
No need to be implicit!
Thiago Felicissimo

May 2022

Abstract
We consider a variant of Pure Type Systems in which the parameters of the dependent
product type are made explicit. This variant, which we call Explicitly-Typed Pure Type
Systems, is then shown equivalent to the traditional definition. This result is of par-
ticular interest for doing encodings of Pure Type Systems in logical frameworks, as in
these settings all the type parameters of constructors and eliminators are represented
explicitly in the syntax, and thus need to be provided.

1 Introduction

In the literature, it is most common to write λx : A.M for abstraction and MN for appli-
cation. However, if we remind ourselves that the dependent product can be seen as a
(negative) inductive type, we realize that this regular notation actually uses implicit argu-
ments. For instance, while the first projection of a pair is normally written as π1(p), if we
look at the full type of π1 (for instance in Coq), we see that this is an implicit notation for
π1(A,B , p), where A× B is the type of p.
Likewise, if wewanted to write the dependent product type with explicit paremeters, then
the full form of abstraction and application would be λ(A, [x]B , [x]M) and @(A, [x]B ,M ,N).
Furthermore, if − × − is universe-polymorphic, we should also write π1

sA,sB
(A,B , p) to

explicit the sort parameters. Because in PTSs the dependent product type is used with
different sorts, it is also a universe-polymorphic definition, thus we should also write
λsA,sB (A, [x]B , [x]M), @sA,sB (A, [x]B ,M ,N) and ΠsA,sB (A, [x]B).
A natural question we can then ask ourselves is how this implicit information changes the
theory, and a good setting to address this question in a general way is within Pure Type
Systems (PTSs). Such an equivalence would not only be interesting from a theoretical
perspective, but also for practical reasons, for instance when representing PTSs in logical
frameworks, such as in [3]. In this work, we show that those two settings are indeed equiv-
alent when restraining to functional PTSs, which make the quasi totality of PTSs used in
practice.

Related works

This is not the first work to consider variants of PTSs in which some of the type parameters
are made explicit in the syntax. In [6] they consider as an auxiliary system a presentation
of PTSs with typed conversion and in which only applications have their parameters ex-
plicit. For instance, they represent @sA,sB (A, [x]B ,M ,N) as MΠx :A.BN , but λsA,sB (A, [x]B , [x]M)
is represented as usual, as λx : A.M .
They then show that this version is equivalent to the standard one. In our work, we restrict

1



our investigation to the case of functional PTSs, but we explicit all the parameters, even
on abstractions, and also the sorts. However, their proofs were of great inspiration to our
ones.
In [5] they consider a version in which the parameters A,B are explicit everywhere, and in
particular B is also explicit in abstractions. However, sA, sB remain implicit — for instance,
they represent λsA,sB (A, [x]B ,M) as λx :A.BM . Then they also show that this presentation is
similar to the traditional one, under the assumption of strong normalization. Differently
from their work, here we do not assume this hypothesis, and we also explicit the sort pa-
rameters.
In [2], to show the existence of η-long forms for PTSs in the lambda cube, they consider
a notion of marked terms, in which they mark each variable, abstraction and application
with their domain types. They then show that such presentation is equivalent for PTSs in
the cube.
Our point of view is quite different, as in our presentation we don’t annotate terms with
their types, but instead constructors and eliminators with their parameters. For instance,
they annotate variables with their types, which we do not do as variables do not take pa-
rameters. Moreover, this means that some parameters are still implicit. For instance, if
M : Πx : A.B , then an application is represented in their system as (MN)B{N/x}, but from
B{N/x}we cannot extract neither A or B .

2 Pure Type Systems

Empty−well-formed Γ ` A : s x /∈ Γ Decl
Γ, x : Awell-formed

Γ ` M : A Γ ` B : s A ≡ B Conv
Γ ` M : B

Γ well-formed x : A ∈ Γ Var
Γ ` x : A

Γ well-formed (s1, s2) ∈ A Sort
Γ ` s1 : s2

Γ ` N : A Γ ` M : Πx : A.B App
Γ ` MN : B{N/x}

Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R Prod
Γ ` Πx : A.B : s3

Γ ` A : s1 Γ, x : A ` B : s2 Γ, x : A ` M : B Abs
Γ ` λx : A.M : Πx : A.B

Typing rules for Pure Type Systems (PTS)

For completeness purposes, we start by recalling the traditional definition1 of Pure Type
Systems (PTS)[1]. A PTS is parameterized by a sort specification (S,A,R), where S is a
set, A ⊆ S2 andR ⊆ S3. Terms are defined by the following syntax.

A,B ,M ,N ::= x | s | Πx : A.B | λx : A.B | MN

1There are actually two traditional definitions of Pure Type Systems: one with a primitive notion of well-
formed contexts, and one with a weakening rule. We chose here to use the first one, thought both are known
to be equivalent.

