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A motivating example from dependent type theory

In dependent type theory, we can consider type of lists of length 𝑛:

𝑙 : List(𝑛)

If we add an operation for append ++, we might want to prove the proposition

isPermutation(𝑙1 ++ 𝑙2, 𝑙2 ++ 𝑙1)

for all 𝑙1 : List(𝑛1) and 𝑙2 : List(𝑛2)

Problem We have

𝑙1 ++ 𝑙2 : List(𝑛1 + 𝑛2) and 𝑙2 ++ 𝑙1 : List(𝑛2 + 𝑛1)

but the types List(𝑛2 + 𝑛1) and List(𝑛1 + 𝑛2) are not convertible

Consequence The proposition isPermutation(𝑙1 ++ 𝑙2, 𝑙2 ++ 𝑙1) is ill-typed
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In search of a solution
The standard solution List(𝑛2 + 𝑛1) and List(𝑛1 + 𝑛2) are not convertible

But we have a proof 𝑝 that they are equal

In type theory, we can cast 𝑙2 ++ 𝑙1 : List(𝑛2 + 𝑛1) using the proof 𝑝 to obtain

cast(𝑝, 𝑙2 ++ 𝑙1) : List(𝑛1 + 𝑛2)

Now the proposition

isPermutation(𝑙1 ++ 𝑙2, cast(𝑝, 𝑙2 ++ 𝑙1))

is well-typed, and has a proof

Problem Putting cast everywhere becomes unfeasable

Known in the type theory community as transport hell (transport = cast)

A better solutionMake 𝑛2 + 𝑛1 and 𝑛1 + 𝑛2 convertible
So that isPermutation(𝑙1 ++ 𝑙2, 𝑙2 ++ 𝑙1) is well-typed
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Equational theory of a type theory with AC addition
The equational theory of our dependent type theory should have:

• Associative-commutative (AC) addition

t + 0 ≈ t t + S(u) ≈ S(t + u)

t + u ≈ u + t (t + u) + v ≈ t + (u + v)

• 𝛽-conversion

@(_(𝑥 .t{𝑥}), u) ≈ t{u}
• Induction/recursion over natural numbers (think of Gödel’s System T)

Nrec(0, p, 𝑥𝑦.q{𝑥,𝑦}) ≈ p

Nrec(S(n), p, 𝑥𝑦.q{𝑥,𝑦}) ≈ q{n,Nrec(n, p, 𝑥𝑦.q{𝑥,𝑦})}

Goal Church-Rosser rewrite system for the above (second-order) equational theory

which can be shown terminating over typed terms
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Rewriting modulo
Cannot orient t + u ≈ u + t in a terminating way

We must instead consider rewriting modulo, where we have:

• Rewrite rules 𝑙 ↦−→ 𝑟 ∈ R, defining rewrite relation −→
• Undirected equations 𝑡 ≈ 𝑢 ∈ E, defining congruence ≃

In this setting, we now want to show Church-Rosser modulo (or CR modulo):

𝑡 ≡ 𝑢 implies 𝑡 ˜−→∗ ◦ ≃ ◦ ∗←̃− 𝑢

where ≡ is (−→ ∪ ←− ∪ ≃)∗ and

• Strong
1
CR modulo: ˜−→ is −→ (Huet)

• Weak CR modulo: ˜−→ between −→ and ≃ ◦ −→ (Stickel, Jouannaud)

Needed when ≃ can block −→, implementation usually requires matching modulo E

1

This terminology is non-standard, but I don’t know if there is a standard one.
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This work

Problem Most criteria in the literature for CR modulo rely on termination

But in type theory, we often show CR over untyped terms, 𝛽 non-terminating

And we can use rewrite rules without proving termination (eg like in Agda or Coq)

But CR modulo needed for subject reduction, which is needed for soundness of type-checking

Worse, second- and higher-order criteria for CR modulo are even rarer

ThisworkWe investigate criteria for 2nd order CRmodulo that do not rely on termination:

• Criterion 1 Proves weak CR modulo, but avoids the use of matching modulo

• Criterion 2 Proves strong CR modulo, easy consequence of known results

Each criterion proves CR modulo for a variant of our example
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Second-order rewriting



