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Logical Frameworks & Dedukti



Logical Frameworks

Each year, more and more new type theories and systems are proposed

Hard to see how they all relate

Logical Frameworks address this heterogeneity

A common foundation for defining type theories and logics

Of theoretical interest (decomposing and comparing theories)

and practical one (prototyping developments, checking proofs)
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Dedukti

Edinburgh Logical Framework (LF) Historically, very influential framework

It’s just the λ-calculus with dependent types! (also known as λΠ-calculus)

Dependent types allow to express deduction!

But computation can only be expressed as deduction...

π1(M ,N) ↪−→βπ1
M  βπ1 : eq (π1 JMK JNK) JMK

Dedukti Extends LF with user-defined rewrite rules R, typing modulo ≡βR
π1 M N ↪−→betaπ1

M ∈ R

Handles both building blocks of modern logics: deduction and computation

In practice, useful for rechecking and sharing proofs (see the EuroProofNet project)
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What is a Dedukti encoding?

A theory is a pair (Σ,R) where

• Σ = {c : A, d : B , ...} is a signature (constant declarations with their types)

• R = {l ↪−→ r , ...} is a set of rewrite rules

Used to represent object logics in Dedukti: O represented by D[O] = (ΣO,RO)

An encoding of O: a theory D[O] and a translation function J−K : ΛO → ΛDK
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An hierarchy of encodings
An encoding is sound if:

`O M : A implies `DK JMK : El JAK

An encoding is conservative if:

`DK M : El JAK implies ∃N s.t. `O N : A

An encoding is adequate if for each type A:

J−K is a bijection between A and El JAK

Adequate

Sound 

Sound and Conservative
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The problem of conservativity and adequacy

Unlike with LF encodings, Dedukti encodings proposed until now are not adequate

Actually, just showing conservativity of Dedukti encodings is already very hard

For many recently proposed encodings, still only a conjecture...

Where does this problem come from?

The cause can actually be traced back to the first Dedukti encoding, 2007 Cousineau
& Dowek’s encoding of (functional) Pure Type Systems
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The cause of the problem, in a nutshell

Cousineau & Dowek’s idea is to represent object functions by framework’s functions

(?) El (Prod A B) ↪−→ Πx : El A.El (B x)

Problem To show conservativity, we need to assume that β terminates

But because of (?), β might not terminate (when it does, proof is non trivial)

This work A different encoding of (functional) Pure Type Systems, without (?),
where β always normalizes

Easy conservative proof and an adequacy theorem

An encoding both adequate (like in LF) and computational (like in Dedukti)
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Encoding Pure Type Systems
in Dedukti



Pure Type Systems

Pure Type Systems (or PTSs) is a class of type theories with two forms of types:
dependent functions (Πx : A.B) and universes (or sorts, written as s1, s2, ...)

M ,N ,A,B ::= x ∈ V | s ∈ S | Πx : A.B | λx : A.M | MN

(λx : A.M)N ↪−→β M{N/x}

Each PTS described by a specification (S,A,R), where S is a set of sorts and
A ⊆ S2, R ⊆ S3

Γ ` s1 : s2
(s1, s2) ∈ A Γ ` A : s1 Γ, x : A ` B : s2

Γ ` Πx : A.B : s3
(s1, s2, s3) ∈ R

For the rest of this talk, we assume A,R are functional
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The theory (ΣPTS ,RPTS)

Universes

ΣPTS 3 Us : Type for s ∈ S
ΣPTS 3 Els(A : Us) : Type for s ∈ S
ΣPTS 3 us1 : Us2 for (s1, s2) ∈ A
RPTS 3 Els2 us1 ↪−→ Us1 for (s1, s2) ∈ A

Dependent functions (Cousineau & Dowek)

ΣPTS 3 Prods1,s2(A : Us1)(B : Els1 A→ Us2) : Us3 for (s1, s2, s3) ∈ R
RPTS 3 Els3 (Prods1,s2 A B) ↪−→ Πx : Els1 A.Els2 (B x)

Dependent functions

ΣPTS 3 Prods1,s2(A : Us1)(B : Els1 A→ Us2) : Us3 for (s1, s2, s3) ∈ R
ΣPTS 3 abss1,s2(A : Us1)(B : Els1 A→ Us2)(M : Πx : Els1 A.Els2 (B x)) : Els3(Prods1,s2 A B)

ΣPTS 3 apps1,s2(A : Us1)(B : Els1 A→ Us2)(M : Els3(Prods1,s2 A B))(N : Els1 A) : Els2(B N)

RPTS 3 apps1,s2 A B (abss1,s2 A′ B ′ M) N ↪−→betas1,s2
M N

ΣPTS 3Us : Type

Els(A : Us) : Type for s ∈ S
us1 : Us2 for (s1, s2) ∈ A
Els2 us1 ↪−→ Us1 for (s1, s2) ∈ A

Dependent Functions

Prods1,s2(A : Us1)(B : Els1 A→ Us2) : Us3 for (s1, s2, s3) ∈ R

Cousineau & Dowek’s special ingredient:

(?) Els3 (Prods1,s2 A B) ↪−→ Πx : Els1 A.Els2 (B x) for (s1, s2, s3) ∈ R

(?) identifies the representation of object functions with the framework’s functions
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Defining the translation function

JxK = x

JsK = us

JΠx : A.BK = ?