2



Conversion is defined by the context closure of the rule

(λx : A.M)N ↪−→ M{N/x}

for any terms A,M ,N , and where M{N/x} denotes the capture-avoiding substitution of
x by N in M . Typing is defined by the previously presented rules. A PTS is said to be
functional if the relations A,R are functional, that is, they define partial functions S 99K S
and S 99K S × S respectively.

3 Explicitly-Typed Pure Type Systems

We define the syntax of Explicitly-Typed Pure Type Systems by the following grammar,
whereas x ranges in an infinite set of variables V and s, s1, s2 ranges in the set of sorts S.

A,B ,M ,N ::= | x
| s
| Πs1,s2(A, [x]B)

| λs1,s2(A, [x]B , [x]M)

| @s1,s2(A, [x]B ,M ,N)

As discussed, the dependent product type and its constructor (abstraction) and eliminator
(application) are explicitly-typed, and thus take the sort parameters s1, s2 and the regular
parameters A,B . of the dependent product that is being constructed (with abstraction) or
eliminated (with application). Note that in terms such as Πs1,s2(A, [x]B) the sorts s1, s2 are
not terms, but indices of Π. Therefore, we have a symbol Πs1,s2 for each pair s1, s2 ∈ S.
We now need to chose how to define β-reduction in this system. One could be tempted to
take the rule

@s1,s2(A, [x]B ,λs1,s2(A, [x]B , [x]M),N) ↪−→β M{N/x} ,

which requires the parameters A,B in λ and @ to be syntactically the same. However, as
this rule is non-left linear, it is non-confluent in untyped terms, which leads to a much less
behaved metatheory. Therefore we will prefer to define β-reduction with the linearized
version of the rule, which is

@s1,s2(A, [x]B ,λs1,s2(A′, [x]B ′, [x]M),N) ↪−→β M{N/x} .

Note that, when this rule is used with well-typed terms, the typing constraints ensure
A ≡ A′ and B ≡ B ′. Moreover, because s1, s2 are not terms but indices, this rule is indeed
left-linear — actually, there is not only one β rule, but one for each pair s1, s2 ∈ S2.
We nowpresent the typing rules of the system. Note that in the rulesAbs andAppweprefer
to explicitly require that all the subterms appearing in the conclusion are well-typed, even

3



thought this would be ensured by inversion of the typing rules.
Empty−well-formed Γ ` A : s x /∈ Γ Decl-ctx

Γ, x : Awell-formed
Γ ` M : A Γ ` B : s A ≡ B Conv

Γ ` M : B

Γ well-formed x : A ∈ Γ Var
Γ ` x : A

Γ well-formed (s1, s2) ∈ A Sort
Γ ` s1 : s2

Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R Prod
Γ ` Πs1,s2(A, [x]B) : s3

Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R Γ, x : A ` M : B Abs
Γ ` λs1,s2(A, [x]B , [x]M) : Πs1,s2(A, [x]B)

Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R Γ ` N : A Γ ` M : Πs1,s2(A, [x]B) App
Γ ` @s1,s2(A, [x]B ,M ,N) : B{N/x}

Typing rules for Explicitly-Typed Pure Type Systems (EPTS)

4 Metatheory of EPTSs

We now show that EPTSs satisfy the usual metaproperties of PTSs. We only sketch the
proofs, as they follow the same idea as the standard ones for PTSs. Therefore this serves
more as a sanity check.
In the following, we write Γ v Γ′ when Γ is a subsequence of Γ′, that is, Γ′ extends Γ while
preserving the order among the elements of Γ.

Proposition 4.1 (Basic properties) EPTSs satisfy the following basic properties.

1. Confluence: If N1 ←−↩∗ M ↪−→∗ N2 then there is M ′ such that N1 ↪−→∗ M ′ ←−↩∗ N2.

2. Weakening: If Γ′ well-formed and Γ v Γ′, then Γ ` M : A implies Γ′ ` M : A.

3. Well-formedeness of contexts: If Γ ` M : A then Γ well-formed and for all x : A ∈ Γ,
Γ ` A : s .

4. Conversion in context: If A ≡ A′ and Γ ` A′ : s then

• Γ, x : A, Γ′ well-formed⇒ Γ, x : A′, Γ′ well-formed
• Γ, x : A, Γ′ ` M : B ⇒ Γ, x : A′, Γ′ ` M : B

Proof. The untyped terms together with β form a Combinatory Reduction System which
is orthogonal, and thus confluent (Corollary 13.6 of [4]). For the three other properties,
they follow from a simple induction, with 3 using 2 and 4 using 3. �

As usual, EPTSs satisfy inversion of typing.