Second-order rewriting

We consider a framework of Second-Order Rewriting. This means

• Hamana’s Second-Order Computation Systems

• Nipkow’s Higher-order Rewriting Systems (HRSs), over a single base type

with variables of order ≤ 1 and symbols of order ≤ 2

Terms defined as

T (F ) ∋ 𝑡,𝑢, 𝑣 ::=

| 𝑥 𝑥 ∈ V
| x{𝑡1, . . . , 𝑡𝑘 } x ∈ M with arity(x) = 𝑘

| 𝑓 ( ®𝑥1.𝑡1, . . . , ®𝑥𝑘 .𝑡𝑘 ) 𝑓 ∈ F with arity(𝑓 ) = (𝑛1, . . . , 𝑛𝑘 ) and | ®𝑥𝑖 | = 𝑛𝑖

Example If arity(@) = (0, 0) and arity(_) = (1) then @(_(𝑥 .𝑥), 𝑦) ∈ T (F )
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Second-order rewriting

Rewrite system Set of rewrite rules 𝑙 ↦−→ 𝑟

with 𝑙 a (fully applied) pattern headed by symbol, andmv(𝑟 ) ⊆ mv(𝑙) and fv(𝑙) = fv(𝑟 ) = ∅

Example: @(_(𝑥 .t{𝑥}), u) ↦−→ t{u}

Equational system Set E of equations 𝑡 ≈ 𝑢
with 𝑡,𝑢 (fully applied) patterns and fv(𝑡) = fv(𝑢) = ∅ (andmv(𝑡) andmv(𝑢) are arbitrary)

Example: t + u ≈ u + t and t ≈ t + 0 (or, more formally, +(t, u) ≈ +(u, t) and t ≈ +(t, 0))

Rewrite system modulo Pair (R, E) with R rewrite system and E equational system
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The 1st Criterion



Back to (a variant of) the example

@(_(𝑥 .t{𝑥}), u) ↦−→ t{u} Nrec(0, p, 𝑥𝑦.q{𝑥,𝑦}) ↦−→ p

Nrec(S(n), p, 𝑥𝑦.q{𝑥,𝑦}) ↦−→ q{n,Nrec(n, p, 𝑥𝑦.q{𝑥,𝑦})}

t + 0 ≈ t t + S(u) ≈ S(t + u)

t + u ≈ u + t (t + u) + v ≈ t + (u + v)

Strong CR modulo does not hold, redexes can get blocked:

• Collapsible term inserted in the middle of redex

@(_(𝑥 .𝑡) + 0, 𝑢) where (□ + 0) [_(𝑥 .𝑡)] ≃ □[_(𝑥 .𝑡)]

• Symbol in E matched by rule not maximally exposed

Nrec(𝑥 + S(𝑦), 𝑝, 𝑥𝑦.𝑞) where 𝑥 + S(𝑦) ≃ S(𝑥 + 𝑦)

But do we need matching modulo?

9
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A criterion for abstract rewriting

Abstract rewrite systems modulo Set A with binary relation ≻ and equiv. relation ∼

Unblocking subset is a subsetU ⊆ A such that

1. For all 𝑎 there is 𝑏 ∈ U with 𝑎 ∼ 𝑏.
Intuition: all elements can be unblocked

2. If 𝑎 ≻ 𝑎′ and 𝑎 ∼ 𝑏 with 𝑏 ∈ U then 𝑏 ≻ 𝑏′ ∼ 𝑎′ for some 𝑏′

Intuition: in an unblocked term, all redexes are available

Define ⊲U by 𝑎 ⊲U 𝑏 iff 𝑎 ∼ 𝑐 ≻ 𝑏 for some 𝑐 ∈ U
Unblocking replaces matching modulo

Proposition Suppose that ≻ satisfies the diamond property
2
and that we have an unblock-

ing subsetU ⊆ A. Then 𝑎 (≻ ∪ ≺ ∪ ∼)∗ 𝑏 implies 𝑎 ⊲∗U ◦ ∼ ◦
∗
U⊳ 𝑏

2

Think of ≻ as simultaneous/orthogonal/multi-step rewriting
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Unblocked terms
Two ways a redex can get blocked in our example:

• Collapsible term inserted in the middle of redex

@(_(𝑥 .𝑡) + 0, 𝑢) where (□ + 0) [_(𝑥 .𝑡)] ≃ □[_(𝑥 .𝑡)]

