
A Confluence Criterion for Non Left-Linearity

in a 𝛽[-Free Reformulation of HRSs

Thiago Felicissimo

Université Paris-Saclay, INRIA project Deducteam, LMF, ENS Paris-Saclay
thiago.felicissimo@inria.fr

Abstract

We give a criterion for showing confluence of non-left linear (Pattern) Higher-order
Rewrite Systems (HRSs). More precisely, our criterion concerns 2nd order signatures and
allows one to show object confluence, that is, confluence when restricting to terms only
with variables of order 0. As a second contribution, we give a reformulation of HRSs in
which one never needs to speak of meta-level 𝛽[-equality.

1 Introduction

When proving confluence in Nipkow’s (Pattern) Higher-order Rewrite Systems (HRSs) [8],
one generally has to be in one of the two following cases. If the rewrite system being
considered is (1) strongly normalizing (s.n.), then by the critical pair lemma it suffices
to check that critical pairs are joinable [8]. In most situations this is too strong of a
requirement, but fortunately if the system is (2) left-linear then many criteria exist, such
as orthogonality [9] and development-closedness [10]. If however neither (1) nor (2) hold,
then no known criteria allows for showing confluence. This is problematic even when
non-linearity is only necessary for silly reasons, such as in the following example.

Σ_𝜋↑ = _ : (t : tm → tm) → tm, @ : (t : tm, u : tm) → tm, ↑: (n : lvl, m : lvl, t : tm) → tm,

𝜋 : (n : lvl, a : tm, b : tm → tm) → tm, 0 : lvl, S : (n : lvl) → lvl

R_𝜋↑ = ↑mn (𝜋n (A, 𝑥.B(𝑥))) ↦−→ 𝜋m (↑mn (A), 𝑥. ↑mn (B(𝑥)))
_(𝑥.t(𝑥))@u ↦−→ t(u)

↑nn (t) ↦−→ t

↑pm (↑mn (t)) ↦−→↑pn (t)
Example 1. Consider the signature (where tm, lvl are sorts) and the rewrite system given
above, containing an excerpt of the rules used when defining a cumulative Tarski-style
universe — similar ones can be found in [3]. Because of the beta rule, the rewrite system
is not s.n. and because of the other rules the system is also non left-linear. Non-linearity
is only used to obtain a finite signature, a pre-requisite for some applications.

Actually, there is no hope of showing confluence for R_𝜋↑ , given that it is possible to
simulate the rewrite system R𝑘 = {_(𝑥.t(𝑥))@u ↦−→ t(u), 𝑓 (t, t) ↦−→ 𝑎} shown by Klop
to be not confluent [7]. Indeed, by taking variables 𝑥 : tm → lvl, 𝑦 : tm we can translate

⟦ 𝑓 (𝑡, 𝑢)⟧ :=↑𝑥 (⟦𝑢⟧)
𝑥 (⟦𝑡⟧) (𝑦) and ⟦𝑎⟧ := 𝑦, and then show that 𝑡 −→ 𝑢 implies ⟦𝑡⟧ −→ ⟦𝑢⟧ and

⟦𝑡⟧ −→ 𝑢 implies 𝑡 −→ 𝑢′ for some 𝑢′ with ⟦𝑢′⟧ = 𝑢. Using these two facts it is easy to see
that the confluence of R_𝜋↑ implies that of R𝑘 .

This counterexample however makes essential use of the fact that we have access to a
variable 𝑥 : tm → lvl, allowing us to perform a beta step inside a non-linear position of the
lhs in ↑nn (t) ↦−→ t. However, in most applications one is only interested in terms containing
0-order variables, and higher-order variables are only used as metavariables to define the
rewrite rules. If we instead restrict our attention to confluence over terms containing only
variables of order 0 (a property we will call object confluence), can we prove that R_𝜋↑

satisfies this property?

A Confluence Criterion for Non Left-Linearity in a 𝛽[-Free Reformulation of HRSs T. Felicissimo

In this article, we propose a criterion that allows us to do that. More precisely, given
two rewrite systems R𝑙 and R𝑛𝑙 over a signature of order at most 2 such that (1) both are
object confluent, (2) R𝑙 is linear, (3) there are no critical pairs between them and (4) the
sorts of non-linear lhs variables of R𝑛𝑙 are inaccessible from the sorts of the rules in R𝑙 ,
our criterion allows one to conclude object confluence of their union. The proof is a simple
adaptation of the proof of confluence by orthogonality, by using condition (4) to show that
a R𝑙 step cannot destroy a R𝑛𝑙 redex. As shown in the end of the article, our criterion
proves the object confluence of Example 1.

As a second contribution, we give a reformulation of Nipkow’s HRSs in which one
never needs to talk about 𝛽[-equivalence. This is achieved by adopting a canonical forms
only presentation of the simply-typed _-calculus, and replacing regular substitution by
hereditary substitution [6]. This avoids the technicalities of switching 𝛽[representatives
and allows for a presentation of higher-order rewriting that we believe can be clearer.

Related work The problem of higher-order confluence with non-left linear rules has
been studied by [2] and [3] in the setting of rewriting union 𝛽. The notion of confinement
introduced in [2] was an essential inspiration for us. We omit a detailed discussion because
of size constraints, but remark that our criterion’s proof is much shorter and less technical.

2 Higher-order rewriting

We start by introducing our reformulation of Nipkow’s (Pattern) Higher-order Rewriting
Systems (HRSs). We suppose we are given three infinite and disjoint sets of variables V,
refered to by 𝑥, 𝑦, 𝑧 or by letters in typewriter font such as a, b, t, (syntactic) constructors
C, refered to by 𝑐, 𝑑, 𝑓 , 𝑔, and sorts S, refered to by 𝑠. A head ℎ is either a constructor 𝑐

or a variable 𝑥. We define arities, scopes and signatures by the grammars

Arity ∋ 𝜎, 𝜏 ::= 𝛿 → 𝑠 Scope ∋ 𝛾, 𝛿 ::= · | 𝛾, 𝑥 : 𝜏 Sig ∋ Σ ::= · | Σ, 𝑐 : 𝜏

and abbreviate · → 𝑠 as simply 𝑠. We write ®𝑥𝛾 for the sequence of variables in 𝛾, and 𝛾.𝛿

for concatenation. A subscope 𝛾′ of 𝛾 is a subsequence of 𝛾, written 𝛾′ ⊑ 𝛾.