4



Proposition 4.2 (Inversion) If Γ ` M : C then

• IfM = x , then

– Γ well-formed with a smaller derivation tree

– there is x with x : A ∈ Γ and C ≡ A

• IfM = s , then there is s ′ with (s, s ′) ∈ A and C ≡ s ′

• IfM = Πs1,s2(A, [x]B) then

– Γ ` A : s1 with a smaller derivation tree

– Γ, x : A ` B : s2 with a smaller derivation tree

– there is s3 with (s1, s2, s3) ∈ R and C ≡ s3

• IfM = λs1,s2(A, [x]B , [x]N) then

– Γ ` A : s1 with a smaller derivation tree

– Γ, x : A ` B : s2 with a smaller derivation tree

– there is s3 with (s1, s2, s3) ∈ R

– Γ, x : A ` N : B with a smaller derivation tree

– C ≡ Πs1,s2(A, [x]B)

• IfM = @s1,s2(A, [x]B ,N1,N2) then

– Γ ` A : s1 with a smaller derivation tree

– Γ, x : A ` B : s2 with a smaller derivation tree

– there is s3 with (s1, s2, s3) ∈ R

– Γ ` N1 : A with a smaller derivation tree

– Γ ` N2 : Πs1,s2(A, [x]B) with a smaller derivation tree

– C ≡ B{N2/x}

Recall that a specification (S,A,R) is said to be functional when the relationsA andR are
functional.

Proposition 4.3 (Uniqueness of types) For functional EPTSs, Γ ` M : A and Γ ` M : B
imply A ≡ B .

Proof. By induction on Γ ` M : A, and using inversion on Γ ` M : B . The interesting cases
are for rules Sort and Prod, where we use functionality of A,R to conclude. �

This also implies that types in functional EPTSs have a unique sort.

Corollary 4.1 (Uniqueness of sorts) For functional EPTSs, Γ ` A : s and Γ ` A : s ′ then
s = s ′.

5



Before showing subject reduction we start as usual with a substitution lemma.

Lemma 4.1 (Substitution lemma) Let Γ ` N : A. We have

• Γ, x : A, Γ′ well-formed⇒ Γ, Γ′{N/x}well-formed
• Γ, x : A, Γ′ ` M : B ⇒ Γ, Γ′{N/x} ` M{N/x} : B{N/x}

Proof. By induction on the judgment derivation. For the case Conv we use that A1 ≡
A2 implies A1{N/x} ≡ A2{N/x} and for the case App we use B{N/x}{M1{N/x}/y} =
B{M1/y}{N/x}. �

Proposition 4.4 (Well-sortness) If Γ ` M : A then Γ ` A : s for some sort, or A is a top sort.

Proof. By induction on Γ ` M : A. The only non-trivial case is with App, where we use the
substitution lemma. �

We can finally show that EPTSs satisfy subject reduction, as expected.

Theorem 4.1 (Subject reduction) If Γ ` M : A andM ↪−→β M ′ then Γ ` M ′ : A.

Proof. By induction on the rewrite context and using inversion. The only interesting non-
base case is when the reduction takes place to the right of an application, in which we use
the fact that N ↪−→ N ′ implies B{N/x} ↪−→∗ B{N ′/x} and the rule Conv. For the base case,
we use both the substitution lemma and the fact that Π(A, [x]B) ≡ Π(A′, [x]B ′) implies A ≡ A′

and B ≡ B ′, which follows from confluence. �

5 EPTS and PTS are equivalent

In this section we finally show the main result of this article: PTSs and EPTSs are indeed
equivalent. As previously mentioned, we restrict our study to the case of functional PTSs.
In the first part we will show that any EPTS judgment Γ `EPTS M : A can be erased into
a regular PTS judgment. We call this direction soundness, as it means intuitively that an
EPTS do not type more terms then its corresponding PTS.
We will then show the other direction and prove that for any PTS judgment Γ `PTS M : A
we can fill in the missing parameters and get Γ′,M ′,A′ such that Γ′ `EPTS M ′ : A′. We call
this direction completeness, as it means intuitively that an EPTS fully captures the typing
relation of its corresponding PTS.
Finally, we will put all this together to show that, by quocienting out from the EPTS syntax
the parameters normally left implicit, we have a bijection between the EPTS terms living
in a type A and the PTS terms living in the erasure of A.

6



5.1 Soundness

As we will see, showing soundness is quite easy. We start by defining the erasure function
from an EPTS to its corresponding PTS.

|x | = x

|s| = s

|Πs1,s2(A, [x]B)| = Πx : |A|.|B |
|λs1,s2(A, [x]B , [x]M)| = λx : |A|.|M |
|@s1,s2(A, [x]B ,M ,N)| = |M ||N |

Lemma 5.1 The erasure satisfies the following basic properties.

