Generic Bidirectional Typing
for Dependent Type Theories

Thiago Felicissimo

LMF Non-Permanent Members Seminar

November 30, 2023

Dependent type theory, in a nutshell
In dependent type theory:

Dependent type theory, in a nutshell
In dependent type theory:

+ Terms have types
I'+[0,1,2] : List Nat

where I is a context of variables x; : Ay, ..., xk : Ag

Dependent type theory, in a nutshell
In dependent type theory:

« Terms have dependent types
I'+[0,1,2] : Vec Nat 3

where I is a context of variables x; : Ay, ..., xk : Ag

Dependent type theory, in a nutshell
In dependent type theory:

« Terms have dependent types
I'+[0,1,2] : Vec Nat 3

where I is a context of variables x; : Ay, ..., xk : Ag

« Functions can be dependent

I'rAn.[1,..,n]:?

Dependent type theory, in a nutshell
In dependent type theory:

« Terms have dependent types
I'+[0,1,2] : Vec Nat 3

where I is a context of variables x; : Ay, ..., xk : Ag

« Functions can be dependent

'+ An.[1,..,n] : Nat — List Nat

Dependent type theory, in a nutshell
In dependent type theory:

« Terms have dependent types
I'+[0,1,2] : Vec Nat 3

where I is a context of variables x; : Ay, ..., xk : Ag

« Functions can be dependent

'+ An.[1,..,n] : II(n : Nat).Vec Nat n

Dependent type theory, in a nutshell
In dependent type theory:

« Terms have dependent types
I'+[0,1,2] : Vec Nat 3

where I is a context of variables x; : Ay, ..., xk : Ag

« Functions can be dependent

'+ An.[1,..,n] : II(n : Nat).Vec Nat n

« Types are equal modulo computation

'+ [0,1,2] : Vec Nat 3 2+1=3

I'+[0,1,2] : Vec Nat (2+1)

Why dependent type theory?

Curry-Howard correspondence Deep link between type theory and logic

Propositions as types, proofs as programs. Proof/type theory dictionary

Why dependent type theory?

Curry-Howard correspondence Deep link between type theory and logic
Propositions as types, proofs as programs. Proof/type theory dictionary

Foundation of popular proof assistants: Coq, Lean, Agda,...

Why dependent type theory?

Curry-Howard correspondence Deep link between type theory and logic
Propositions as types, proofs as programs. Proof/type theory dictionary

Foundation of popular proof assistants: Coq, Lean, Agda,...

Dependently-typed programming Dependent types allow to write both data

and specification in the same language

(* pre-condition: list not empty *)
hd : List Nat — Nat

hd (x=])=x

hd [] = FAIL

Why dependent type theory?

Curry-Howard correspondence Deep link between type theory and logic
Propositions as types, proofs as programs. Proof/type theory dictionary

Foundation of popular proof assistants: Coq, Lean, Agda,...

Dependently-typed programming Dependent types allow to write both data

and specification in the same language

hd :II(n : Nat). Vec Nat (n+ 1) — Nat
hdn (x=1) =x

Type annotations in dependent type theory

In its most primitive form, syntax is extremely annotated and verbose
I'+t:1I(x:A).B F'ru:A

[+ t@x.a.8u : Blu/x]
One-applieation One for each domain A and codomain B (think of semantics).

Type annotations in dependent type theory

In its most primitive form, syntax is extremely annotated and verbose
I'+t:1I(x:A).B F'ru:A

[+ t@x.a.8u : Blu/x]
One-applieation One for each domain A and codomain B (think of semantics).

Same for x ::4 [and (¢, u)y.ap and ...

Type annotations in dependent type theory

In its most primitive form, syntax is extremely annotated and verbose
I'+t:1I(x:A).B F'ru:A

[+ t@x.a.8u : Blu/x]
One-applieation One for each domain A and codomain B (think of semantics).

Same for x ::4 [and (t,u),.ap and ... Unusable in practice

Type annotations in dependent type theory

In its most primitive form, syntax is extremely annotated and verbose
I'+t:1I(x:A).B F'ru:A

[+ t@x.a.8u : Blu/x]
One-applieation One for each domain A and codomain B (think of semantics).