In other works, one usually calls 𝛾 a context and 𝜏 a simple type. We however prefer to
insist here on a different point of view, in which 𝜏 is seen as a higher-order generalization
of the regular notion of arity.

Given a fixed signature Σ, terms and spines are mutually defined by the following
inference rules. From the perspective of the _-calculus, our terms can be seen as the
simply-typed _-terms of some base type, and in 𝛽-normal [-long form (or canonical form).
However, our definition allows us to capture directly the terms of interest, and unlike [8]
we never need to speak about the non canonical forms, which play only a bureaucratic role.
The definition also clarifies the fact that higher-order rewriting is not (or at least does not
need to be seen as) a form of rewriting modulo, but instead rewriting in which one adopts
a different notion of substitution (as we will see next).

In the following, when convenient we abbreviate ℎ(Y) as ℎ. We write 𝑒 ∈ Expr 𝛾 when
either 𝑒 ∈ Tm 𝛾 𝑠 or 𝑒 ∈ Sp 𝛾 𝛿, and we call 𝑒 an expression. Finally, given a spine t ∈ Sp 𝛾 𝛿

and a variable 𝑥 : 𝛾𝑥 → 𝑠𝑥 ∈ 𝛿, we write t𝑥 ∈ Tm 𝛾.𝛾𝑥 𝑠𝑥 for the term in t at variable 𝑥.

ℎ : 𝛿 → 𝑠 ∈ Σ ∪ 𝛾
t ∈ Sp 𝛾 𝛿

ℎ(t) ∈ Tm 𝛾 𝑠 Y ∈ Sp 𝛾 ·
t ∈ Sp 𝛾 𝛿 𝑡 ∈ Tm 𝛾.𝛾′ 𝑠

t, ®𝑥𝛾′ .𝑡 ∈ Sp 𝛾 (𝛿, 𝑥 : 𝛾′ → 𝑠)

2

A Confluence Criterion for Non Left-Linearity in a 𝛽[-Free Reformulation of HRSs T. Felicissimo

Example 2. If we take Σ = _ : (t : tm → tm) → tm,@ : (t : tm, u : tm) → tm, then
Tm (®𝑥 : ®tm) tm contains exactly the _-term with free variables in ®𝑥. This justifies why,
unlike in the original formulation of HRS, we do not consider 𝑥.𝑡 to be a term, as _(𝑥.𝑡)
corresponds to a term in the _-calculus, but 𝑥.𝑡 or 𝑦._(𝑥.𝑡) do not. Moreover, this makes
the restriction of rules to base types in [8] completely automatic in our formulation.

Remark 1. We present the syntax informally using names and 𝛼-equivalence as a con-
venience. However, we expect that everything can be formally carried out using de-
Bruijn indices. This requires being more careful with some definitions. For instance,
when using indices 𝛾′ ⊑ 𝛾 becomes a proof relevant relation: there are for exam-
ple two inclusions of (tm, ty) into (tm, tm, ty), and thus we would need to be explicit
about which inclusion we take. We would also need to introduce a weakening function
wk : Expr 𝛾′ → 𝛾′ ⊑ 𝛾 → Expr 𝛾, whereas in this article we allow ourselves to weaken terms
silently.

Substitution Because of our definition of terms, naive substitution would not work: for
instance, syntactically replacing 𝑥 by 𝑧.S(𝑧) and 𝑦 by 0 in 𝑥(𝑦) would yield (𝑧.S(𝑧)) (0), which
is not a valid term. We instead use hereditary substitution [6], which in this case recursively
replaces 𝑧 by 0, giving S(0). This is defined by the following clauses, by lexographic
induction on 𝛾2 and the expression being substituted. In the following, we write just 𝑒[t]
instead of 𝑒[t/𝛿] if no ambiguity arises.

[/𝛾2] : Tm 𝛾1.𝛾2.𝛾3 𝑠 → Sp 𝛾1 𝛾2 → Tm 𝛾1.𝛾3 𝑠

𝑥(v) [u/𝛾2] := 𝑣 [v[u/𝛾2]/𝛿] if 𝑥 : 𝛿 → 𝑠 ∈ 𝛾2 and u𝑥 = 𝑣

ℎ(v) [u/𝛾2] := ℎ(v[u/𝛾2]) if ℎ ∈ Σ, 𝛾1, 𝛾3

[/𝛾2] : Sp 𝛾1.𝛾2.𝛾3 𝛿 → Sp 𝛾1 𝛾2 → Sp 𝛾1.𝛾3 𝛿

Y[u/𝛾2] := Y

(v, ®𝑦.𝑡) [u/𝛾2] := v[u/𝛾2], ®𝑦.𝑡 [u/𝛾2]

We can verify that for all expressions 𝑒 ∈ Expr 𝛾1.𝛾2.𝛾3.𝛾4 and spines u ∈ Sp 𝛾1 𝛾2 and
t ∈ Sp 𝛾1.𝛾2 𝛾3 we have 𝑒[t/𝛾3] [u/𝛾2] = 𝑒[u/𝛾2] [t[u/𝛾2]/𝛾3].

Sometimes we need a spine v ∈ Sp 𝛾 𝛾 that satisfies 𝑒[v] = 𝑒 for all 𝑒. Normally one
takes v = ®𝑥𝛾 , but in general this is not a valid spine. Instead, we need to define the identity
spine id𝛾 ∈ Sp 𝛾 𝛾 by id(·) := Y and id𝛾,𝑥:𝛿→𝑠 := id𝛾 , ®𝑦𝛿 .𝑥(id𝛿). Intuitively, it [-expands
each variable in ®𝑥𝛾 so that the resulting sequence is indeed a valid spine. We can now
verify that 𝑒[id𝛾] = 𝑒 for all 𝑒 ∈ Expr 𝛾, and moreover id𝛿 [t] = t for all t ∈ Sp 𝛾 𝛿.

Rewriting Given an expression 𝑒, we write Pos 𝑒 for its set of positions and FPos 𝑒 for
its set of functional positions. For each 𝑝 ∈ Pos 𝑒 let 𝛾𝑝 ∈ Scope be the scope introduced
between the root and 𝑝, and 𝑠𝑝 ∈ S the sort at 𝑝. Given 𝑒 ∈ Expr 𝛾 and 𝑝 ∈ Pos 𝑒 we write
𝑒 |𝑝 ∈ Tm 𝛾.𝛾𝑝 𝑠𝑝 for the subterm at position 𝑝, and given a term 𝑡 ∈ Tm 𝛾.𝛾𝑝 𝑠𝑝 we write
𝑒{𝑡}𝑝 for the result of replacing 𝑒 |𝑝 by 𝑡 in 𝑒.