1. Compositionality: For allM ,N , we have |M |{|N |/x} = |M{N/x}|

2. Preservation of computation: For allM ,N , if M ↪−→ N then |M | ↪−→ |N |

3. Preservation of conversion: For allM ,N , if M ≡ N then |M | ≡ |N |

Proof. 1. By induction inM .
2. By induction on the rewrite context, using part 1 for the base case.
3. By induction on ≡, and using part 2. �

Theorem 5.1 (Soundness) We have the following

• If Γ well-formedEPTS then |Γ|well-formedPTS

• If Γ `EPTS M : A then |Γ| `PTS |M | : |A|

Proof. By induction on the judgment tree. The only non-trivial cases are App and Conv.
For the case App we use the fact that |B |{|N |/x} = |B{N/x}|. For the case Conv we use the
fact that A ≡ B implies |A| ≡ |B |. �

5.2 Completeness

To show completeness, we could try to define a function [−] : ΛPTS → ΛEPTS which fills in
the missing parameters for each termM ∈ ΛPTS . Because the parameters cannot be purely
inferred from the syntax, this function should also depend on the typing context Γ inwhich
M is well-typed.
We then could try to define [−]Γ by induction on M . For instance, we could try to define
[λx : A.M]Γ as λs1,s2([A]Γ, [x][B]Γ,x :A, [M]Γ,x :A), where s1, s2,B are such that Γ `PTS A : s1,
Γ, x : A `PTS B : s2 and Γ, x : A `PTS M : B . However, this definition is not well-founded,
because we apply [−] to B , which was not in the original term and thus can be arbitrarily
large.
Instead of applying [−] to B we could try taking a B ′ ∈ ΛEPTS satisfying [Γ], x : [A]Γ `
[M]Γ,x :A : B ′, but at this stage there is no reason for us to say that such a B ′ can exists. Of

7



course, when we will have proven completeness we will know that there is indeed such a
B ′, but we still do not know it yet.
Therefore, instead of defining a function [−] : ΛPTS → ΛEPTS we will use the erasure | − |
to prove completeness. We will proceed as it follows. First we will prove that for any
M ,N ∈ ΛEPTS well-typed with |M | = |N |, we have M ≡ N . Then we will use this to show
that | − | reflects conversion for well-typed terms: we have |M | ≡ |N | ⇒ M ≡ N . We
will then use this to show completeness, by establishing that if Γ `PTS M : A we can find
Γ′,M ′,A′ with |Γ′| = Γ,|M ′| = M and |A′| = A such that Γ′ `EPTS M ′ : A′.

5.2.1 Preservation of computation

As we discussed, we will start by showing that for M ,N well-typed, if |M | = |N | then
M ≡ N . However, we can actually be more precise and say that the conversion steps in
M and N are only performed on the implicit parameter positions. Therefore, we start by
defining this notion precisely.

Definition 5.1 (Implicit parameter step) We write M ↪−→I N when a reduction step is per-
formed in one of the parameters that is usually implicit. More precisely, we should have a context
C (−), termsM ′,N ′ withM ′ ↪−→ N ′ and be in one of the following cases.

• M = C (λs1,s2(A, [x]M ′, [x]P)) ↪−→ C (λs1,s2(A, [x]N ′, [x]P)) = N

• M = C (@s1,s2(A, [x]M ′,P ,P ′)) ↪−→ C (@s1,s2(A, [x]N ′,P ,P ′)) = N

• M = C (@s1,s2(M ′, [x]B ,P ,P ′)) ↪−→ C (@s1,s2(N ′, [x]B ,P ,P ′)) = N

We then write ↪−→∗I for the reflexive and transitive closure of ↪−→I , and we write ≡I for the equiva-
lence relation generated by it.

Wewill also need the following auxiliary lemma, which can be easily shown using subject
reduction and conversion in context.

Lemma 5.2 If Γ, x : A, Γ′ ` M : B and A ↪−→∗ A′ then Γ, x : A′, Γ′ ` M : B .

We can now proceed with the proof of the following proposition. In the following, we
write Γ ` M typed when there is A such that Γ ` M : A. Likewise, we write Γ ` A type if
there is M such that Γ ` M : A.

Proposition 5.1 If Γ `EPTS M ,M ′ typed and |M | = |M ′| then there isM ′′ withM ↪−→∗I M ′′ ←−↩
∗
I

M ′ with |M ′′| = |M | = |M ′|.