Prod, JAK (λx .JBK) where Γ ` A : s1 and Γ, x : A ` B : s2

Jλx : A.MK = ?

abs?,? JAK (λx .JMK) where Γ, x : A ` M : B

JMNK = ?

app?,? JMK JNK where Γ ` M : Πx : A.B

Problem 1: A,B not syntactically unique, thus JMK ⊆ ΛDK instead of JMK ∈ ΛDK

Problem 2: Not a valid structural recursion: A,B are not subterms

Solution: Add the necessary data to the syntax
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Explicitly-typed Pure Type Systems (EPTS)

Γ ` A : s1 Γ, x : A ` B : s2
(s1, s2, s3) ∈ R Prod

Γ ` Πx : A.B : s3

Γ ` A : s1 Γ, x : A ` B : s2 Γ, x : A ` M : B
(s1, s2, s3) ∈ R Abs

Γ ` λx : A.M : Πx : A.B

Γ ` A : s1 Γ, x : A ` B : s2 Γ ` M : Πx : A.B Γ ` N : A
(s1, s2, s3) ∈ R App

Γ ` MN : B{N/x}

Theorem Γ `PTS M : A iff there are Γ′,M ′,A′ with Γ′ `EPTS M ′ : A′, where
Γ′,M ′,A′ are erased to Γ,M ,A
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Defining the translation function

JxK = x

JsK = us

JΠs1,s2(A, [x]B)K = Prods1,s2 JAK (λx .JBK)

Jλs1,s2(A, [x]B , [x]M)K = abss1,s2 JAK (λx .JBK) (λx .JMK)

J@s1,s2(A, [x]B ,M ,N)K = apps1,s2 JAK (λx .JBK) JMK JNK

Very natural definition

Does not need to prove that M is typed on Γ to apply J−K
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Soundness, Conservativity and
Adequacy



The easy bit: soundness

Before soundness, show that the encoding is computational

M ↪−→ N implies JMK ↪−→+ JNK

Not satisfied by LF encodings, but here Dedukti shines!

Soundness If Γ `EPTS M : A then JΓK `DK JMK : ElsA JAK

Simple proof by induction on the derivation
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Conservativity, first try

If JΓK `DK M : ElsA JAK we would like to show Γ `EPTS JMK−1 : A

Problem If M not in β-normal form, no way to inverse it. What is JNK−1 of

N = (λx .(λz .z(λy .JA2K)) (Prods1,s2 x)) JA1K ?

Solution Take the β-normal form!

NFβ(N) = Prods1,s2 JA1K (λy .JA2K), thus JNFβ(N)K−1 = Πs1,s2(A1, [y ]A2)

Solution also used in LF, where β is known to be SN (strongly normalizing)

But in Dedukti, rewrite rules extend the typing relation of the λΠ-calculus

Is β still SN in Dedukti?
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A simple proof that β is SN

R is arity preserving if (roughly) no Π appears at right-hand sides of rules in R

Theorem If R is arity preserving and βR is confluent, then β is SN in Dedukti

Proof by erasure into the simply-typed λ-calculus

Example The rewrite rule used by Cousineau & Dowek to encode PTS

(?) Els3 (Prods1,s2 A B) ↪−→ Πx : Els1 A.Els2 (B x)

is not arity preserving

Expected, since we know (?) can break SN of β
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Conservativity, finally

RPTS is arity preserving and βRPTS is confluent (can be seen as orthogonal CRS)

Els2 us1 ↪−→ Us1

apps1,s2 A B (abss1,s2 A′ B ′ M) N ↪−→betas1,s2
M N

Thus, to show conservativity it suffices to consider β-normal forms

Theorem If JΓK `DK M : ElsA JAK andM in β-normal form then Γ `EPTS JMK−1 : A

Proof by induction on M , some work but not hard
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Adequacy, a simple corollary

Let Γ `EPTS A : sA

Theorem J−K and J−K−1 form a bijection A ' NFβ(ElsA JAK)

Consequence of soundness and conservativity
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Conclusion



Takeaway lesson

Cousineau & Dowek’s encoding represents object β by Dedukti’s β

SN of β becomes property of the theory

Conservativity needs SN of β, and thus is made dependent on the encoded system

But logical frameworks should be agnostic to such properties

In our encoding, beta separated from β. Here, β represents pending substitution

app (abs (λx .M)) N ↪−→beta (λx .M)N ↪−→β M{N/x}

Suggests that SN of β should be a property of the framework

It is SN of βR which is a property of the theory: if we instantiate our encoding
with non-normalizing PTS, βR will not be SN, but β will always be SN
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Future work

What about systems that are not Pure Type Systems?

Future work Encoding can be probably extended to general definition of purely
computational type theories

Elephant in the room apps1,s2 A (λx .B) M N much bigger thenMN , benchmarks
show 16 times performance loss when checking Fermat’s Little Theorem

Future work Explore extensions of Dedukti with erased (not implicit!) arguments

Improve performance, but also make J−K easy to define

Thank you!
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