Remark 2. When dealing with terms that are not explicitly scoped the operation of
taking the subterm at position 𝑝 is not well-defined. Indeed, 𝑥 is a subterm of _(𝑥.𝑥) but
not of _(𝑦.𝑦), however they are equal modulo 𝛼-equivalence.

A pattern 𝑒 ∈ Patt 𝛾 𝛾′ is an expression 𝑒 ∈ Expr 𝛾.𝛾′ in which each variable 𝑥 ∈ 𝛾

appearing at position 𝑝 occurs applied to id𝛾′′ where 𝛾′′ ⊑ 𝛾′ .𝛾𝑝. We think of variables in

𝛾 as flexible and 𝛾′ as rigid. We write 𝑡 ∈ TmP 𝛾 𝛾′ 𝑠 for a term pattern and t ∈ SpP 𝛾 𝛾′ 𝛿
for a spine pattern. We have TmP 𝛾 𝛾′ 𝑠 ⊆ Tm 𝛾.𝛾′ 𝑠 and SpP 𝛾 𝛾′ 𝛿 ⊆ Sp 𝛾.𝛾′ 𝛿.

Given a pattern 𝑒 ∈ Patt 𝛾 𝛾′, we write ffv(𝑒) for the subscope of 𝛾 containing exactly
the free flexible variables of 𝑒. A pattern is linear if any 𝑥 ∈ ffv(𝑒) occurs only once.

3

A Confluence Criterion for Non Left-Linearity in a 𝛽[-Free Reformulation of HRSs T. Felicissimo

A rewrite rule 𝛾 ⊩ 𝑡 ↦−→ 𝑢 : 𝑠 is given by 𝑡 ∈ TmP 𝛾 · 𝑠 and 𝑢 ∈ Tm 𝛾 𝑠 st 𝛾 = ffv(𝑡)
and 𝑡 is not a variable. It is linear if 𝑙 is a linear pattern. We define the rewrite relation
𝑒 −→ 𝑒′ for 𝑒, 𝑒′ ∈ Expr 𝛾 if there is a rewrite rule 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 and position 𝑝 ∈ Pos 𝑒 and
spine v ∈ Sp 𝛾.𝛾𝑝 𝛿 such that 𝑠 = 𝑠𝑝 and 𝑒 |𝑝 = 𝑙 [v] and 𝑒′ = 𝑒{𝑟 [v]}𝑝.

Critical pairs Given 𝑡, 𝑢 ∈ Tm 𝛿.𝛾 𝑠 we call 𝛿 | 𝛾 ⊩ 𝑡 =? 𝑢 : 𝑠 a unification problem. A
unifier is a spine v ∈ Sp 𝛿′ 𝛿 st 𝑡 [v] = 𝑢[v]. When 𝑡, 𝑢 ∈ TmP 𝛿 𝛾 𝑠, the problem has either
a most general unifer (mgu) or no unifier.

It is known that one of the difficulties when going from first order to higher-order
rewriting is adapting the definition of critical pairs. Given 𝛿𝑖 ⊩ 𝑙𝑖 ↦−→ 𝑟𝑖 : 𝑠𝑖 and 𝑝 ∈ FPos 𝑙1,
if one tries naively to unify 𝛿1.𝛿2 | 𝛾𝑝 ⊩ 𝑙1 |𝑝 =? 𝑙2 : 𝑠2, then because the variables in 𝛾𝑝
introduced between the root and 𝑝 in 𝑙1 do not appear in 𝑙2, any unifier must throw
dependencies on such variables away, which is not what is intended. Instead, we first
need to add 𝛾𝑝 as dependencies to the variables appearing in 𝑙2. This is achieved by a
substitution Nipkow calls a ®𝑥𝛾𝑝

-lifter, but it can also be understood more algebraically.
Given 𝛾, 𝛿 ∈ Scope, we define the exponential scope 𝛾 ↣ 𝛿 ∈ Scope by replacing

each entry 𝑥 : 𝛾𝑥 → 𝑠 ∈ 𝛿 by 𝑥∗ : 𝛾.𝛾𝑥 → 𝑠. We have an evaluation spine pattern
eval𝛾, 𝛿 ∈ SpP (𝛾↣ 𝛿) 𝛾 𝛿, containing at entry 𝑥 : 𝛾𝑥 → 𝑠 ∈ 𝛿 the argument ®𝑥𝛾𝑥 .𝑥∗ (id𝛾 , id𝛾𝑥).
For each t ∈ Sp 𝛾′ .𝛾 𝛿 we define its curryfication cur t ∈ Sp 𝛾′ (𝛾 ↣ 𝛿) by replacing each
entry ®𝑥𝛾𝑥 .𝑡 in t by ®𝑥𝛾.𝛾𝑥 .𝑡. The important property we have is that for all t ∈ Sp 𝛾′ .𝛾 𝛿,
cur t is the unique spine satisfying t = eval𝛾, 𝛿 [cur t/𝛾 ↣ 𝛿]. Our notation evidences the
fact that 𝛾↣ 𝛿 is the exponential object in the category of scope and spines, with eval𝛾, 𝛿
its corresponding evaluation morphism.

We can now define overlaps and critical pairs. A pattern 𝑒 ∈ Patt 𝛾 𝛾′ overlaps a rewrite
rule 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 at functional position 𝑝 ∈ FPos 𝑒 if the unification problem

𝛾.(𝛾′ .𝛾𝑝 ↣ 𝛿) | 𝛾′ .𝛾𝑝 ⊩ 𝑒 |𝑝 =? 𝑙 [eval𝛾′ .𝛾𝑝 , 𝛿] : 𝑠

has a unifier — in which case, it also has a most general one. A pattern overlap is proper
if 𝑒 = 𝑙 implies 𝑝 ≠ Y. A rule overlap is given by two rules 𝛿1 ⊩ 𝑙1 ↦−→ 𝑟1 : 𝑠1 and
𝛿2 ⊩ 𝑙2 ↦−→ 𝑟2 : 𝑠2 and a functional position 𝑝 ∈ FPos 𝑙1 st 𝑙1 properly overlaps 𝑙2 ↦−→ 𝑟2
at position 𝑝. Each rule overlap gives rise to a critical pair ⟨𝑟1 [v], 𝑙1{𝑟2 [eval𝛾𝑝 , 𝛿2]}𝑝 [v]⟩,
where v is the mgu of the associated unification problem.