Proof. By induction onM , the base cases being trivial.
M = Πs1,s2

(A, [x]B): Then M ′ = Πs′1,s′2
(A′, [x]B ′) with |A| = |A′| and |B | = |B ′|. By inversion

we have

Γ ` A,A′ typed (1)
Γ, x : A ` B typed (2)
Γ, x : A′ ` B ′ typed (3)

8



Using (1) and |A| = |A′| we apply the IH to we deduce that there is A′′ satisfying A ↪−→∗I
A′′ ←−↩∗I A′ (implying s1 = s ′1) and |A′′| = |A| = |A′|. From this and Lemma 5.2 applied
to (2) and (3), we get Γ, x : A′′ ` B ,B ′ typed , and thus using |B | = |B ′| we can apply the
IH to get a B ′′ satisfying B ↪−→∗I B ′′ ←−↩∗I B ′ (implying s2 = s ′2) and |B ′′| = |B | = |B ′|.
Finally, now we can take M ′′ = Πs1,s2(A′′, [x]B ′′) and thus we have M ↪−→∗I M ′′ ←−↩∗I M ′ and
|M ′′| = |M | = |M ′|.
M = λs1,s2

(A, [x]B, [x]N): Then M ′ = λs′1,s′2
(A′, [x]B ′, [x]N ′) with |A| = |A′| and |N | = |N ′|. By

inversion we have

Γ ` A,A′ typed (1)
Γ, x : A ` N : B (2)
Γ, x : A′ ` N ′ : B ′ (3)

Using (1) and |A| = |A′| we apply the IH to we deduce that there is A′′ satisfying A ↪−→∗I
A′′ ←−↩∗I A′ (implying s1 = s ′1) and |A′′| = |A| = |A′|. From this and Lemma 5.2 applied to
(2) and (3) we get

Γ, x : A′′ ` N : B (4)
Γ, x : A′′ ` N ′ : B ′ (5)

and thus using the IH and |N | = |N ′|we get a N ′′ with N ↪−→∗I N ′′ ←−↩
∗
I N

′ and |N ′′| = |N | =
|N ′|. By subject reduction applied to (4) and (5) we also have Γ, x : A′′ ` N ′′ : B ,B ′, and
thus by Proposition 4.3 we have B ≡ B ′. By confluence, there is B ′′ with B ↪−→∗ B ′′ ←−↩∗ B ′
(which implies s2 = s ′2). Finally, nowwe can take λs1,s2(A′′, [x]B ′′, [x]N ′′) and we haveM ↪−→∗I
M ′′ ←−↩∗I M ′ and |M ′′| = |M | = |M ′|.
M = @s1,s2

(A, [x]B, N, P): Then M ′ = @s′1,s′2
(A′, [x]B ′,N ′,P ′) with |N | = |N ′| and |P | = |P ′|.

By inversion we have

Γ ` N : Πs1,s2(A, [x]B) (1)
Γ ` N ′ : Πs′1,s′2

(A′, [x]B ′) (2)
Γ ` P : A (3)
Γ ` P ′ : A′ (4)

Using this and |P | = |P ′|, |N | = |N ′|we apply the IH to get aP ′′ satisfyingP ↪−→∗I P ′′ ←−↩
∗
I P
′

and |P ′′| = |P | = |P ′| and a N ′′ satisfying N ↪−→∗I N ′′ ←−↩∗I N ′ and |N ′′| = |N | = |N ′|. By
subject reduction we then have Γ ` N ′′ : Πs1,s2(A, [x]B), Πs′1,s′2

(A′, [x]B ′). Thus, by Proposition
4.3 and confluence we have A′′,B ′′ with A ↪−→∗ A′′ ←−↩∗ A′ (implying s1 = s ′1), and B ↪−→∗
B ′′ ←−↩∗ B ′ (implying s2 = s ′2). Now we can take M ′′ = @s1,s2(A′′, [x]B ′′,N ′′,P ′′) and we have
M ↪−→∗I M ′′ ←−↩

∗
I M

′ and |M ′′| = |M | = |M ′|. �

Proposition 5.2 If |A| ↪−→ B then there is B ′ with A ↪−→ B ′ and |B ′| = B .

Proof. By induction on the rewrite context, using compositionality of | − | for the base
case. �

By iterating this proposition, we get the following corollary.

9



Corollary 5.1 If |A| ↪−→∗ B then there is B ′ with A ↪−→∗ B ′ and |B ′| = B .

Finally, nowwe can show that the conversion between well-typed terms in a PTS is indeed
reflected into its corresponding EPTS.

Proposition 5.3 (Reflection of conversion) If Γ `EPTS M ,N typed with |M | ≡ |N | then
M ≡ N .

Proof. By confluence we have P with |M | ↪−→∗ P ←−↩∗ |N |. By the previous result, there
are M ′,N ′ st M ↪−→∗ M ′ and N ↪−→∗ N ′ with |M ′| = P = |N ′|. By subject reduction Γ `
M ′,N ′ typed , and thuswe can apply Proposition 5.1 to get aP ′ satisfyingM ′ ↪−→∗I P ′ ←−↩∗I N ′,
and thus we deduceM ≡ N . �

5.2.2 Completeness

We are now ready to show our main result: ifM : A holds in a PTS, then we can fill inM ,A
the missing parameters to get M ′,A′ such that M ′ : A′ holds in the corresponding EPTS.
The intuition behind the proof is that, by analyzing the judgment tree of Γ `PTS M : A we
can obtain candidates for the type parameters we will insert inM .
One technical difficulty is that, when applying the induction hypothesis to two judgments
Γ ` M : A and Γ ` N : B with the same contexts, we get contexts Γ1, Γ2 where the in-
serted parameters need not be syntactically the same, but only convertible. Therefore, the
following proposition will be of great help to switch between Γ1 and Γ2.