Same for x ::4 [and (t,u),.ap and ... Unusable in practice

Most presentation restore usability by omitting type annotations from syntax

I'+t:1I(x:A).B F'ru:A

I'+tu:Blu/x]

Type annotations in dependent type theory

In its most primitive form, syntax is extremely annotated and verbose
'rt:1(x:A).B F'ru:A
[+ t@x.apu: Blu/x]
One-applieation One for each domain A and codomain B (think of semantics).

Same for x ::4 [and (t,u),.ap and ... Unusable in practice

Most presentation restore usability by omitting type annotations from syntax
I'+t:1I(x:A).B F'ru:A
I'+tu:Blu/x]

Syntax so common that many don’t realize that an omission is being made

Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing
I'rt:II(x:A).B F'ru:A
I'+tu:Blu/x]

Typechecking without annotations
Omission has a cost Knowing annotations is needed for typing

F're:? IF'ru:?

Trtu:?

Typechecking without annotations
Omission has a cost Knowing annotations is needed for typing

F're:? IF'ru:?

Trtu:?

How to verify program t u is typed if A and B are not stored in syntax?

Typechecking without annotations
Omission has a cost Knowing annotations is needed for typing

F're:? IF'ru:?

Trtu:?

How to verify program t u is typed if A and B are not stored in syntax?

A solution for simple type theory Store the constraints on unknown types, then

solve them using unification (Hindley-Milner type inference)

Typechecking without annotations
Omission has a cost Knowing annotations is needed for typing

F're:? IF'ru:?

Trtu:?

How to verify program t u is typed if A and B are not stored in syntax?

A solution for simple type theory Store the constraints on unknown types, then

solve them using unification (Hindley-Milner type inference)

FAfAx.fx:ap

Typechecking without annotations
Omission has a cost Knowing annotations is needed for typing

F're:? IF'ru:?

Trtu:?

How to verify program t u is typed if A and B are not stored in syntax?

A solution for simple type theory Store the constraints on unknown types, then
solve them using unification (Hindley-Milner type inference)

fran,x:oF fx:0a3

FAfAx.fx:ap

Qp = A1 — 0 — A3

Typechecking without annotations
Omission has a cost Knowing annotations is needed for typing

F're:? TF'ru:?

Trtu:?

How to verify program t u is typed if A and B are not stored in syntax?

A solution for simple type theory Store the constraints on unknown types, then
solve them using unification (Hindley-Milner type inference)

fran,x:oF frag frap,x:aFx:as
o4 = 05 — A3

fran,x:oF fx:a3

FAfAx.fx:ap

Qp = A1 — 0 — A3

Typechecking without annotations
Omission has a cost Knowing annotations is needed for typing

F're:? TF'ru:?

Trtu:?

How to verify program t u is typed if A and B are not stored in syntax?

A solution for simple type theory Store the constraints on unknown types, then
solve them using unification (Hindley-Milner type inference)

a1 = Qg az = 0as

fran,x:oF frag frap,x:aFx:as
o4 = 05 — A3

fran,x:oF fx:a3

FAfAx.fx:ap

Qp = A1 — 0 — A3

Typechecking without annotations
Omission has a cost Knowing annotations is needed for typing

F're:? TF'ru:?

Trtu:?

How to verify program t u is typed if A and B are not stored in syntax?

A solution for simple type theory Store the constraints on unknown types, then
solve them using unification (Hindley-Milner type inference)

a1 = Qg az = 0as

fran,x:oF frag frap,x:aFx:as
o4 = 05 — A3

fran,x:oF fx:a3
FAfAx.fx:ap

Unification succeeds, with ag = (a5 — a3) — a5 — a3

Qp = A1 — 0 — A3

Why does Hindley-Miler type inference works?

In simple type theory, types are Ist order

A,B:=Nat|A— B

Why does Hindley-Miler type inference works?

In simple type theory, types are Ist order
A,B:=Nat|A— B

1st order unification is decidable and has most general unifiers

Why does Hindley-Miler type inference works?