Superdevelopments Like with many proofs of confluence, ours will employ Aczel’s
superdevelopments [1], defined by the following rules.

𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 ∈ R

Rule
𝑓 (u) = 𝑙 [v] t =⇒ u ∈ Sp 𝛾 𝛿 𝑓

𝑓 (t) =⇒ 𝑟 [v] ∈ Tm 𝛾 𝑠
ℎ : 𝛿 → 𝑠 ∈ 𝛾 or Σ

Head
v =⇒ v′ ∈ Sp 𝛾 𝛿

ℎ(v) =⇒ ℎ(v′) ∈ Tm 𝛾 𝑠

EmptySp

Y =⇒ Y ∈ Sp 𝛾 ·

ExtSp
t =⇒ t′ ∈ Sp 𝛾 𝛿 𝑡 =⇒ 𝑡′ ∈ Tm 𝛾.𝛾𝑥 𝑠

t, ®𝑥𝛾𝑥 .𝑡 =⇒ t′, ®𝑥𝛾𝑥 .𝑡′ ∈ Sp 𝛾 (𝛿, 𝑥 : 𝛾𝑥 → 𝑠)

Recall that we have −→⊆=⇒⊆−→∗ and thus −→∗==⇒∗. Moreover, superdevelopments
are closed under substitution: if 𝑒 =⇒ 𝑒′ ∈ Expr 𝛾1.𝛾2.𝛾3 and u =⇒ u′ ∈ Sp 𝛾1 𝛾2 then
𝑒[u/𝛾2] =⇒ 𝑒′ [u′/𝛾2] ∈ Expr 𝛾1.𝛾3. The following proposition is at the heart of most
proofs of confluence by orthogonality [8]. We will also need it to show our criterion.

Proposition 1. Let 𝑒 ∈ Patt 𝛿 𝛾′ be a linear pattern that does not overlap any lhs of
R and suppose that for some v ∈ Sp 𝛾 𝛿 and 𝑒′ we have 𝑒[v/𝛿] =⇒ 𝑒′. Then we have
v′ =⇒ v′′ ∈ Sp 𝛾 ffv(𝑒) with v′ a subspine of v and 𝑒[v′′/ffv(𝑒)] = 𝑒′.

4

A Confluence Criterion for Non Left-Linearity in a 𝛽[-Free Reformulation of HRSs T. Felicissimo

Proof. By induction on 𝑒.

• 𝑒 = 𝑥(id𝛾𝑥) for some 𝑥 :: 𝛾𝑥 → 𝑠 ∈ 𝛿 : Then v𝑥 = v𝑥 [id𝛾𝑥] = 𝑥(id𝛾𝑥) [v] =⇒ 𝑒′.
Because rewriting cannot introduce new free variables and v𝑥 ∈ Tm 𝛾.𝛾𝑥 𝑠, then we
must have 𝑒′ ∈ Tm 𝛾.𝛾𝑥 𝑠. We thus have ®𝑥𝛾𝑥 .v𝑥 =⇒ ®𝑥𝛾𝑥 .𝑒′ ∈ Sp 𝛾 (𝑥 : 𝛾𝑥 → 𝑠) and
𝑥(id𝛾𝑥) [®𝑥𝛾𝑥 .𝑒′] = 𝑒′.

• 𝑒 = ℎ(t) with ℎ ≠ 𝑥 ∈ 𝛿 and t a linear pattern : We reason by case analysis on the
superdevelopement.

– Rew : Then for some rule 𝛿𝑙𝑟 ⊩ 𝑙 ↦−→ 𝑟 :: 𝑠𝑙𝑟 and spine s ∈ Sp 𝛾 𝛿𝑙𝑟 we
have 𝑒[v/𝛿] = ℎ(t[v/𝛿]) = 𝑓 (u) =⇒ 𝑟 [s] = 𝑒′ with u =⇒ u′ ∈ Sp 𝛾 𝛿 𝑓 and
𝑓 (u′) = 𝑙 [s]. We thus have ℎ = 𝑓 and t[v/𝛿] =⇒ u′. Because 𝑓 (t) does not
overlap any lhs of R, then t also does not. Therefore, by the i.h. we have
v′ =⇒ v′′ ∈ Sp 𝛾 ffv(t) with v′ a subspine of v and t[v′′/ffv(t)] = u′. But then
𝑓 (t) [v′′/ffv(t)] = 𝑓 (t[v′′/ffv(t)]) = 𝑓 (u′) = 𝑙 [s], implying that 𝑓 (t) overlaps 𝑙 at
position Y, a contradiction.

– Head: We have 𝑒[v/𝛿] = ℎ(t[v/𝛿]) =⇒ ℎ(t′) = 𝑒′ with t[v/𝛿] =⇒ t′. The result
follows easily by using the i.h.

• 𝑒 = Y : We have 𝑒′ = Y, and thus we have Y =⇒ Y ∈ Sp 𝛾 · with 𝑒′ [Y] = Y[Y] = Y.

• 𝑒 = t, ®𝑥𝛾𝑥 .𝑡 ∈ SpP 𝛿 𝛾 (𝛿′, 𝑥 : 𝛾𝑥 → 𝑠) : We have t ∈ SpP 𝛿 𝛾′ 𝛿′ and 𝑡 ∈ TmP 𝛿 𝛾′ .𝛾𝑥 𝑠,
and 𝑒′ = t′, ®𝑥𝛾𝑥 .𝑡′ with t[v/𝛿] =⇒ t′ and 𝑡 [v/𝛿] =⇒ 𝑡′. By the i.h. we have v1 =⇒
v′
1 ∈ Sp 𝛾 ffv(t) and t[v′

1/𝛿1] = t′ and v2 =⇒ v′
2 ∈ Sp 𝛾 ffv(𝑡) and 𝑡 [v′

2/𝛿2] = 𝑡′, with
v1 and v2 subspines of v. Because t, ®𝑥𝛾𝑥 .𝑡 is linear, ffv(t) and ffv(𝑡) are disjoint, and
we can merge v1 and v2 into v12 ∈ Sp 𝛾 ffv(t, ®𝑥𝛾𝑥 .𝑡), and merge v′

