Generic Bidirectional Typing for Dependent Type Theories

Thiago Felicissimo

33rd European Symposium on Programming
April 10, 2024

The syntax of type theory

When defining syntax of programming languages and type theories, many choices:

The syntax of type theory

When defining syntax of programming languages and type theories, many choices:

Fully-annotated syntax keeps track of all annotations

$$
t @_{A, x . B} u \quad\langle t, u\rangle_{A, x . B} \quad t::_{A} l \quad \ldots
$$

What one gets when seeing type theory as an algebraic theory
Arguably the most canonical choice

The syntax of type theory

When defining syntax of programming languages and type theories, many choices:

Fully-annotated syntax keeps track of all annotations

$$
t @_{A, x . B} u \quad\langle t, u\rangle_{A, x . B} \quad t::_{A} l \quad \ldots
$$

What one gets when seeing type theory as an algebraic theory
Arguably the most canonical choice, but the syntax is unusable in practice...

The syntax of type theory

When defining syntax of programming languages and type theories, many choices:

Fully-annotated syntax keeps track of all annotations

$$
t @_{A, x \cdot B} u \quad\langle t, u\rangle_{A, x \cdot B} \quad t:_{A} l \quad \ldots
$$

What one gets when seeing type theory as an algebraic theory
Arguably the most canonical choice, but the syntax is unusable in practice...
Non-annotated syntax restores usability by eliding parameter annotations

$$
t u \quad\langle t, u\rangle \quad t:: l
$$

The syntax of type theory

When defining syntax of programming languages and type theories, many choices:

Fully-annotated syntax keeps track of all annotations

$$
t @_{A, x \cdot B} u \quad\langle t, u\rangle_{A, x \cdot B} \quad t::_{A} l \quad \ldots
$$

What one gets when seeing type theory as an algebraic theory
Arguably the most canonical choice, but the syntax is unusable in practice...
Non-annotated syntax restores usability by eliding parameter annotations

$$
t u \quad\langle t, u\rangle \quad t:: l
$$

Syntax so common that many don't realize that an omission is being made

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\begin{gathered}
\Gamma \vdash A \text { type } \quad \Gamma, x: A \vdash B \text { type } \quad \Gamma \vdash t: \Pi x: A . B \quad \Gamma \vdash u: A \\
\hline \Gamma \vdash t u: B[u / x]
\end{gathered}
$$

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\begin{array}{ccc}
\Gamma \vdash ? \text { type } \quad \Gamma, x: ? \vdash ? \text { type } \quad \Gamma \vdash t: ? & \Gamma \vdash u: ? \\
\hline \Gamma \vdash t u: ?
\end{array}
$$

How to find A and B if they're not stored in syntax?

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\begin{array}{ccc}
\Gamma \vdash ? \text { type } \quad \Gamma, x: ? \vdash ? \text { type } \quad \Gamma \vdash t: ? & \Gamma \vdash u: ? \\
\hline \Gamma \vdash t u: ?
\end{array}
$$

How to find A and B if they're not stored in syntax?

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\begin{array}{ccc}
\Gamma \vdash ? \text { type } \quad \Gamma, x: ? \vdash ? \text { type } \quad \Gamma \vdash t: ? & \Gamma \vdash u: ? \\
\hline \Gamma \vdash t u: ?
\end{array}
$$

How to find A and B if they're not stored in syntax?

Bidirectional typing Decompose $t: A$ in modes check $t \Leftarrow A$ and infer $t \Rightarrow A$

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\begin{gathered}
\Gamma \vdash ? \text { type } \quad \Gamma, x: ? \vdash ? \text { type } \quad \Gamma \vdash t: ? \\
\Gamma \vdash t u: ?
\end{gathered}
$$

How to find A and B if they're not stored in syntax?

Bidirectional typing Decompose $t: A$ in modes check $t \Leftarrow A$ and infer $t \Rightarrow A$
Allow specify flow of type information in typing rules, explain how to use them

$$
\begin{array}{ccc}
\Gamma \vdash t \Rightarrow C & C \longrightarrow{ }^{*} \Pi x: A . B \quad \Gamma \vdash u \Leftarrow A \\
& \Gamma \vdash t u \Rightarrow B[u / x] &
\end{array}
$$

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\begin{gathered}
\Gamma \vdash ? \text { type } \quad \Gamma, x: ? \vdash ? \text { type } \quad \Gamma \vdash t: ? \\
\Gamma \vdash t u: ?
\end{gathered}
$$

How to find A and B if they're not stored in syntax?

Bidirectional typing Decompose $t: A$ in modes check $t \Leftarrow A$ and infer $t \Rightarrow A$
Allow specify flow of type information in typing rules, explain how to use them

$$
\Gamma \vdash t \Rightarrow ?
$$

$$
\Gamma \vdash t u \Rightarrow ?
$$

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\begin{gathered}
\Gamma \vdash ? \text { type } \quad \Gamma, x: ? \vdash ? \text { type } \quad \Gamma \vdash t: ? \\
\Gamma \vdash t u: ?
\end{gathered}
$$

How to find A and B if they're not stored in syntax?

Bidirectional typing Decompose $t: A$ in modes check $t \Leftarrow A$ and infer $t \Rightarrow A$
Allow specify flow of type information in typing rules, explain how to use them

$$
\Gamma \vdash t \Rightarrow C
$$

$$
\Gamma \vdash t u \Rightarrow ?
$$

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\begin{gathered}
\Gamma \vdash ? \text { type } \quad \Gamma, x: ? \vdash ? \text { type } \quad \Gamma \vdash t: ? \\
\Gamma \vdash t u: ?
\end{gathered}
$$

How to find A and B if they're not stored in syntax?

Bidirectional typing Decompose $t: A$ in modes check $t \Leftarrow A$ and infer $t \Rightarrow A$
Allow specify flow of type information in typing rules, explain how to use them

$$
\frac{\Gamma \vdash t \Rightarrow C \quad C \longrightarrow{ }^{*} \Pi x: A . B}{\Gamma \vdash t u \Rightarrow ?}
$$

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\begin{gathered}
\Gamma \vdash ? \text { type } \quad \Gamma, x: ? \vdash ? \text { type } \quad \Gamma \vdash t: ? \\
\Gamma \vdash t u: ?
\end{gathered}
$$

How to find A and B if they're not stored in syntax?