• Symbol in E matched by rule not maximally exposed

Nrec(𝑥 + S(𝑦), 𝑝, 𝑥𝑦.𝑞) where 𝑥 + S(𝑦) ≃ S(𝑥 + 𝑦)

Write FE for symbols of E and FR for symbols of left-hand sides of R

A context 𝐸 is an E-fragment of 𝑡 if 𝐸 ∈ T (FE) and 𝐸 [®𝑢] is a subterm of 𝑡

A term is said to be unblocked if, for all E-fragments of 𝑡 ,

• 𝐸 ≃ □ implies 𝐸 = □
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The 1st Criterion

Criterion 1 Let (R, E) be a second-order rewrite system modulo st

1. Equations 𝑡1 ≈ 𝑡2 ∈ E are linear, and we have mv(𝑡1) = mv(𝑡2)

2. Symbols in FE have a binding arity of the form (0, . . . , 0)

3. For every context 𝐸 ∈ T (FE), there is unblocked 𝐸′ ∈ T (FE) with 𝐸 ≃ 𝐸′

4. R is left-linear and no left-hand side is headed by a symbol in FE

5. Orthogonal/simultaneous/multi-step rewriting =⇒ with R satisfies diamond prop.
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The 1st Criterion

@(_(𝑥 .t{𝑥}), u) ↦−→ t{u} Nrec (0, p, 𝑥𝑦.q{𝑥,𝑦}) ↦−→ p

Nrec (S(n), p, 𝑥𝑦.q{𝑥,𝑦}) ↦−→ q{n,Nrec (n, p, 𝑥𝑦.q{𝑥,𝑦})}

t + 0 ≈ t t + S(u) ≈ S(t + u)

t + u ≈ u + t (t + u) + v ≈ t + (u + v)

1. Equations 𝑡1 ≈ 𝑡2 ∈ E are linear, and we have mv(𝑡1) = mv(𝑡2) ✓

2. Symbols in FE have a binding arity of the form (0, . . . , 0) ✓
We have arity(+) = (0, 0) and arity(S) = (0) and arity(0) = ( )

3. For every context 𝐸 ∈ T (FE), there is unblocked 𝐸′ ∈ T (FE) with 𝐸 ≃ 𝐸′ ✓
Every context 𝐸 ∈ T (FE ) is ≃ to S

𝑛 (□1 + · · · + □𝑘 ) , which is unblocked

4. R is left-linear and no left-hand side is headed by a symbol in FE ✓

5. Orthogonal/Simultaneous rewriting =⇒ with R satisfies diamond prop. ✓
By orthogonality of the rewrite rules
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4. R is left-linear and no left-hand side is headed by a symbol in FE

5. Orthogonal/simultaneous/multi-step rewriting =⇒ with R satisfies diamond prop.

Then 𝑡 ≡ 𝑢 implies 𝑡 ˜−→∗ ◦ ≃ ◦ ∗←̃− 𝑢
where ˜−→ defined by: 𝑡 ˜−→ 𝑢 iff 𝑡 ≃ 𝑡 ′ −→ 𝑢 for some unblocked 𝑡 ′

Proof We show that the set of unblocked terms is an unblocking subset for (=⇒,≃)
We do some small adjustments and we obtain the result

14



The 1st Criterion

Criterion 1 Let (R, E) be a second-order rewrite system modulo st

1. Equations 𝑡1 ≈ 𝑡2 ∈ E are linear, and we have mv(𝑡1) = mv(𝑡2)

2. Symbols in FE have a binding arity of the form (0, . . . , 0)

3. For every context 𝐸 ∈ T (FE), there is unblocked 𝐸′ ∈ T (FE) with 𝐸 ≃ 𝐸′

4. R is left-linear and no left-hand side is headed by a symbol in FE

5. Orthogonal/simultaneous/multi-step rewriting =⇒ with R satisfies diamond prop.

Then 𝑡 ≡ 𝑢 implies 𝑡 ˜−→∗ ◦ ≃ ◦ ∗←̃− 𝑢
where ˜−→ defined by: 𝑡 ˜−→ 𝑢 iff 𝑡 ≃ 𝑡 ′ −→ 𝑢 for some unblocked 𝑡 ′

Proof We show that the set of unblocked terms is an unblocking subset for (=⇒,≃)
We do some small adjustments and we obtain the result