1 and v′
2 into v′

12 ∈
Sp 𝛾 ffv(t, ®𝑥𝛾𝑥 .𝑡) such that v12 =⇒ v′

12. Finally, we have (t, ®𝑥𝛾𝑥 .𝑡) [v′
12/ffv(t, ®𝑥𝛾𝑥 .𝑡)] =

t[v′
1/ffv(t)], ®𝑥𝛾𝑥 .𝑡 [v

′
2/ffv(𝑡)] = t′, ®𝑥𝛾𝑥 .𝑡′. □

Corollary 1. Let 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 be a linear rule that does not overlap any rule in R. If
𝑙 [v] = 𝑓 (t) and t =⇒ t′ ∈ Sp 𝛾 𝛿 𝑓 , then there is v′ with v =⇒ v′ ∈ Sp 𝛾 𝛿 st 𝑙 [v′] = 𝑓 (t′).

Proof. We have 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 and 𝑙 [v] = 𝑓 (t) ∈ Tm 𝛾 𝑠 for some t =⇒ t′ ∈ Sp 𝛾 𝛿 𝑓 and
v ∈ Sp 𝛾 𝛿. This implies that 𝑙 must be of the form 𝑓 (u) with u ∈ Sp 𝛾 𝛿 𝑓 , and thus we
have 𝑙 [v] = 𝑓 (u[v]) = 𝑓 (t) and therefore u[v] =⇒ t′. Because 𝑓 (u) ↦−→ 𝑟 does not overlap
any rule in R, then if the pattern 𝑓 (u) overlaps a rule the overlap can only be improper
(at the head). Therefore, the pattern u does not overlap any rule. By Proposition 1,
we get v′ =⇒ v′′ ∈ Sp 𝛾 ffv(u) with v′ a subspine of v and u[v′′/ffv(u)] = t′. Because
𝛿 ⊩ 𝑓 (u) ↦−→ 𝑟 : 𝑠 is a rule, we have by hypothesis ffv(u) = ffv(𝑓 (u)) = 𝛿, and thus we have
v = v′ =⇒ v′′ ∈ Sp 𝛾 𝛿. Finally, we have 𝑙 [v′′] = 𝑓 (u[v′′]) = 𝑓 (t′). □

3 A confluence criterion for non-left linearity

Define the order of an arity, of a scope and of a signature by ord(𝛾 → 𝑠) = 1 + ord(𝛾),
ord(·) = −1, ord(𝛾, 𝑥 : 𝜏) = max{ord(𝛾), ord(𝜏)}, ord(Σ, 𝑐 : 𝜏) = max{ord(Σ), ord(𝜏)}. Note
then that the variables of order zero are the ones whose arity is just a sort.

One can remark that for most rewrite systems of interest the underlying signature Σ

is of order ≤ 2, and variables of order > 0 are only needed for defining the rewrite rules.
For instance, this is the case of the _-calculus, where one needs a 1st order variable t to
play the role of a metavariable in the rule _(𝑥.t(𝑥))@u ↦−→ t(u), but when translating a
_-term into its HRS representation one only uses zero order variables. This is also the case
of most logics and type theories.

The restriction to signatures of order ≤ 2 is even baked into the definition of second-
order formalisms, such as in [5]. There, one distinguishes between variables (order 0) and

5

A Confluence Criterion for Non Left-Linearity in a 𝛽[-Free Reformulation of HRSs T. Felicissimo

metavariables (order 1), and confluence of terms without metavariables is called object
confluence. In the following, we rephrase this notion in the setting of 2nd order HRSs.

Suppose now that the underlying signature Σ is of order ≤ 2. A term 𝑡 ∈ Tm 𝛾 𝑠 is an
object term 𝑡 if ord(𝛾) ≤ 0. A spine t ∈ Sp 𝛾 𝛿 is an object spine if ord(𝛾) ≤ 0 and ord(𝛿) ≤ 1.
We refer to them generically as object expressions. Note that if 𝑒 is an object expression
then all terms and spines appearing in 𝑒 are object expressions. Indeed, because Σ is of
order at most 2, each constructor 𝑓 can only bind 0-order variables. A rewrite system R
is object confluent if the rewriting relation restricted to object expressions is confluent.

Given two sorts 𝑠, 𝑠′ we say that 𝑠 is accessible from 𝑠′ (written 𝑠′ ⪯ 𝑠) if there is some
object term 𝑡 of sort 𝑠 and position 𝑝 such that 𝑡 |𝑝 is of sort 𝑠′. Given a rewrite system
R we write R ⪯ 𝑠 if for some 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠′ we have 𝑠′ ⪯ 𝑠. Note that this notion is only
interesting because we only consider object terms: if one has access to all variables, the
condition is always verified by taking 𝑡 = 𝑥(𝑦) with 𝑥 : 𝑠′ → 𝑠 and 𝑦 : 𝑠′. It is easy to see
that accessibility is decidable when the signature is finite.

Lemma 1. If 𝑡 ∈ Tm 𝛾 𝑠 is an object term and 𝑡 =⇒R 𝑡′ with R ⪯̸ 𝑠 then 𝑡 = 𝑡′.

Proof. We prove this by induction on the superdevelopement, simultaneously with a similar
result for spines: if t ∈ Sp 𝛾 𝛿 is an object spine st for all 𝑥 : 𝛾𝑥 → 𝑠 ∈ 𝛿 we have R ⪯̸ 𝑠,
then t =⇒ t′ implies t = t′. □

The heart of our proof is the following proposition, which is very similar to Proposition 1
but replaces linearity by an inaccessibility condition.

Proposition 2. Let 𝑒 ∈ Patt 𝛿 𝛾′ be a pattern that does not overlap any lhs of R, with
ord(𝛿) ≤ 1 and such that for any 𝑥 : 𝛾𝑥 → 𝑠𝑥 ∈ 𝛿 occurring non-linearly in 𝑒 we have R ⪯̸ 𝑠𝑥 .
If for some v ∈ Sp 𝛾 𝛿 and 𝑒′ we have 𝑒[v/𝛿] =⇒ 𝑒′ with 𝑒[v/𝛿] an object expression, then
we have v′ =⇒ v′′ ∈ Sp 𝛾 ffv(𝑒) with v′ a subspine of v and 𝑒[v′′/ffv(𝑒)] = 𝑒′.