Bidirectional typing Decompose $t: A$ in modes check $t \Leftarrow A$ and infer $t \Rightarrow A$
Allow specify flow of type information in typing rules, explain how to use them

$$
\frac{\Gamma \vdash t \Rightarrow C \quad C \longrightarrow{ }^{*} \Pi x: A . B \quad \Gamma \vdash u \Leftarrow ?}{\Gamma \vdash t u \Rightarrow ?}
$$

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\begin{gathered}
\Gamma \vdash ? \text { type } \quad \Gamma, x: ? \vdash ? \text { type } \quad \Gamma \vdash t: ? \\
\Gamma \vdash t u: ?
\end{gathered}
$$

How to find A and B if they're not stored in syntax?

Bidirectional typing Decompose $t: A$ in modes check $t \Leftarrow A$ and infer $t \Rightarrow A$
Allow specify flow of type information in typing rules, explain how to use them

$$
\frac{\Gamma \vdash t \Rightarrow C \quad C \longrightarrow^{*} \Pi x: A . B \quad \Gamma \vdash u \Leftarrow A}{\Gamma \vdash t u \Rightarrow ?}
$$

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\begin{gathered}
\Gamma \vdash ? \text { type } \quad \Gamma, x: ? \vdash ? \text { type } \quad \Gamma \vdash t: ? \\
\Gamma \vdash t u: ?
\end{gathered}
$$

How to find A and B if they're not stored in syntax?

Bidirectional typing Decompose $t: A$ in modes check $t \Leftarrow A$ and infer $t \Rightarrow A$
Allow specify flow of type information in typing rules, explain how to use them

$$
\begin{array}{ccc}
\Gamma \vdash t \Rightarrow C & C \longrightarrow{ }^{*} \Pi x: A . B \quad \Gamma \vdash u \Leftarrow A \\
& \Gamma \vdash t u \Rightarrow B[u / x] &
\end{array}
$$

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

$$
\frac{\Gamma \vdash \text { ? type } \quad \Gamma, x: ? \vdash \text { ? type } \quad \Gamma \vdash t: ? \quad \Gamma \vdash u: ?}{\Gamma \vdash t u: ?}
$$

How to find A and B if they're not stored in syntax?

Bidirectional typing Decompose $t: A$ in modes check $t \Leftarrow A$ and infer $t \Rightarrow A$
Allow specify flow of type information in typing rules, explain how to use them

$$
\begin{array}{lll}
\Gamma \vdash t \Rightarrow C & C \longrightarrow{ }^{*} \Pi x: A \cdot B & \Gamma \vdash u \Leftarrow A \\
\hline & \Gamma \vdash t u \Rightarrow B[u / x]
\end{array}
$$

Complements unannotated syntax, locally explains how to recover annotations

Contribution

Bidirectional type systems have been studied and proposed for many theories
However, general guidelines have remained informal, no unified framework

Contribution

Bidirectional type systems have been studied and proposed for many theories However, general guidelines have remained informal, no unified framework

This work Generic account of bidirectional typing for class of type theories

Contribution

Bidirectional type systems have been studied and proposed for many theories However, general guidelines have remained informal, no unified framework

This work Generic account of bidirectional typing for class of type theories

Roadmap

Contribution

Bidirectional type systems have been studied and proposed for many theories However, general guidelines have remained informal, no unified framework

This work Generic account of bidirectional typing for class of type theories

Roadmap

1. We give a general definition of type theories (or equivalently, a logical framework) supporting non-annotated syntaxes

Contribution

Bidirectional type systems have been studied and proposed for many theories However, general guidelines have remained informal, no unified framework

This work Generic account of bidirectional typing for class of type theories

Roadmap

1. We give a general definition of type theories (or equivalently, a logical framework) supporting non-annotated syntaxes
2. For each theory, we define declarative and bidirectional type systems

Contribution

Bidirectional type systems have been studied and proposed for many theories However, general guidelines have remained informal, no unified framework

This work Generic account of bidirectional typing for class of type theories

Roadmap

1. We give a general definition of type theories (or equivalently, a logical framework) supporting non-annotated syntaxes
2. For each theory, we define declarative and bidirectional type systems
3. We show, in a theory-independent fashion, their equivalence

BiTTs: A theory-independent bidirectional type-checker

Our framework not only of theoretic interest, can also have practical applications

BiTTs: A theory-independent bidirectional type-checker

Our framework not only of theoretic interest, can also have practical applications Implemented in the theory-independent bidirectional type-checker BiTTs

```
constructor List () (A : Ty) : Ty
constructor nil (A : Ty) () : Tm(List(A))
constructor cons (A : Ty) (a : Tm(A), l : Tm(List(A))) : Tm(List(A))
destructor ind_List (A : Ty) [l : Tm(List(A))] (P {x : Tm(List(A))} : Ty, l_nil : Tm(P{nil}),
    l_cons {a : Tm(A), l : Tm(List(A)), pl : Tm(P{l})}: Tm}(P{\operatorname{cons(a,l)}))
    : Tm(P{l})
equation ind_List(nil, l. P{l}, l_nil, a l pl. l_cons{a, l, pl}) --> l_nil
equation ind_List(cons(a, l), l. P{l}, l_nil, a l pl. l_cons{a, l, pl}) -->
    l_cons{a, l, ind_List(l, l. P{l}, l_nil, a l pl. l_cons{a, l, pl})}
let 0::1::2::3::nil : Tm(List(\mathbb{N})) := cons(0, cons(S(0), cons(S(S(0)), cons(S(S(S(0))), nil))))
let sum_of_list : Tm(\Pi(List(\mathbb{N}), _. NN)) := \lambda(l. ind_List(l, _. N, 0, x _ acc. @(@ (+, x), acc)))
assert @(sum_of_list, 0::1::2::3::nil) = S(S(S(S(S(S(0))))))
```