Proposition 5.4 (Context exchange) If |Γ1| ≡ |Γ2|, Γ1 `EPTS M : A and Γ2 well-formed
then Γ2 `EPTS M : A.

Proof. We write Γ1, Γ2 as Γ1 = Γ, ∆1 and Γ2 = Γ, ∆2 and we prove the result on the size of
∆1 (which is the same as the one of ∆2).
For the base case this is trivial. For the induction step, we write ∆i = x : Bi , ∆′i and thus
our hypothesis becomes

Γ, x : B1, ∆′1 `EPTS M : A (5)

From |Γ1| ≡ |Γ2| we get |B1| ≡ |B2| and because Γ1 and Γ2 are well-formed, we get Γ `EPTS
B1 : s1 and Γ `EPTS B2 : s2. Hence, by Proposition 5.3 we deduce B1 ≡ B2. By conversion in
context, we get

Γ, x : B2, ∆′1 `EPTS M : A (6)

We can now apply the induction hypothesis to conclude. �

We now proceed with the proof of completeness.

Theorem 5.2 (Completeness) We have

• If Γ well-formed in PTS then there is Γ′ st Γ′ well-formed in EPTS with |Γ′| = Γ.

10



• If Γ `PTS M : A then there are Γ′,M ′,A′ st Γ′ `EPTS M ′ : A′ with |Γ′| = Γ, |M ′| = M and
|A′| = A.

Proof. By induction on the derivation. The case Empty is trivial.
Decl: The last rule of the derivation is

Γ `PTS A : s x /∈ Γ Decl
Γ, x : A well-formed

By IH there are Γ′,A′, s ′ st Γ′ `EPTS A′ : s ′ with |X ′| = X for X = Γ,A, s . For s , this implies
s ′ = s . We can thus apply the rule Decl-ctx to get

Γ′ `EPTS A′ : s x /∈ Γ Decl
Γ′, x : A′ well-formed

and we have indeed |Γ′, x : A′| = Γ, x : A.
Var: The last rule of the derivation is

Γ well-formed x : A ∈ Γ Var
Γ `PTS x : A

By IH there is Γ′ st |Γ′| = Γ and Γ′ well-formed in EPTS. Moreover, as x : A ∈ Γ, then
x : A′ ∈ Γ′ with |A′| = A. Therefore, we can apply the rule Var to obtain

Γ′ well-formed x : A′ ∈ Γ′ Var
Γ′ `EPTS x : A′

and we indeed have |Γ′ ` x : A′| = Γ ` x : A.
Sort: Similar to previous case.
Conv: The last rule of the derivation is

Γ `PTS M : A Γ `PTS B : s A ≡ B Conv
Γ `PTS M : B

By induction hypothesis we have Γ′, Γ′′,M ′,A′,B ′, s ′ st

Γ′ `EPTS M ′ : A′ (1)
Γ′′ `EPTS B ′ : s ′ (2)

with |X ′′| = |X ′| = X 2. For s this gives s ′ = s . As |Γ′| = |Γ′′|, we get

Γ′ `EPTS B ′ : s (3)

We also have that either Γ′ ` A′ : sA or A′ is a top sort. However, if A′ is a top sort then
A′ = B ′ and this contradicts Γ′ ` B ′ : s , thus A′ : sA. Therefore, from |A′| = A ≡ B = |B ′|we
can apply Proposition 5.3 to deduce A′ ≡ B ′. We can now apply Conv to get

2We write X for any of the Γ′, Γ′′,M ′, ...

11



Γ′ `EPTS M ′ : A′ Γ′ `EPTS B ′ : s A′ ≡ B ′ Conv
Γ′ `EPTS M ′ : B ′

and we indeed have |Γ′ ` M ′ : B ′| = Γ ` M : B .
Prod: The last rule of the derivation is

Γ `PTS A : s1 Γ, x : A `PTS B : s2 (s1, s2, s3) ∈ R Prod
Γ `PTS Πx : A.B : s3

By IH we get Γ′, Γ′′,A′,A′′, s ′1,B ′, s ′2 st

Γ′ `EPTS A′ : s ′1 (1)
Γ′′, x : A′′ `EPTS B ′ : s ′2 (2)

with |X ′′| = |X ′| = X . For si this gives s ′i = si . As |Γ′| = |Γ′′|, we have

Γ′′ `EPTS A′ : s1 (3)