Proof. By induction on 𝑒.

• 𝑒 = 𝑥(id𝛾𝑥) for some 𝑥 :: 𝛾𝑥 → 𝑠 ∈ 𝛿 : Then v𝑥 = v𝑥 [id𝛾𝑥] = 𝑥(id𝛾𝑥) [v] =⇒ 𝑒′.
Because rewriting cannot introduce new free variables and v𝑥 ∈ Tm 𝛾.𝛾𝑥 𝑠, then we
must have 𝑒′ ∈ Tm 𝛾.𝛾𝑥 𝑠. We thus have ®𝑥𝛾𝑥 .v𝑥 =⇒ ®𝑥𝛾𝑥 .𝑒′ ∈ Sp 𝛾 (𝑥 : 𝛾𝑥 → 𝑠) and
𝑥(id𝛾𝑥) [®𝑥𝛾𝑥 .𝑒′] = 𝑒′.

• 𝑒 = ℎ(t) with ℎ ≠ 𝑥 ∈ 𝛿 and t a pattern : We reason by case analysis on the
superdevelopement.

– Rew : Then for some rule 𝛿𝑙𝑟 ⊩ 𝑙 ↦−→ 𝑟 :: 𝑠𝑙𝑟 and spine s ∈ Sp 𝛾 𝛿𝑙𝑟 we
have 𝑒[v/𝛿] = ℎ(t[v/𝛿]) = 𝑓 (u) =⇒ 𝑟 [s] = 𝑒′ with u =⇒ u′ ∈ Sp 𝛾 𝛿 𝑓 and
𝑓 (u′) = 𝑙 [s]. We thus have ℎ = 𝑓 and t[v/𝛿] =⇒ u′. Because 𝑓 (t) does not
overlap any lhs of R, then t also does not. Therefore, by the i.h. we have
v′ =⇒ v′′ ∈ Sp 𝛾 ffv(t) with v′ a subspine of v and t[v′′/ffv(t)] = u′. But then
𝑓 (t) [v′′/ffv(t)] = 𝑓 (t[v′′/ffv(t)]) = 𝑓 (u′) = 𝑙 [s], implying that 𝑓 (t) overlaps 𝑙 at
position Y, a contradiction.

– Head: We have 𝑒[v/𝛿] = ℎ(t[v/𝛿]) =⇒ ℎ(t′) = 𝑒′ with t[v/𝛿] =⇒ t′. The result
follows easily by using the i.h.

• 𝑒 = Y : We have 𝑒′ = Y, and thus we have Y =⇒ Y ∈ Sp 𝛾 · with 𝑒′ [Y] = Y[Y] = Y.

• 𝑒 = t, ®𝑥𝛾𝑥 .𝑡 ∈ SpP 𝛿 𝛾 (𝛿′, 𝑥 : 𝛾𝑥 → 𝑠) : We have t ∈ SpP 𝛿 𝛾′ 𝛿′ and 𝑡 ∈ TmP 𝛿 𝛾′ .𝛾𝑥 𝑠,
and 𝑒′ = t′, ®𝑥𝛾𝑥 .𝑡′ with t[v/𝛿] =⇒ t′ and 𝑡 [v/𝛿] =⇒ 𝑡′. By the i.h. we have v1 =⇒
v′
1 ∈ Sp 𝛾 ffv(t) and t[v′

1/𝛿1] = t′ and v2 =⇒ v′
2 ∈ Sp 𝛾 ffv(𝑡) and 𝑡 [v′

2/𝛿2] = 𝑡′, with
v1 and v2 subspines of v. We can merge v1 and v2 into a spine v12 ∈ Sp 𝛾 ffv(t, ®𝑥𝛾 .𝑡),
however it is not immediately clear that we can do the same for v′

1 and v′
2. Let us

show why.

6

A Confluence Criterion for Non Left-Linearity in a 𝛽[-Free Reformulation of HRSs T. Felicissimo

Because ord(𝛿) ≤ 1 and ffv(t) ⊑ 𝛿 and ffv(𝑡) ⊑ 𝛿 then ord(ffv(t)) ≤ 1 and ord(ffv(𝑡)) ≤ 1.
Moreover, because (t, ®𝑥𝛾𝑥 .𝑡) [v/𝛿] ∈ Sp 𝛾.𝛾′ (𝛿′, 𝑥 : 𝛾𝑥 → 𝑠) is an object expression,
we have ord(𝛾) ≤ 0. Therefore, v1,v2 are object spines. If 𝑦 : 𝛾𝑦 → 𝑠𝑦 occurs in
both ffv(t) and ffv(𝑡) then by hypothesis we have R ⪯̸ 𝑠𝑦 and thus by Lemma 1
we must have (v′

1)𝑦 = (v1)𝑦 = (v2)𝑦 = (v′
2)𝑦 . Therefore, v′

1 and v′
2 agree on their

intersection, hence it is possible to merge them into v′
12 ∈ Sp 𝛾 ffv(t, ®𝑥𝛾𝑥 .𝑡). We

then have v12 =⇒ v′
12 and (t, ®𝑥𝛾𝑥 .𝑡) [v′

12/ffv(t, ®𝑥𝛾𝑥 .𝑡)] = t[v′
1/ffv(t)], ®𝑥𝛾𝑥 .𝑡 [v

′
2/ffv(𝑡)] =

t′, ®𝑥𝛾𝑥 .𝑡′ as required. □

Corollary 2. Let 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 be a rule that does not overlap any rule in R, and such
that for any 𝑥 : 𝛾𝑥 → 𝑠𝑥 ∈ 𝛿 occurring non-linearly in 𝑙 we have R ⪯̸ 𝑠𝑥 . If 𝑙 [v] ∈ Tm 𝛾 𝑠

is an object term with 𝑙 [v] = 𝑓 (t) and t =⇒R t′ ∈ Sp 𝛾 𝛿 𝑓 then we have v =⇒R v′ ∈ Sp 𝛾 𝛿

and 𝑙 [v′] = 𝑓 (t′).