14



The 1st Criterion

Criterion 1 Let (R, E) be a second-order rewrite system modulo st

1. Equations 𝑡1 ≈ 𝑡2 ∈ E are linear, and we have mv(𝑡1) = mv(𝑡2)

2. Symbols in FE have a binding arity of the form (0, . . . , 0)

3. For every context 𝐸 ∈ T (FE), there is unblocked 𝐸′ ∈ T (FE) with 𝐸 ≃ 𝐸′

4. R is left-linear and no left-hand side is headed by a symbol in FE

5. Orthogonal/simultaneous/multi-step rewriting =⇒ with R satisfies diamond prop.

Then 𝑡 ≡ 𝑢 implies 𝑡 ˜−→∗ ◦ ≃ ◦ ∗←̃− 𝑢
where ˜−→ defined by: 𝑡 ˜−→ 𝑢 iff 𝑡 ≃ 𝑡 ′ −→ 𝑢 for some unblocked 𝑡 ′

Proof We show that the set of unblocked terms is an unblocking subset for (=⇒,≃)
We do some small adjustments and we obtain the result

14



The 2nd Criterion



The 2nd Criterion

Criterion 2 Let (R ∪ S, E) be a second-order rewrite system modulo st

1. R ∪ S is left-linear

2. For all 𝑡 ≈ 𝑢 ∈ E, we have 𝑡,𝑢 linear, headed by symbols, and mv(𝑡) = mv(𝑢)

3. R is confluent

4. (S, E) is strong CR modulo

5. No critical pairs between R and S ∪ E±

Where E± := E ∪ E−1
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The 2nd Criterion
R = @(_(𝑥 .t{𝑥}), u) ↦−→ t{u} Nrec (0, p, 𝑥𝑦.q{𝑥,𝑦}) ↦−→ p

Nrec (S(n), p, 𝑥𝑦.q{𝑥,𝑦}) ↦−→ q{n,Nrec (n, p, 𝑥𝑦.q{𝑥,𝑦})}

S = t + 0 ↦−→ t t + S(u) ↦−→ S(t + u) 0 + t ↦−→ t S(u) + t ↦−→ S(t + u)

E = t + u ≈ u + t (t + u) + v ≈ t + (u + v)

1. R ∪ S is left-linear ✓

2. For all 𝑡 ≈ 𝑢 ∈ E, we have 𝑡,𝑢 linear, headed by symbols, and mv(𝑡) = mv(𝑢)3✓
3. R is confluent ✓

Because R is orthogonal

4. (S, E) is strong CR modulo ✓

Follows by a criterion by Nipkow, because ≃ ◦ −→S is SN and all critical pairs close modulo ≃

5. No critical pairs between R and S ∪ E±✓

3

Therefore, E± := E ∪ E−1 is a left-linear rewrite system
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The 2nd Criterion

Criterion 2 Let (R ∪ S, E) be a second-order rewrite system modulo st
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3. R is confluent

4. (S, E) is strong CR modulo

5. No critical pairs between R and S ∪ E±

Where E± := E ∪ E−1

Then (R ∪ S, E) is strong CR modulo

Therefore, we still need to show the subsystem (S, E) to be strong CR modulo

The point is that (S, E) might be terminating, allowing application of other criteria
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The proof idea

The main tool for proving the criterion is the following well-known result:

Proposition If R and S are left-linear Pattern Rewrite Systems (PRSs) with no critical

pairs between them, then they commute

Locally proven in the proof of a theorem by Van Oostrom and Van Raamsdonk

Can also be easily shown by adapting proof of confluence by orthogonality

Proof idea for Criterion 2We know that that (S, E) is strong CR modulo

R commutes with E± and S by the above result, and with itself by confluence

We conclude with some easy diagram manipulations
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Conclusion



Conclusion
We have seen two criteria for CR modulo:

• Criterion 1Weak CR modulo but replaces matching modulo by unblocking

• Criterion 2 Strong CR modulo

Easy consequence of a known result, maybe not original?

Both address our initial motivation: How to show CRmodulo for dependent type theories?

Main limitations Linearity and left-linearity, cannot have t ⊔ t ≈ t

Unclear how to do without in second-order rewriting, because of Klop’s countexample

Future work
• Dedukti with rewriting modulo

• And why not Agda and Coq with rewriting modulo? We have the tools do to it!

Thank you for your attention!
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