From (2) we also get Γ′′ ` A′′ : s for some s , and thus by applying Proposition 5.1 to
|A′| = |A′′| we get A′ ≡ A′′. We can then use Conv to deduce Γ′′ ` A′′ : s1. Now we can use
this to deduce

Γ′′ `EPTS A′′ : s1 Γ′′, x : A′′ `EPTS B ′ : s2 (s1, s2, s3) ∈ R Prod
Γ′′ `EPTS Πs1,s2(A′′, [x]B ′) : s3

and we indeed have |Γ′′ ` Πs1,s2(A′′, [x]B ′) : s3| = Γ ` Πx : A.B : s3

Abs: The last rule of the derivation is
Γ `PTS Πx : A.B : s Γ, x : A `PTS N : B Abs

Γ `PTS λx : A.N : Πx : A.B

By IH we have Γ′, Γ′′,A′,A′′,N ′,B ′,B ′′, s ′ st

Γ′ `EPTS Πs1,s2(A′, [x]B ′) : s ′ (1)
Γ′′, x : A′′ `EPTS N ′ : B ′′ (2)

with |X ′′| = |X ′| = X . For s this gives s = s ′. From |Γ′| = |Γ′′|we get

Γ′′ `EPTS Πs1,s2(A′, [x]B ′) : s (3)

By inversion we also deduce

(s1, s2, s) ∈ R (4)
Γ′′ `EPTS A′ : s1 (5)
Γ′′, x : A′ `EPTS B ′ : s2 (6)

From (2) we can get

Γ′′ `EPTS A′′ : sA′′ (7)
Γ′′, x : A′′ `EPTS B ′′ : sB′′ (8)

12



By applying Proposition 5.1 with |A′| = |A′′|, we get A′ ≡ A′′. Then from conversion in
context applied to A′ ≡ A′′, we get Γ′′, x : A′′ ` B ′ : s2. Then we can use |B | = |B ′| and
Proposition 5.1 to get B ≡ B ′.
Using all this, we can apply conversion in context followed by Conv to (2), to get Γ′′, x :
A′ ` N ′ : B ′. Now we conclude with the following derivation.

Γ′′ `EPTS A′ : s1 Γ′′, x : A′ `EPTS B ′ : s2 (s1, s2, s) ∈ R Γ′′, x : A′ `EPTS N ′ : B ′ Abs
Γ′′ `EPTS λs1,s2(A′, [x]B ′, [x]N ′) : Πs1,s2(A′, [x]B ′)

and we indeed have |Γ′′ ` λs1,s2(A′, [x]B ′, [x]N ′) : Πs1,s2(A′, [x]B ′)| = Γ ` λx : A.N : Πx : A.B .
App: The last rule of the derivation is

Γ `PTS N1 : Πx : A.B Γ `PTS N2 : A Abs
Γ `PTS N1N2 : B{N2/x}

By the IH we have Γ, Γ′,A′,A′′,B ′,N ′1,N ′2 with
Γ′ `EPTS N ′2 : A′ (1)
Γ′′ `EPTS N ′1 : Πs1,s2(A′′, [x]B ′) (2)

with |X ′′| = |X ′| = X . By |Γ′| = |Γ′′|we get
Γ′ `EPTS N ′1 : Πs1,s2(A′′, [x]B ′) (3)

We can then also get Γ′ `EPTS Πs1,s2(A′′, [x]B ′) : s3, to which we apply inversion and get
(s1, s2, s3) ∈ R (4)
Γ′ `EPTS A′′ : s1 (5)
Γ′, x : A′′ `EPTS B ′ : s2 (6)

From |A′| = |A′′|, we can apply Proposition 5.1 to get A′ ≡ A′′, from which we apply Conv
with (5) and (1) to get Γ′ `EPTS N ′2 : A′′. We can then finally conclude with

Γ′ ` A′′ : s1 Γ′, x : A′′ ` B ′ : s2 (s1, s2, s3) ∈ R Γ′ ` N ′1 : Πs1,s2(A′′, [x]B ′) Γ′ ` N ′2 : A′′ App
Γ′ ` @s1,s2(A′′, [x]B ′,N ′1,N ′2) : B ′{N ′2/x}

and we have indeed |Γ′ ` @s1,s2(A′′, [x]B ′,N ′1,N ′2) : B ′{N ′2/x}| = Γ ` N1N2 : B{N2/x} �

5.3 Syntactic correspondence

We now show a correspondence between terms in a PTS and in its corresponding EPTS.
Given Γ `PTS A type, we would like to take A′, Γ′ and establish a function mapping PTS
terms of type A in Γ to EPTS terms of type A′ in Γ′, and then show it is a bijection up to
some equivalence.
By Theorem 5.2 we know that for eachM ∈ ΛPTS satisfying Γ `PTS M : A there are Γ′,M ′,A′

st Γ′ `EPTS M ′ : A′ and |Γ′| = Γ, |A′| = A and |M ′| = M . Let ψΓ,A be a function choosing for
any such M some M ′ satisfying this property.