Proof. We have 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 and 𝑙 [v] = 𝑓 (t) ∈ Tm 𝛾 𝑠 for some t =⇒ t′ ∈ Sp 𝛾 𝛿 𝑓 and
v ∈ Sp 𝛾 𝛿. This implies that 𝑙 must be of the form 𝑓 (u) with u ∈ Sp 𝛾 𝛿 𝑓 , and thus we
have 𝑙 [v] = 𝑓 (u[v]) = 𝑓 (t) and therefore u[v] =⇒ t′. Because 𝑓 (u) ↦−→ 𝑟 does not overlap
any rule in R, then if the pattern 𝑓 (u) overlaps a rule the overlap can only be improper
(at the head). Therefore, the pattern u does not overlap any rule. Moreover, because 𝑙 [v]
is an object term we have ord(𝛾) ≤ 0, and because ord(Σ) ≤ 2 then ord(𝛿 𝑓) ≤ 1, showing
that u[v] ∈ Sp 𝛾 𝛿 𝑓 is an object spine. Finally, because 𝑙 is a pattern, ord(Σ) ≤ 2 and
𝛿 = ffv(𝑙) it is not hard to see that ord(𝛿) ≤ 1 — indeed, each occurrence of a flexible
variable x : 𝛾𝑥 → 𝑠𝑥 ∈ 𝛿 must be of the form x(id𝛾𝑥), but because 2nd order constructors
only bind variables of order 0, and because 𝛾𝑥 is a subscope of the scope of bound variables
at this occurrence of x, then 𝛾𝑥 must be of order at most 0. Thus, by Proposition 2 we
get v′ =⇒ v′′ ∈ Sp 𝛾 ffv(u) with v′ a subspine of v and u[v′′/ffv(u)] = t′. Because
𝛿 ⊩ 𝑓 (u) ↦−→ 𝑟 : 𝑠 is a rule, we have by hypothesis ffv(u) = ffv(𝑓 (u)) = 𝛿, and thus we have
v = v′ =⇒ v′′ ∈ Sp 𝛾 𝛿. Finally, we have 𝑙 [v′′] = 𝑓 (u[v′′]) = 𝑓 (t′). □

We are now ready to give our criterion.

Theorem 1. Let R𝑙 and R𝑛𝑙 be two rewriting systems on Σ with ord(Σ) ≤ 2 such that

(𝐴) R𝑛𝑙 and R𝑙 are object confluent

(𝐵) R𝑙 is left-linear

(𝐶) There are no critical pairs between R𝑙 and R𝑛𝑙

(𝐷) For each 𝛿 ⊩ 𝑡 ↦−→ 𝑢 : 𝑠 ∈ R𝑛𝑙 and 𝑥 : 𝛾𝑥 → 𝑠𝑥 ∈ 𝛿 with 𝑥 occurring non-linearly in 𝑡,
we have R𝑙 ⪯̸ 𝑠𝑥

Then R𝑙 ∪ R𝑛𝑙 is object confluent.

Proof. Because R𝑛𝑙 and R𝑙 are both object confluent, it suffices to show that R𝑛𝑙 and R𝑙

commute on object expressions. We show R𝑛𝑙
⇐==⇒R𝑙

⊆=⇒R𝑙 R𝑛𝑙
⇐= on object expressions,

by induction on the superdevelopments. The proof is essentially the same as the one for
orthogonal systems [8], but using Corollary 2 for the case 𝑓 (t) =⇒R𝑛𝑙

𝑟 [v]. The case
EmptySp/EmptySp is trivial and the cases ExtSp/ExtSp and Head/Head follow easily
by the i.h., so we consider only the cases Head/Rew, Rew/Head and Rew/Rew. They
are illustrated in Figure ??.

• Head/Rew: We have 𝑓 (u) R𝑛𝑙
⇐= 𝑓 (t) =⇒R𝑙

𝑟 [v] where u R𝑛𝑙
⇐= t =⇒R𝑙

t′ and
𝑓 (t′) = 𝑙 [v] for some 𝑙 ↦−→ 𝑟 ∈ R𝑙 . By i.h. we have u =⇒R𝑙

s R𝑛𝑙
⇐= t′ for some s.

Because 𝑙 [v] = 𝑓 (t′) and t′ =⇒R𝑛𝑙
s and 𝑙 does not properly overlap no rule in R𝑛𝑙

then by Corollary 1 there is v′ with v =⇒R𝑛𝑙
v′ and 𝑓 (s) = 𝑙 [v′]. Thus we also have

𝑟 [v] =⇒R𝑛𝑙
𝑟 [v′]. We thus conclude 𝑓 (u) =⇒R𝑙

𝑟 [v′] R𝑛𝑙
⇐= 𝑟 [v].

7

A Confluence Criterion for Non Left-Linearity in a 𝛽[-Free Reformulation of HRSs T. Felicissimo

• Head/Rew: We have 𝑟 [v] R𝑛𝑙
⇐= 𝑓 (t) =⇒R𝑙

𝑓 (u) where t′ R𝑛𝑙
⇐= t =⇒R𝑙

u and
𝑓 (t′) = 𝑙 [v] for some 𝑙 ↦−→ 𝑟 ∈ R𝑛𝑙 . By i.h. we have t′ =⇒R𝑙

s R𝑛𝑙
⇐= u for some s.

𝑙 does not properly overlap no rule in R𝑙 and for all variables 𝑥 : 𝛾𝑥 → 𝑠𝑥 appearing
non-linearly in 𝑙 we have R𝑙 ⪯̸ 𝑠𝑥 . Moreover, 𝑙 [v] is an object term. Therefore,
from 𝑙 [v] = 𝑓 (t′) and t′ =⇒R𝑙

s and Corollary 2, we get v′ with v =⇒R𝑙
v′ and

𝑓 (s) = 𝑙 [v′]. Thus we also have 𝑟 [v] =⇒R𝑙
𝑟 [v′]. We thus conclude 𝑟 [v] =⇒R𝑙

𝑟 [v′] R𝑛𝑙
⇐= 𝑓 (u).