BiTTs: A theory-independent bidirectional type-checker

Our framework not only of theoretic interest, can also have practical applications Implemented in the theory-independent bidirectional type-checker BiTTs

```
constructor List () (A : Ty) : Ty
constructor nil (A : Ty) () : Tm(List(A))
constructor cons (A : Ty) (a : Tm(A), l : Tm(List(A))) : Tm(List(A))
destructor ind_List (A : Ty) [l : Tm(List(A))] (P {x: Tm(List(A))} : Ty, l_nil : Tm(P{nil}),
    l_cons {a : Tm(A), l : Tm(List(A)), pl : Tm(P{l})} : Tm}(P{\operatorname{cons(a,l)}))
    : Tm(P{l})
equation ind_List(nil, l. P{l}, l_nil, a l pl. l_cons{a, l, pl}) --> l_nil
equation ind_List(cons(a, l), l. \overline{P}{l}, l_nil, a \ pl. l_cons{a, l, pl}) -->
    l_cons{a, l, ind_List(l, l. P{l}, l_nil, a l pl. l_cons{a, l, pl})}
let 0::1::2::3::nil : Tm(List(\mathbb{N})) := cons(0, cons(S(0), cons(S(S(0)), cons(S(S(S(0))), nil))))
let sum_of_list : Tm(\Pi(List(\mathbb{N}), _. N)) := \lambda(l. ind_List(l, _. N, 0, x _ acc. @(@(+, x), acc)))
assert @(sum_of_list, 0::1::2::3::nil) = S(S(S(S(S(S(0))))))
```

Many theories supported: flavours of MLTT, HOL, etc (see the implementation)

BiTTs: A theory-independent bidirectional type-checker

Our framework not only of theoretic interest, can also have practical applications Implemented in the theory-independent bidirectional type-checker BiTTs

```
constructor List () (A : Ty) : Ty
constructor nil (A : Ty) () : Tm(List(A))
constructor cons (A : Ty) (a : Tm(A), l : Tm(List(A))) : Tm(List(A))
destructor ind_List (A : Ty) [l : Tm(List(A))] (P {x : Tm(List(A))} : Ty, l_nil : Tm(P{nil}),
        l_cons {a : Tm(A), l : Tm(List(A)), pl: Tm(P{l})}:Tm(P{cons(a,l)}))
        : Tm(P{l})
equation ind_List(nil, l. P{l}, l_nil, a l pl. l_cons{a, l, pl}) --> l_nil
equation ind_List(cons(a, l), l. \overline{P}{l}, l_nil, a l pl. l_cons{a, l, pl}) -->
    l_cons{a, l, ind_List(l, l. P{l}, l_nil, a l pl. l_cons{a, l, pl})}
let 0::1::2::3::nil : Tm(List(\mathbb{N})) := cons(0, cons(S(0), cons(S(S(0)), cons(S(S(S(0))), nil))))
let sum_of_list : Tm(\Pi(List(\mathbb{N}), _. NN)) := \lambda(l. ind_List(l, _. N, 0, x _ acc. @(@ (+, x), acc)))
assert @(sum_of_list, 0::1::2::3::nil) = S(S(S(S(S(S(0))))))
```

Many theories supported: flavours of MLTT, HOL, etc (see the implementation)
Compared with other theory-independent type-checkers (Dedukti, Andromeda) non-annotated syntax should allow for better performances

The theories

The theories

A theory \mathbb{T} is made of schematic typing rules and rewrite rules
3 schematic typing rules: sort rules, constructor rules and destructor rules

The theories

A theory \mathbb{T} is made of schematic typing rules and rewrite rules
3 schematic typing rules: sort rules, constructor rules and destructor rules
Sort rules A sort ${ }^{1}$ is a term T that can appear in the right of typing judgment $t: T$
Used to represent the judgment forms of the theory (as in GATs, SOGATs, ...)

[^0]
The theories

A theory \mathbb{T} is made of schematic typing rules and rewrite rules
3 schematic typing rules: sort rules, constructor rules and destructor rules
Sort rules A sort ${ }^{1}$ is a term T that can appear in the right of typing judgment $t: T$
Used to represent the judgment forms of the theory (as in GATs, SOGATs, ...)
Example: In MLTT, 2 judgment forms: \square type and $\square: A$ for a type A
$\overline{\text { Ty sort }} \quad \frac{A: \text { Ty }}{\operatorname{Tm}(A) \text { sort }}$

[^1]
The theories

A theory \mathbb{T} is made of schematic typing rules and rewrite rules
3 schematic typing rules: sort rules, constructor rules and destructor rules
Sort rules A sort ${ }^{1}$ is a term T that can appear in the right of typing judgment $t: T$
Used to represent the judgment forms of the theory (as in GATs, SOGATs, ...)
Example: In MLTT, 2 judgment forms: \square type and $\square: A$ for a type A
$\overline{\text { Ty sort }} \quad \frac{A: \text { Ty }}{\operatorname{Tm}(A) \text { sort }}$

Formally, of the form $c(\Theta)$ sort, with Θ metavariable context representing premises
Example in formal notation: $\mathrm{Ty}(\cdot)$ sort and $\operatorname{Tm}(\mathrm{A}: \mathrm{Ty})$ sort

[^2]
The theories

Constructor rules In bidirectional typing, constructors support type-checking, so missing annotations recovered from the sort given as input

The theories

Constructor rules In bidirectional typing, constructors support type-checking, so missing annotations recovered from the sort given as input

Two groups of premises: Θ_{1} erased and Θ_{2} kept in the syntax Sort of the rule should be a pattern U^{P} containing the metavariables of Θ_{1}

The theories

Constructor rules In bidirectional typing, constructors support type-checking, so missing annotations recovered from the sort given as input

Two groups of premises: Θ_{1} erased and Θ_{2} kept in the syntax
Sort of the rule should be a pattern U^{P} containing the metavariables of Θ_{1}

$$
\frac{\mathrm{A}: \operatorname{Ty} \quad x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{B}: \mathrm{Ty}}{\Pi(\mathrm{~A}, x \cdot \mathrm{~B}\{x\}): \mathrm{Ty}}
$$

$$
\begin{gathered}
\mathrm{A}: \operatorname{Ty} \quad x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{B}: \operatorname{Ty} \\
\frac{x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{t}: \operatorname{Tm}(\mathrm{B}\{x\})}{\lambda(x . \mathrm{t}\{x\}): \operatorname{Tm}(\Pi(\mathrm{A}, x \cdot \mathrm{~B}\{x\}))}
\end{gathered}
$$

The theories

Constructor rules In bidirectional typing, constructors support type-checking, so missing annotations recovered from the sort given as input

