34, no. 4, pp. 18–42, Jul. 2017.

[2] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” in Proc. Int. Conf. Learn.
Represent., Banff, AB, Canada, Apr. 2014.

[3] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., Barcelona, Spain, Dec. 2016, pp. 3844–3852.

[4] R. Khasanova and P. Frossard, “Graph-based isometry invariant repre-
sentation learning,” in Proc. 34th Int. Conf. Mach. Learn., Sydney, NSW,
Australia, Aug. 2017, pp. 1847–1856.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. 5th Int. Conf. Learn. Represent.,
Toulon, France, Apr. 2017.

[6] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 3693–3702.

[7] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon, “Dynamic graph CNN for learning on point clouds,”
ACM Trans. Graph., vol. 38, no. 5, p. 146, Nov. 2019.

[8] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and
P. Vandergheynst, “Graph signal processing: Overview, challenges, and
applications,” Proc. IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[9] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in Proc. 33rd Int. Conf. Mach. Learn., New York,
NY, USA, Jun. 2016, pp. 2014–2023.

[10] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets:
Graph convolutional neural networks with complex rational spectral fil-
ters,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 97–109, Jan. 2019.

[11] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Adv. Neural Inf. Process. Syst., Long
Beach, CA, USA, Dec. 2017, pp. 1024–1034.

[12] K. Xu et al., “Representation learning on graphs with jumping knowl-
edge networks,” in Proc. 35th Int. Conf. Mach. Learn., Stockholm,
Sweden, Jul. 2018, pp. 5449–5458.

[13] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. 34th
Int. Conf. Mach. Learn., Sydney, NSW, Australia, Aug. 2017,
pp. 1263–1272.

[14] D. K. Duvenaud et al., “Convolutional networks on graphs for learn-
ing molecular fingerprints,” in Proc. Adv. Neural Inf. Process. Syst.,
Montreal, QC, Canada, Dec. 2015, pp. 2224–2232.

[15] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in Proc. 7th Int. Conf. Learn. Represent.,
New Orleans, LA, USA, May 2019.

[16] P. Veličković et al., “Graph attention networks,” in Proc. 6th Int. Conf.
Learn. Represent., Vancouver, BC, Canada, 2018.

[17] T. N. Bui and C. Jones, “Finding good approximate vertex and edge
partitions is NP-hard,” Inf. Process. Lett., vol. 42, no. 3, pp. 153–159,
May 1992.

[18] U. von Luxburg, “A tutorial on spectral clustering,” Statist. Comput.,
vol. 17, no. 4, pp. 395–416, Dec. 2007.

[19] D. I. Shuman, M. J. Faraji, and P. Vandergheynst, “A multiscale pyramid
transform for graph signals,” IEEE Trans. Signal Process., vol. 64, no. 8,
pp. 2119–2134, Apr. 2016.

[20] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, Jan. 1998.

[21] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in
graph domains,” in Proc. IEEE Int. Joint Conf. Neural Netw., Montreal,
QC, Canada, Aug. 2005, pp. 729–734.

[22] F. Scarselli, M. Gori, A. Chung Tsoi, M. Hagenbuchner, and
G. Monfardini, “Computational capabilities of graph neural networks,”
IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 81–102, Jan. 2009.

[23] F. Scarselli, M. Gori, A. Chung Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE Trans. Neural
Netw., vol. 20, no. 1, pp. 61–80, Jan. 2009.

[24] R. Liao, Z. Zhao, R. Urtasun, and R. Zemel, “LanczosNet: Multi-scale
deep graph convolutional networks,” in Proc. 7th Int. Conf. Learn.
Represent., New Orleans, LA, USA, May 2019.

[25] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proc. 32nd AAAI Conf.
Artif. Intell., New Orleans, LA, USA, Feb. 2018, pp. 4438–4445.

[26] D. Ron, I. Safro, and A. Brandt, “Relaxation-based coarsening and
multiscale graph organization,” Multiscale Modeling Simul., vol. 9, no. 1,
pp. 407–423, Mar. 2011.

[27] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors a multilevel approach,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 11, pp. 1944–1957, Nov. 2007.

[28] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to
sequence for sets,” in Proc. Int. Conf. Learn. Represent., San Diego,
CA, USA, May 2015.

[29] H. Gao and S. Ji, “Graph U-Nets,” in Proc. 36th Int. Conf. Mach. Learn.,
Long Beach, CA, USA, Jun. 2019, pp. 2083–2092.

[30] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proc.
36th Int. Conf. Mach. Learn., Long Beach, CA, USA, Jun. 2019,
pp. 3734–3743.

[31] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature
pooling in visual recognition,” in Proc. 27th Int. Conf. Mach. Learn.,
Haifa, Israel, Jun. 2010, pp. 111–118.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., Lake Tahoe, NV, USA, Dec. 2012, pp. 1097–1105.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

5044 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

[33] Z. Ying et al., “Hierarchical graph representation learning with differen-
tiable pooling,” in Proc. Adv. Neural Inf. Process. Syst., Montreal, QC,
Canada, Dec. 2018, pp. 4805–4815.

[34] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional
networks with EigenPooling,” in Proc. 25th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Anchorage, AK, USA, Jul. 2019,
pp. 723–731.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., San Diego, CA, USA, May 2015.