In simple type theory, types are Ist order
A,B:=Nat|A— B

1st order unification is decidable and has most general unifiers

Problem In dependent type theory, terms appear in types

Why does Hindley-Miler type inference works?

In simple type theory, types are Ist order
A,B:=Nat|A— B

1st order unification is decidable and has most general unifiers

Problem In dependent type theory, terms appear in types

Therefore, we would need higher-order unification, which is undecidable...

Why does Hindley-Miler type inference works?

In simple type theory, types are Ist order
A,B:=Nat|A— B

1st order unification is decidable and has most general unifiers

Problem In dependent type theory, terms appear in types

Therefore, we would need higher-order unification, which is undecidable...

We need a different solution

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Inference T+t = A (inputs: T, t) (outputs: A)

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Inference T+t = A (inputs: T, t) (outputs: A)
Checking T+t < A (inputs: T, t, A) (outputs: none)

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Inference T+t = A (inputs: T, t) (outputs: A)
Checking T+t < A (inputs: T, t, A) (outputs: none)

New judgments allow to specify flow of type information in typing rules

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Inference T+t = A (inputs: T, t) (outputs: A)
Checking T+t < A (inputs: T, t, A) (outputs: none)

New judgments allow to specify flow of type information in typing rules

rrt==C C—"II(x:A).B rruesA

I'+tu= Blu/x]

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Inference T+t = A (inputs: T, t) (outputs: A)
Checking T+t < A (inputs: T, t, A) (outputs: none)

New judgments allow to specify flow of type information in typing rules

I'rtt=?

F'rtu=7?

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Inference T+t = A (inputs: T, t) (outputs: A)
Checking T+t < A (inputs: T, t, A) (outputs: none)

New judgments allow to specify flow of type information in typing rules

I'rt=~C

I'rtu=7?

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Inference T+t = A (inputs: T, t) (outputs: A)
Checking T+t < A (inputs: T, t, A) (outputs: none)

New judgments allow to specify flow of type information in typing rules

rrt==C C—"II(x:A).B

I'rtu=7?

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Inference T+t = A (inputs: T, t) (outputs: A)
Checking T+t < A (inputs: T, t, A) (outputs: none)

New judgments allow to specify flow of type information in typing rules

rrt==C C—"II(x:A).B lru<s?

I'rtu=7?

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Inference T+t = A (inputs: T, t) (outputs: A)
Checking T+t < A (inputs: T, t, A) (outputs: none)

New judgments allow to specify flow of type information in typing rules

rrt==C C—"II(x:A).B rruesA

I'rtu=7?

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Inference T+t = A (inputs: T, t) (outputs: A)
Checking T+t < A (inputs: T, t, A) (outputs: none)

New judgments allow to specify flow of type information in typing rules

rrt==C C—"II(x:A).B rruesA

I'+tu= Blu/x]

Bidirectional typing

Decompose typing judgment I' + ¢ : A into two modes:

Inference T+t = A (inputs: T, t) (outputs: A)
Checking T+t < A (inputs: T, t, A) (outputs: none)

New judgments allow to specify flow of type information in typing rules

rrt==C C—"II(x:A).B rruesA

I'+tu= Blu/x]

Complements unannotated syntax, locally explains how to recover annotations

Contribution

Bidirectional type systems have been studied and proposed for many theories

However, general guidelines have remained informal, no unified framework

Contribution

Bidirectional type systems have been studied and proposed for many theories

However, general guidelines have remained informal, no unified framework

This work Generic account of bidirectional typing for class of type theories

Contribution

Bidirectional type systems have been studied and proposed for many theories

However, general guidelines have remained informal, no unified framework

This work Generic account of bidirectional typing for class of type theories

Roadmap

Contribution

Bidirectional type systems have been studied and proposed for many theories

However, general guidelines have remained informal, no unified framework

This work Generic account of bidirectional typing for class of type theories

Roadmap

1. We give a general definition of type theories (or equivalently, a logical

framework) supporting non-annotated syntaxes

Contribution

Bidirectional type systems have been studied and proposed for many theories

However, general guidelines have remained informal, no unified framework

This work Generic account of bidirectional typing for class of type theories

Roadmap

1. We give a general definition of type theories (or equivalently, a logical

framework) supporting non-annotated syntaxes

2. For each theory, we define declarative and bidirectional type systems

Contribution

Bidirectional type systems have been studied and proposed for many theories

However, general guidelines have remained informal, no unified framework

This work Generic account of bidirectional typing for class of type theories

Roadmap

1. We give a general definition of type theories (or equivalently, a logical

framework) supporting non-annotated syntaxes
2. For each theory, we define declarative and bidirectional type systems

3. We show, in a theory-independent fashion, their equivalence

The theories

One syntax for all!