Two groups of premises: Θ_{1} erased and Θ_{2} kept in the syntax
Sort of the rule should be a pattern U^{P} containing the metavariables of Θ_{1}

$$
\frac{\mathrm{A}: \operatorname{Ty} \quad x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{B}: \mathrm{Ty}}{\Pi(\mathrm{~A}, x \cdot \mathrm{~B}\{x\}): \mathrm{Ty}}
$$

$$
\begin{aligned}
& \mathrm{A}: \operatorname{Ty} \quad x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{B}: \operatorname{Ty} \\
& \frac{x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{t}: \operatorname{Tm}(\mathrm{B}\{x\})}{\lambda(x . \mathrm{t}\{x\}): \operatorname{Tm}(\Pi(\mathrm{A}, x \cdot \mathrm{~B}\{x\}))}
\end{aligned}
$$

Formally, constructor rules of the form $c\left(\Theta_{1} ; \Theta_{2}\right): U^{\mathrm{P}}$, with U^{P} pattern on Θ_{1}
Example in formal notation: $\Pi(\cdot ; \mathrm{A}: \mathrm{Ty}, \mathrm{B}\{x: \operatorname{Tm}(\mathrm{A})\}: \mathrm{Ty}):$ Ty and $\lambda(A: \operatorname{Ty}, \mathrm{B}\{x: \operatorname{Tm}(\mathrm{A})\}: \operatorname{Ty} ; \mathrm{t}\{x: \operatorname{Tm}(\mathrm{A})\}: \operatorname{Tm}(\mathrm{B}\{x\})): \operatorname{Tm}(\Pi(\mathrm{A}, x \cdot \mathrm{~B}\{x\}))$

The theories

Destructor rules In bidirectional typing, destructors support type-inference, so missing arguments are recovered by inferring a principal argument

The theories

Destructor rules In bidirectional typing, destructors support type-inference, so missing arguments are recovered by inferring a principal argument

Two groups of premises: Θ_{1} erased and Θ_{2} kept in the syntax And a principal argument x: T^{P}, whose sort T^{P} is a pattern on Θ_{1}

The theories

Destructor rules In bidirectional typing, destructors support type-inference, so missing arguments are recovered by inferring a principal argument

Two groups of premises: Θ_{1} erased and Θ_{2} kept in the syntax And a principal argument x: T^{P}, whose sort T^{P} is a pattern on Θ_{1}

$$
\frac{\mathrm{A}: \operatorname{Ty} \quad x: \operatorname{Tm}(\mathrm{A})+\mathrm{B}: \operatorname{Ty} \quad \mathrm{t}: \operatorname{Tm}(\Pi(\mathrm{A}, x \cdot \mathrm{~B}\{x\})) \quad \mathrm{u}: \operatorname{Tm}(\mathrm{A})}{@(\mathrm{t}, \mathrm{u}): \operatorname{Tm}(\mathrm{B}\{\mathrm{t}\})}
$$

The theories

Destructor rules In bidirectional typing, destructors support type-inference, so missing arguments are recovered by inferring a principal argument

Two groups of premises: Θ_{1} erased and Θ_{2} kept in the syntax And a principal argument x: T^{P}, whose sort T^{P} is a pattern on Θ_{1}

$$
\frac{\mathrm{A}: \operatorname{Ty} \quad x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{B}: \operatorname{Ty} \quad \mathrm{t}: \operatorname{Tm}(\Pi(\mathrm{A}, x \cdot \mathrm{~B}\{x\})) \quad \mathrm{u}: \operatorname{Tm}(\mathrm{A})}{@(\mathrm{t}, \mathrm{u}): \operatorname{Tm}(\mathrm{B}\{\mathrm{t}\})}
$$

Formally, of the form $d\left(\Theta_{1} ; \mathrm{x}: T^{\mathrm{P}} ; \Theta_{2}\right): U$, with T^{P} a pattern on Θ_{1} Example in formal notation:
@ (A:Ty, $\mathrm{B}\{x: \operatorname{Tm}(\mathrm{A})\}: \operatorname{Ty} ; \mathrm{t}: \operatorname{Tm}(\Pi(\mathrm{A}, x \cdot \mathrm{~B}\{x\})) ; \mathrm{u}: \operatorname{Tm}(\mathrm{A})): \operatorname{Tm}(\mathrm{B}\{\mathrm{u}\})$

The theories

Rewrite rules Specify the definitional equality (aka conversion) \equiv of the theory

$$
@(\lambda(x . \mathrm{t}\{x\}), \mathrm{u}) \longmapsto \mathrm{t}\{\mathrm{u}\}
$$

In general, of the form $d\left(\mathbf{t}^{\mathrm{P}}\right) \longmapsto r$

The theories

Rewrite rules Specify the definitional equality (aka conversion) \equiv of the theory

$$
@(\lambda(x . \mathrm{t}\{x\}), \mathrm{u}) \longmapsto \mathrm{t}\{\mathrm{u}\}
$$

In general, of the form $d\left(\mathbf{t}^{\mathrm{P}}\right) \longmapsto r$
Condition: no two left-hand sides unify
Therefore, rewrite systems are orthogonal, hence confluent by construction!

The theories

Rewrite rules Specify the definitional equality (aka conversion) \equiv of the theory

$$
@(\lambda(x . \mathrm{t}\{x\}), \mathrm{u}) \longmapsto \mathrm{t}\{\mathrm{u}\}
$$

In general, of the form $d\left(\mathbf{t}^{\mathrm{P}}\right) \longmapsto r$
Condition: no two left-hand sides unify
Therefore, rewrite systems are orthogonal, hence confluent by construction!
Full example Theory $\mathbb{T}_{\lambda \Pi}$

$$
\begin{aligned}
& \operatorname{Ty}(\cdot) \text { sort } \quad \operatorname{Tm}(A: \operatorname{Ty}) \text { sort } \quad \Pi(\cdot ; \mathrm{A}: \operatorname{Ty}, \mathrm{B}\{x: \operatorname{Tm}(\mathrm{A})\}: \operatorname{Ty}): \operatorname{Ty} \\
& \lambda(\mathrm{A}: \operatorname{Ty}, \mathrm{B}\{x: \operatorname{Tm}(\mathrm{A})\}: \operatorname{Ty} ; \mathrm{t}\{x: \operatorname{Tm}(\mathrm{A})\}: \operatorname{Tm}(\mathrm{B}\{x\})): \operatorname{Tm}(\Pi(\mathrm{A}, x \cdot \mathrm{~B}\{x\})) \\
& @(\mathrm{~A}: \operatorname{Ty}, \mathrm{B}\{x: \operatorname{Tm}(\mathrm{A})\}: \operatorname{Ty} ; \mathrm{t}: \operatorname{Tm}(\Pi(\mathrm{A}, x \cdot \mathrm{~B}\{x\})) ; \mathrm{u}: \operatorname{Tm}(\mathrm{A})): \operatorname{Tm}(\mathrm{B}\{\mathrm{u}\}) \\
& @(\lambda(x . \mathrm{t}\{x\}), \mathrm{u}) \longmapsto \mathrm{t}\{\mathrm{u}\}
\end{aligned}
$$