• Rew/Rew: We have 𝑟2 [v2] R𝑛𝑙
⇐= 𝑓 (t) =⇒R𝑙

𝑟1 [v1] where t2 R𝑛𝑙
⇐= t =⇒R𝑙

t1 and
𝑓 (t1) = 𝑙1 [v1] for some 𝑙1 ↦−→ 𝑟1 ∈ R𝑙 and 𝑓 (t2) = 𝑙2 [v2] for some 𝑙2 ↦−→ 𝑟2 ∈ R𝑛𝑙 .
By i.h. we have t2 =⇒R𝑙

s R𝑛𝑙
⇐= t1 for some s. Because 𝑓 (t1) = 𝑙1 [v1] and

t1 =⇒R𝑛𝑙
s and 𝑙1 does not properly overlap no rule in R𝑛𝑙 then by Corollary 1

there is v′
1 with v1 =⇒R𝑛𝑙

v′
1 and 𝑓 (s) = 𝑙1 [v′

1]. Moreover, 𝑙2 does not properly
overlap no rule in R𝑙 and for all variables 𝑥 : 𝛾𝑥 → 𝑠𝑥 appearing non-linearly in
𝑙2 we have R𝑙 ⪯̸ 𝑠𝑥 , and 𝑙2 [v2] is an object term. Therefore, from 𝑙2 [v2] = 𝑓 (t2)
and t2 =⇒R𝑙

s and Corollary 2, we get v′
2 with v2 =⇒R𝑙

v′
2 and 𝑓 (s) = 𝑙2 [v′

2].
We therefore have 𝑙1 [v′

1] = 𝑙2 [v′
2], but because R𝑙 and R𝑛𝑙 do not properly overlap,

this ovelap can only be improper, meaning that 𝑙1 = 𝑙2 and thus v′
1 = v′

2. Finally,
using v1 =⇒R𝑙

v′
1 = v′

2 R𝑛𝑙
⇐= v2 we close the diagram with 𝑟1 [v1] =⇒R𝑙

𝑟1 [v′
1] =

𝑟2 [v′
2] R𝑛𝑙

⇐= 𝑟2 [v2]. □

𝑓 (t) 𝑓 (t′) = 𝑙 [v] 𝑟 [v]

t t′

u s

𝑓 (u) 𝑓 (s) = 𝑙 [v′] 𝑟 [v′]

𝑓 (t) 𝑓 (t1) = 𝑙1 [v1] 𝑟1 [v1]

t t1

t2 s

𝑓 (t2) = 𝑙2 [v2] 𝑙2 [v′
2] = 𝑓 (s) = 𝑙1 [v′

1]

𝑟2 [v2] 𝑟1 [v′
1] = 𝑟2 [v′

2]

Figure 1: Cases Head/Rew and Rew/Head (left), and case Rew/Rew (right)

We can now prove that the system of Example 1 is object confluent. First note that Σ is
second-order as required. Then, by taking R𝑙 = {_(𝑥.t(𝑥))@u ↦−→ t(u)} and R𝑛𝑙 = R_𝜋↑ \R𝑙 ,
we have that R𝑙 is confluent by orthogonality and R𝑛𝑙 is confluent by joining its critical pairs
and seeing that it is also strongly normalizing. Therefore, both are also object confluent.
Moreover, R𝑙 is linear and there are no critical pairs between R𝑙 and R𝑛𝑙 . Finally, we can
easily verify that there is no object term of sort lvl containing a subterm of sort tm, and
thus we have R𝑙 ⪯̸ lvl. Hence, by our criterion R_𝜋↑ = R𝑙 ∪ R𝑛𝑙 is object confluent.

We remark that one could for instance extend R_𝜋↑ with other rules such as

n ∨ 0 ↦−→ n n + 0 ↦−→ n

0 ∨ m ↦−→ m n + S(m) ↦−→ S(n + m)
S(n) ∨ S(m) ↦−→ S(n ∨ m)

where ∨ : (n : lvl, m : lvl) → lvl and + : (n : lvl, m : lvl) → lvl, while preserving object
confluence. Indeed, by placing them in R𝑛𝑙 one can redo the same reasoning as above. This
is important because such kind of rules are sometimes also used when defining universes
in type theory.

8

A Confluence Criterion for Non Left-Linearity in a 𝛽[-Free Reformulation of HRSs T. Felicissimo

Final remarks Our theorem could instead be stated for second-order formalisms like [5,
4] — these correspond roughly to the second-order fragment of HRSs. There, the notion of
object confluence is arguably more natural, as the restriction to 0 order variables is built
in the formalism.

By instantiating R𝑛𝑙 with a left-linear system, condition (𝐷) is verified trivially, and
our criterion reduces to van Oostrom’s result for orthogonal combinations, but restricted
to the 2nd order case.

Finally, the criterion is designed for situations in which we can split the rewrite system
into two parts: one that is s.n. but not left-linear (whose confluence can hopefully be shown
with the critical pair lemma), and one that is left-linear but (possibly) not s.n. (whose
confluence can hopefully be shown with criteria assuming left-linearity). Nevertheless, the
condition (𝐵) could also be replaced by a condition similar to (𝐷), making symmetric the
roles of the two systems in the theorem. However, we do not know of any interesting
examples for which this generalization would apply.

Acknowledgments The author would like to thank Gilles Dowek for his careful read-
ing of a preliminary version of the paper, Jean-Pierre Jouannaud, Gaspard Férey and
Frédéric Blanqui for their thoughtful remarks on this work, and the anonymous reviewers
for their very helpful comments and suggestions.

References

[1] Peter Aczel. A general Church–Rosser theorem. 1978.

[2] Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang Liu. Untyped Conflu-
ence In Dependent Type Theories. working paper or preprint, April 2017.

[3] Gaspard Ferey. Higher-Order Confluence and Universe Embedding in the Logical
Framework. These, Université Paris-Saclay, June 2021.

[4] Makoto Hamana. Universal algebra for termination of higher-order rewriting. In Term
Rewriting and Applications: 16th International Conference, RTA 2005, Nara, Japan,
April 19-21, 2005. Proceedings 16, pages 135–149. Springer, 2005.

[5] Makoto Hamana, Tatsuya Abe, and Kentaro Kikuchi. Polymorphic computation
systems: Theory and practice of confluence with call-by-value. Science of Computer
Programming, 187:102322, 2020.

[6] Robert Harper and Daniel R Licata. Mechanizing metatheory in a logical framework.
Journal of functional programming, 17(4-5):613–673, 2007.

[7] Jan Willem Klop. Combinatory reduction systems. PhD thesis, Rijksuniversiteit
Utrecht, 1963.

[8] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence.
Theoretical computer science, 192(1):3–29, 1998.

[9] Vincent van Oostrom. Confluence for abstract and higher-order rewriting. Ph. D.
Thesis, Vrije Universiteit, 1984.

[10] Vincent Van Oostrom. Developing developments. Theoretical Computer Science,
175(1):159–181, 1997.

9

	Introduction
	Higher-order rewriting
	A confluence criterion for non-left linearity