One syntax for all!

tbu, T,U == | x (variables)
| x{uq,....ur} (metavariables)
| c(X1.uq, ..., Xp.ux) (constructor application)
| d(t; X1.uq, ..., Xk.ug) (destructor application)

Symbols separated between constructors ¢ (intros) and destructors d (elims)

In d(t;...), we call t the principal argument.

One syntax for all!

tbu, T,U == | x (variables)
| x{uq,....ur} (metavariables)
| c(X1.uq, ..., Xp.ux) (constructor application)
| d(t; X1.uq, ..., Xk.ug) (destructor application)

Symbols separated between constructors ¢ (intros) and destructors d (elims)
In d(t;...), we call t the principal argument.

Example
o= II(AB{x}), A(t{x}),... (constructors)
@(t;u) (destructors)

LA B a=x | x{T | @(t;u) | A(x.t) | TI(A,x.B) | ...

The theories

A theory T is made of schematic typing rules and rewrite rules.

10

The theories

A theory T is made of schematic typing rules and rewrite rules.

3 schematic typing rules: sort rules, constructor rules and destructor rules

10

The theories

A theory T is made of schematic typing rules and rewrite rules.

3 schematic typing rules: sort rules, constructor rules and destructor rules

Sort rules Sorts are terms that can type other terms!

Used to define the judgment forms of the theory.

'We use the name "sort" instead of "type" to avoid a name clash with the types of the theory

10

The theories
A theory T is made of schematic typing rules and rewrite rules.

3 schematic typing rules: sort rules, constructor rules and destructor rules

Sort rules Sorts are terms that can type other terms!

Used to define the judgment forms of the theory.
Example: In MLTT, 2 judgment forms: "O type" and "0 : A" for a type A.

'We use the name "sort" instead of "type" to avoid a name clash with the types of the theory

10

The theories
A theory T is made of schematic typing rules and rewrite rules.

3 schematic typing rules: sort rules, constructor rules and destructor rules

Sort rules Sorts are terms that can type other terms!

Used to define the judgment forms of the theory.
Example: In MLTT, 2 judgment forms: "O type" and "0 : A" for a type A.

— Atype ~ A:Ty
+ Ty sort

FA:Ty
t:A ~ t:Tm(A)

+ Tm(A) sort

'We use the name "sort" instead of "type" to avoid a name clash with the types of the theory

10

Constructor rules

Constructors are bidirectionally typed in mode check (its sort is an input)

The sort of the rule should be a pattern T?, allowing to recover omitted annotations

11

Constructor rules

Constructors are bidirectionally typed in mode check (its sort is an input)
The sort of the rule should be a pattern T?, allowing to recover omitted annotations
FA:Ty x: Tm(A) +B: Ty
+II(A,B) : Ty

11

Constructor rules

Constructors are bidirectionally typed in mode check (its sort is an input)
The sort of the rule should be a pattern T?, allowing to recover omitted annotations
FA:Ty x: Tm(A) +B: Ty
+II(A,B) : Ty

FA:Ty x: Tm(A) FB: Ty x: Tm(A) F t: Tm(B{x})
FA(t) : Tm(TI(A, x.B{x}))

11

Destructor rules

Destructors are bidirectionally typed in mode infer (the sort is an output)

The sort of the principal argument t : T® should be a pattern

12

Destructor rules

Destructors are bidirectionally typed in mode infer (the sort is an output)

The sort of the principal argument t : T® should be a pattern

FA:Ty x:Tm(A) +B: Ty Ft: Tm(II(A x.B{x})) Fu:Tm(A)
F@(t;u) : Tm(B{u})

12

Rewrite rules

In type theory, terms should compute

Rewrite rules The computational rules of the theory.