Declarative type system

Each theory \mathbb{T} defines a declarative type system, with main judgment $\Theta ; \Gamma \vdash t: T$

Declarative type system

Each theory \mathbb{T} defines a declarative type system, with main judgment $\Theta ; \Gamma \vdash t: T$ Main typing rules instantiate the schematic rules of \mathbb{T} :

$$
\begin{aligned}
& \text { Dest } \\
& d\left(\Xi_{1} ; \mathrm{x}: T ; \Xi_{2}\right): U \in \mathbb{T} \frac{\Theta ; \Gamma \vdash \mathbf{t}, t, \mathbf{u}: \Xi_{1} \cdot(\mathrm{x}: T) \cdot \Xi_{2}}{\Theta ; \Gamma \vdash d(t, \mathbf{u}): U[\mathbf{t}, t, \mathbf{u}]}
\end{aligned}
$$

Declarative type system

Each theory \mathbb{T} defines a declarative type system, with main judgment $\Theta ; \Gamma \vdash t: T$ Main typing rules instantiate the schematic rules of \mathbb{T} :

$$
\begin{gathered}
\Theta ; \Gamma \vdash \quad \Theta ; \Gamma \vdash A: \operatorname{Ty} \quad \Theta ; \Gamma, x: \operatorname{Tm}(A) \vdash B: \operatorname{Ty} \\
\begin{array}{c}
\Theta ; \Gamma \vdash t: \operatorname{Tm}(\Pi(A, x . B)) \quad \Theta ; \Gamma \vdash u: \operatorname{Tm}(A) \\
\Theta ; \Gamma \vdash @(t, u): \operatorname{Tm}(B[u / x])
\end{array} .
\end{gathered}
$$

(for @(A: $\left.\operatorname{Ty}, \mathrm{B}\{x: \operatorname{Tm}(\mathrm{A})\}: \operatorname{Ty} ; \mathrm{t}: \operatorname{Tm}(\Pi(\mathrm{A}, x . \mathrm{B}\{x\})) ; \mathrm{u}: \operatorname{Tm}(\mathrm{A})): \operatorname{Tm}(\mathrm{B}\{\mathrm{u}\}) \in \mathbb{T}_{\text {又 }}\right)$

Declarative type system

Each theory \mathbb{T} defines a declarative type system, with main judgment $\Theta ; \Gamma \vdash t: T$ Main typing rules instantiate the schematic rules of \mathbb{T} :

$$
\begin{array}{cc}
\Theta ; \Gamma \vdash & \Theta ; \Gamma \vdash A: \operatorname{Ty}
\end{array} \quad \Theta ; \Gamma, x: \operatorname{Tm}(A) \vdash B: \operatorname{Ty} .
$$

$$
\Theta ; \Gamma \vdash @(t, u): \operatorname{Tm}(B[u / x])
$$

(for @(A: $\left.\operatorname{Ty}, \mathrm{B}\{x: \operatorname{Tm}(\mathrm{A})\}: \operatorname{Ty} ; \mathrm{t}: \operatorname{Tm}(\Pi(\mathrm{A}, x \cdot \mathrm{~B}\{x\})) ; \mathrm{u}: \operatorname{Tm}(\mathrm{A})): \operatorname{Tm}(\mathrm{B}\{\mathrm{u}\}) \in \mathbb{T}_{\text {又 }}\right)$
Reading bottom-up, requires guessing A and B

Declarative type system

Each theory \mathbb{T} defines a declarative type system, with main judgment $\Theta ; \Gamma \vdash t: T$ Main typing rules instantiate the schematic rules of \mathbb{T} :

$$
\begin{gathered}
\Theta ; \Gamma \vdash \quad \Theta ; \Gamma \vdash A: \operatorname{Ty} \quad \Theta ; \Gamma, x: \operatorname{Tm}(A) \vdash B: \operatorname{Ty} \\
\Theta ; \Gamma \vdash t: \operatorname{Tm}(\Pi(A, x \cdot B)) \quad \Theta ; \Gamma \vdash u: \operatorname{Tm}(A) \\
\Theta ; \Gamma \vdash @(t, u): \operatorname{Tm}(B[u / x])
\end{gathered}
$$

(for @(A: $\left.\operatorname{Ty}, \mathrm{B}\{x: \operatorname{Tm}(\mathrm{A})\}: \operatorname{Ty} ; \mathrm{t}: \operatorname{Tm}(\Pi(\mathrm{A}, x \cdot \mathrm{~B}\{x\})) ; \mathrm{u}: \operatorname{Tm}(\mathrm{A})): \operatorname{Tm}(\mathrm{B}\{\mathrm{u}\}) \in \mathbb{T}_{\text {又 }}\right)$
Reading bottom-up, requires guessing A and B

Properties of the declarative system Weakening, substitution property, sorts are well-typed, subject reduction, etc (see the paper)

Bidirectional typing system

Matching modulo rewriting

In bidirectional typing, we need matching modulo to recover missing arguments.

$$
\frac{\Gamma \vdash t \Rightarrow U}{\Gamma \vdash @(t, u) \Rightarrow}
$$

Matching modulo rewriting

In bidirectional typing, we need matching modulo to recover missing arguments.

$$
\frac{\Gamma \vdash t \Rightarrow U \quad \cdots}{\Gamma \vdash @(t, u) \Rightarrow}
$$

If @ (t, u) is well-typed (in the declarative system), for some A, B we have

$$
U \equiv \operatorname{Tm}(\Pi(\mathrm{~A}, x \cdot \mathrm{~B}\{x\}))[A / \mathrm{A}, x . B / \mathrm{B}]
$$

but how to recover A and B from U ?

Matching modulo rewriting

In bidirectional typing, we need matching modulo to recover missing arguments.

$$
\frac{\Gamma \vdash t \Rightarrow U}{\Gamma \vdash @(t, u) \Rightarrow}
$$

If @ (t, u) is well-typed (in the declarative system), for some A, B we have

$$
U \equiv \operatorname{Tm}(\Pi(\mathrm{~A}, x . \mathrm{B}\{x\}))[A / \mathrm{A}, x . B / \mathrm{B}]
$$

but how to recover A and B from U ?