13



Our first issue to solve is that Theorem 5.2 gives for each M a different Γ′,A′ with Γ′ `EPTS
ψΓ,A(M) : A′. The following result solves this problem.

Proposition 5.5 Let Γ `PTS A type. There exists Γ′,A′ ∈ ΛEPTS st |Γ′| = Γ, |A′| = A and for all
M with Γ `PTS M : A, Γ′ `EPTS ψΓ,A(M) : A′.

Proof. As Γ `PTS A type, by definition there is some M with Γ `PTS M : A. By definition of
ψ, there are Γ′,A′ with |Γ′| = Γ, |A′| = A and Γ′ `EPTS ψΓ,A(M) : A′.
Now let N be any term st Γ `PTS N : A. By the definition of ψ once again, there are Γ′′,A′′

with |Γ′′| = Γ, |A′′| = A and Γ′′ `EPTS ψΓ,A(N) : A′′. As |Γ′| = |Γ′′|, by Proposition 5.4 we have
Γ′ `EPTS ψΓ,A(N) : A′′. As |A′| = |A′′|, by Proposition 5.1 we have A′ ≡ A′′, thus by Conv we
have Γ′ `EPTS ψΓ,A(N) : A′. �

It is now left to show that ψΓ,A forms a bijection with | − | up to some equivalence. Note
that by its very definition we have |ψΓ,A(M)| = M . We can also show the complementary
direction using our previously defined notion of ≡I .

Proposition 5.6 Let Γ `EPTS M : A. We have ψ|Γ|,|A|(|M |) ≡I M .

Proof. If Γ `EPTS M : A, then by Theorem 5.1 we have |Γ| `PTS |M | : |A|, and thus ψ|Γ|,|A| is
well-defined in |M |. Then, by definition of ψ, we have Γ′ `EPTS ψ|Γ|,|A|(|M |) : A′, where |Γ′| =
|Γ|, |ψ|Γ|,|A|(|M |)| = |M | and |A′| = |A|. Finally, |ψ|Γ|,|A|(|M |)| = |M | implies ψ|Γ|,|A|(|M |) ≡I M
by Proposition 5.1. �

With all these results, we can now show our bijection.

Theorem 5.3 Let Γ `PTS A type. There are Γ′,A′ with |Γ′| = Γ, |A′| = A such that we have a
bijection

Λ(Γ `PTS _ : A) ' Λ(Γ′ `EPTS _ : A′)/ ≡I

given by ψΓ,A and | − |.

Proof. Given Γ `PTS A type, we apply Proposition 5.5 to get Γ′,A′ satisfying |Γ′| = Γ, |A′| = A.
By Proposition 5.5 also, ψΓ,A is a function Λ(Γ `PTS _ : A)→ Λ(Γ′ `EPTS _ : A′), and thus in
particular a function Λ(Γ `PTS _ : A)→ Λ(Γ′ `EPTS _ : A′)/ ≡I .
By Theorem 5.1, |− | is a function Λ(Γ′ `EPTS _ : A′)→ Λ(Γ `PTS _ : A). Because forM ≡I N
we can show |M | = |N |, this restricts to a function Λ(Γ′ `EPTS _ : A′)/ ≡I→ Λ(Γ `PTS _ : A).
Moreover, we have |ψΓ,A(M)| = M by definition and ψΓ,A(|M |) = ψ|Γ′|,|A′|(|M |) ≡I M by
Proposition 5.6, establishing the bijection. �

References

[1] H. P. Barendregt. Lambda Calculi with Types, page 117–309. Oxford University Press,
Inc., USA, 1993.

[2] G.Dowek andB.Werner. On the definition of the eta-long normal form in type systems
of the cube. In Informal Proceedings of theWorkshop on Types for Proofs and Programs, 1993.

14



[3] T. Felicissimo. Adequate and computational encodings in the logical framework De-
dukti. In preparaton, 2022.

[4] J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems:
introduction and survey. Theoretical Computer Science, 121(1):279–308, 1993.

[5] P.-A. Melliès and B. Werner. A generic normalisation proof for pure type systems. In
E. Giménez and C. Paulin-Mohring, editors, Types for Proofs and Programs, pages 254–
276, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[6] V. Siles and H. Herbelin. Pure type system conversion is always typable. Journal of
Functional Programming, 22:153 – 180, 2012.

15


	Introduction
	Pure Type Systems
	Explicitly-Typed Pure Type Systems
	Metatheory of EPTSs
	EPTS and PTS are equivalent
	Soundness
	Completeness
	Preservation of computation
	Completeness

	Syntactic correspondence