@ (A(x.t{x});u) — t{u}

In general, of the form d(t7; %;.t7, ..., J?k.t,'z) + r, with left-hand-side linear.

13

Rewrite rules

In type theory, terms should compute

Rewrite rules The computational rules of the theory.
@ (A(x.t{x});u) — t{u}
In general, of the form d(t7; %;.t7, ..., J?k.t,'z) + r, with left-hand-side linear.

Condition: no two left-hand sides unify.

Therefore, rewrite systems are orthogonal, hence confluent by construction!

13

Full example, in the formal notation

Previous inference-rule notation can be desugared into a formal notation

14

Full example, in the formal notation

Previous inference-rule notation can be desugared into a formal notation

Theory T);; A minimalistic type theory with only dependent functions
Ty(-) sort
Tm(A : Ty) sort
II(; A:Ty, B{x: Tm(A)} : Ty) : Ty
A(A: Ty, B{x : Tm(A)} : Ty; t{x:Tm(A)} : Tm(B{x})) : Tm(II(A x.B{x}))
@(A: Ty, B{x: Tm(A)} : Ty; t:Tm(II(A x.B{x})); u:Tm(A)) : Tm(B{u})
@ (A(x.t{x});u) — t{u}

14

Full example, in the formal notation
Previous inference-rule notation can be desugared into a formal notation
Theory T);; A minimalistic type theory with only dependent functions
Ty(-) sort
Tm(A : Ty) sort
II(; A:Ty, B{x: Tm(A)} : Ty) : Ty
A(A : Ty, B{x : Tm(A)} : Ty; t{x:Tm(A)}: Tm(B{x})) : Tm(II(A, x.B{x}))
@ (A : Ty, B{x : Tm(A)} : Ty; t: Tm(II(A,x.B{x})); u:Tm(A)) : Tm(B{u})

@ (A(x.t{x});u) — t{u}

In the rest of the talk, we use the inference-rule notation for readability © y

Type systems

Each theory T defines two type systems.

15

Type systems

Each theory T defines two type systems.

Declarative system The "usual" type system, presented in papers
F'rt:T

More abstract and better for theoretic study

15

Type systems

Each theory T defines two type systems.

Declarative system The "usual" type system, presented in papers
F'rt:T
More abstract and better for theoretic study

However, worse for implementation: we need to "guess" omitted annotations

15

Type systems

Each theory T defines two type systems.

Declarative system The "usual" type system, presented in papers
F'rt:T

More abstract and better for theoretic study

However, worse for implementation: we need to "guess" omitted annotations

Bidirectional system Implementation-friendly, no need for any guessing

'rteT and Tri=T

15

Type systems

Each theory T defines two type systems.

Declarative system The "usual" type system, presented in papers
F'rt:T

More abstract and better for theoretic study

However, worse for implementation: we need to "guess" omitted annotations

Bidirectional system Implementation-friendly, no need for any guessing

'rteT and Tri=T

We will see each system and show that they are equivalent

15

Declarative type system

Declarative typing rules

16

Declarative typing rules

Main typing rules instantiate the schematic rules of T:

16

Declarative typing rules

Main typing rules instantiate the schematic rules of T:

FA:Ty x: Tm(A) - B: Ty
x : Tm(A) + t : Tm(B{x})

F A(t) : Tm(TI(A, x.B{x}))

16

Declarative typing rules

Main typing rules instantiate the schematic rules of T:

FA:Ty x: Tm(A) - B: Ty F'+A:Ty I,x:Tm(A) + B: Ty
x : Tm(A) + t : Tm(B{x}) I,x:Tm(A) + t : Tm(B)
~>
FA(t) : Tm(II(A, x.B{x})) [+ A(x.t) : Tm(II(A, x.B))

16

Declarative typing rules

Main typing rules instantiate the schematic rules of T:

FA:Ty x: Tm(A) - B: Ty F'+A:Ty I,x:Tm(A) + B: Ty
x : Tm(A) + t : Tm(B{x}) I,x:Tm(A) + t : Tm(B)
~>
FA(t) : Tm(II(A, x.B{x})) T+ A(x.t) : Tm(II(A, x.B))