Solution We define an algorithmic ${ }^{2}$ matching judgment $T^{P}<U \leadsto \mathbf{v}$
We have $T^{\mathrm{P}}[\mathbf{v}] \equiv U$ iff $T^{\mathrm{P}}<U \leadsto \mathbf{v}^{\prime}$ for some $\mathbf{v}^{\prime} \equiv \mathbf{v}$

[^3]
Bidirectional syntax

Not all unannotated terms can be algorithmically typed

$$
\frac{?}{\Gamma \vdash \lambda(x . t) \Rightarrow ?} \frac{\ldots}{\Gamma \vdash @(\lambda(x . t), u) \Rightarrow ?}
$$

Bidirectional syntax

Not all unannotated terms can be algorithmically typed

$$
\frac{?}{\frac{\Gamma \vdash \lambda(x . t) \Rightarrow ?}{\Gamma \vdash @(\lambda(x . t), u) \Rightarrow}}
$$

Avoided by defining bidirectional system only for inferrable and checkable terms

$$
\begin{array}{ll}
\operatorname{Tm}^{\mathrm{i}} \ni & t^{\mathrm{i}}, u^{\mathrm{i}}::=x \mid d\left(t^{\mathrm{i}}, \mathbf{t}^{\mathrm{c}}\right) \\
\mathrm{Tm}^{\mathrm{c}} \ni & t^{\mathrm{c}}, u^{\mathrm{c}}::=c\left(\mathbf{t}^{\mathrm{c}}\right) \mid t^{\mathrm{i}} \\
\text { MSub }^{\mathrm{c}} \ni & \mathbf{t}^{\mathrm{c}}, \mathbf{u}^{\mathrm{c}}::=\epsilon \mid \mathbf{t}^{\mathrm{c}}, \vec{x} \cdot t^{\mathrm{c}}
\end{array}
$$

Bidirectional syntax

Not all unannotated terms can be algorithmically typed

$$
\frac{?}{\frac{\Gamma \vdash \lambda(x . t) \Rightarrow ?}{\Gamma \vdash @(\lambda(x . t), u) \Rightarrow}}
$$

Avoided by defining bidirectional system only for inferrable and checkable terms

$$
\begin{array}{ll}
\operatorname{Tm}^{\mathrm{i}} \ni & t^{\mathrm{i}}, u^{\mathrm{i}}::=x \mid d\left(t^{\mathrm{i}}, \mathbf{t}^{\mathrm{c}}\right) \\
\mathrm{Tm}^{\mathrm{c}} \ni & t^{\mathrm{c}}, u^{\mathrm{c}}::=c\left(\mathbf{t}^{\mathrm{c}}\right) \mid \underline{t}^{\mathrm{i}} \\
\text { MSub }^{\mathrm{c}} \ni & \mathbf{t}^{\mathrm{c}}, \mathbf{u}^{\mathrm{c}}::=\epsilon \mid \mathbf{t}^{\mathrm{c}}, \vec{x}, t^{\mathrm{c}}
\end{array}
$$

Principal argument of a destructor can only be variable or another destructor For most theories, t^{c}, u^{c}, \ldots are the normal forms

Bidirectional type system

Each \mathbb{T} defines a bidirectional system. Main judgments: $\Gamma \vdash t^{c} \Leftarrow T$ and $\Gamma \vdash t^{i} \Rightarrow T$

Bidirectional type system

Each \mathbb{T} defines a bidirectional system. Main judgments: $\Gamma \vdash t^{c} \Leftarrow T$ and $\Gamma \vdash t^{i} \Rightarrow T$ The main typing rules instantiate the schematic rules of $\mathbb{T}:^{3}$

$$
\begin{gathered}
\begin{array}{c}
\text { DeST } \\
\Gamma \vdash t^{\mathrm{i}} \Rightarrow T^{\prime} \\
d \prec T^{\prime} \leadsto \mathbf{v} \\
d\left(\Xi_{1} ; \mathrm{t}: T ; \Xi_{2}\right): U \in \mathbb{T} \frac{\Gamma \mid\left(\mathbf{v},\left\ulcorner t^{\mathrm{i}}\right\urcorner\right):\left(\Xi_{1}, \mathrm{x}: T\right) \vdash \mathbf{u}^{\mathrm{c}} \Leftarrow \Xi_{2}}{\Gamma \vdash d\left(t^{\mathrm{i}}, \mathbf{u}^{\mathrm{c}}\right) \Rightarrow U\left[\mathbf{v},\left\ulcorner t^{\mathrm{i}}\right\urcorner,\left\ulcorner\mathbf{u}^{\mathrm{c}}\right\urcorner\right]}
\end{array} . \begin{array}{c}
\\
\Gamma
\end{array}
\end{gathered}
$$

${ }^{3}$ Given t^{i} or u^{c}, I write $\left\ulcorner t^{i}\right\urcorner$ or $\left\ulcorner u^{c}\right\urcorner$ for the underlying regular term.

Bidirectional type system

Each \mathbb{T} defines a bidirectional system. Main judgments: $\Gamma \vdash t^{c} \Leftarrow T$ and $\Gamma \vdash t^{i} \Rightarrow T$
The main typing rules instantiate the schematic rules of $\mathbb{T}:^{3}$

$$
\frac{\Gamma \vdash t^{\mathrm{i}} \Rightarrow T^{\prime} \quad \operatorname{Tm}(\Pi(\mathrm{A}, x . \mathrm{B}\{x\}))<T^{\prime} \leadsto A / \mathrm{A}, x \cdot B / \mathrm{B} \quad \Gamma \vdash u^{\mathrm{c}} \Leftarrow \operatorname{Tm}(A)}{\Gamma \vdash @\left(t^{\mathrm{i}}, u^{\mathrm{c}}\right) \Rightarrow \operatorname{Tm}\left(B\left[\left\ulcorner u^{\mathrm{c}}\right\urcorner / x\right]\right)}
$$