[36] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc.
Adv. Neural Inf. Process. Syst., Autodiff Workshop, Long Beach,
CA, USA, Dec. 2017. [Online]. Available: https://openreview.net/pdf?
id=BJJsrmfCZ

[37] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[38] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Univ. of Toronto, Toronto, ON, Canada, Tech. Rep., Apr. 2009.

[39] B. Knyazev, G. W. Taylor, and M. Amer, “Understanding attention
and generalization in graph neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., Vancouver, BC, Canada, Dec. 2019, pp. 4202–4212.

[40] V. Prakash Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson,
“Benchmarking graph neural networks,” 2020, arXiv:2003.00982.
[Online]. Available: http://arxiv.org/abs/2003.00982

[41] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282,
Nov. 2012.

Xing Gao received the B.S. degree in electronic
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2015, where he is currently
pursuing the Ph.D. degree with the Department of
Electronic Engineering.

From 2018 to 2019, he was a guest Ph.D. Student
with the Signal Processing Laboratory (LTS4),
École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland. His research focuses on
developing novel algorithms on the basis of the
intersection of deep learning and signal processing

to learn representation of data, especially representation learning of graph data
and images.

Wenrui Dai (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electronic engineer-
ing from Shanghai Jiao Tong University (SJTU),
Shanghai, China, in 2005, 2008, and 2014,
respectively.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
SJTU. Before joining SJTU, he was with the faculty
of The University of Texas Health Science Center
at Houston, Houston, TX, USA, from 2018 to 2019.
He was a Post-Doctoral Scholar with the Department

of Computer Science and Engineering, SJTU, from 2014 to 2015, and the
Department of Biomedical Informatics, University of California at San Diego,
San Diego, CA, USA, from 2015 to 2018. His research interests include
learning-based image/video coding, image/signal processing, and predictive
modeling.

Chenglin Li (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electronic engineer-
ing from Shanghai Jiao Tong University, Shanghai,
China, in 2007, 2009, and 2015, respectively.

From 2011 to 2013, he was a Visiting Ph.D.
Student with the Electrical and Computer Engineer-
ing Department, University of Florida, Gainesville,
FL, USA. From 2015 to 2017, he was a Post-
Doctoral Research Fellow with the Signal Processing
Laboratory (LTS4), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, Switzerland. From

2017 to 2018, he was a Senior Researcher with the Chair of Media Technology
(LMT), Technical University of Munich (TUM), Munich, Germany, supported
by the Hildegard Maier Research Fellowship of the Alexander von Hum-
boldt Foundation for post-doctoral researchers. Since 2018, he has been an
Associate Professor with the Department of Electronic Engineering, Shanghai
Jiao Tong University. His main research interests include network-oriented
image/video processing and communication, network-based optimization for
video sources, adaptive multimedia communication systems, and caching and
edge computing for multimedia delivery.

Dr. Li was awarded as the Microsoft Research Asia (MSRA) Fellow
in 2011 and the Alexander von Humboldt Research Fellow in 2017. He
received the IEEE International Conference on Visual Communications and
Image Processing (VCIP) Best 10% Paper Award in 2016.

Hongkai Xiong (Senior Member, IEEE) received
the Ph.D. degree from Shanghai Jiao Tong Univer-
sity (SJTU), Shanghai, China, in 2003.

He was an Associate Professor from 2005 to
2011 and an Assistant Professor from 2003 to 2005.
From 2007 to 2008, he was a Research Scholar
with the Department of Electrical and Computer
Engineering, Carnegie Mellon University (CMU),
Pittsburgh, PA, USA. From 2011 to 2012, he was the
Scientist of the Division of Biomedical Informatics,
University of California at San Diego (UCSD), San

Diego, CA, USA. He is currently a Distinguished Professor with the Depart-
ment of Electronic Engineering and the Department of Computer Science
and Engineering, SJTU. Since then, he has been with the Department of
Electronic Engineering, SJTU. He has published more than 200 refereed
journal and conference papers. His research interests include multimedia
signal processing, image and video coding, multimedia communication and
networking, computer vision, biomedical informatics, and machine learning.

Dr. Xiong was a coauthor of the Best Paper in IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)
2013, the Best Student Paper in IEEE International Conference on Visual
Communications and Image Processing (VCIP) 2014, the Top 10% Paper
Award in VCIP 2016, and the Top 10% Paper Award in IEEE International
Workshop on Multimedia Signal Processing (MMSP) 2011. He is an Associate
Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY (TCSVT).

Pascal Frossard (Fellow, IEEE) was a member
of the Research Staff at the International Busi-
ness Machines Corporation (IBM) T. J. Watson
Research Center, Yorktown Heights, NY, USA, from
2001 to 2003. He has been a Faculty Member
with the École Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland, since 2003, where
he heads the Signal Processing Laboratory (LTS4).
His research interests include network data analy-
sis, image representation and understanding, and
machine learning.

Dr. Frossard is a fellow of ELLIS. He received the Swiss National Science
Foundation (SNSF) Professorship Award in 2003, the IBM Faculty Award
in 2005, the IBM Exploratory Stream Analytics Innovation Award in 2008,
the IEEE TRANSACTIONS ON MULTIMEDIA Best Paper Award in 2011,
the IEEE Signal Processing Magazine Best Paper Award in 2016, and the
Google Faculty Award 2017.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 29,2024 at 07:58:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