FA: Ty x : Tm(A) + B : Ty
Ft:Tm(II(A, x.B{x})) *+u:Tm(A)

F @ (t;u) : Tm(B{u})

~>

16

Declarative typing rules

Main typing rules instantiate the schematic rules of T:

FA:Ty x: Tm(A) - B: Ty F'+A:Ty I,x:Tm(A) + B: Ty
x : Tm(A) + t : Tm(B{x}) I,x:Tm(A) + t : Tm(B)
~>
FA(t) : Tm(IT(A, x.B{x})) I+ A(x.t) : Tm(II(A, x.B))
FA: Ty x : Tm(A) + B : Ty '+A:Ty Ix:Tm(A) + B: Ty
Ft:Tm(II(A, x.B{x})) *+u:Tm(A) IF'tt:Tm(II(A x.B)) Tru:Tm(A)
~>

F @ (t;u) : Tm(B{u}) I'+ @(t;u) : Tm(B[u/x])

16

Bidirectional type system

Matching modulo rewriting

Suppose we want to infer the sort of @ (t;u)

I'rtt=>U

' @(t;u) =

17

Matching modulo rewriting

Suppose we want to infer the sort of @ (t;u)

I'rtt=>U

' @(t;u) =

We know
U = Tm(I1(A, x.B))

but they are no syntactically equal... How to recover annotations A and B from U?

17

Matching modulo rewriting

Suppose we want to infer the sort of @ (t;u)

I'rtt=>U

' @(t;u) =

We know
U = Tm(I1(A, x.B))

but they are no syntactically equal... How to recover annotations A and B from U?
Given t" and u, we define a matching judgment
tP <u~-> J_C)l.tl/Xl, 50 J_(')k.tk/Xk

that tries to compute a metavariable substitution s.t. t¥[X;.t; /X, ..., Xt /Xk] = .

17

Inferable and checkable terms

Not all unannotated terms can be algorithmically typed
?

I'rA(x.t) =7
I'r@A(x.t);u) =7?

18

Inferable and checkable terms

Not all unannotated terms can be algorithmically typed
?

I'rA(x.t) =7
I'r@A(x.t);u) =7?

Limitation not specific to bidirectional typing, undecidable in general!

18

Inferable and checkable terms

Not all unannotated terms can be algorithmically typed
?

I'rA(x.t) =7
I'r@A(x.t);u) =7?

Limitation not specific to bidirectional typing, undecidable in general!

Avoided by defining bidirectional typing only for inferrable and checkable terms.

tu o= x| d(t X1.UT, o Xp Uy)

tu = C(J?1.u§, o J_C)k-ulcc) | Ei

18

Inferable and checkable terms

Not all unannotated terms can be algorithmically typed
?

I'rA(x.t) =7
I'r@A(x.t);u) =7?

Limitation not specific to bidirectional typing, undecidable in general!

Avoided by defining bidirectional typing only for inferrable and checkable terms.

tu o= x| d(t X1.UT, o Xp Uy)

tu = C(J?1.u§, o J_C)k-ulcc) | Ei

Principal argument of a destructor can only be variable or another destructor.

18

Inferable and checkable terms

Not all unannotated terms can be algorithmically typed
?

I'rA(x.t) =7
I'r@A(x.t);u) =7?

Limitation not specific to bidirectional typing, undecidable in general!

Avoided by defining bidirectional typing only for inferrable and checkable terms.

tu o= x| d(t X1.UT, o Xp Uy)

tu = C(J?1.u§, o J_C)k-ulcc) | Ei

Principal argument of a destructor can only be variable or another destructor.