[^4]
Bidirectional type system

Each \mathbb{T} defines a bidirectional system. Main judgments: $\Gamma \vdash t^{c} \Leftarrow T$ and $\Gamma \vdash t^{i} \Rightarrow T$ The main typing rules instantiate the schematic rules of $\mathbb{T}:^{3}$

$$
\frac{\Gamma \vdash t^{\mathrm{i}} \Rightarrow T^{\prime} \quad \operatorname{Tm}(\Pi(\mathrm{A}, x . \mathrm{B}\{x\}))<T^{\prime} \leadsto A / \mathrm{A}, x \cdot B / \mathrm{B} \quad \Gamma \vdash u^{\mathrm{c}} \Leftarrow \operatorname{Tm}(A)}{\Gamma \vdash @\left(t^{\mathrm{i}}, u^{\mathrm{c}}\right) \Rightarrow \operatorname{Tm}\left(B\left[\left\ulcorner u^{\mathrm{c}}\right\urcorner / x\right]\right)}
$$

(for @ $(\mathrm{A}: \operatorname{Ty}, \mathrm{B}\{x: \operatorname{Tm}(\mathrm{A})\}: \operatorname{Ty} ; \mathrm{t}: \operatorname{Tm}(\Pi(\mathrm{A}, x \cdot \mathrm{~B}\{x\})) ; \mathrm{u}: \operatorname{Tm}(\mathrm{A})): \operatorname{Tm}(\mathrm{B}\{\mathrm{u}\}) \in \mathbb{T}_{\lambda}$)
Reading bottom-up, no more need to guess A and B !
${ }^{3}$ Given t^{i} or u^{c}, I write $\left\ulcorner t^{i}\right\urcorner$ or $\left\ulcorner u^{c}\right\urcorner$ for the underlying regular term.

Correctness with respect to declarative typing

Suppose underlying theory \mathbb{T} is valid

Correctness with respect to declarative typing

Suppose underlying theory \mathbb{T} is valid
Soundness If $\Gamma \vdash$ and $\Gamma \vdash t^{i} \Rightarrow T$ then $\Gamma \vdash\left\ulcorner t^{i}\right\urcorner: T$
If $\Gamma \vdash T$ sort and $\Gamma \vdash t^{c} \Leftarrow T$ then $\Gamma \vdash\left\ulcorner t^{c}\right\urcorner: T$

Correctness with respect to declarative typing

Suppose underlying theory \mathbb{T} is valid
Soundness If $\Gamma \vdash$ and $\Gamma \vdash t^{i} \Rightarrow T$ then $\Gamma \vdash\left\ulcorner t^{i}\right\urcorner: T$
If $\Gamma \vdash T$ sort and $\Gamma \vdash t^{c} \Leftarrow T$ then $\Gamma \vdash\left\ulcorner t^{c}\right\urcorner: T$

Completeness If $\Gamma \vdash\left\ulcorner t^{i}\right\urcorner: T$ then $\Gamma \vdash t^{i} \Rightarrow T^{\prime}$ with $T^{\prime} \equiv T$
If $\Gamma \vdash\left\ulcorner t^{c}\right\urcorner: T$ then $\Gamma \vdash t^{c} \Leftarrow T$

Correctness with respect to declarative typing

Suppose underlying theory \mathbb{T} is valid
Soundness If $\Gamma \vdash$ and $\Gamma \vdash t^{i} \Rightarrow T$ then $\left.\Gamma \vdash \Gamma t^{i}\right\urcorner: T$
If $\Gamma \vdash T$ sort and $\Gamma \vdash t^{c} \Leftarrow T$ then $\Gamma \vdash\left\ulcorner t^{c}\right\urcorner: T$

Completeness If $\Gamma \vdash\left\ulcorner t^{i}\right\urcorner: T$ then $\Gamma \vdash t^{i} \Rightarrow T^{\prime}$ with $T^{\prime} \equiv T$
If $\Gamma \vdash\left\ulcorner t^{c}\right\urcorner: T$ then $\Gamma \vdash t^{c} \Leftarrow T$
Decidability If \mathbb{T} normalizing, then inference is decidable for inferable terms, and checking is decidable for checkable terms

More examples

Dependent sums

Extends $\mathbb{T}_{\lambda \Pi}$ with

$$
\begin{gathered}
\frac{\mathrm{A}: \operatorname{Ty} \quad x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{B}: \operatorname{Ty}}{\sum(\mathrm{A}, x \cdot \mathrm{~B}\{x\}): \operatorname{Ty}} \\
\frac{\mathrm{A}: \operatorname{Ty} \quad x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{B}: \operatorname{Ty}}{\mathrm{t}: \operatorname{Tm}(\Sigma(\mathrm{A}, x \cdot \mathrm{~B}\{x\}))} \\
\operatorname{proj}_{1}(\mathrm{t}): \operatorname{Tm}(\mathrm{A}) \\
\operatorname{proj}_{1}(\operatorname{pair}(\mathrm{t}, \mathrm{u})) \longmapsto \mathrm{t}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{A}: \operatorname{Ty} \quad x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{B}: \operatorname{Ty} \\
& \mathrm{t}: \operatorname{Tm}(\mathrm{A}) \quad \mathrm{u}: \operatorname{Tm}(\mathrm{B}\{\mathrm{t}\}) \\
& \hline \operatorname{pair}(\mathrm{t}, \mathrm{u}): \operatorname{Tm}(\Sigma(\mathrm{A}, x \cdot \mathrm{~B}\{x\}))
\end{aligned}
$$

