Skip to content
Notary is a project that allows anyone to have trust over arbitrary collections of data
Branch: master
Clone or download
Latest commit 8ff3ca0 Mar 14, 2019
Type Name Latest commit message Commit time
Failed to load latest commit information.
buildscripts Remove duplicated words in comments Feb 21, 2019
client Merge pull request #1430 from truongnh1992/removing-redundant-words Mar 6, 2019
cmd Regenerate test certs Mar 13, 2019
docs Update deprecated links Feb 19, 2019
fixtures Regenerate test certs Mar 13, 2019
hooks add newlines on build hooks so GH doesn't warn Oct 13, 2016
migrations Migrate tool now returns an actual error value` May 8, 2017
notarysql Regenerate test certs Mar 13, 2019
proto remote key storage via a GRPC implementation of the trustmanager.Stor… Feb 22, 2017
server Merge pull request #1430 from truongnh1992/removing-redundant-words Mar 6, 2019
storage Fix many typos Feb 27, 2019
trustmanager Do not leak cancellations for contexts May 17, 2018
trustpinning updating imports and paths for new notary location Oct 26, 2017
.gitignore Bump notary version to 0.6.1 and add changelog. Apr 10, 2018
Dockerfile Update pkcs#11 library Mar 7, 2019
Jenkinsfile jenkinsfile: skeleton to test github integration Aug 31, 2017
LICENSE at some point we chopped the first line off the license May 31, 2017
MAINTAINERS Add Justin Cormack to Maintainers Aug 10, 2018
MAINTAINERS.ALUMNI remove derek as a maintainer Oct 4, 2017 formalizing the maintainers rules into a file May 30, 2017
NOTARY_VERSION Update pkcs#11 library Mar 7, 2019
codecov.yml add tls to tests Feb 22, 2017
const_nowindows.go Do not support SIGUSR1 and SIGUSR2 syscall handling in windows Sep 22, 2016
development.mysql.yml bump mariadb to 10.1.28 Oct 10, 2017
docker-compose.rethink.yml Bump rethink version due to vulnerabilites (see docker hub vulnerabil… Jun 9, 2016
docker-compose.yml bump mariadb to 10.1.28 Oct 10, 2017
server.minimal.Dockerfile Update to Go 1.11.5 Feb 25, 2019
signer.Dockerfile Update to Go 1.11.5 Feb 25, 2019
vendor.conf Update pkcs#11 library Mar 7, 2019


GoDoc Circle CI CodeCov GoReportCard FOSSA Status


The Notary project has officially been accepted in to the Cloud Native Computing Foundation (CNCF). It has moved to Any downstream consumers should update their Go imports to use this new location, which will be the canonical location going forward.

We have moved the repo in GitHub, which will allow existing importers to continue using the old location via GitHub's redirect.


The Notary project comprises a server and a client for running and interacting with trusted collections. See the service architecture documentation for more information.

Notary aims to make the internet more secure by making it easy for people to publish and verify content. We often rely on TLS to secure our communications with a web server, which is inherently flawed, as any compromise of the server enables malicious content to be substituted for the legitimate content.

With Notary, publishers can sign their content offline using keys kept highly secure. Once the publisher is ready to make the content available, they can push their signed trusted collection to a Notary Server.

Consumers, having acquired the publisher's public key through a secure channel, can then communicate with any Notary server or (insecure) mirror, relying only on the publisher's key to determine the validity and integrity of the received content.


Notary is based on The Update Framework, a secure general design for the problem of software distribution and updates. By using TUF, Notary achieves a number of key advantages:

  • Survivable Key Compromise: Content publishers must manage keys in order to sign their content. Signing keys may be compromised or lost so systems must be designed in order to be flexible and recoverable in the case of key compromise. TUF's notion of key roles is utilized to separate responsibilities across a hierarchy of keys such that loss of any particular key (except the root role) by itself is not fatal to the security of the system.
  • Freshness Guarantees: Replay attacks are a common problem in designing secure systems, where previously valid payloads are replayed to trick another system. The same problem exists in the software update systems, where old signed can be presented as the most recent. Notary makes use of timestamping on publishing so that consumers can know that they are receiving the most up to date content. This is particularly important when dealing with software update where old vulnerable versions could be used to attack users.
  • Configurable Trust Thresholds: Oftentimes there are a large number of publishers that are allowed to publish a particular piece of content. For example, open source projects where there are a number of core maintainers. Trust thresholds can be used so that content consumers require a configurable number of signatures on a piece of content in order to trust it. Using thresholds increases security so that loss of individual signing keys doesn't allow publishing of malicious content.
  • Signing Delegation: To allow for flexible publishing of trusted collections, a content publisher can delegate part of their collection to another signer. This delegation is represented as signed metadata so that a consumer of the content can verify both the content and the delegation.
  • Use of Existing Distribution: Notary's trust guarantees are not tied at all to particular distribution channels from which content is delivered. Therefore, trust can be added to any existing content delivery mechanism.
  • Untrusted Mirrors and Transport: All of the notary metadata can be mirrored and distributed via arbitrary channels.


Any security vulnerabilities can be reported to

See Notary's service architecture docs for more information about our threat model, which details the varying survivability and severities for key compromise as well as mitigations.

Security Audits

Notary has had two public security audits:

Getting started with the Notary CLI

Get the Notary Client CLI binary from the official releases page or you can build one yourself. The version of the Notary server and signer should be greater than or equal to Notary CLI's version to ensure feature compatibility (ex: CLI version 0.2, server/signer version >= 0.2), and all official releases are associated with GitHub tags.

To use the Notary CLI with Docker hub images, have a look at Notary's getting started docs.

For more advanced usage, see the advanced usage docs.

To use the CLI against a local Notary server rather than against Docker Hub:

  1. Ensure that you have docker and docker-compose installed.

  2. git clone and from the cloned repository path, start up a local Notary server and signer and copy the config file and testing certs to your local Notary config directory:

    $ docker-compose build
    $ docker-compose up -d
    $ mkdir -p ~/.notary && cp cmd/notary/config.json cmd/notary/root-ca.crt ~/.notary
  3. Add notary-server to your /etc/hosts, or if using docker-machine, add $(docker-machine ip) notary-server).

You can run through the examples in the getting started docs and advanced usage docs, but without the -s (server URL) argument to the notary command since the server URL is specified already in the configuration, file you copied.

You can also leave off the -d ~/.docker/trust argument if you do not care to use notary with Docker images.

Building Notary

Note that Notary's latest stable release is at the head of the releases branch. The master branch is the development branch and contains features for the next release.


  • Go >= 1.7.1

Set GOPATH. Then, run:

$ go get
# build with pcks11 support by default to support yubikey
$ go install -tags pkcs11
$ notary

To build the server and signer, run docker-compose build.


FOSSA Status

You can’t perform that action at this time.
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session.