For most theories: t€ u€, ... = normal forms

18

Bidirectional typing rules

19

Bidirectional typing rules

Main typing rules instantiate the schematic rules of T:

19

Bidirectional typing rules

Main typing rules instantiate the schematic rules of T:

FA: Ty x:Tm(A) FB: Ty
x : Tm(A) + t : Tm(B{x})

FA(t) : Tm(TI(A, x.B{x}))

19

Bidirectional typing rules

Main typing rules instantiate the schematic rules of T:

FA:Ty x:Tm(A) FB: Ty Tm(TI(A, x.B{x})) < T ~ A/A, x.B/B
x : Tm(A) + t : Tm(B{x}) I,x:Tm(A) r t° & Tm(B)
~>
FA(t) : Tm(TI(A, x.B{x})) It A(xt)<T

19

Bidirectional typing rules

Main typing rules instantiate the schematic rules of T:

FA:Ty x:Tm(A) FB: Ty Tm(TI(A, x.B{x})) < T ~ A/A, x.B/B
x : Tm(A) + t : Tm(B{x}) I,x:Tm(A) r t° & Tm(B)
~>
FA(t) : Tm(TI(A, x.B{x})) It A(xt)<T

FA: Ty x: Tm(A) +B: Ty
Ft:Tm(II(A xB{x})) Fu:Tm(A)

F @(t;u) : Tm(B{u})

~>

19

Bidirectional typing rules

Main typing rules instantiate the schematic rules of T:

FA:Ty x:Tm(A) FB: Ty Tm(II(A, x.B{x})) < T ~ A/A, x.B/B
x : Tm(A) + t : Tm(B{x}) I,x:Tm(A) + t° = Tm(B)
~>
FA(t) : Tm(TI(A, x.B{x})) It A(xt)<T
T+t =T
FA: Ty x: Tm(A) +B: Ty Tm(II(A, x.B{x})) < T ~ A/A, x.B/B
Ft:Tm(II(A x.B{x})) Fu:Tm(A) I'tu® < Tm(A)
~>

F @(t;u) : Tm(B{u}) I+ @(tu°) = Tm(B[u/x])

19

Equivalence with declarative typing

Suppose underlying theory T is valid.

20

Equivalence with declarative typing

Suppose underlying theory T is valid.

SoundnessIf T +and T+t = TthenT +¢t:T.
IfT+TsortandT it < TthenT +t:T.

20

Equivalence with declarative typing

Suppose underlying theory T is valid.

SoundnessIf T +and T+t = TthenT +¢t:T.
IfT+TsortandT it < TthenT +t:T.

Completeness For t'inferable, if T+ ¢t : TthenT ' = U with T = U.
For t€ checkable, if T + ¢t : T thenT + tc & T.

20

Equivalence with declarative typing

Suppose underlying theory T is valid.

SoundnessIf T +and T+t = TthenT +¢t:T.
IfT+TsortandT it < TthenT +t:T.

Completeness For t'inferable, if T+ ¢t : TthenT ' = U with T = U.
For t€ checkable, if T + ¢t : T thenT + tc & T.

Decidability If T weak normalizing, then inference is decidable for inferable terms,
and checking is decidable for checkable terms.

20

Equivalence with declarative typing

Suppose underlying theory T is valid.

SoundnessIf T +and T+t = TthenT +¢t:T.
IfT+TsortandT it < TthenT +t:T.

Completeness For t'inferable, if T+ ¢t : TthenT ' = U with T = U.
For t€ checkable, if T + ¢t : T thenT + tc & T.

Decidability If T weak normalizing, then inference is decidable for inferable terms,
and checking is decidable for checkable terms.

Not for one particular theory, but for all instances of our framework

20

More examples

Dependent sums

Extends T, with

FA:Ty x: Tm(A) +B: Ty
F2(AB) : Ty

FA:Ty x:Tm(A) B : Ty
Ft:Tm(2(A x.B{x}))

F proj, (t;-) : Tm(A)

proj, (pair(t,u);e) — t

FA:Ty x: Tm(A) +B: Ty
Ft:Tm(A) Fu:Tm(B{t})

F pair(t,u) : Tm(Z(A, x.B{x}))

FA: Ty x:Tm(A) FB: Ty
Ft:Tm(2(A x.B{x}))

F proj,(t;-) : Tm(B{proj,(t)})

proj, (pair(t,u);e) = u

21

Lists
Extends T with
FA:Ty F x : Tm(A)
FA:Ty FA: Ty F 1: Tm(List(A))
F List(A) : Ty F nil : Tm(List(A)) F cons(x, 1) : Tm(List(A))