Lists

Extends $\mathbb{T}_{\lambda \Pi}$ with

W types

Extends $\mathbb{T}_{\lambda \Pi}$ with

$$
\begin{aligned}
& \text { A: Ty } \quad x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{B}: \operatorname{Ty} \\
& \mathrm{A}: \operatorname{Ty} \quad x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{B}: \operatorname{Ty} \quad \mathrm{a}: \operatorname{Tm}(\mathrm{A}) \quad \mathrm{f}: \operatorname{Tm}\left(\Pi\left(\mathrm{B}\{\mathrm{a}\},{ }_{-} . \mathrm{W}(\mathrm{~A}, x . \mathrm{B}\{x\})\right)\right) \\
& \mathrm{W}(\mathrm{~A}, x . \mathrm{B}\{x\}): \mathrm{Ty} \\
& \sup (\mathrm{a}, \mathrm{f}): \operatorname{Tm}(\mathrm{W}(\mathrm{~A}, x . \mathrm{B}\{x\})) \\
& \mathrm{A}: \operatorname{Ty} \quad x: \operatorname{Tm}(\mathrm{A}) \vdash \mathrm{B}: \operatorname{Ty} \quad \mathrm{t}: \operatorname{Tm}(\mathrm{W}(\mathrm{~A}, x \cdot \mathrm{~B}\{x\})) \quad x: \operatorname{Tm}(\mathrm{W}(\mathrm{~A}, x . \mathrm{B}\{x\}))+\mathrm{P}: \operatorname{Ty} \\
& x: \operatorname{Tm}(\mathrm{A}), y: \operatorname{Tm}\left(\Pi\left(\mathrm{B}\{x\}, x^{\prime} \cdot \mathrm{W}(\mathrm{~A}, x \cdot \mathrm{~B}\{x\})\right)\right), z: \operatorname{Tm}\left(\Pi\left(\mathrm{B}\{x\}, x^{\prime} . \mathrm{P}\left\{@\left(y, x^{\prime}\right)\right\}\right)\right) \vdash \mathrm{p}: \operatorname{Tm}(\mathrm{P}\{\sup (x, y)\}) \\
& \operatorname{WRec}(\mathrm{t}, x . \mathrm{P}\{x\}, x y z . \mathrm{p}\{x, y, z\}): \operatorname{Tm}(\mathrm{P}\{\mathrm{t}\})
\end{aligned}
$$

$\operatorname{WRec}(\sup (\mathrm{a}, \mathrm{f}), x . \mathrm{P}\{x\}, x y z . \mathrm{p}\{x, y, z\}) \longmapsto \mathrm{p}\{\mathrm{a}, \mathrm{f}, \lambda(x . \mathrm{WRec}(@(\mathrm{f}, x), x . \mathrm{P}\{x\}, x y z . \mathrm{p}\{x, y, z\}))\}$

Universes

Extends $\mathbb{T}_{\lambda \Pi}$ with
$\overline{U: T y} \quad \frac{a: \operatorname{Tm}(\mathrm{U})}{\mathrm{El}(\mathrm{a}): \mathrm{Ty}}$

(Weak) Coquand-style

Tarski-style Adds codes for all types

$$
\overline{\mathrm{u}: \operatorname{Tm}(\mathrm{U})} \quad \mathrm{El}(\mathrm{u}) \longmapsto \mathrm{U}
$$

$$
\begin{aligned}
& \frac{\mathrm{a}: \operatorname{Tm}(\mathrm{U}) \quad x: \operatorname{Tm}(\mathrm{El}(\mathrm{a})) \vdash \mathrm{b}: \operatorname{Tm}(\mathrm{U})}{\pi(\mathrm{a}, x \cdot \mathrm{~b}\{x\}): \operatorname{Tm}(\mathrm{U})} \\
& \mathrm{El}(\pi(\mathrm{a}, x \cdot \mathrm{~b}\{x\})) \longmapsto \Pi(\mathrm{El}(\mathrm{a}), x \cdot \mathrm{El}(\mathrm{~b}\{x\}))
\end{aligned}
$$

$$
\frac{A: \operatorname{Ty}}{c(A): \operatorname{Tm}(U)}
$$

$$
\mathrm{El}(\mathrm{c}(\mathrm{~A})) \longmapsto \mathrm{A}
$$

Conclusion

Conclusion

We have given a generic account of bidirectional typing for a class of type theories

Conclusion

We have given a generic account of bidirectional typing for a class of type theories
Bidirectional system implemented in a prototype, available at https://github.com/thiagofelicissimo/BiTTs

Conclusion

We have given a generic account of bidirectional typing for a class of type theories
Bidirectional system implemented in a prototype, available at
https://github.com/thiagofelicissimo/BiTTs

Future work

Conclusion

We have given a generic account of bidirectional typing for a class of type theories
Bidirectional system implemented in a prototype, available at https://github.com/thiagofelicissimo/BiTTs

Future work

1. Support ascriptions in the bidirectional system

$$
@(\lambda(x . t):: T, u)
$$

Conclusion

We have given a generic account of bidirectional typing for a class of type theories
Bidirectional system implemented in a prototype, available at
https://github.com/thiagofelicissimo/BiTTs

Future work

1. Support ascriptions in the bidirectional system

$$
@(\lambda(x . t):: T, u)
$$

2. Handling indexed inductive types

$$
\frac{\mathrm{A}: \operatorname{Ty} \quad \mathrm{t}: \operatorname{Tm}(\mathrm{A})}{\text { refl }: \operatorname{Tm}(\mathrm{Eq}(\mathrm{~A}, \mathrm{t}, \mathrm{t}))}
$$

Conclusion

We have given a generic account of bidirectional typing for a class of type theories
Bidirectional system implemented in a prototype, available at
https://github.com/thiagofelicissimo/BiTTs

Future work

1. Support ascriptions in the bidirectional system \checkmark

$$
@(\lambda(x . t):: T, u)
$$

2. Handling indexed inductive types \checkmark

$$
\frac{\mathrm{A}: \operatorname{Ty} \quad \mathrm{t}: \operatorname{Tm}(\mathrm{A})}{\text { refl }: \operatorname{Tm}(\mathrm{Eq}(\mathrm{~A}, \mathrm{t}, \mathrm{t}))}
$$

Conclusion

We have given a generic account of bidirectional typing for a class of type theories
Bidirectional system implemented in a prototype, available at
https://github.com/thiagofelicissimo/BiTTs

Future work

1. Support ascriptions in the bidirectional system

$$
@(\lambda(x . t):: T, u)
$$

2. Handling indexed inductive types \checkmark

$$
\frac{\mathrm{A}: \operatorname{Ty} \quad \mathrm{t}: \operatorname{Tm}(\mathrm{A})}{\text { refl }: \operatorname{Tm}(\mathrm{Eq}(\mathrm{~A}, \mathrm{t}, \mathrm{t}))}
$$

3. Type-directed equalities (η-rules, proof irrelevance), generically? Alternatively, treat conversion with a black-box approach

Thank you for your attention!

[^0]: ${ }^{1}$ I avoid calling them "types" to prevent a name clash with the types of the object theories

[^1]: ${ }^{1}$ I avoid calling them "types" to prevent a name clash with the types of the object theories

[^2]: ${ }^{1}$ I avoid calling them "types" to prevent a name clash with the types of the object theories

[^3]: ${ }^{2}$ Decidable when U is normalizing

[^4]: ${ }^{3}$ Given t^{i} or u^{c}, I write $\left\ulcorner t^{i}\right\urcorner$ or $\left\ulcorner u^{c}\right\urcorner$ for the underlying regular term.