FA:Ty F 1:Tm(List(A)) x:Tm(List(A)) - P: Ty F pnil : Tm(P{nil})
x : Tm(A),y : Tm(List(A)), z : Tm(P{y}) + pcons : Tm(P{cons(x,y)})

F ListRec(1;P, pnil, pcons) : Tm(P{1})

ListRec(nil; x.P{x}, pnil, xyz.pcons{x,y, z}) — pnil
ListRec(cons(x, 1); x.P{x}, pnil, xyz.pcons{x, y, z}) +—
pcons{x, 1, ListRec(1; x.P{x}, pnil, xyz.pcons{x,y,z})}

22

W types
Extends T with

FA: Ty x: Tm(A) +B: Ty
FA: Ty x:Tm(A) B : Ty Fa:Tm(A) Ff: Tm(II(B{a}, x".W(A, x.B{x})))

FW(AB) : Ty F sup(a, f) : Tm(W (A x.B{x}))

FA:Ty x: Tm(A) B : Ty Ft:Tm(W(A x.B{x})) x : Tm(W(A x.B{x})) + P : Ty
x : Tm(A),y : Tm(TI(B{x}, x".'W(A, x.B{x}))), z : Tm(II(B{x}, x".P{@ (y,x")})) + p : Tm(P{sup(x,y)})
F WRec(t;P,p) : Tm(P{t})

WRec(sup(a, f); x.P{x}, xyz.p{x, y,z}) + p{a, f, A(x.WRec(@ (f, x); x.P{x}, xyz.p{x, y, z})) }

23

Universes
Extends T with

+a: Tm(U)
FU(-) : Ty FEl(a;-) : Ty
(Weak) Coquand-style

Tarski-style Adds codes for all types Adds a code constructor ¢

El(u;¢) — U FA:Ty

F c(A) : Tm(U)

Fu(-) : Tm(U)

Fa: Tm(U) x : Tm(El(a)) + b : Tm(U)
F (a,b) : Tm(U)

El(c(A);e) — A

El(r(a, x.b{x});) — II(El(a;¢), x.El(b{x}; ¢))

24

Conclusion

Conclusion
Generic account of bidirectional typing for class of dependent type theories

25

https://github.com/thiagofelicissimo/BiTTs

Conclusion
Generic account of bidirectional typing for class of dependent type theories

Bidirectional system implemented in a prototype, available at

https://github.com/thiagofelicissimo/BiTTs

‘thiago@thiago-work:~/git/BiTTsS make examples
(* Judgnent forns *) exec tt examples/mitt.bitt

sort Ty ()

sort Tn (& & Ty)

(* Taski-style universe *)
constructor U () () & Ty

destructor EL () (A : Tn(U)) O) = Ty
(* type in type *)

constructor u () () & Ta(U)

rewrite EL(1) --> U

(* Dependent products *)
constructor N1 ()

(A : Ty, B0 TR} : Ty) Lcheck] 5_Nat = @(@(plus; 2.Nst); 3_at)
=Ty dune exec bitt examples/hol.bitt
constructor A (A : Ty, B{x : T(A)} : Ty) g
(t{x : TM(A)) TM(B(x)))
2 Tn(M(A, x.)

destructor @ (A : Ty, B{x : Tn(A)} : Ty)
(t = Tn(N(A, x. B{x})))
(u_: Tn(a))
: Tn(B(u})

rewrtte @(A(x. £{x}), u) --> t{u}

constructor T () (a : Tm(U), b{_ : Tn(EL())} : Tn(Y)) : Tm(U)

definition fact_4
[eval] fact_4 -->* S(5(5(8)))))))))))2))))))))NN))
checked definition id_poly
o
rewrite EU(N(a, x.b{x})) --> N(EL(a), x. EL(b{x}))

[c o =
i thiago@thiago-work:~/git/BLTTsS
Beginning of buffer

https://github.com/thiagofelicissimo/BiTTs

Thank you for your attention!

26

	The theories
	Declarative type system
	Bidirectional type system
	More examples
	Conclusion

